JPS5936083B2 - Power generation method - Google Patents

Power generation method

Info

Publication number
JPS5936083B2
JPS5936083B2 JP14914280A JP14914280A JPS5936083B2 JP S5936083 B2 JPS5936083 B2 JP S5936083B2 JP 14914280 A JP14914280 A JP 14914280A JP 14914280 A JP14914280 A JP 14914280A JP S5936083 B2 JPS5936083 B2 JP S5936083B2
Authority
JP
Japan
Prior art keywords
solution
semipermeable membrane
expander
solvent
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14914280A
Other languages
Japanese (ja)
Other versions
JPS5773809A (en
Inventor
紀之 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP14914280A priority Critical patent/JPS5936083B2/en
Publication of JPS5773809A publication Critical patent/JPS5773809A/en
Publication of JPS5936083B2 publication Critical patent/JPS5936083B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は動力発生力法、主として低温度差で作動するラ
ンキンサイクル機関における動力発生力法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation method, primarily in a Rankine cycle engine operating at a low temperature difference.

ランキンサイクル機関は既に公知のごとく水、フロン、
アンモニア、ブタンなどの作動媒体をポンプで加圧した
後、蒸発器において外部からの熱により加熱蒸発させ、
この蒸気をタービン式、レシプロ式あるいはスクリュ一
式などのエクスパンダ沖に導入して膨張させ、該蒸気の
保有するエネルギの一部を動力の形で外部に取り出し、
−力エクスパンダ中で膨張させることにより減圧降温し
た蒸気を凝縮器に導いて凝縮させ、再びポンプで加圧し
て同じサイクルを繰返えすものである。
As is already well known, the Rankine cycle engine uses water, fluorocarbons,
After pressurizing a working medium such as ammonia or butane with a pump, it is heated and evaporated using external heat in an evaporator.
This steam is introduced into an expander such as a turbine type, reciprocating type, or screw set and expanded, and a part of the energy possessed by the steam is extracted outside in the form of power.
- Steam that has been depressurized and cooled by expansion in a power expander is led to a condenser and condensed, and then pressurized again with a pump to repeat the same cycle.

ランギンサイクル機関においては、蒸発器で飽和蒸気を
発生させ、そのままエクスパンダに入れるものや、蒸発
器の後に過熱器を設けて蒸気を過熱蒸気にしてからエク
スパンダに入れるものもある。
In some Langin cycle engines, saturated steam is generated in an evaporator and is directly fed into the expander, while others are equipped with a superheater after the evaporator to superheat the steam before feeding it into the expander.

また、この場合、エクスパンダ出口の蒸気が過熱蒸気で
あるならば、熱交換器を設けてエクスパンダ出口の蒸気
で蒸発器に還流する作動媒体を予熱することもある。
Further, in this case, if the steam at the expander outlet is superheated steam, a heat exchanger may be provided to preheat the working medium to be returned to the evaporator with the steam at the expander outlet.

また、圧力を有する高温の液体を直接第1のエクスパン
ダに導いて仕事させ、発生した蒸気で第2のエクスパン
ダを2駆動するとともに、第1のエクスパンダ出口で蒸
気と分離しり液体をフラッシュタンクに導いてフラッシ
ュさせ、発生した蒸気を第2のエクスパンダの中間段に
導いて最初の蒸気と合流させて仕事をさせ、第2のエク
スパンダを出た蒸気を冷却して凝縮させ、凝縮した液体
をポンプで液体加熱器に返すというものもある。
In addition, the high-temperature liquid under pressure is directly guided to the first expander to do work, the generated steam drives the second expander, and the vapor and liquid are separated at the outlet of the first expander and flashed. The generated steam is led to a tank and flashed, the generated steam is led to the intermediate stage of the second expander and combined with the first steam to do work, and the steam exiting the second expander is cooled and condensed. Some systems use a pump to return the liquid to a liquid heater.

地熱水の場合は、凝縮した液体をポンプで地下に還元し
ている。
In the case of geothermal water, the condensed liquid is pumped back underground.

