JP6653615B2 - Sliding seismic isolation device - Google Patents

Sliding seismic isolation device Download PDF

Info

Publication number
JP6653615B2
JP6653615B2 JP2016083783A JP2016083783A JP6653615B2 JP 6653615 B2 JP6653615 B2 JP 6653615B2 JP 2016083783 A JP2016083783 A JP 2016083783A JP 2016083783 A JP2016083783 A JP 2016083783A JP 6653615 B2 JP6653615 B2 JP 6653615B2
Authority
JP
Japan
Prior art keywords
sliding
heat
seismic isolation
shoe
expandable refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016083783A
Other languages
Japanese (ja)
Other versions
JP2017194097A (en
Inventor
直弥 脇田
直弥 脇田
久巳 長谷川
久巳 長谷川
俊輔 上月
俊輔 上月
晃治 西本
晃治 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2016083783A priority Critical patent/JP6653615B2/en
Publication of JP2017194097A publication Critical patent/JP2017194097A/en
Application granted granted Critical
Publication of JP6653615B2 publication Critical patent/JP6653615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、上下沓とそれらの間に介在する摺動体とから構成される滑り免震装置に関するものである。   The present invention relates to a sliding seismic isolation device including upper and lower shoes and a sliding body interposed therebetween.

地震国であるわが国においては、ビルや橋梁、高架道路、戸建の住宅といった様々な構造物に対して、地震力に抗する技術、構造物に入る地震力を低減する技術など、様々な耐震技術、免震技術、制震技術が開発され、各種構造物に適用されている。   In Japan, which is an earthquake-prone country, various structures such as buildings, bridges, elevated roads, and detached houses have various seismic resistance technologies, including technologies to resist seismic force and technologies to reduce seismic force entering structures. Technology, seismic isolation technology, and seismic control technology have been developed and applied to various structures.

中でも免震技術は、構造物に入る地震力そのものを低減する技術であることから、地震時の構造物の振動は効果的に低減される。この免震技術を概説するに、下部構造物である基礎と上部構造物との間に免震装置を介在させ、地震による基礎の振動の上部構造物への伝達を低減し、上部構造物の振動を低減して構造安定性を保証するものである。なお、この免震装置は、地震時のみならず、構造物に対して常時作用する交通振動の上部構造物への影響低減にも効果を発揮するものである。   Above all, seismic isolation technology is a technology for reducing the seismic force itself entering a structure, so that the vibration of the structure during an earthquake is effectively reduced. To outline this seismic isolation technology, a seismic isolation device is interposed between the foundation, which is the lower structure, and the upper structure to reduce the transmission of vibration of the foundation due to the earthquake to the upper structure, Vibration is reduced to ensure structural stability. The seismic isolation device is effective not only in the case of an earthquake but also in reducing the influence of traffic vibrations constantly acting on the structure on the upper structure.

免震装置には鉛プラグ入り積層ゴム支承装置や高減衰積層ゴム支承装置、積層ゴム支承とダンパーを組み合わせた装置、滑り免震装置など、様々な形態の装置が存在している。その中で滑り免震装置を取り上げてその一つの形態の構成を説明すると、曲率を有する摺動面を備えた上沓および下沓と、上沓と下沓の間で、それぞれの沓と接して同じ曲率を有する上面および下面を備えた柱状の摺動体と、から構成されており、上下球面滑りタイプの免震装置、あるいはダブルコンケイブ式の免震装置などと称されることもある。この種の免震装置では、上下の沓の動作性能が、それらの間に介在する摺動体との間の摩擦係数やこれに重量が乗じられた摩擦力に支配される。   There are various types of seismic isolation devices such as a laminated rubber bearing device containing a lead plug, a high damping laminated rubber bearing device, a device combining a laminated rubber bearing and a damper, and a sliding seismic isolation device. Among them, the configuration of one form is described by taking up the sliding seismic isolation device.The upper and lower shoes with a sliding surface having a curvature, and the upper and lower shoes are in contact with the respective shoes. And a columnar sliding body having an upper surface and a lower surface having the same curvature, and may be referred to as an upper and lower spherical sliding type seismic isolation device or a double concave type seismic isolation device. In this type of seismic isolation device, the operating performance of the upper and lower shoe is governed by a friction coefficient between the upper and lower shoe and a sliding body interposed therebetween, and a friction force obtained by multiplying the coefficient of friction by the coefficient of friction.

ところで、上記する滑り免震装置が建物の途中階に設置される、いわゆる中間層免震構造を形成する場合、建築基準法によれば、この滑り免震装置に対して、当該滑り免震装置の上下に位置する柱等の構造部材と同等の耐火性能が要求される。   By the way, when the above-mentioned sliding seismic isolation device is installed in the middle floor of a building, that is, forms a so-called middle-rise seismic isolation structure, according to the Building Standards Act, the sliding seismic isolation device is It is required to have the same fire resistance performance as structural members such as columns located above and below.

より具体的には、3時間で1100℃の加熱状態下において、上下の柱間に介在する滑り免震装置には、上方の柱から作用する長期軸力を下方の柱に伝達できる性能を保持することが要求される。   More specifically, the sliding seismic isolation device between the upper and lower columns maintains the ability to transmit the long-term axial force acting from the upper column to the lower column in a heating state of 1100 ° C in 3 hours. Is required.

