JP6655835B2 - 対話処理方法、対話処理システム、及びプログラム - Google Patents

対話処理方法、対話処理システム、及びプログラム Download PDF

Info

Publication number
JP6655835B2
JP6655835B2 JP2016120091A JP2016120091A JP6655835B2 JP 6655835 B2 JP6655835 B2 JP 6655835B2 JP 2016120091 A JP2016120091 A JP 2016120091A JP 2016120091 A JP2016120091 A JP 2016120091A JP 6655835 B2 JP6655835 B2 JP 6655835B2
Authority
JP
Japan
Prior art keywords
concept
knowledge base
input
task
sentence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016120091A
Other languages
English (en)
Other versions
JP2017224204A (ja
Inventor
遠藤 充
充 遠藤
ヴィヴィアネ・オリヴェイラ
宏杰 史
宏杰 史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016120091A priority Critical patent/JP6655835B2/ja
Priority to CN201710280871.7A priority patent/CN107526763A/zh
Priority to US15/613,486 priority patent/US10282139B2/en
Publication of JP2017224204A publication Critical patent/JP2017224204A/ja
Application granted granted Critical
Publication of JP6655835B2 publication Critical patent/JP6655835B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0685Hybrid storage combining heterogeneous device types, e.g. hierarchical storage, hybrid arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/18File system types
    • G06F16/1858Parallel file systems, i.e. file systems supporting multiple processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/332Query formulation
    • G06F16/3329Natural language query formulation or dialogue systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/205Parsing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0633Lists, e.g. purchase orders, compilation or processing
    • G06Q30/0635Processing of requisition or of purchase orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/12Hotels or restaurants
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/26Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/221Announcement of recognition results
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/225Feedback of the input speech

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • General Engineering & Computer Science (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Development Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Acoustics & Sound (AREA)
  • Machine Translation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