これらの従来のランキンサイクルを利用した機関におい
ては、凝縮した作動媒体を蒸発器または加熱器もしくは
地下に送りかえすためのポンプ動力が作動媒体とその温
度、圧力によっては機関総合効率に大きな影響を与える
ことがあり、はなはだしい場合には、機関出力の30%
程度に達することがある。
In these conventional Rankine cycle engines, the power of the pump to send the condensed working medium back to the evaporator, heater, or underground can have a significant impact on the overall efficiency of the engine, depending on the working medium, its temperature, and pressure. In extreme cases, 30% of the engine output
It may reach a certain extent.

低用の蒸気タービン、低温度差用有機媒体タービンにこ
の傾向が強い。
This tendency is strong in steam turbines for low temperatures and organic medium turbines for low temperature differences.

本発明は、作動媒体として、加熱された溶液から蒸発し
た溶媒蒸気を使用し、この溶媒蒸気でエクスパンダを駆
動し、エクスパンダ中で減圧降温した溶媒蒸気を冷却凝
縮させ、凝縮した溶媒を半透膜の浸透用を利用して元の
溶液に還元させて還流せしめる動力発生力法を提案する
ものである。
The present invention uses solvent vapor evaporated from a heated solution as a working medium, drives an expander with this solvent vapor, cools and condenses the solvent vapor whose temperature has been lowered in the expander, and half the condensed solvent. This paper proposes a power generation method that utilizes the permeability of a permeable membrane to reduce the original solution and reflux it.

以下本発明の一実施例を図面に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

第1図および第2図において、1は蒸発器を示し、蒸気
ドラムla、溶液ドラム1bおよびこれらを連結する蒸
発器管部1cよりなっている。
In FIGS. 1 and 2, reference numeral 1 denotes an evaporator, which is composed of a steam drum la, a solution drum 1b, and an evaporator tube section 1c connecting these.

2は蒸気ドラム1aから発生した溶媒蒸気を過熱する過
熱器、3は過熱器2に接続されたエクスパンダ起動弁、
4はエクスパンダで、例えばタービン式のもの、5は該
エクスパンダ4で駆動される例えは発電機である。
2 is a superheater that superheats the solvent vapor generated from the steam drum 1a; 3 is an expander starting valve connected to the superheater 2;
4 is an expander, for example a turbine type one, and 5 is, for example, a generator driven by the expander 4.

6は前記エクスパンダ4で膨張し減圧降温した溶媒蒸気
を冷却して凝縮させる凝縮器である。
6 is a condenser that cools and condenses the solvent vapor expanded by the expander 4 and reduced in pressure and temperature.

7は半透膜7aを隔壁として内蔵する半透膜室で、前記
半透膜7aにより区画された下部室7bは前記凝縮器6
に連通連結され、上部室7cは上昇管8および下降管9
を介して前記蒸発器1の溶液ドラム1bに連通連結され
、凝縮器6で凝縮された溶媒は半透膜室7の半透膜7a
を隔壁として溶液ドラム1bの溶液と対峙し、溶媒が溶
液側に半透膜7aの性質により流れ込むようになってお
り、凝縮溶媒が占める下部室7bの容積は溶液が占める
上部室7cの容積よりも大きくなるように構成されてい
る。
7 is a semipermeable membrane chamber incorporating a semipermeable membrane 7a as a partition wall, and a lower chamber 7b partitioned by the semipermeable membrane 7a is connected to the condenser 6.
The upper chamber 7c is connected to the ascending pipe 8 and the descending pipe 9.
The solvent condensed in the condenser 6 is connected to the solution drum 1b of the evaporator 1 through the semipermeable membrane 7a of the semipermeable membrane chamber 7.
is used as a partition wall to face the solution in the solution drum 1b, and the solvent flows into the solution side due to the properties of the semipermeable membrane 7a, and the volume of the lower chamber 7b occupied by the condensed solvent is greater than the volume of the upper chamber 7c occupied by the solution. is also configured to be large.