したがって、特に中間層免震構造に適用される滑り免震装置においては、地震時の振動低減性能に加えて、火災時の耐火性能が要求されることになる。   Therefore, in particular, in the sliding seismic isolation device applied to the middle-rise seismic isolation structure, fire resistance performance in the event of a fire is required in addition to vibration reduction performance in the event of an earthquake.

ここで、特許文献1には、免震装置の耐火被覆構造が開示されている。具体的には、下部構造体に取り付けられたすべり板と、上部構造体に形成されたすべり支承下面にすべり板の上面を摺動するように取り付けられた樹脂製あるいは金属製のすべり材と、を有するすべり支承型の免震装置であり、すべり支承下面におけるすべり材の周囲に、火災時に膨張してすべり材を被覆する熱膨張耐火材がすべり板と非接触状態を保って取り付けられているものである。   Here, Patent Document 1 discloses a fireproof covering structure of the seismic isolation device. Specifically, a sliding plate attached to the lower structure, and a resin or metal sliding material attached to the upper surface of the sliding plate on the lower surface of the sliding bearing formed on the upper structure, This is a sliding bearing type seismic isolation device that has a thermal expansion refractory material that expands in the event of a fire and covers the sliding material in a non-contact state with the sliding plate around the sliding material on the lower surface of the sliding bearing. Things.

この免震装置の耐火被覆構造によれば、建物の上部構造体の荷重を免震装置より下方の下部構造体に伝達するための樹脂製あるいは金属製のすべり材の周囲に、すべり板と非接触状態を保って熱膨張耐火材を取り付けたことにより、地震時の摺動に影響を与えることなく、火災時にはすべり材を効率よく被覆することができるとしている。   According to the fire-resistant covering structure of this seismic isolation device, the slip plate and the non-slip plate are placed around a resin or metal sliding material for transmitting the load of the upper structure of the building to the lower structure below the seismic isolation device. By attaching the thermal expansion refractory material while maintaining the contact state, the sliding material can be efficiently covered in the event of a fire without affecting sliding during an earthquake.

特許第5356743号公報Japanese Patent No. 5356743

特許文献1で開示される免震装置の耐火被覆構造は、上沓および下沓と、上沓と下沓の間に配設される摺動体と、から構成される滑り免震装置とは構成を異にすることから(摺動体を備えていない)、摺動体を備えた滑り免震装置であって耐火性能に優れた滑り免震装置を開示するものではない。   The fireproof structure of the seismic isolation device disclosed in Patent Literature 1 is composed of a sliding seismic isolation device including an upper shoe, a lower shoe, and a sliding member disposed between the upper shoe and the lower shoe. However, the present invention does not disclose a sliding seismic isolation device provided with a sliding body and having excellent fire resistance performance.

また、この免震装置の耐火被覆構造は、現場にて免震装置を囲む耐火被覆材を取り付ける作業を必須とすることから、現場施工性に課題を有している。   In addition, the fire-resistant coating structure of the seismic isolation device has a problem in on-site workability since it is essential to attach a fire-resistant coating material surrounding the seismic isolation device on site.

本発明は上記する問題に鑑みてなされたものであり、上沓および下沓と、上沓と下沓の間に配設される摺動体と、から構成される滑り免震装置に関し、現場にて耐火被覆材を設置する作業を不要とでき、地震時における免震性能に優れ、かつ火災時の耐火性能に優れた滑り免震装置を提供することを目的としている。   The present invention has been made in view of the above-described problem, and relates to a sliding seismic isolation device including an upper shoe and a lower shoe, and a sliding body disposed between the upper shoe and the lower shoe. It is an object of the present invention to provide a sliding seismic isolation device that can eliminate the work of installing a fire-resistant covering material, has excellent seismic isolation performance during an earthquake, and has excellent fire resistance during a fire.

前記目的を達成すべく、本発明による滑り免震装置は、曲率を有する下摺動面をその下面の内側に備えた上沓と、曲率を有する上摺動面をその上面の内側に備えた下沓と、上沓と下沓の間で、該上沓および該下沓と接して曲率を有する上面および下面を備えた柱状の摺動体と、から構成される滑り免震装置であって、前記上沓の側面から前記下面の前記下摺動面以外の領域に亘って第一の熱膨張性耐火材が装着されており、前記下沓の側面から前記上面の前記上摺動面以外の領域に亘って第二の熱膨張性耐火材が装着されており、非火災時には、前記第一の熱膨張性耐火材と前記第二の熱膨張性耐火材は非接触状態にあり、火災時には、前記第一の熱膨張性耐火材と前記第二の熱膨張性耐火材の双方が熱膨張して相互に密着して前記摺動体の配設されている空間を密閉するものである。   In order to achieve the above object, a sliding seismic isolation device according to the present invention includes an upper shoe having a lower sliding surface having a curvature inside a lower surface thereof and an upper sliding surface having a curvature inside an upper surface thereof. A lower seismic isolator comprising a lower shoe, a columnar sliding body having an upper surface and a lower surface having a curvature in contact with the upper and lower shoes, between the upper and lower shoes, A first heat-expandable refractory material is attached from a side surface of the upper shoe to a region other than the lower sliding surface of the lower surface, and a side other than the upper sliding surface of the upper surface from the side surface of the lower shoe. A second heat-expandable refractory material is mounted over the area, and in a non-fire situation, the first heat-expandable refractory material and the second heat-expandable refractory material are in a non-contact state, and in the event of a fire, The first heat-expandable refractory material and the second heat-expandable refractory material are both thermally expanded and closely adhered to each other, It is intended to seal the space being set.