本開示は、入力した音声又はテキストに応じて応答文を生成する、対話処理方法、対話処理システム、及びプログラムに関する。
知識ベースを利用してユーザからの要求に応える知識ベースシステムが開示されている(例えば、特許文献1参照)。この知識ベースシステムは複数の知識処理装置を備え、複数の知識処理装置の各々が自己の知識ベースを備えている。この知識ベースシステムにおいて、ある知識処理装置が自己の知識ベースを使用してユーザの要求を解決できないときは、他の知識処理装置に解決を依頼することによって、ユーザの要求を解決できるようにしている。
特開昭62−276627号公報
特許文献1に記載の従来の知識ベースシステムでは、一つの知識処理装置が備える知識ベースだけではユーザの要求に対応できないことがあり、要求に対する応答能力が高くなかった。
本開示は、応答能力の高い、対話処理方法、対話処理システム、及びプログラムを提供する。
本発明の一態様の対話処理方法は、
制御装置により入力文に対する応答文を生成する対話処理方法であって、
タスクの実行に関連する知識に基づいて生成された、複数の概念を互いに関連付けるタスク知識ベースと、一般的な知識に関して生成された、複数の概念を互いに関連付ける一般知識ベースと、が記憶装置に格納されていて、
前記制御装置により、入力文に含まれる概念である入力概念を抽出するステップと、
前記制御装置により、抽出した前記入力概念が前記タスク知識ベースにあるか否かを判断するステップと、
抽出した前記入力概念が前記タスク知識ベースにある場合は、前記制御装置により、前記タスク知識ベースのみを参照して、前記入力概念に基づいて、前記入力文に対する応答文を生成するステップと、
抽出した前記入力概念が前記タスク知識ベースにない場合は、前記制御装置により、前記タスク知識ベースと前記一般知識ベースの両方を参照して、前記入力概念に基づいて、前記入力文に対する応答文を生成するステップと、
を含む。
これらの概括的かつ特定の態様は、システム、方法、コンピュータプログラム、並びにシステム、方法及びコンピュータプログラムの任意の組み合わせにより、実現してもよい。
本開示の対話処理方法、対話処理システム、及びプログラムによれば、応答能力が高くなる。
(a)はタスク知識ベースの一例を示し、(b)は一般知識ベースの一例を示す図 本発明の一態様の対話処理システムの構成を示すブロック図 本開示の実施形態の対話処理の概略を示すフローチャート 図3のステップS303の詳細の処理を示すフローチャート 本開示の実施形態におけるタスク知識ベースの具体例を示す図 本開示の実施形態における一般知識ベースの具体例を示す図 本開示の実施形態における結合知識情報の具体例を示す図 図4のステップS406の詳細の処理を示すフローチャート 本開示の対話処理システムをクラウド(ネットワーク)を利用して実現する際の実装例を示した図 本開示の対話処理システムをクラウド(ネットワーク)を利用して実現する際の別の実装例を示した図
(本発明の一態様を得るに至った経緯)
近年、人工知能による業務の代行が検討されている。業務の形態の中でも特に接客などの対人業務において、顧客との口頭のコミュニケーションを通じて、顧客の要望に応えることが必要とされる。そのため、タスク実行型の対話技術が検討されている。
図1(a)に、タスク知識ベースの一例を示す。タスク知識ベースは、タスクの実行に関連する知識を含む知識ベースである。図1(b)に、一般知識ベースの一例を示す。一般知識ベースは、一般的な知識を含む知識ベースである。
以後の説明において、以下のように用語を定義する。
「概念」:自然言語に含まれる単語、又は2つ以上の単語で構成される語句。
「アクション」:タスクの実行に関連する動作。
「ノード」:知識ベース内において、概念及びアクションを表すもの(図1に楕円で示されている)。
「ルート」:知識ベース内の最上位概念。
「エッジ」:知識ベース内において、ノード間を関係詞により相互に関連付けるもの(図1に矢印で示されている)。
「関係詞」:ノード間の関係を表すもの(図1の「IsA」、「HasFeature」、「Antonym」、「RelatedTo」、「ToDo」)。
「知識」:概念、アクション、概念と概念の関係、及び概念とアクションの関係を含むもの。
本開示において、「タスクの実行」とは、ユーザの指示に応じた仕事を行うことである。例えば、タスクの実行とは、実際にコーヒーを提供できる状態にした注文を受け付けることである。
本開示において、各関係詞は以下の意味を持つ。
関係詞「IsA」:概念の上下関係を表す。具体的には、接続元のノードが接続先のノードの下位概念であることを示す。例えば、図1(a)において、ノード2a「Concept_01」はルートノード1a「TASK root」の下位概念であることを示している。
関係詞「HasFeature」:特徴(性質)を持つことを表す。具体的には、接続元のノードが接続先のノードを特徴として持つことを示す。
関係詞「RelatedTo」:接続元と接続先の概念に関係があることを表す。
関係詞「Antonym」:接続元と接続先の概念が対義語であることを表す。
関係詞「ToDo」:接続元のノード2aに対してアクションノード4aを関連付けるものであり、接続先のアクションノード4aに示されるアクションを実行すべきであることを表す。具体的には、例えば、ノード2a「Concept_01」に関連してアクションノード4aの「Action_01」を実行すべきであることを示している。
図1(a)及び図1(b)に示すように、タスク知識ベース31及び一般知識ベース32は、それぞれ、複数の概念を関係詞によって互いに関連付けた有向グラフである。
タスク知識ベース31は、タスクの実行に関連する知識に基づいて生成され、タスクの実行に関連する知識を含む。図1(a)に示すように、タスク知識ベース31は、ルートノード1a「TASK root」の下位に、各概念を表すノード2aを含む。ノード2a間は、関係詞「IsA」、「RelatedTo」、及び「HasFeature」などで表されるエッジ3aによって接続されている。タスク知識ベース31は、動作を表すアクションノード4a「Action_01」及び「Action_02」を含む。アクションノード4aは、関係詞「ToDo」により、概念を表すノード2aに接続されている。このようなタスク知識ベース31は、タスク知識ベース31の記述者による想定に基づいて、生成される。しかし、ユーザの要求は多様であり、事前に、すべての要求を予測して、タスクの実行に必要な全ての知識を含むタスク知識ベース31を生成することは困難である。また、タスクを確実に実行できるようにタスク知識ベース31を正確に生成するためには、タスク知識ベース31の質が要求される。そのため、タスク知識ベース31は手作業で構築される場合が多く、タスク知識ベース31の量は制限され、あらゆる概念を網羅することは難しい。よって、タスク知識ベース31のみでは、ユーザの要求を解釈できない場合が発生する。
