JP6651147B1 - Carrying material - Google Patents

Carrying material Download PDF

Info

Publication number
JP6651147B1
JP6651147B1 JP2019139664A JP2019139664A JP6651147B1 JP 6651147 B1 JP6651147 B1 JP 6651147B1 JP 2019139664 A JP2019139664 A JP 2019139664A JP 2019139664 A JP2019139664 A JP 2019139664A JP 6651147 B1 JP6651147 B1 JP 6651147B1
Authority
JP
Japan
Prior art keywords
load
tube
reinforcing
bearing material
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019139664A
Other languages
Japanese (ja)
Other versions
JP2021021287A (en
Inventor
吉田 博
博 吉田
Original Assignee
有限会社吉田構造デザイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社吉田構造デザイン filed Critical 有限会社吉田構造デザイン
Priority to JP2019139664A priority Critical patent/JP6651147B1/en
Application granted granted Critical
Publication of JP6651147B1 publication Critical patent/JP6651147B1/en
Publication of JP2021021287A publication Critical patent/JP2021021287A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】安価な補強材を用いて耐荷性能を高めた耐荷材を提供する。【解決手段】耐荷材10は、中空の管体20と、管体20の外方に配設した補強材30からなり、補強材30の端部を管体20の外周面の上下部にそれぞれ端部ブラケット21で固定し、中間ブラケット22を介して補強材を管体20に支持し、補強材30と管体20の外周面との間に形成される間隔Sを保ったまま、補強材30を管体20の曲げ変形に追従可能に構成した。【選択図】図2An object of the present invention is to provide a load-bearing material having improved load-bearing performance using an inexpensive reinforcing material. A load-bearing material includes a hollow tubular body and a reinforcing material disposed outside the tubular body, and ends of the reinforcing material are respectively provided on upper and lower portions of an outer peripheral surface of the tubular body. The reinforcing member is fixed to the end bracket 21, and the reinforcing member is supported on the tube 20 via the intermediate bracket 22. 30 is configured to be able to follow the bending deformation of the tube 20. [Selection] Figure 2

Description

本発明は防護柵の支柱、杭構造体又は建築用途の耐震補強材に適用可能な曲げ性能に優れた耐荷材に関する。   The present invention relates to a load-bearing material excellent in bending performance that can be applied to a pillar of a protective fence, a pile structure, or an earthquake-resistant reinforcing material for building use.

荷重により曲げモーメントが生じる耐荷材として、例えば防護柵の支柱が挙げられる。
支柱を支える基礎構造のひとつとしてコンクリート製擁壁が用いられている。
工費を抑える必要から擁壁の天端幅をできるだけ幅狭に形成しているが、支柱の断面寸法より小さくできず、擁壁の天端幅を小さくすることに限界がある。
高耐力の支柱としては、鋼管内にコンクリートを充填した合成構造の充填鋼管や、鋼管内に鉄筋、鋼棒、H鋼、断面多角形の筒体等の内挿補強材を挿入した内部補強鋼管が知られている(特許文献1〜4)。
As a load-bearing material that generates a bending moment due to a load, for example, a pillar of a protective fence can be cited.
Concrete retaining walls are used as one of the foundation structures that support the columns.
Although the top end width of the retaining wall is formed as narrow as possible because of the need to reduce the construction cost, it cannot be made smaller than the cross-sectional dimension of the pillar, and there is a limit to reducing the top end width of the retaining wall.
As a high-strength support column, a filled steel pipe with a composite structure in which steel pipe is filled with concrete, or an internal reinforced steel pipe in which an insertion reinforcing material such as a reinforcing bar, a steel rod, H steel, or a cylindrical body having a polygonal cross section is inserted into the steel pipe Are known (Patent Documents 1 to 4).

特開2002−266321号公報JP 2002-266321 A 特開2008−184822号公報JP 2008-184822 A 特開2009−215773号公報JP 2009-215773 A 特開2012−26206号公報JP 2012-26206 A