本発明の滑り免震装置は、上沓の側面からその下面の下摺動面以外の領域に亘って第一の熱膨張性耐火材が装着され、下沓の側面からその上面の上摺動面以外の領域に亘って第二の熱膨張性耐火材が装着され、非火災時には、第一の熱膨張性耐火材と第二の熱膨張性耐火材は非接触状態にあることにより、第一、第二の熱膨張性耐火材が地震時の摺動体の摺動を阻害しないことから、地震時における免震性能に優れた滑り免震装置である。   In the sliding seismic isolation device of the present invention, the first thermally expandable refractory material is attached from the side surface of the upper shoe to an area other than the lower sliding surface of the lower surface, and the upper shoe slides upward from the side surface of the lower shoe. The second heat-expandable refractory material is attached over the area other than the surface, and in a non-fire situation, the first heat-expandable refractory material and the second heat-expandable refractory material are in a non-contact state. Since the first and second heat-expandable refractory materials do not hinder the sliding of the sliding body during an earthquake, the sliding seismic isolation device has excellent seismic isolation performance during an earthquake.

さらに、火災時には、第一の熱膨張性耐火材と第二の熱膨張性耐火材の双方が熱膨張して相互に密着して摺動体の配設されている空間を密閉することにより、火災時の熱から摺動体を遮断することができ、火災時の熱で摺動体が熱劣化して十分な軸力伝達機能を失わないようにすることができ、耐火性能に優れた滑り免震装置となっている。   Further, in the event of a fire, both the first and second heat-expandable refractory materials are thermally expanded and adhere to each other to seal the space in which the sliding member is disposed, thereby causing a fire. Sliding body can be cut off from the heat at the time, and the sliding body can be prevented from losing sufficient axial force transmission function due to heat deterioration of the sliding body due to heat at the time of fire. It has become.

より具体的には、火災時には、上沓および下沓の間の隙間から熱が内部に入り込む熱の流れと、上沓および下沓を介して摺動体に伝熱する熱の流れがあり、これらの熱が摺動体に伝熱されて摺動体が熱劣化し得る。   More specifically, in the event of a fire, there is a heat flow in which heat enters inside from a gap between the upper and lower shoes, and a heat flow that transfers heat to the sliding body via the upper and lower shoes. Is transferred to the sliding body, and the sliding body may be thermally degraded.

この火災時の熱の流れに対し、第一、第二の熱膨張性耐火材がそれぞれ上沓および下沓の側面から摺動面の周囲に亘って配設されていて、火災時に双方が熱膨張して相互に密着して摺動体の配設されている空間を密閉することにより、上記する二つの熱の流れを効果的に遮断することができる。   In response to the heat flow during the fire, the first and second thermally expandable refractory materials are disposed from the side surfaces of the upper and lower shoes to the periphery of the sliding surface. By expanding and closely contacting each other to seal the space in which the sliding member is provided, the above two heat flows can be effectively blocked.

ここで、第一、第二の熱膨張性耐火材としては有機系耐火材を適用することができる。   Here, as the first and second thermally expandable refractory materials, organic refractory materials can be applied.

第一、第二の熱膨張性耐火材は、たとえば製作工場にて上沓および下沓に対して予め取り付けることができるため、滑り免震装置が設置される現場において、第一、第二の熱膨張性耐火材を取り付ける作業は不要となり、現場施工性に優れた滑り免震装置となる。   Since the first and second heat-expandable refractory materials can be attached in advance to the upper and lower shoes, for example, at a manufacturing plant, the first and second heat-resistant materials are installed at the site where the sliding seismic isolation device is installed. There is no need to install a heat-expandable refractory material, and the sliding seismic isolation device has excellent on-site workability.

また、滑り免震装置の実施の形態として、前記上沓の前記下面のうち、前記下摺動面の周囲に環状の第一のストッパーが配設され、前記下沓の前記上面のうち、前記上摺動面の周囲に環状の第二のストッパーが配設され、前記第一の熱膨張性耐火材が前記第一のストッパーの周囲まで装着され、前記第二の熱膨張性耐火材が前記第二のストッパーの周囲まで装着されている形態を挙げることができる。   Further, as an embodiment of the sliding seismic isolation device, an annular first stopper is disposed around the lower sliding surface of the lower surface of the upper shoe, and An annular second stopper is provided around the upper sliding surface, the first thermally expandable refractory material is attached to the periphery of the first stopper, and the second thermally expandable refractory material is An example in which the second stopper is attached to the periphery of the second stopper can be given.

環状の第一のストッパーと第二のストッパーにて摺動体の摺動範囲が規定され、摺動体の脱落等が抑止される。   The sliding range of the sliding body is defined by the annular first stopper and the second stopper, and the sliding body is prevented from falling off.

また、環状の第一のストッパーと第二のストッパーがあることで、それらの内側が摺動面となることから、第一、第二の熱膨張性耐火材の取り付け範囲が明瞭になり、それらの取り付け性も良好になる。   In addition, since there is an annular first stopper and a second stopper, the inside of the first stopper and the second stopper serves as a sliding surface, the mounting range of the first and second heat-expandable refractory materials becomes clear, and Is also good.