一方、図1(b)に示すような一般知識ベース32は、コーパス(大量の言語データ)から機械的に構築され、一般的な知識を含む。一般知識ベース32は、一般に、概念の上下関係に関する情報(例えば関係詞「IsA」で表す)と、概念の持つ性質に関する情報(例えば関係詞「HasFeature」で表す)を多く含む。一般知識ベース32は、タスク知識ベース31にあるような、タスクの実行に関連するアクションノード4aを含まないため、一般知識ベース32だけでは、ユーザが要求するようなタスクを実行することが難しい。また、機械的な構築方法によって大規模な知識ベースを構築することは可能になるが、概念が精度良く関連付けられていないことも多く、ユーザが要求するようなタスクを実行することが難しい。
以上のように、手作業で作られた小規模のタスク知識ベース31においては概念の網羅性が乏しく、機械が自動生成した大規模な一般知識ベース32ではタスクを達成することが困難である。よって、タスク知識ベース31のみ、又は一般知識ベース32のみでは、高い応答能力で、タスクを実行することが難しい。
よって、本開示の対話処理システムは、タスクの実行に関連する知識を含むタスク知識ベース31と、広範囲な知識について高い網羅性を有する一般知識ベース32とを併用し、高い応答能力で、タスクを実行することを可能にする。
(実施の形態)
1.対話処理システムの構成
図2は、本発明の一態様の対話処理システムの構成を示す。本開示の対話処理システム100は、ユーザの発話又はテキストを入力する入力装置10と、入力した発話又はテキストに応じて応答文を生成する制御装置20と、タスク知識ベース31及び一般知識ベース32を格納する記憶装置30と、生成した応答文を音声又はテキストで出力する出力装置40と、を含む。
入力装置10は、ユーザが発した音声を入力する音声入力部11と、テキストを入力する文字入力部12とを含む。音声入力部11は、例えば、マイクロフォンである。文字入力部12は、例えば、キーボード又はタッチパネルである。
制御装置20は、音声入力部11が入力した音声をテキスト(テキストデータ)に変換する音声認識部21と、音声認識部21及び文字入力部12から出力されるテキスト(入力文)を処理する自然言語処理部22と、を含む。自然言語処理部22は、テキストの構文を解析して、構文から自然言語の概念を抽出する。自然言語処理部22は、例えば、文の表層表現を意味表現に変換する一般的なセマンティックパーサを使用する。意味表現は、例えば、ユーザの意図の動詞句とそれに関連する目的語句からなり、本実施形態では、特に、目的語句に含まれる名詞や形容詞を抽出された概念として利用する。
制御装置20は、さらに、抽出した概念に基づいて、タスク知識ベース31と一般知識ベース32を参照して結合知識情報33を生成して、入力文に対する応答文を生成する対話処理部23と、生成した結合知識情報33を格納するメモリ24と、生成した応答文をテキスト(テキストデータ)から音声(音声信号)に音声合成により変換する音声合成部25と、を含む。応答文の生成は、文生成用のテンプレートを適用するなどの、一般的な方法により行うことができる。
音声認識部21、自然言語処理部22、対話処理部23、及び音声合成部25は、半導体素子などで実現可能である。これらの機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。例えば、マイコン、CPU、MPU、DSP、FPGA、ASICで構成することができる。メモリ24は、例えば、RAM、DRAM、ROM、強誘電体メモリ、フラッシュメモリ、又は磁気ディスク、又はこれらの組み合わせによって実現できる。
制御装置20は、例えば、制御装置20内の各部(音声認識部21、自然言語処理部22、対話処理部23、及び音声合成部25)の機能をプログラムにより実現するサーバ装置である。例えば、制御装置20は、上記各部の機能を実現するためのプログラムをメモリ24に記憶していても良い。CPUが、メモリ24に記憶されたプログラムをRAMにコピーし、そのプログラムに含まれる命令をRAMから順次読み出して実行することにより、上記各部の機能を実現する。また、プログラムを実行する際、以下の各実施形態で述べる各種処理で得られた情報がRAMまたはメモリ24に記憶され、適宜利用される。また、制御装置20は、例えば、所定の通信規格(例えばLAN、WiFi)に準拠して外部機器との通信を行うためのインタフェース回路を備え、外部機器と通信を行うことができる。
タスク知識ベース31は、図1(a)に示すような、複数の概念を関係詞により互いに関連付けたものであって、タスクの実行に関連する知識(アクション等)の情報を含む知識ベースである。一般知識ベース32は、図1(b)に示すような、複数の概念を関係詞により互いに関連付けたものであって、一般的な知識(上下関係、性質等)の情報を含む知識ベースである。記憶装置30は、例えば、クラウド上にあって、制御装置20とインターネット経由により接続されても良い。しかし、記憶装置30は、制御装置20内に含まれても良い。タスク知識ベース31及び一般知識ベース32は、別個の記憶装置に格納されても良い。タスク知識ベース31及び一般知識ベース32は、その大きさに応じてそれぞれ、クラウド上にあっても良いし、制御装置20内に格納されても良い。記憶装置30は、例えば、SSD、ROM、DRAM、強誘電体メモリ、フラッシュメモリ、又は磁気ディスクなどで実現できる。
出力装置40は、音声を出力する音声出力部41と、テキストを出力する文字出力部42とを含む。音声出力部41は、例えばスピーカである。文字出力部42は、例えば液晶ディスプレイである。
制御装置20は、入力装置10、記憶装置30、及び出力装置40と、無線通信により接続されても良いし、コネクタやケーブル等を介して有線接続されても良い。
2.対話処理
図3は、制御装置20による対話処理の全体の流れを示している。図3は、音声による対話をユーザと行う例を示している。制御装置20は、音声入力部11からユーザの発話を入力すると(S301)、音声認識部21により、ユーザの発話をテキストに変換する(S302)。制御装置20は、自然言語処理部22により、テキストから自然言語概念を抽出し、対話処理部23により、抽出した概念に基づいて、タスク知識ベース31、又はタスク知識ベース31と一般知識ベース32の両方を使用して、応答文を生成する(S303)。制御装置20は、音声合成部25によって応答文をテキストから音声に変換し(S304)、音声出力部41から応答文に対応する音声を出力する(S305)。なお、ユーザとテキストによる対話を行う場合は、ステップS301において文字入力部12からテキストを入力し、音声からテキストへの変換処理(S302)とテキストから音声への変換処理(S304)を省略し、ステップS305において文字出力部42により応答文をテキストで出力する。
以下、応答文の生成(図3のステップS303)の具体的な処理について、対話処理システム100が、飲食店において注文の自動受付を行う場合を例にして説明する。図4に、応答文の生成(図3のステップS303)の詳細の処理を示す。図5に、対話処理システム100が飲食店の注文の自動受付を行うシステムである場合の、タスク知識ベース31の一部の具体例を示す。図6に、一般知識ベース32の一部の具体例を示す。