そして蒸発器1の溶液は蒸発器管部1cが連通ずる蒸気
ドラム1aの下部空間および溶液ドラム1bならびに半
透膜室7の上部室7cに満たされている。
The solution in the evaporator 1 fills the lower space of the steam drum 1a with which the evaporator tube 1c communicates, the solution drum 1b, and the upper chamber 7c of the semipermeable membrane chamber 7.

また上昇管8および下降管9にはそれぞれエクスパンダ
4起動時に開弁する弁8aおよび9aが設けられている
Further, the ascending pipe 8 and the descending pipe 9 are provided with valves 8a and 9a, respectively, which open when the expander 4 is activated.

今、弁3.8a 、9aを閉じたまま燃焼ガスまたは排
ガスもしくは熱風などにより蒸発器管部1cおよび過熱
器2を加熱し、エクスパンダ4を起動するに十分な溶媒
蒸気(溶質は塩類のような電解質であっても、ショ糖、
アルコールその他の有機化合物のような非電解質であっ
てもよいが、溶媒に比して沸点が十分高く、発生蒸気の
大部分が溶媒蒸気で占められるようなものでなくてはな
らない)が発生した時点で弁3.8a、9aを開弁する
と、溶媒蒸気がエクスパンダ4を駆動し、発電機5が稼
動される。
Now, with valves 3.8a and 9a closed, heat the evaporator pipe section 1c and superheater 2 with combustion gas, exhaust gas, hot air, etc., and generate enough solvent vapor (solutes such as salts) to start the expander 4. Even if the electrolyte is sucrose,
It may be a non-electrolyte such as alcohol or other organic compound, but it must have a sufficiently high boiling point compared to the solvent so that the majority of the vapor generated is solvent vapor). When the valves 3.8a, 9a are opened at this point, the solvent vapor drives the expander 4 and the generator 5 is activated.

エクスパンダ4中で減圧降温した溶媒蒸気は凝縮器6内
で凝縮し、半透膜室7の下部室7bに重力により落下す
る。
The solvent vapor that has been reduced in pressure and temperature in the expander 4 is condensed in the condenser 6 and falls by gravity into the lower chamber 7b of the semipermeable membrane chamber 7.

この凝縮溶媒には溶質が殆んど混入していないか、全く
ないため元の溶液より十分に希釈されている。
This condensed solvent contains little or no solute, and is therefore sufficiently diluted from the original solution.

ここで半透膜7aの浸透圧をP。Here, the osmotic pressure of the semipermeable membrane 7a is P.

、半透膜7a接する1倍3室7c内での溶液の圧力をP
i 、下部室Ib内での凝縮溶媒の圧力をPcとする
とき、これらの間にPi−PC<Poの不等式が成立す
るようなPi、Pcの値を選ぶと、半透膜7aを通して
第2図のように凝縮溶媒が溶液に還流してランキンサイ
クルが成立する。
, the pressure of the solution in the 1x3 chamber 7c in contact with the semipermeable membrane 7a is P
i, When the pressure of the condensed solvent in the lower chamber Ib is Pc, if values of Pi and Pc are selected such that the inequality Pi-PC<Po is established between them, the second As shown in the figure, the condensed solvent refluxes into the solution, forming a Rankine cycle.

ここで半透膜室7は溶液ドラム1bより低い位置に設け
てあり、凝縮溶媒の浸入によって希釈されて比重量が小
さくなった溶液は半透膜室7の上部室7cの上部から一
部外管8を通って溶液ドラム1bに入る。
Here, the semipermeable membrane chamber 7 is provided at a lower position than the solution drum 1b, and the solution whose specific weight has become smaller due to dilution due to the infiltration of the condensed solvent is partially removed from the upper part of the upper chamber 7c of the semipermeable membrane chamber 7. It enters the solution drum 1b through tube 8.

一方溶液ドラム1b下部の比重量が大きく温度が比較的
低く濃度の大きい溶液は下降管9を降下し、半透膜室7
の上部室7cの比較的低い部分に流入し、比重の小さい
濃度の希薄な溶液と入れ換るとともに冷却され、半透膜
7aの近傍の溶液は常に所要濃度および温度に保たれ、
所定の浸透圧が得られるようになっている。
On the other hand, the solution in the lower part of the solution drum 1b, which has a large specific weight and a relatively low temperature and a high concentration, descends through the downcomer pipe 9 and flows into the semipermeable membrane chamber 7.
The solution flows into a relatively low part of the upper chamber 7c, is replaced with a dilute solution with a low specific gravity, and is cooled, and the solution near the semipermeable membrane 7a is always kept at the required concentration and temperature.
A predetermined osmotic pressure can be obtained.