以上の説明から理解できるように、本発明の滑り免震装置によれば、上沓の側面からその下面の下摺動面以外の領域に亘って第一の熱膨張性耐火材が装着され、下沓の側面からその上面の上摺動面以外の領域に亘って第二の熱膨張性耐火材が装着され、非火災時には、第一の熱膨張性耐火材と第二の熱膨張性耐火材は非接触状態にあることにより、第一、第二の熱膨張性耐火材が地震時の摺動体の摺動を阻害しないことから、地震時における免震性能に優れた滑り免震装置となる。   As can be understood from the above description, according to the sliding seismic isolation device of the present invention, the first thermally expandable refractory material is mounted from the side surface of the upper shoe to an area other than the lower sliding surface of the lower surface thereof, A second heat-expandable refractory material is attached from the side surface of the lower shoe to an area other than the upper sliding surface of the upper surface. Since the materials are in a non-contact state, the first and second thermally expandable refractory materials do not hinder the sliding of the sliding body during an earthquake. Become.

また、火災時には、第一の熱膨張性耐火材と第二の熱膨張性耐火材の双方が熱膨張して相互に密着して摺動体の配設されている空間を密閉することにより、火災時の熱から摺動体を遮断することができ、火災時の熱で摺動体が熱劣化して十分な軸力伝達機能を失わないようにすることができ、耐火性能に優れた滑り免震装置となる。   In the event of a fire, both the first and second heat-expandable refractory materials thermally expand and adhere to each other to seal the space in which the sliding member is disposed, thereby causing a fire. Sliding body can be cut off from the heat at the time, and the sliding body can be prevented from losing sufficient axial force transmission function due to heat deterioration of the sliding body due to heat at the time of fire. Becomes

さらに、第一、第二の熱膨張性耐火材は、たとえば製作工場にて上沓および下沓に対して予め取り付けることができるため、滑り免震装置が設置される現場において、第一、第二の熱膨張性耐火材を取り付ける作業は不要となり、現場施工性に優れた滑り免震装置となる。   Furthermore, since the first and second heat-expandable refractory materials can be pre-attached to the upper shoe and the lower shoe, for example, at a manufacturing plant, the first and second heat-resistant materials are installed at the site where the sliding seismic isolation device is installed. There is no need to attach the second heat-expandable refractory material, and the sliding seismic isolation device has excellent on-site workability.

本発明の滑り免震装置の実施の形態の縦断面図であって、上部構造体と下部構造体の間に設置されている状態を示した図である。It is a longitudinal section of an embodiment of a sliding seismic isolation device of the present invention, and is a figure showing the state where it was installed between an upper structure and a lower structure. 地震時の滑り免震装置の動作態様を説明した図である。It is a figure explaining the mode of operation of the sliding seismic isolation device at the time of an earthquake. 火災時の滑り免震装置の作用を説明した図であって、(a)は火災発生前の状態を示した図であり、(b)は火災発生後の状態を示した図である。It is a figure explaining operation of a sliding seismic isolation device at the time of fire, (a) is a figure showing a state before a fire occurs, and (b) is a figure showing a state after a fire occurs.

以下、図面を参照して本発明の滑り免震装置の実施の形態を説明する。   Hereinafter, an embodiment of a sliding seismic isolation device of the present invention will be described with reference to the drawings.

(滑り免震装置の実施の形態)
図1は本発明の滑り免震装置の実施の形態の縦断面図であって、上部構造体と下部構造体の間に設置されている状態を示した図である。
(Embodiment of the sliding seismic isolation device)
FIG. 1 is a longitudinal sectional view of an embodiment of a sliding seismic isolation device of the present invention, showing a state where the device is installed between an upper structure and a lower structure.

図示する滑り免震装置10は、曲率を有するSUS製の下摺動面1dをその下面1aの内側に備えた上沓1と、曲率を有するSUS製の上摺動面2dをその上面2aの内側に備えた下沓2と、上沓1と下沓2の間で、上沓1および下沓2と接して曲率を有する上面および下面を備えた柱状で鋼製(SUS製を含む)の摺動体3と、から構成される。   The illustrated sliding seismic isolation device 10 includes an upper shoe 1 having a lower sliding surface 1d made of SUS having a curvature inside a lower surface 1a thereof, and an upper sliding surface 2d made of SUS having a curvature having an upper surface 2a. The lower shoe 2 provided on the inside, and between the upper shoe 1 and the lower shoe 2, a columnar steel (including SUS) having a curved upper surface and a lower surface in contact with the upper shoe 1 and the lower shoe 2. And a sliding body 3.

上沓1の下面1aのうち、下摺動面1dの周囲には環状の第一のストッパー1cが配設されており、下沓2の上面2aのうち、上摺動面2dの周囲にも環状の第二のストッパー2cが配設されている。   On the lower surface 1a of the upper shoe 1, an annular first stopper 1c is disposed around the lower sliding surface 1d, and also on the upper surface 2a of the lower shoe 2 around the upper sliding surface 2d. An annular second stopper 2c is provided.

環状の第一のストッパー1cと第二のストッパー2cにより、摺動体3の摺動範囲が規定され、摺動体3の脱落等が抑止される。   The sliding range of the sliding body 3 is defined by the first stopper 1c and the second stopper 2c, and the sliding body 3 is prevented from falling off.