図4において、自然言語処理部22は、音声認識部21又は文字入力部12から出力されるテキスト(入力文)に含まれる主要概念を抽出する(ステップS401)。例えば、ユーザが「I want something warm.」と発声すると、自然言語処理部22は、入力文に対して構文解析を行い、目的語である「something warm」を抽出する。次に、一般に検索の対象外である「stop word」として定義される「something」を入力文から除き、残った「warm」を主要概念として抽出する。
対話処理部23は、抽出された主要概念がタスク知識ベース31に含まれるか否かを調べる(S402)。主要概念がタスク知識ベース31に含まれていれば(S402でYes)、タスク実行のための応答文を生成する(S409)。ここでのタスク実行のための応答文の生成は、タスク知識ベース31内において、主要概念及びその上位概念に関係詞「ToDo」によって関連付けられているアクションノード4aに示されるアクションを実行することである。例えば、図5に示すようなアクションノード4「confirm order」に従い、注文を確認するための応答文を生成する。図5に示すような注文の自動受付を行うためのタスク知識ベース31には、例えば、さまざまな商品に関する情報を体系化した商品知識と、商品に付随して確認すべきこと又はお薦めすべきことを記述した行動知識とが含まれる。対話処理システム100は、ユーザが要望した注文の対話に基づいて、タスク知識ベース31だけで、ユーザの対話に含まれる概念を解釈できて対話処理を完了させることができる場合は、タスク知識ベース31だけを使用して対話処理を完了させ、ユーザの注文を受け付ける。
一方、タスク知識ベース31には含まれない概念を解釈する必要が生じれば、一般知識ベース31を併用して、一般知識ベース31内の概念をタスク知識ベース31内の概念と紐付けして、対話を継続する。そのために、まず、主要概念がタスク知識ベース31に含まれていなければ(S402でNo)、対話処理部23は、一般知識ベース32から近傍概念を抽出する(ステップS403)。例えば、「warm」は図5に示すタスク知識ベース31に含まれていないため、図6の一般知識ベース32から主要概念「warm」の近傍概念が抽出される。「近傍概念」とは、具体的には、一般知識ベース32において、1つのエッジでたどることができる概念間のグラフ距離を「1」とした場合の、主要概念からグラフ距離が所定数以下(本実施形態においては、2以下)までの概念のことである。図6の例では、主要概念のノード5b「warm」から、グラフ距離が「1」である近傍概念「cold」,「tea」,「hot」,「water」,「soup」,「coffee」と、グラフ距離が「2」である近傍概念「salad」,「drink」,「fire」,「ice」,「snow」とが、抽出される。なお、図6は、主要概念「warm」に関連付けられている概念の一部のみを示していて、例えば、全体としては、主要概念「warm」からグラフ距離が「1」の範囲には10個の概念が関連付けられていて、グラフ距離が「2」までの範囲には110個の概念が関連付けられていて、グラフ距離が「3」までの範囲になれば1110個の概念が関連付けられている。この場合、グラフ距離が「2」までの範囲の概念を近傍概念として抽出すると、110個の概念が抽出されることになる。一般知識ベース32から抽出する概念を主要概念の近傍に存在する概念に制限することによって、入力された主要概念と関連性の低い概念を抽出して、関連性の低い概念に基づいて応答文を生成することを防ぐ。また、図4及び図8に示す対話処理に関する処理量を低く抑えることもできる。
対話処理部23は、抽出した近傍概念がタスク知識ベース31に含まれるかどうかを確認する(ステップS404)。抽出した近傍概念のいずれもがタスク知識ベース31に含まれない場合、エラー処理を実行する(ステップS410)。例えば、エラー処理として、エラーメッセージ「I do not understand.」を生成する。
抽出した近傍概念のうちタスク知識ベース31に含まれるものがあれば、対話処理部23は、近傍概念のうち一般知識ベース32とタスク知識ベース31の両方に含まれる概念を「共通概念」とし、その共通概念に基づいて、タスク知識ベース31に含まれる概念と一般知識ベース32に含まれる概念とを結合した結合知識情報33を生成する(ステップS405)。図5及び図6において、共通概念のノード2abを太枠で示している。図7に、図5のタスク知識ベース31と図6の一般知識ベース32とにより生成された結合知識情報33を示す。図7に示す結合知識情報33は、共通概念「salad」,「drink」,「cold」,「tea」,及び「hot」に基づいて、生成されたものである。図7において、実線のエッジ3aはタスク知識ベース31内のエッジを示し、点線のエッジ3bは一般知識ベース32内のエッジを示している。また、実線のノード1a、2a及び4aはタスク知識ベース31内のノードを示し、点線のノード2b及び5bは一般知識ベース32内のノードを示している。但し、実線で示されているノードのうち、点線のエッジに接続されているノード2abは、タスク知識ベース31と一般知識ベース32の両方に存在する共通概念を示している。
対話処理部23は、生成した結合知識情報33に基づいて、重要関連概念を抽出する(ステップS406)。「重要関連概念」とは、応答文の生成に必要な、主要概念の代わりとなる概念である。重要関連概念の抽出処理の詳細については、図8を使用して後述する。この重要関連概念の抽出処理によって、例えば、重要関連概念として「tea」が抽出されると、対話処理部23は、重要関連概念「tea」について確認処理を行う(ステップS407)。確認処理として、例えば、「We have tea. How about it?」という問い合わせ文を生成し、出力しても良い。重要関連概念についての確認が取れた(又は承諾が得られた)場合、例えば、重要関連概念についての問い合わせ文に対してユーザから肯定的な回答を受け取ったときは(S408でYes)、タスク実行のための応答文を生成する(S409)。具体的には、結合知識情報33内で、関係詞「IsA」に基づいて重要関連概念「tea」の上位概念をたどって全ての上位概念を抽出し、重要関連概念「tea」と全ての上位概念に関係詞「ToDo」によって関連付けられているアクションノード4aに示されるアクションを順番に実行する。例えば、図7においては、重要関連概念「tea」に、レモンとミルクに要否を確認するためのアクションノード4a「confirm milk/lemon」が関連付けられているため、ユーザとの対話履歴にレモンとミルクの要否についての情報がなければ、レモンとミルクの要否を問い合わせるための応答文を生成する。これにより、ユーザからレモンとミルクの要否に関する情報を取得する。また、上位概念のノード「drink」に、サイズを確認するためのアクションノード4a「confirm size」が関連付けられているため、ユーザとの対話履歴にサイズについての情報がなければ、サイズについて問い合わせるための応答文を生成する。これにより、ユーザからサイズについての情報を取得する。さらに、ルートノード1a「menu root」に関連付けられているアクションノード4a「confirm order」に基づいて、注文内容についての最終確認を行う。例えば、他の注文がないかどうかを問い合わせても良い。重要関連概念の確認において、ユーザの確認が取れなかった(又は承諾が得られなかった)場合、例えばユーザから否定的な回答を受け取ったとき(S408でNo)は、エラーメッセージを生成する等のエラー処理を実行する(ステップS410)。なお、重要関連概念の確認において、ユーザから否定的な回答を受け取ったときに(S408でNo)、重要関連概念として選ばれなかった他の重要関連概念の候補を使用した確認を行ってもよい。