従来の支柱等の耐荷材はつぎの問題点を有している。
<1>従来の充填鋼管製又は内部補強鋼管製の支柱は、重量が重たく運搬移動や現場での取扱性が悪く、コストも非常に高くなる。
<2>充填鋼管は、支柱が終局状態に至るとコンクリートと鋼管間の付着がなくなるため、鋼管の耐力向上に対してコンクリートの貢献度が極めて低い。
<3>内部補強鋼管は、内挿補強材が鋼管に内挿されているだけで、内挿補強材と鋼管とがその全長に亘って一体構造化していない。
そのため、内挿補強材も鋼管の耐力向上に対して貢献度が低い。
<4>内挿補強材を鋼管と一体構造化するには、その全長に亘って溶接等で固着しなければならないが、全長に亘って固着するには高度な接合技術が必要であり、さらに固着費用も高くつく。
<5>そのため、従来は鋼管と内挿補強材の両端部の一定範囲のみを溶接等で部分的に固着して対処している。
内挿補強材と鋼管の両端付近のみを固着した支柱では、内挿補強材を固着できない部分のせん断力を両端の固着部分のみが負担するので、両端の固着部分に大きいせん断力が発生する。
<6>このように鋼管の内部を補強した従来の支柱では、直ひずみの「平面保持の原理(Bernoulli-Euler theory)」が成り立たない。
そのため、支柱の耐力を正確に計算することが難しく、耐力評価に対する信頼性が低い。
Conventional load-bearing materials such as columns have the following problems.
<1> A conventional pillar made of a filled steel pipe or an internally reinforced steel pipe has a heavy weight and is difficult to carry and move or handle on site, and the cost is extremely high.
<2> In the case of the filled steel pipe, since the adhesion between the concrete and the steel pipe disappears when the column reaches the final state, the contribution of the concrete to the improvement in the strength of the steel pipe is extremely low.
<3> In the internal reinforcing steel pipe, only the interpolating reinforcing material is inserted into the steel pipe, and the interpolating reinforcing material and the steel pipe are not integrally formed over the entire length.
Therefore, the interpolating reinforcing material also has a low contribution to the improvement of the strength of the steel pipe.
<4> In order to integrally form the insertion reinforcing material with the steel pipe, it is necessary to fix the entire length of the steel pipe by welding or the like. The fixing cost is also high.
<5> For this reason, conventionally, only a certain range of both ends of the steel pipe and the insertion reinforcing material is partially fixed by welding or the like.
In a column in which only the insertion reinforcement is fixed to the vicinity of both ends of the steel pipe, a shear force in a portion where the insertion reinforcement cannot be fixed is borne only by the adhesion portions at both ends, so a large shear force is generated at the adhesion portions at both ends.
<6> With the conventional column reinforced inside the steel pipe as described above, the “Bernoulli-Euler theory” of direct strain does not hold.
Therefore, it is difficult to accurately calculate the proof strength of the column, and the reliability of the proof strength evaluation is low.

本発明は以上の点に鑑みて成されたもので、その目的とするところは、安価な補強材を用いて耐荷性能を高めた耐荷材を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a load-bearing material having improved load-bearing performance using an inexpensive reinforcing material.

本発明は外力作用時に曲げモーメントが生じる耐荷材であって、外力作用時に長さ方向に沿って引張応力が生じる引張領域と、外力作用時に長さ方向に沿って圧縮応力が生じる圧縮領域とが形成される管体と、前記管体の外方であって管体の軸線と平行に配設した単数又は複数の補強材とからなり、外力作用時に補強材と管体の外周面との間に形成される間隔を保ったまま、補強材管体の曲げ変形に追従するように、管体の引張領域又は圧縮領域の何れか一方の領域に配置した前記補強材の端部を管体の外周面にそれぞれ固定した。
本発明の他の形態において、前記補強材を管体の引張領域及び圧縮領域に取り付けてある。
本発明の他の形態において、前記補強材を管体の全長に亘って、又は管体の一部に取り付けてある。
本発明の他の形態において、前記管体の外周面に複数の中間ブラケットを突設し、該複数の中間ブラケットを介して補強材を管体の外周面から離隔して支持する。
本発明の他の形態において、前記補強材の両端部間を管体の外周面に突設した中間ブラケットに固定せずに係留して支持してもよいし、前記補強材の両端部間を管体の外周面に突設した中間ブラケットに剛結して支持してもよい。
本発明の他の形態において、管体の引張領域においては管体の外周面に突設した中間ブラケットに補強材を剛結せずに係留して支持し、管体の圧縮領域においては管体の外周面に突設した中間ブラケットに補強材を剛結して支持する。
本発明の他の形態において、前記管体に生じる曲げモーメントに応じて、補強材の両端部間を管体に支持する中間ブラケットの配置間隔が異なるように構成してもよい。
本発明の他の形態において、前記補強材の剛結手段が、ねじ止め手段、楔止め手段、ピン止め手段、溶接手段の何れか一種である。
本発明の他の形態において、前記補強材が棒材、管材、ロープ材、又はベルト材の何れか一種である。
本発明の他の形態において、前記耐荷材は防護柵の支柱、杭構造体又は建築用途の耐震補強材に適用可能である。
The present invention is a load-bearing material in which a bending moment is generated when an external force is applied, and a tensile region in which a tensile stress is generated along the length direction when an external force is applied, and a compression region in which a compressive stress is generated along the length direction when an external force is applied. A tubular body to be formed , comprising one or more reinforcing members disposed outside of the tubular body and parallel to the axis of the tubular body , between the reinforcing material and the outer peripheral surface of the tubular body when an external force is applied. while maintaining the spacing formed as a reinforcing member to follow the bending deformation of the tube, the tube end portion of the reinforcing material arranged on either one of the regions of the tension zones or compression region of the tube Were fixed to the outer peripheral surfaces of the respective members .
In another form of the present invention, it is attached to the reinforcing member in the tensile region and compression area of the tube.
In another embodiment of the present invention, the reinforcing material is attached to the entire length of the tubular body or to a part of the tubular body.
In another embodiment of the present invention, a plurality of intermediate brackets are protruded from the outer peripheral surface of the tubular body, and the reinforcing member is supported at a distance from the outer peripheral surface of the tubular body via the plurality of intermediate brackets.
In another embodiment of the present invention, the reinforcing member may be supported by being moored without being fixed to an intermediate bracket protruding from the outer peripheral surface of the tubular body, and between the both end portions of the reinforcing member. The tube may be rigidly supported by an intermediate bracket protruding from the outer peripheral surface of the tube.
In another aspect of the present invention, in a tension region of the tube, a reinforcing member is anchored and supported without being rigidly connected to an intermediate bracket projecting from an outer peripheral surface of the tube, and in a compression region of the tube, the tube is The reinforcing material is rigidly connected to and supported by the intermediate bracket protruding from the outer peripheral surface of the bracket.
In another embodiment of the present invention, the arrangement intervals of the intermediate brackets that support the tubular member between both ends of the reinforcing member may be different depending on the bending moment generated in the tubular body.
In another embodiment of the present invention, the rigid connection means of the reinforcing member is any one of a screwing means, a wedge fixing means, a pin fixing means, and a welding means.
In another embodiment of the present invention, the reinforcing material is any one of a rod, a pipe, a rope, and a belt.
In another embodiment of the present invention, the load-bearing material is applicable to a pillar of a protection fence, a pile structure, or an earthquake-resistant reinforcing material for building use.