上沓1と下沓2と摺動体3はいずれも、溶接鋼材用圧延鋼材(SM490A,B,C、もしくはSN490B,C、もしくはS45C)から形成され、面圧60MPa程度の耐荷強度を有している。   Each of the upper shoe 1, the lower shoe 2, and the sliding body 3 is formed from a rolled steel material for welding steel (SM490A, B, C, or SN490B, C, or S45C), and has a load bearing strength of about 60 MPa in surface pressure. I have.

また、摺動体3の上面と下面にはそれぞれ、不図示の二重織物層が接着固定されているのが好ましい。この二重織物層は、たとえばPTFE繊維とPTFE繊維よりも引張強度の高い繊維からなる二重織物層であり、PTFE繊維が上沓1の下摺動面1dと下沓2の上摺動面2d側に配設されるようにして各二重織物層が摺動体3の上下面に固定されている。ここで、「PTFE繊維よりも引張強度の高い繊維」としては、ナイロン6・6、ナイロン6、ナイロン4・6などのポリアミドやポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルやパラアラミド、メタアラミド、ポリエチレン、ポリプロピレン、ガラス、カーボン、ポリフェニレンサルファイド(PPS)、LCP、ポリイミド、PEEKなどの繊維を挙げることができる。また、さらに、熱融着繊維や綿、ウールなどの繊維を適用してもよい。その中でも、耐薬品性、耐加水分解性に優れ、引張強度の極めて高いPPS繊維が望ましい。これら二重織物層は、エポキシ樹脂系接着剤等からなる接着剤を介して摺動体3の上下面に接着固定される。   Further, it is preferable that a double fabric layer (not shown) is bonded and fixed to each of the upper surface and the lower surface of the sliding body 3. The double woven fabric layer is a double woven fabric layer made of, for example, PTFE fiber and a fiber having a higher tensile strength than the PTFE fiber. Each double fabric layer is fixed to the upper and lower surfaces of the sliding member 3 so as to be disposed on the 2d side. Here, `` fibers having higher tensile strength than PTFE fibers '' include polyamides such as nylon 6.6, nylon 6, nylon 4.6, polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalene. Examples include polyester such as phthalate, and fibers such as para-aramid, meta-aramid, polyethylene, polypropylene, glass, carbon, polyphenylene sulfide (PPS), LCP, polyimide, and PEEK. Further, fibers such as heat fusion fibers, cotton, and wool may be applied. Among them, PPS fibers having excellent chemical resistance and hydrolysis resistance and extremely high tensile strength are desirable. These double fabric layers are bonded and fixed to the upper and lower surfaces of the sliding body 3 via an adhesive such as an epoxy resin adhesive.

滑り免震装置10では、上沓1の側面1bからその下面1aの下摺動面1d以外の領域(第一のストッパー1cの周囲まで)に亘って第一の熱膨張性耐火材4が装着されており、下沓2の側面2bからその上面2aの上摺動面2d以外の領域(第二のストッパー2cの周囲まで)に亘って第二の熱膨張性耐火材5が装着されている。   In the sliding seismic isolation device 10, the first heat-expandable refractory material 4 is attached from the side surface 1b of the upper shoe 1 to an area other than the lower sliding surface 1d of the lower surface 1a (around the first stopper 1c). The second heat-expandable refractory material 5 is attached from the side surface 2b of the lower shoe 2 to a region other than the upper sliding surface 2d of the upper surface 2a (from around the second stopper 2c). .

そして、図1で示す状態、すなわち、非火災時においては、第一の熱膨張性耐火材4と第二の熱膨張性耐火材5は相互に非接触状態にあり、双方の間に隙間Gがある。なお、図示を省略するが、この隙間Gを閉塞するように、第一のストッパー1cと第二のストッパー2cに環状の防塵ゴムをそれぞれ取り付け、摺動体3の収容された空間に塵が入り込まないようになっている形態であってもよい。この形態では、第一のストッパー1cの外側の側面からその端面(第二のストッパー2cに対向する端面)に亘って防塵ゴムが接着され、同様に、第二のストッパー2cの外側の側面からその端面(第一のストッパー1cに対向する端面)に亘って防塵ゴムが接着され、非火災時において、双方の防塵ゴムにて隙間Gが閉塞されており、双方の防塵ゴムの外側に第一の熱膨張性耐火材4と第二の熱膨張性耐火材5がそれぞれ取り付けられている。   In the state shown in FIG. 1, that is, in the non-fire state, the first thermally expandable refractory material 4 and the second thermally expandable refractory material 5 are in a non-contact state with each other, and a gap G is provided therebetween. There is. Although not shown, annular dustproof rubbers are respectively attached to the first stopper 1c and the second stopper 2c so as to close the gap G, so that dust does not enter the space in which the sliding body 3 is accommodated. Such a configuration may be adopted. In this embodiment, dust-proof rubber is adhered from the outer side surface of the first stopper 1c to its end surface (the end surface facing the second stopper 2c), and similarly, from the outer side surface of the second stopper 2c. Dust-proof rubber is adhered over the end face (the end face facing the first stopper 1c), and in a non-fire situation, the gap G is closed by both dust-proof rubbers. A heat-expandable refractory material 4 and a second heat-expandable refractory material 5 are respectively attached.