図8に、重要関連概念の抽出処理(図4のステップS406)の詳細を示す。対話処理部23は、図7に示すような結合知識情報33内で、主要概念のノード5b「warm」から、タスク知識ベース31のルートノード1a「menu root」に至るまでの全ての経路を探索する(ステップS801)。探索して見つかった経路が、重要関連概念を探すための経路の候補となる。具体的には、主要概念のノード5b「warm」から近傍概念のノード2ab「salad」,「drink」,「cold」,「tea」,及び「hot」のそれぞれを経由してルートノード1a「menu root」に至る経路を探索する。例えば、「warm」−「soup」−「salad」−「menu root」を通る経路、「warm」−「water」−「drink」−「menu root」を通る経路、「warm」−「tea」−「drink」−「menu root」を通る経路などが、候補として探し出される。
次に、対話処理部23は、候補として見つかった経路の中から最短経路を選択する(S802)。本実施形態においては、概念間の関連性に関して、関係詞に重みを予め設定しておく。対話処理部23は、主要概念のノード5bからルートノード1aに至るまでの経路の重みの合計を計算して、合計値の大きさに基づいて、経路を一つ選択する。例えば、概念間の関連性の近いものほど重みが小さくなるように設定し、関係詞{IsA, HasFeature, RelatedTo, Antonym}のそれぞれに対して、{0.5, 1.0, 3.0, 10.0}を設定する。この場合、図7に示す経路の重み付き距離{「tea」を通る経路, 「hot」を通る経路, 「cold」を通る経路, 「water」を通る経路, 「soup」を通る経路}は、それぞれ、{4.0, 5.0, 5.0, 13.5, 13.5}となる。この中で、概念間の関連性が最も近い経路、すなわち、経路の重み付き距離の値が最小の経路を選択する。この場合、最短経路は「tea」を通る経路である。図7において、最短経路を太線で示している。重み付きの最短経路を求める際に、例えば、ダイクストラ法(Dijkstraのアルゴリズム)を利用することができる。このように、関係詞に応じた重み付き経路を計算することによって、例えば、経路上に存在する関係詞の多様な組み合わせ間の重要性についての序列に関するルールを作成することなく、数値の比較によって序列をつけることができる。
次に、対話処理部23は、最短経路上にある概念の中から一つを重要関連概念として抽出する(ステップS803)。具体的には、最短経路沿いにあって、タスク知識ベース31内でルートノード1aから関係詞「IsA」でたどることができる概念のうち、最も下位の概念を主要概念の重要関連概念として抽出する。下位概念であるほど概念が具体的であり、且つ主要概念からの距離が近いからである。図7の例では、最短経路に、概念「menu root」、「drink」、「tea」、及び「warm」が含まれる。この中で、タスク知識ベース31内にあり、ルートノード1aから関係詞「IsA」のみでたどることができる概念のうち最も下位の概念である「tea」が主要概念「warm」の重要関連概念として抽出される。このようにして抽出した重要関連概念を抽出することによって、ユーザの「I want something warm.」という要望に対して、「We have tea. How about it?」と返すことができる(図4のステップS407)。
3.効果等
誤りなくタスクを実行することを目指してタスク知識ベース31を生成する場合、人手により吟味して生成する必要が生じるため、一般的に、タスク知識ベース31の規模は小さくなりやすい。そのため、ユーザの発話に含まれる概念が、タスク知識ベース31に含まれないことが起こりやすい。一方、一般知識ベース32は、機械がルールに基づき、大量のテキストデータから知識を抽出することによって生成するため、大規模の知識ベースを実現できる。しかし、一般知識ベース32は、動作に直接関連付けられていないため、タスクを実行するのに必要な知識が含まれていないことが多い。また、一般知識ベース32は、大規模であって、知識の組み合わせ方が膨大であるため、一般知識ベース32内だけで、タスクの実行に必要な知識を探索することは難しい。
本実施形態の対話処理システム100は、タスクの実行に関連する知識を含むタスク知識ベース31と、一般的な概念に対しての網羅性の高い一般知識ベース32とを併用することによって、タスク知識ベース31のみでは対応できない概念についても対応可能にしている。具体的には、一般知識ベース32とタスク知識ベース31の共通概念に基づいて、入力文から抽出した主要概念に関する結合知識情報33を生成し、結合知識情報33内で、一般知識ベース32内の主要概念のノード5bからタスク知識ベース31内のルートノード1aに至る経路を探索し、探索した経路の中から重要関連概念を抽出することによって、タスクの達成につながる応答文を決定している。よって、タスク知識ベース31に含まれない要求についても、タスク達成に向けた対話を継続することが可能となる。よって、ユーザの要求に対して高い応答能力で、対話を継続することができる。このように、本実施形態によれば、タスク知識ベース31と一般知識ベース32とを併用することによって、より広い範囲の概念をカバーして、より確実にタスクを実行することができる。
本実施形態においては、関係詞の重みを使用して、最短経路を選択した(図8のS802)。仮に、グラフ距離の短いもの(すなわち、エッジの数が少ないもの)を最短経路として選択すると、図7においてはグラフ距離が3になる、「soup」を通る経路、「water」を通る経路、及び「tea」を通る経路が最短経路として選択されることになる。しかし、「soup」を通る経路上には「salad」が含まれ、この「salad」が重要関連概念として抽出された場合、「I want something warm.」というユーザの要望に対して、「We have salad. How about it?」と返すことになり、適切ではない。これは、経路上にある「soup」と「salad」が関係詞「Antonym」(反意語)によって関連付けられているからである。よって、関係詞「Antonym」(反意語)の関係が含まれるような経路は、最短経路として選択される可能性が低くなるようにすることが好ましい。本実施形態によれば、概念間の関連性の近いものほど重みが小さくなるように設定して、経路の重み付き距離の値が最小の経路を選択しているため、好ましくない重要関連概念を抽出する可能性を低減することができる。