本発明は少なくともつぎのひとつの効果を奏する。
<1>安価な補強材を管体に追加設置するだけで、耐荷材の耐力を効果的に高めることができる。
<2>管体の内部を内挿補強材やコンクリート等で補強した従来の耐荷材では、直ひずみの「平面保持の原理」が成り立たないが、ブラケットを介して補強材を管体に外設した本発明の耐荷材では、直ひずみの「平面保持の原理」が成り立つため、耐荷材の耐力を正確に計算できて、耐荷材に対する耐力評価の信頼性が高くなる。
<3>管体に外設した補強材を離隔して管体に支持することで、管体の断面強度(断面二次モーメント)を高められるので、管体を小径化できる。
<4>補強材を管体の外方に取り付けるだけであるので、補強材の取付作業が簡単になって、耐荷材を経済的に製作できる。
<5>耐荷材は防護柵の支柱の他に杭構造体又は建築用途の耐震補強材にも適用可能であり、汎用性に富む。
The present invention has at least one of the following effects.
<1> The strength of the load-bearing material can be effectively increased only by installing an inexpensive reinforcing material on the pipe.
<2> With the conventional load-bearing material in which the inside of the tube is reinforced with an interpolating reinforcing material or concrete, the “principle of holding the plane” of the direct strain does not hold, but the reinforcing material is installed outside the tube via a bracket. In the load-bearing material according to the present invention, since the "principle of holding a plane" of the direct strain is established, the strength of the load-bearing material can be accurately calculated, and the reliability of the strength evaluation of the load-bearing material increases.
<3> The cross-sectional strength (second moment of area) of the tubular body can be increased by supporting the reinforcing material provided outside the tubular body at a distance from the tubular body, so that the tubular body can be reduced in diameter.
<4> Since the reinforcement is simply attached to the outside of the tube, the operation of attaching the reinforcement is simplified, and the load-bearing material can be manufactured economically.
<5> The load-bearing material is applicable to a pile structure or an earthquake-resistant reinforcing material for building use, in addition to the pillar of the protective fence, and is versatile.