上記構成よりも運転費は増加するが、所定の浸透圧を得
るために、半透膜室7の上部室7cの溶液と溶液ドラム
中の溶液を循環させる循環ポンプを設けてもよく、蒸気
ドラム1aと溶液ドラム1bの間に循環ポンプを設けて
もよく、いづれも本発明の範囲内である。
Although the operating cost is higher than the above configuration, in order to obtain a predetermined osmotic pressure, a circulation pump may be provided to circulate the solution in the upper chamber 7c of the semipermeable membrane chamber 7 and the solution in the solution drum. A circulation pump may be provided between 1a and solution drum 1b, both within the scope of the present invention.

また溶媒としては水だけでなく、フロン系媒体、プロパ
ン、ブタン、ペンタン等炭化水素系媒体、トリフルオロ
エタノール等のアルコール系媒体、炭化フッ素系媒体な
どの有機媒体のほか、アンモニアなどの無機媒体をそれ
ぞれ適当な溶質とともに使用できる。
In addition to water, the solvent can be organic media such as fluorocarbon media, hydrocarbon media such as propane, butane, and pentane, alcohol media such as trifluoroethanol, fluorine carbide media, and inorganic media such as ammonia. Each can be used with appropriate solutes.

要するに、溶媒に溶質を溶かして溶液を作り、この溶液
を加熱して発生する溶媒蒸気の量が溶質蒸気より多くな
り、凝縮した蒸気が元の溶液より十分に希釈されており
、半透膜7aを通して元の溶液に還元される浸透圧を発
生するような組合せならばどんなものでもよい。
In short, a solution is created by dissolving a solute in a solvent, the amount of solvent vapor generated by heating this solution is greater than the solute vapor, the condensed vapor is sufficiently diluted than the original solution, and the semipermeable membrane 7a Any combination that generates an osmotic pressure that is reduced to the original solution through the solution may be used.

現在市販されている半透膜には耐熱性のあるものが少い
が、第1図のような構成では、エクスパンダ作動時は低
温の凝縮溶媒が半透膜を通過しているため、半透膜は凝
縮溶媒の温度と殆んど同一に保たれる。
There are few semipermeable membranes currently on the market that are heat resistant, but in the configuration shown in Figure 1, when the expander is operating, the low temperature condensed solvent passes through the semipermeable membrane, so the semipermeable membrane is heat resistant. The membrane is kept at almost the same temperature as the condensing solvent.

また半透膜室7の下部室7bの凝縮溶媒の占める容積を
一七部室7cの溶液の占める容積に比して十分小さくし
ておけば、エクスパンダ停止時でもエクスパンダ停止と
同時に弁8a、9aを閉じてしまえば半透膜室7の上部
室7cと溶液ドラム1bの間を移動する溶液がなくなり
、半透膜室7の下部室7bの凝縮溶媒の温度は殆んどエ
クスパンダ作動時と変らず、半透膜7aの温度も低く保
たれる。
Furthermore, if the volume occupied by the condensed solvent in the lower chamber 7b of the semipermeable membrane chamber 7 is made sufficiently smaller than the volume occupied by the solution in the 17-part chamber 7c, even when the expander is stopped, the valve 8a, If 9a is closed, there will be no solution moving between the upper chamber 7c of the semipermeable membrane chamber 7 and the solution drum 1b, and the temperature of the condensed solvent in the lower chamber 7b of the semipermeable membrane chamber 7 will be almost the same as when the expander is operating. Similarly, the temperature of the semipermeable membrane 7a is also kept low.