なお、上述した対話処理システム100の一部の機能をクラウド上で実現してもよい。例えば、図9は、知識ベース31、32を管理する記憶装置30(知識ベースサーバ)をクラウド上に設けたときの構成の例を示す。図9に示すように、ネットワーク上に記憶装置30を設け、端末装置50は、対話処理システム100における入力装置10、制御装置20及び出力装置40のみを備えてもよい。端末装置50の制御装置20は、クラウド上にある記憶装置30すなわち知識ベース31、32にアクセスする。また、図10は、制御装置20および記憶装置30をクラウド上に設けた構成の例を示す。図10に示すように、ネットワーク上に制御装置20と記憶装置30を設け、端末装置50は、対話処理システム100における入力装置10と出力装置40のみを備えてもよい。端末装置50は、入力文を示す音声信号またはテキスト情報をクラウド上にある制御装置20に送信する。制御装置20は、端末装置50から受信した音声信号またはテキスト情報に基づき応答文を生成し、応答文に対応する音声信号またはテキストを端末装置50に返信する。
上記実施形態では、制御装置20がサーバ装置である例を示したが、制御装置20は汎用のパーソナルコンピュータ又は携帯端末(スマートフォンなど)であっても良い。例えば、携帯端末である場合、メモリ24はフラッシュメモリなどの内蔵ストレージである。
(本開示)
上記の実施形態では、以下の構成が開示されている。
(1)本開示の対話処理方法は、制御装置により入力文に対する応答文を生成する対話処理方法であって、タスクの実行に関連する知識に基づいて生成された、複数の概念を互いに関連付けるタスク知識ベースと、一般的な知識に関して生成された、複数の概念を互いに関連付ける一般知識ベースと、が記憶装置に格納されていて、制御装置により、入力文に含まれる概念である入力概念を抽出するステップと、制御装置により、抽出した入力概念がタスク知識ベースにあるか否かを判断するステップと、抽出した入力概念がタスク知識ベースにある場合は、制御装置により、タスク知識ベースのみを参照して、入力概念に基づいて、入力文に対する応答文を生成するステップと、抽出した入力概念がタスク知識ベースにない場合は、制御装置により、タスク知識ベースと一般知識ベースの両方を参照して、入力概念に基づいて、入力文に対する応答文を生成するステップと、を含む。
このように、タスク知識ベースと一般知識ベースとを併用することによって、タスク知識ベースだけでは対応できない入力概念に対しても対応することが可能になり、高い応答能力で、ユーザと対話を継続することができる。その結果、タスクの実行を達成することができる。
(2)(1)の対話処理方法において、入力概念がタスク知識ベースにない場合は、制御装置により、タスク知識ベースと一般知識ベースの両方に含まれる概念である共通概念に基づいて、タスク知識ベースと一般知識ベースを結合した結合知識情報を生成し、制御装置により、結合知識情報を参照して、入力概念に基づいた応答分を生成しても良い。
これにより、結合知識情報に基づいて、タスク知識ベースだけでは対応できない入力概念に対しても対応することが可能になる。
(3)(2)の対話処理方法において、共通概念は、一般知識ベースにおいて入力概念に直接、又は所定数以下の他の概念を介して間接的に接続されている概念であって、且つタスク知識ベースにも含まれる概念であっても良い。
このように、一般知識ベースから抽出する概念を主要概念の近傍に存在する概念に制限することによって、入力概念との関連性の低い応答文を生成することを防ぐことができる。また、対話処理に関する処理量を低減することができる。
(4)(2)又は(3)の対話処理方法において、タスク知識ベースは、複数の概念の最上位に位置する最上位概念を含み、応答分の生成において、制御装置により、入力概念から最上位概念に至る経路を結合知識情報内で探索し、制御装置により、入力概念から最上位概念までの距離が最短となる最短経路を、探索された経路の中から選択し、応答文の生成は、最短経路に含まれる概念に基づいて行われても良い。
最短経路には入力概念と関連性が高い概念が含まれるため、入力概念との関連性が高い概念を使用して応答文を生成することができる。
(5)(4)の対話処理方法において、タスク知識ベースと一般知識ベースにおいて、複数の概念は複数種類の関係情報の中の少なくとも1つによって互いに関連付けられていて、複数種類の関係情報には、それぞれに対応する重みが予め付けられていて、最短経路は、入力概念から最上位概念に至る経路内の重みの合計値が最小となる経路であっても良い。
関係情報(関係詞)に応じた重み付き経路の計算を使用することにより、経路上に存在する関係情報の多様な組み合わせ間の重要性についての序列に関するルールを作成することなく、数値の比較による序列をつけることができるようになる。
(6)(4)の対話処理方法において、タスク知識ベースと一般知識ベースにおいて、複数の概念は複数種類の関係情報の中の少なくとも1つによって互いに関連付けられていて、応答文の生成は、最短経路の中で、最上位概念から所定の関係情報でたどることができる、最上位概念から最も遠い概念に基づいて行われても良い。
これにより、入力概念に最も関連している概念によって、応答文を生成することができる。
(7)所定の関係情報は、互いに関連付けられている概念が上位概念と下位概念の関係を示す情報であっても良い。
これにより、入力概念に最も関連している概念によって、応答文を生成することができる。
(8)本開示の対話処理システムは、入力文に対する応答文を生成する対話処理システムであって、タスクの実行に関連する知識に基づいて生成された、複数の概念を互いに関連付けるタスク知識ベースと、一般的な知識に関して生成された、複数の概念を互いに関連付ける一般知識ベースと、を格納する記憶装置と、入力文を示す情報を入力する入力装置と、入力文に含まれる概念である入力概念を抽出し、抽出した入力概念に基づいて、入力文に対する応答文を生成する、制御装置と、応答文を示す情報を出力する出力装置と、を備え、制御装置は、抽出した入力概念がタスク知識ベースにあるか否かを判断し、抽出した入力概念がタスク知識にある場合は、タスク知識ベースのみを参照して、入力文に対する応答文を生成し、抽出した入力概念がタスク知識ベースにない場合は、タスク知識ベースと一般知識ベースの両方を参照して、入力文に対する応答文を生成する。
このように、タスク知識ベースと一般知識ベースとを併用することによって、タスク知識ベースだけでは対応できない入力概念に対しても対応することが可能になり、高い応答能力で、ユーザと対話を継続することができる。その結果、タスクの実行を達成することができる。
(9)本開示のプログラムは、コンピュータに(1)から(7)のいずれか一つに記載の対話処理方法を実行させる。
本開示の全請求項に記載の対話処理方法及び対話処理システムは、ハードウェア資源、例えば、プロセッサ、メモリ、及びプログラムとの協働などによって、実現される。
本開示の対話処理方法及び対話処理システムによれば、高い応答能力で、応答文を生成することが可能になるため、ユーザとの対話を自動的に行う種々の対話処理手段において有用である。
10 入力装置
11 音声入力部
12 文字入力部
20 制御装置
21 音声認識部
22 自然言語処理部
23 対話処理部
24 メモリ
25 音声合成部
30 記憶装置
31 タスク知識ベース
32 一般知識ベース
40 出力装置
41 音声出力部
42 文字出力部
50 端末装置
100 対話処理システム