ここで、第一の熱膨張性耐火材4と第二の熱膨張性耐火材5は有機系耐火材から形成され、より詳細には、積水化学工業株式会社製の「フィブロック」(登録商標)から形成されている。   Here, the first heat-expandable refractory material 4 and the second heat-expandable refractory material 5 are formed of an organic refractory material, and more specifically, “Fibroc” (registered trademark) manufactured by Sekisui Chemical Co., Ltd. ).

非火災時においては、第一の熱膨張性耐火材4と第二の熱膨張性耐火材5の厚みは3mm程度である。   In a non-fire situation, the thickness of the first thermally expandable refractory material 4 and the second thermally expandable refractory material 5 is about 3 mm.

第一の熱膨張性耐火材4と第二の熱膨張性耐火材5は、製作工場にて上沓1と下沓2に対して予め取り付けることができる。そのため、滑り免震装置10が設置される現場において、第一の熱膨張性耐火材4と第二の熱膨張性耐火材5を取り付ける作業は不要となり、現場施工性に優れた滑り免震装置10となる。   The first thermally expandable refractory material 4 and the second thermally expandable refractory material 5 can be attached to the upper shoe 1 and the lower shoe 2 at a manufacturing factory in advance. Therefore, the work of attaching the first thermally expandable refractory material 4 and the second thermally expandable refractory material 5 at the site where the slide seismic isolation device 10 is installed becomes unnecessary, and the slide seismic isolation device having excellent on-site workability. It becomes 10.

図1で示すように、滑り免震装置10は、柱等の上部構造体S1と、同様に柱等の下部構造体S2の間に設置され、地震時における上部構造体S1と下部構造体S2の水平変位を滑り免震装置10の動作にて低減する。さらに、滑り免震装置10は上部構造体S1と下部構造体S2の間に設置される、いわゆる中間層免震構造を形成することから、建築基準法に則り、滑り免震装置10には、上部構造体S1と下部構造体S2と同等の耐火性能が要求される。そこで、以下、図2,3を参照して、地震時と火災時の滑り免震装置10の作用を説明する。   As shown in FIG. 1, the sliding seismic isolation device 10 is installed between an upper structure S1 such as a column and a lower structure S2 also like a column, and the upper structure S1 and the lower structure S2 during an earthquake. Is reduced by the operation of the sliding seismic isolation device 10. Furthermore, since the slide seismic isolation device 10 forms a so-called middle-rise seismic isolation structure installed between the upper structure S1 and the lower structure S2, the slide seismic isolation device 10 is provided in accordance with the Building Standards Law. Fire resistance equivalent to that of the upper structure S1 and the lower structure S2 is required. The operation of the seismic isolation device 10 in the event of an earthquake and fire will be described below with reference to FIGS.

図2は、地震時の滑り免震装置10の動作態様を説明したものである。   FIG. 2 illustrates an operation mode of the sliding seismic isolation device 10 during an earthquake.

図2で示すように、地震時においては、上部構造体S1と下部構造体S2の水平変位に応じて上沓1と下沓2の間で摺動体3が摺動することにより、地震力の低減を図ることができる。   As shown in FIG. 2, during an earthquake, the sliding body 3 slides between the upper shoe 1 and the lower shoe 2 according to the horizontal displacement of the upper structure S1 and the lower structure S2, so that the seismic force is reduced. Reduction can be achieved.

ここで、滑り免震装置10では、第一の熱膨張性耐火材4と第二の熱膨張性耐火材5が相互に非接触状態にあることから、これら第一の熱膨張性耐火材4と第二の熱膨張性耐火材5が上沓1や下沓2の水平変位、摺動体3の摺動を阻害しない。   Here, in the sliding seismic isolation device 10, since the first thermally expandable refractory 4 and the second thermally expandable refractory 5 are not in contact with each other, these first thermally expandable refractory 4 And the second thermally expandable refractory material 5 does not hinder the horizontal displacement of the upper shoe 1 and the lower shoe 2 and the sliding of the sliding body 3.

したがって、滑り免震装置10は、地震時において優れた免震性能を発揮することができる。   Therefore, the sliding seismic isolation device 10 can exhibit excellent seismic isolation performance during an earthquake.

一方、図3は、火災時の滑り免震装置10の作用を説明した図であって、図3(a)は火災発生前の状態を示した図であり、図3(b)は火災発生後の状態を示した図である。   On the other hand, FIG. 3 is a diagram for explaining the operation of the sliding seismic isolation device 10 in the event of a fire. FIG. 3 (a) is a diagram showing a state before a fire has occurred, and FIG. It is the figure which showed the state after.

図3(a)で示すように、火災時においては、上沓1と下沓2の間の隙間Gから火災時の熱が内部に入り込む熱の流れR1と、上沓1と下沓2を介して摺動体3に伝熱する熱の流れR2があり、これらの熱が摺動体3に伝熱されて摺動体3が熱劣化し得る。   As shown in FIG. 3 (a), in the event of a fire, the heat flow R1 in which heat from the fire enters the interior from the gap G between the upper and lower shoes 1, and the upper and lower shoes 2, There is a flow of heat R2 that transfers heat to the sliding member 3 through the heat generating member, and the heat is transferred to the sliding member 3 so that the sliding member 3 may be thermally degraded.