半透膜の耐熱性に問題がない場合、すなわち半透膜が十
分耐熱側を有しているか、溶媒蒸発温度が半透膜の耐熱
温度以内である場合には、第1図の弁8a 、9aは不
要となり、さらには第3図のように半透膜室7の上部室
70′で溶液ドラムを兼ねてもよい。
If there is no problem with the heat resistance of the semipermeable membrane, that is, if the semipermeable membrane has sufficient heat resistance or the solvent evaporation temperature is within the heat resistance temperature of the semipermeable membrane, the valve 8a in FIG. 9a becomes unnecessary, and furthermore, the upper chamber 70' of the semipermeable membrane chamber 7 may also serve as a solution drum as shown in FIG.

この場合も半透膜7aの近傍の溶液は蒸発器管部1cを
通して常に所要濃度および温度に保たれ、所定の浸透圧
が得られる。
In this case as well, the solution near the semipermeable membrane 7a is always maintained at the required concentration and temperature through the evaporator tube portion 1c, and a predetermined osmotic pressure is obtained.

また第3図において、半透膜室7の上部室7 c’を加
熱することも考えられ、この場合1cは単なる蒸気の上
昇管と溶液の下降管となる。
In FIG. 3, it is also possible to heat the upper chamber 7c' of the semipermeable membrane chamber 7, in which case 1c becomes a mere rising pipe for steam and a descending pipe for solution.

さらに、半透膜室上部室を蒸気ドラムそのものとし、該
半透膜室[部室を直接加熱してもよい。
Furthermore, the upper chamber of the semipermeable membrane chamber may be the steam drum itself, and the semipermeable membrane chamber may be directly heated.

例えは第4図のように半透膜室」乙部室7c“を蒸気ド
ラムに兼用させ、該上部室7c“に熱交換用管路10を
挿入し、これに熱源として排ガス、熱風または高温液体
を流す。
For example, as shown in Fig. 4, the semipermeable membrane chamber ``bottom chamber 7c'' is also used as a steam drum, and the heat exchange pipe 10 is inserted into the upper chamber 7c'', and the heat source is exhaust gas, hot air, or high-temperature liquid. flow.

ここで高温というのは、凝縮器の冷媒(冷却水など)に
比して高温という意味であり、海洋温度差発電の場合の
ように熱源が表層水で、凝縮器の冷却水が深層水(7°
C程度)の場合は、表層水の温度が8°C程度であって
も冷却水温度より犬であるので、熱源として利用できる
Here, high temperature means higher temperature than the refrigerant (cooling water, etc.) in the condenser, and as in the case of ocean thermal power generation, the heat source is surface water and the cooling water in the condenser is deep water ( 7°
C), even if the surface water temperature is about 8°C, it can be used as a heat source because it is lower than the cooling water temperature.

また本発明は所謂熱水タービン、トータルフロータ−ビ
ンと云われている気液混合タービンと並用される蒸気エ
キスパンダ4Fイクルにも適用できる。
The present invention can also be applied to a steam expander 4F cycle that is used in conjunction with a so-called hot water turbine or a gas-liquid mixing turbine called a total flow turbine.