Claims (8)

  1. 制御装置により入力文に対する応答文を生成する対話処理方法であって、
    タスクの実行に関連する知識に基づいて生成された、複数の概念を互いに関連付けるタスク知識ベースと、一般的な知識に関して生成された、複数の概念を互いに関連付ける一般知識ベースと、が記憶装置に格納されていて、
    前記制御装置により、入力文に含まれる概念である入力概念を抽出するステップと、
    前記制御装置により、抽出した前記入力概念が前記タスク知識ベースにあるか否かを判断するステップと、
    抽出した前記入力概念が前記タスク知識ベースにある場合は、前記制御装置により、前記タスク知識ベースのみを参照して、前記入力概念に基づいて、前記入力文に対する応答文を生成するステップと、
    抽出した前記入力概念が前記タスク知識ベースにない場合は、前記制御装置により、前記タスク知識ベースと前記一般知識ベースの両方を参照して、前記入力概念に基づいて、前記入力文に対する応答文を生成するステップとを含
    前記入力概念が前記タスク知識ベースにない場合は、
    前記制御装置により、前記タスク知識ベースと前記一般知識ベースの両方に含まれる概念である共通概念に基づいて、前記タスク知識ベースと前記一般知識ベースを結合した結合知識情報を生成し、
    前記制御装置により、前記結合知識情報を参照して、前記入力概念に基づいた前記応答文を生成する、
    対話処理方法。
  2. 前記共通概念は、前記一般知識ベースにおいて前記入力概念に直接、又は所定数以下の他の概念を介して間接的に接続されている概念であって、且つ前記タスク知識ベースにも含まれる概念である、請求項に記載の対話処理方法。
  3. 前記タスク知識ベースは、前記複数の概念の最上位に位置する最上位概念を含み、
    前記応答の生成において、
    前記制御装置により、前記入力概念から前記最上位概念に至る経路を前記結合知識情報内で探索し、
    前記制御装置により、前記入力概念から前記最上位概念までの距離が最短となる最短経路を、探索された前記経路の中から選択し、
    前記応答文の生成は、前記最短経路に含まれる概念に基づいて行われる、
    請求項に記載の対話処理方法。
  4. 前記タスク知識ベースと前記一般知識ベースにおいて、前記複数の概念は複数種類の関係情報の中の少なくとも1つによって互いに関連付けられていて、
    前記複数種類の関係情報には、それぞれに対応する重みが予め付けられていて、
    前記最短経路は、前記入力概念から前記最上位概念に至る経路内の前記重みの合計値が最小となる経路である、
    請求項に記載の対話処理方法。
  5. 前記タスク知識ベースと前記一般知識ベースにおいて、前記複数の概念は複数種類の関係情報の中の少なくとも1つによって互いに関連付けられていて、
    前記応答文の生成は、前記最短経路の中で、前記最上位概念から所定の関係情報でたどることができる、前記最上位概念から最も遠い概念に基づいて行われる、
    請求項に記載の対話処理方法。
  6. 前記所定の関係情報は、互いに関連付けられている概念が上位概念と下位概念の関係を
    示す情報である、請求項に記載の対話処理方法。
  7. 入力文に対する応答文を生成する対話処理システムであって、
    タスクの実行に関連する知識に基づいて生成された、複数の概念を互いに関連付けるタスク知識ベースと、一般的な知識に関して生成された、複数の概念を互いに関連付ける一般知識ベースと、を格納する記憶装置と、
    入力文を示す情報を入力する入力装置と、
    前記入力文に含まれる概念である入力概念を抽出し、抽出した前記入力概念に基づいて、前記入力文に対する応答文を生成する、制御装置と、
    前記応答文を示す情報を出力する出力装置と、
    を備え、
    前記制御装置は、
    抽出した前記入力概念が前記タスク知識ベースにあるか否かを判断し、
    抽出した前記入力概念が前記タスク知識ベースにある場合は、前記タスク知識ベースのみを参照して、前記入力文に対する応答文を生成し、
    抽出した前記入力概念が前記タスク知識ベースにない場合は、前記タスク知識ベースと前記一般知識ベースの両方を参照して、前記入力文に対する応答文を生成
    前記入力概念が前記タスク知識ベースにない場合は、前記タスク知識ベースと前記一般知識ベースの両方に含まれる概念である共通概念に基づいて、前記タスク知識ベースと前記一般知識ベースを結合した結合知識情報を生成し、前記結合知識情報を参照して、前記入力概念に基づいた前記応答文を生成する、
    対話処理システム。
  8. コンピュータに請求項1から請求項のいずれか一つに記載の対話処理方法を実行させるためのプログラム。
JP2016120091A 2016-06-16 2016-06-16 対話処理方法、対話処理システム、及びプログラム Active JP6655835B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016120091A JP6655835B2 (ja) 2016-06-16 2016-06-16 対話処理方法、対話処理システム、及びプログラム
CN201710280871.7A CN107526763A (zh) 2016-06-16 2017-04-26 处理方法、处理系统及记录介质
US15/613,486 US10282139B2 (en) 2016-06-16 2017-06-05 Processing method, processing system, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120091A JP6655835B2 (ja) 2016-06-16 2016-06-16 対話処理方法、対話処理システム、及びプログラム