これに対し、滑り免震装置10では、図3(b)で示すように、第一の熱膨張性耐火材4と第二の熱膨張性耐火材5の双方が熱膨張して熱膨張した第一の熱膨張性耐火材4’と第二の熱膨張性耐火材5’となり、第一の熱膨張性耐火材4’と第二の熱膨張性耐火材5’が相互に密着して摺動体3の配設されている空間を密閉する。   On the other hand, in the sliding seismic isolation device 10, as shown in FIG. 3B, both the first thermally expandable refractory material 4 and the second thermally expandable refractory material 5 thermally expand and thermally expand. The first heat-expandable refractory material 4 'and the second heat-expandable refractory material 5' become in close contact with each other. The space in which the sliding body 3 is provided is sealed.

たとえば、非火災時において厚みが3mm程度の第一の熱膨張性耐火材4と第二の熱膨張性耐火材5は、火災時に熱膨張してそれらの厚みが30mm以上になる。   For example, the first heat-expandable refractory material 4 and the second heat-expandable refractory material 5 having a thickness of about 3 mm in a non-fire situation are thermally expanded in a fire to have a thickness of 30 mm or more.

第一の熱膨張性耐火材4’と第二の熱膨張性耐火材5’が相互に密着することで、図3(a)で示す熱の流れR1が遮断される。   The first heat-expandable refractory material 4 'and the second heat-expandable refractory material 5' come into close contact with each other, so that the heat flow R1 shown in FIG.

また、第一の熱膨張性耐火材4’と第二の熱膨張性耐火材5’の厚みが10倍以上に熱膨張することで、図3(a)で示す熱の流れR2が遮断される。   Further, since the thickness of the first thermally expandable refractory material 4 'and the second thermally expandable refractory material 5' expands ten times or more, the heat flow R2 shown in FIG. You.

このように、第一の熱膨張性耐火材4と第二の熱膨張性耐火材5の双方が熱膨張して相互に密着して摺動体3の配設されている空間を密閉することにより、火災時の熱から摺動体3を遮断することができ、火災時の熱で摺動体3が熱劣化して十分な軸力伝達機能を失わないようにすることができる。たとえば、火災時に1100℃程度かそれ以上の温度雰囲気下において、摺動体3の温度を500℃程度かそれ以下に留めることが可能になる。   As described above, both the first heat-expandable refractory material 4 and the second heat-expandable refractory material 5 are thermally expanded and adhere to each other to seal the space in which the sliding member 3 is disposed. In addition, the sliding member 3 can be shielded from heat at the time of fire, and the sliding member 3 can be prevented from being thermally deteriorated by heat at the time of fire and losing a sufficient axial force transmitting function. For example, it is possible to keep the temperature of the sliding body 3 at about 500 ° C. or lower under an atmosphere of about 1100 ° C. or higher at the time of fire.

したがって、滑り免震装置10は、火災時において優れた耐火性能を発揮することができる。   Therefore, the sliding seismic isolation device 10 can exhibit excellent fire resistance performance in the event of a fire.

このように、図示する滑り免震装置10は、現場施工性に優れ、地震時における免震性能に優れ、かつ火災時の耐火性能に優れた滑り免震装置となる。   Thus, the illustrated sliding seismic isolation device 10 is a sliding seismic isolation device having excellent on-site workability, excellent seismic isolation performance during an earthquake, and excellent fire resistance in a fire.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…上沓、1a…下面、1b…側面、1c…第一のストッパー、1d…下摺動面、2…下沓、2a…上面、2b…側面、2c…第二のストッパー、2d…上摺動面、3…摺動体、4,4’…第一の熱膨張耐火材、5,5’…第二の熱膨張耐火材、10…滑り免震装置、G…隙間、S1…上部構造体、S2…下部構造体   DESCRIPTION OF SYMBOLS 1 ... Upper shoe, 1a ... Lower surface, 1b ... Side surface, 1c ... First stopper, 1d ... Lower sliding surface, 2 ... Lower shoe, 2a ... Upper surface, 2b ... Side surface, 2c ... Second stopper, 2d ... Upper Sliding surface, 3 ... sliding body, 4, 4 '... first thermal expansion refractory material, 5, 5' ... second thermal expansion refractory material, 10: sliding seismic isolation device, G: gap, S1: upper structure Body, S2 ... Substructure

Claims (1)