以上本発明によれは、半透膜によって発生する浸透圧を
利用して作動媒体を溶液中に還流するので、従来のよう
に凝縮した作動媒体を蒸発器に用送するポンプがなくて
も実施できるものであり、特に低温度差で作動するラン
キンサイクル機関の総合効率を著しく向上させることが
できるものである。
As described above, according to the present invention, the working medium is refluxed into the solution using the osmotic pressure generated by the semipermeable membrane, so it can be carried out without the need for a conventional pump to convey the condensed working medium to the evaporator. In particular, it is possible to significantly improve the overall efficiency of Rankine cycle engines that operate at low temperature differences.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図はその
要部の半透膜による浸透圧を説明する図、第3図および
第4図はそれぞれ他の実施例を示す構成である。 1・・・・・・蒸発器、1a・・・・・・蒸気ドラム、
1b・・・・・・溶液ドラム、3・・・・・・エクスパ
ンダ起動弁、4・・・・・・エクスパンダ、5・・・・
・・発動機、6・・・・・・凝縮器、7・・・・・・半
透膜室、7a・・・・・・半透膜、8・・・・・・上昇
管、9・・・・・・下降管。
Figure 1 is a configuration diagram showing one embodiment of the present invention, Figure 2 is a diagram explaining osmotic pressure due to the semipermeable membrane of the main part, and Figures 3 and 4 are configuration diagrams showing other embodiments. It is. 1... Evaporator, 1a... Steam drum,
1b...Solution drum, 3...Expander starting valve, 4...Expander, 5...
...Motor, 6...Condenser, 7...Semipermeable membrane chamber, 7a...Semipermeable membrane, 8...Rising pipe, 9.・・・・Down pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 溶液を加熱して該溶液中の溶媒を蒸発させ、該溶媒
蒸気をエクスパンダに導いて膨張仕事させ、その後冷却
して凝縮させ、該凝縮溶媒を半透膜を隔壁とじて溶液と
向い合わせて、この溶媒を溶液中に還流させることを特
徴とする動力発生力法。
1 Heat the solution to evaporate the solvent in the solution, guide the solvent vapor to an expander to do expansion work, then cool and condense, and direct the condensed solvent to the solution using a semipermeable membrane as a partition wall. A power generation method characterized by refluxing this solvent into a solution.
JP14914280A 1980-10-23 1980-10-23 Power generation method Expired JPS5936083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14914280A JPS5936083B2 (en) 1980-10-23 1980-10-23 Power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14914280A JPS5936083B2 (en) 1980-10-23 1980-10-23 Power generation method

Publications (2)

Publication Number Publication Date
JPS5773809A JPS5773809A (en) 1982-05-08
JPS5936083B2 true JPS5936083B2 (en) 1984-09-01

Family

ID=15468673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14914280A Expired JPS5936083B2 (en) 1980-10-23 1980-10-23 Power generation method

Country Status (1)

Country Link
JP (1) JPS5936083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111765A1 (en) * 2015-12-23 2017-06-29 Игорь Николаевич РАССОХА Osmotic unit for a steam engine
JP2019183820A (en) * 2018-03-31 2019-10-24 オーテック有限会社 Power generation method utilizing osmotic pressure heat cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111765A1 (en) * 2015-12-23 2017-06-29 Игорь Николаевич РАССОХА Osmotic unit for a steam engine
JP2019183820A (en) * 2018-03-31 2019-10-24 オーテック有限会社 Power generation method utilizing osmotic pressure heat cycle

Also Published As

Publication number Publication date
JPS5773809A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
AU728647B1 (en) Method and apparatus of converting heat to useful energy
KR101403798B1 (en) A method and system for generating power from a heat source
US6041604A (en) Rankine cycle and working fluid therefor
US4557112A (en) Method and apparatus for converting thermal energy
US5671601A (en) Geothermal power plant operating on high pressure geothermal fluid
US6233938B1 (en) Rankine cycle and working fluid therefor
US4838027A (en) Power cycle having a working fluid comprising a mixture of substances
Novotny et al. Absorption power cycles for low‐temperature heat sources using aqueous salt solutions as working fluids
US9702270B2 (en) Hybrid Rankine cycle
US5007240A (en) Hybrid Rankine cycle system
JPH112106A (en) Method for converting heat to available energy, and device therefor
US6269644B1 (en) Absorption power cycle with two pumped absorbers
JP2003278598A (en) Exhaust heat recovery method and device for vehicle using rankine cycle
US20100060005A1 (en) Power generation system using low grade solar energy
US3611718A (en) Waste heat steam generating cycle
JPS5936083B2 (en) Power generation method
GB2114671A (en) Converting thermal energy into another energy form
CN101397983A (en) Working fluid phase changing enthalpy difference sea water temperature difference power machine
Bombarda et al. Optimum cycles for geothermal power plants
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
WO1991007573A2 (en) Heat conversion into mechanical work through absorption-desorption
JPH02106665A (en) Cogeneration system utilizing absorbing type heat pump cycle
KR101304727B1 (en) Method and apparatus for converting thermal energy
JP3317739B2 (en) Power generation method using working fluid with vapor-liquid equilibrium
KR101289187B1 (en) Apparatus for converting thermal energy