Publications (2)

Publication Number Publication Date
JP2017224204A JP2017224204A (ja) 2017-12-21
JP6655835B2 true JP6655835B2 (ja) 2020-02-26

Family

ID=60659555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120091A Active JP6655835B2 (ja) 2016-06-16 2016-06-16 対話処理方法、対話処理システム、及びプログラム

Country Status (3)

Country Link
US (1) US10282139B2 (ja)
JP (1) JP6655835B2 (ja)
CN (1) CN107526763A (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6655835B2 (ja) * 2016-06-16 2020-02-26 パナソニックIpマネジメント株式会社 対話処理方法、対話処理システム、及びプログラム
JP6940428B2 (ja) * 2018-02-15 2021-09-29 アルパイン株式会社 検索結果提供装置および検索結果提供方法
JP7010073B2 (ja) * 2018-03-12 2022-01-26 株式会社Jvcケンウッド 出力内容制御装置、出力内容制御方法、及び出力内容制御プログラム
CN108735206A (zh) * 2018-04-19 2018-11-02 成都泰盟软件有限公司 一种带语音识别的信号采集与处理系统
KR102137818B1 (ko) * 2018-07-04 2020-07-24 오해석 인공지능을 이용하는 스마트 주문 시스템 및 방법
CN109739961A (zh) * 2018-12-24 2019-05-10 科大讯飞股份有限公司 一种人机语言交互方法及装置
JP2020129267A (ja) * 2019-02-08 2020-08-27 本田技研工業株式会社 データ構造
JP7301547B2 (ja) * 2019-02-08 2023-07-03 本田技研工業株式会社 設計支援装置
JP2020140467A (ja) * 2019-02-28 2020-09-03 富士ゼロックス株式会社 情報処理装置及びプログラム
JP2020140468A (ja) * 2019-02-28 2020-09-03 富士ゼロックス株式会社 情報処理装置及びプログラム
CN111951782B (zh) * 2019-04-30 2024-09-10 京东方科技集团股份有限公司 语音问答方法及装置、计算机可读存储介质和电子设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868763A (en) * 1986-02-21 1989-09-19 Hitachi, Ltd. Knowledge-based system having plural processors
JP2574784B2 (ja) 1986-02-21 1997-01-22 株式会社日立製作所 複数の処理手段からなる知識ベ−スシステム
JPH02224028A (ja) * 1988-11-30 1990-09-06 Hitachi Ltd 知識ベース・システムおよび推論方法
US5893910A (en) * 1996-01-04 1999-04-13 Softguard Enterprises Inc. Method and apparatus for establishing the legitimacy of use of a block of digitally represented information
US6341268B2 (en) * 1997-03-21 2002-01-22 Walker Digital, Llc System and method providing a restaurant menu dynamically generated based on revenue management information
US6314398B1 (en) * 1999-03-01 2001-11-06 Matsushita Electric Industrial Co., Ltd. Apparatus and method using speech understanding for automatic channel selection in interactive television
US7110963B2 (en) * 2000-09-07 2006-09-19 Manuel Negreiro Point-of-sale customer order system utilizing an unobtrusive transmitter/receiver and voice recognition software
ATE300083T1 (de) * 2000-11-03 2005-08-15 Voicecom Solutions Gmbh Robuste spracherkennung mit datenbankorganisation
US7398209B2 (en) * 2002-06-03 2008-07-08 Voicebox Technologies, Inc. Systems and methods for responding to natural language speech utterance
JP4072718B2 (ja) * 2002-11-21 2008-04-09 ソニー株式会社 音声処理装置および方法、記録媒体並びにプログラム
JP2006039120A (ja) * 2004-07-26 2006-02-09 Sony Corp 対話装置および対話方法、並びにプログラムおよび記録媒体
JP2007114621A (ja) * 2005-10-21 2007-05-10 Aruze Corp 会話制御装置
CN101076061A (zh) * 2007-03-30 2007-11-21 腾讯科技(深圳)有限公司 一种机器人服务器及自动聊天方法
US9842342B2 (en) * 2011-05-10 2017-12-12 Restaurant Revolution Technologies, Inc. Systems and methods for take-out order analytics
WO2013042117A1 (en) * 2011-09-19 2013-03-28 Personetics Technologies Ltd. System and method for evaluating intent of a human partner to a dialogue between human user and computerized system
JP6255274B2 (ja) * 2014-02-19 2017-12-27 シャープ株式会社 情報処理装置、音声対話装置、および制御プログラム
US9756185B1 (en) * 2014-11-10 2017-09-05 Teton1, Llc System for automated call analysis using context specific lexicon
US9959866B2 (en) * 2015-04-02 2018-05-01 Panasonic Intellectual Property Management Co., Ltd. Computer-implemented method for generating a response sentence by using a weight value of node
JP6655835B2 (ja) * 2016-06-16 2020-02-26 パナソニックIpマネジメント株式会社 対話処理方法、対話処理システム、及びプログラム

Also Published As

Publication number Publication date
US20170364310A1 (en) 2017-12-21
CN107526763A (zh) 2017-12-29
JP2017224204A (ja) 2017-12-21
US10282139B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
JP6655835B2 (ja) 対話処理方法、対話処理システム、及びプログラム
US11720635B2 (en) Providing command bundle suggestions for an automated assistant
US10657966B2 (en) Better resolution when referencing to concepts
US11626115B2 (en) Voice to text conversion based on third-party agent content
US8380512B2 (en) Navigation using a search engine and phonetic voice recognition
JP7095254B2 (ja) 対話システムおよびドメイン決定方法
US10579835B1 (en) Semantic pre-processing of natural language input in a virtual personal assistant
JP2017107078A (ja) 音声対話方法、音声対話装置及び音声対話プログラム
JP2017167659A (ja) 機械翻訳装置、方法、およびプログラム
JP6370962B1 (ja) 生成装置、生成方法および生成プログラム
JP2008083100A (ja) 音声対話装置及びその方法
JP7058574B2 (ja) 情報処理装置、情報処理方法、およびプログラム
JP7096199B2 (ja) 情報処理装置、情報処理方法、およびプログラム
JP2005215726A (ja) 話者に対する情報提示システム及びプログラム
US11705122B2 (en) Interface-providing apparatus and interface-providing method
JP2020008635A (ja) 音声対話システム、音声対話装置および音声対話方法
JP2014110005A (ja) 情報検索装置及び情報検索方法
JP2019144348A (ja) 情報処理システム及びコンピュータプログラム
US12130847B2 (en) Methods and systems for ambiguity resolution in conversations managed by a virtual assistant server
WO2016136208A1 (ja) 音声対話装置、音声対話システム、および、音声対話装置の制御方法
US11600260B1 (en) Utterance generation and evaluation
US11978437B1 (en) Natural language processing
EP4411563A1 (en) Semantic parsing using embedding space representations of example natural language queries
JP7435740B2 (ja) 音声認識装置、制御方法、及びプログラム
WO2021131406A1 (ja) 情報処理装置及び対話シナリオの作成支援方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R151 Written notification of patent or utility model registration

Ref document number: 6655835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151