曲率を有する下摺動面をその下面の内側に備えた上沓と、
曲率を有する上摺動面をその上面の内側に備えた下沓と、
上沓と下沓の間で、該上沓および該下沓と接して曲率を有する上面および下面を備えた柱状の摺動体と、から構成される滑り免震装置であって、
前記上沓の前記下面のうち、前記下摺動面の周囲に環状の第一のストッパーが配設され、
前記下沓の前記上面のうち、前記上摺動面の周囲に環状の第二のストッパーが配設され、
前記上沓の側面から前記第一のストッパーの周囲に亘って第一の熱膨張性耐火材が装着され、
前記下沓の側面から前記第二のストッパーの周囲に亘って第二の熱膨張性耐火材が装着されており、
前記第一の熱膨張性耐火材は、前記上沓の前記側面に沿う鉛直部と、前記第一のストッパーの側面に沿う鉛直部と、前記上沓の前記下面において前記側面から前記第一のストッパーまでの範囲にあって双方の前記鉛直部を繋ぐ水平部と、を備え、
前記第二の熱膨張性耐火材は、前記下沓の前記側面に沿う鉛直部と、前記第二のストッパーの側面に沿う鉛直部と、前記下沓の前記上面において前記側面から前記第二のストッパーまでの範囲にあって双方の前記鉛直部を繋ぐ水平部と、を備えており、
非火災時には、前記第一の熱膨張性耐火材と前記第二の熱膨張性耐火材は非接触状態にあり、
火災時には、前記第一の熱膨張性耐火材と前記第二の熱膨張性耐火材の双方が熱膨張して相互に密着して前記摺動体の配設されている空間を密閉する、滑り免震装置。
An upper shoe having a lower sliding surface having a curvature inside the lower surface thereof,
A lower shoe having an upper sliding surface having a curvature inside the upper surface thereof,
Between the upper shoe and the lower shoe, a columnar sliding body having an upper surface and a lower surface having a curvature in contact with the upper shoe and the lower shoe,
An annular first stopper is provided around the lower sliding surface of the lower surface of the upper shoe,
Of the upper surface of the lower shoe, an annular second stopper is disposed around the upper sliding surface,
A first heat-expandable refractory material is attached from the side of the upper shoe to around the first stopper ,
A second heat-expandable refractory material is attached from the side of the lower shoe to the periphery of the second stopper ,
The first heat-expandable refractory material includes a vertical portion along the side surface of the upper shoe, a vertical portion along a side surface of the first stopper, and the first surface from the side surface on the lower surface of the upper shoe. A horizontal portion which is in a range up to a stopper and connects both the vertical portions,
The second heat-expandable refractory material includes a vertical portion along the side surface of the lower shoe, a vertical portion along a side surface of the second stopper, and the second surface from the side surface on the upper surface of the lower shoe. A horizontal portion that is in the range up to the stopper and connects both of the vertical portions,
At the time of non-fire, the first thermally expandable refractory and the second thermally expandable refractory are in a non-contact state,
In the event of a fire, both the first heat-expandable refractory material and the second heat-expandable refractory material thermally expand and adhere to each other to seal the space in which the sliding member is provided. Quake device.
JP2016083783A 2016-04-19 2016-04-19 Sliding seismic isolation device Active JP6653615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083783A JP6653615B2 (en) 2016-04-19 2016-04-19 Sliding seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083783A JP6653615B2 (en) 2016-04-19 2016-04-19 Sliding seismic isolation device

Publications (2)

Publication Number Publication Date
JP2017194097A JP2017194097A (en) 2017-10-26
JP6653615B2 true JP6653615B2 (en) 2020-02-26

Family

ID=60154627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083783A Active JP6653615B2 (en) 2016-04-19 2016-04-19 Sliding seismic isolation device

Country Status (1)

Country Link
JP (1) JP6653615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409809B2 (en) * 2019-09-13 2024-01-09 清水建設株式会社 Tuned mass dampers and buildings
JP6765564B1 (en) * 2020-06-29 2020-10-07 日鉄エンジニアリング株式会社 Sliding seismic isolation device and bridge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229664A (en) * 1998-02-13 1999-08-24 Minnesota Mining & Mfg Co <3M> Fire-resisting wall for covering vibration isolation member and construction of fire-resistive vibration isolation
JP4239306B2 (en) * 1999-07-23 2009-03-18 オイレス工業株式会社 Fireproof device for seismic isolation devices
JP5521096B1 (en) * 2013-07-25 2014-06-11 新日鉄住金エンジニアリング株式会社 Sliding seismic isolation device

Also Published As

Publication number Publication date
JP2017194097A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US20210301900A1 (en) A three-dimensional isolator with adaptive stiffness property
AU2017200901A1 (en) Passive fire resistant system for filling a space or gap confined by construction elements and a prefabricated multilayered structure of such a system
JP6653615B2 (en) Sliding seismic isolation device
TW200829811A (en) Seismic isolation device
EP2857717B1 (en) Sliding seismic isolation device
JP6340292B2 (en) Seal structure and building
US5373670A (en) Shakeproof bearing
JP2021011921A (en) Fixing structure of seismic isolator
JP2008280718A (en) Base isolation device
JP2012132183A (en) Fire-resisting water cut-off joint structure between rc building frames
JP6628923B1 (en) Sliding seismic isolation device
JP2014040860A (en) Seal structure and construction method for the same
JPH0249834A (en) Anti-seismic bearing
KR20160120116A (en) Joint-shaped Vibration Control Device
JP6733025B1 (en) Fireproof structure of slip isolation device
JP5356743B2 (en) Fireproof coating structure for seismic isolation devices
JP5497528B2 (en) Laminated rubber support
JP6970381B2 (en) Dry fireproof structure of steel columns
JP5156207B2 (en) Fireproof coating structure
JP7465844B2 (en) Insulating cover structure
JP2018080779A (en) Vacuum heat insulation structure
JP2006257683A (en) Sliding bearing cover and sliding bearing device
JP7282835B2 (en) Piping structure and fittings
JPH01263335A (en) Fireproof device for earthquakeproof support
JP2016000932A (en) Means and method for resuming to home position of base isolation structure, and improved ground provided with the means

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200128

R150 Certificate of patent or registration of utility model

Ref document number: 6653615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250