実施例1に係る中間部を省略した耐荷材の斜視図FIG. 4 is a perspective view of the load-bearing material according to the first embodiment, from which an intermediate portion is omitted. 一部を破断した耐荷材のモデル図Model diagram of load-bearing material with a part broken 端部ブラケット又は中間ブラケットの位置決め孔の説明図で、(A)は位置決め孔が閉鎖孔である場合の説明図、(B)は位置決め孔が開放孔である場合の説明図It is explanatory drawing of the positioning hole of an end part bracket or an intermediate bracket, (A) is explanatory drawing in case a positioning hole is a closing hole, (B) is explanatory drawing in case a positioning hole is an opening hole. 一部を省略した端部ブラケットの補強構造の説明図Explanatory drawing of the reinforcement structure of the end bracket with a part omitted 管体の一部に補強材を取り付けて部分的に補強した耐荷材のモデル図Model diagram of load-bearing material partially reinforced by attaching reinforcement to part of the tube 管体の周方向へ向けた補強材の配設位置の説明図Explanatory drawing of the arrangement position of the reinforcing material toward the circumferential direction of the pipe 片持ち構造で支持した耐荷材の特性の説明図Illustration of the characteristics of load-carrying materials supported by a cantilever structure 梁構造で支持した耐荷材の特性の説明図Illustration of characteristics of load-bearing material supported by beam structure 中間ブラケットと補強材との貫挿部を剛結した実施例2に係る片持ち構造で支持した耐荷材のモデル図Model diagram of a load-bearing material supported by a cantilever structure according to Example 2 in which a penetration portion between an intermediate bracket and a reinforcing material is rigidly connected. 中間ブラケットと補強材との貫挿部を剛結した実施例2に係る梁構造で支持した耐荷材のモデル図Model diagram of a load-bearing material supported by a beam structure according to Example 2 in which a penetrating portion between an intermediate bracket and a reinforcing material is rigidly connected. 中間ブラケットの配置間隔を変えた実施例3に係る耐荷材のモデル図Model diagram of the load-bearing material according to the third embodiment in which the arrangement intervals of the intermediate brackets are changed. 補強材の取付位置を管体の上下部で異なるようにした実施例4に係る耐荷材のモデル図Model diagram of the load-bearing material according to the fourth embodiment in which the mounting position of the reinforcing material is different between the upper and lower portions of the tube. 中間ブラケットによる補強材の二つの支持形態を組み合わせた実施例5に係る耐荷材のモデル図Model diagram of the load-bearing material according to the fifth embodiment in which two support forms of the reinforcing material by the intermediate bracket are combined.

図面を参照しながら本発明について説明する。   The present invention will be described with reference to the drawings.

[実施例1]
<1>耐荷材
耐荷材10は落石、崩落土砂等の崩落物抑止用の防護柵の支柱(支柱端末、中間支柱)に適用可能であるが、耐荷材10は支柱以外に杭構造体や建築用途の耐震補強材にも適用可能である。
[Example 1]
<1> Load-bearing material The load-bearing material 10 can be applied to columns (support terminals, intermediate columns) of protective fences for preventing falling objects such as falling rocks and landslides. It can also be applied to seismic reinforcement materials for applications.

<2>耐荷材の概要
図1,2に例示した耐荷材10について説明すると、耐荷材10は耐荷材本体である管体20と、管体20の外方であって管体20の軸線と平行に配設した単数又は複数の補強材30とを具備する。
本例では、補強材30の両端部を管体20の外周面を端部ブラケット21を用いて固着すると共に、補強材30の両端部間(中間)を中間ブラケット22を用いて管体20の外周面に係留した形態について説明する。
<2> Outline of Load-bearing Material The load-bearing material 10 illustrated in FIGS. 1 and 2 will be described. And one or more reinforcing members 30 arranged in parallel.
In this example, both ends of the reinforcing member 30 are fixed to the outer peripheral surface of the tubular body 20 using the end bracket 21, and between the both ends (middle) of the reinforcing member 30 using the intermediate bracket 22. The form moored to the outer peripheral surface will be described.

<3>管体
管体20は断面形状が円形、楕円形、多角形等を呈する曲げ剛性の高い中空構造体である。
耐荷材10を支柱に適用する場合には、管体20として市販の鋼管が好適である。
管体20の全長や断面寸法は、耐荷材10の使途や発生予定の曲げモーメント、作用荷重等を考慮して適宜選択する。
<3> Tube The tube 20 is a hollow structure having a high bending rigidity and a circular, elliptical, or polygonal cross section.
When the load bearing material 10 is applied to a column, a commercially available steel pipe is suitable as the pipe 20.
The overall length and cross-sectional dimension of the tube 20 are appropriately selected in consideration of the use of the load-bearing material 10, the expected bending moment, the applied load, and the like.

管体20は中空状態のまま使用してもよいが、従来の充填鋼管のように内部にコンクリート系固結材を充填してもよい。   The tubular body 20 may be used in a hollow state, but may be filled with a concrete-based solidifying material inside like a conventional filled steel pipe.

<4>補強材
補強材30は管体20の断面強度(断面係数、塑性断面係数又はせん断強度)を高めるための補強部材である。
補強材30としては引張強度又は圧縮強度の高い棒材、管材、ロープ材、又はベルト材を適用でき、その素材も金属に限定されず、高強度繊維や樹脂等でもよい。
実用的には市販の鉄筋、棒鋼、PC鋼棒等の鋼材が好適である。
<4> Reinforcing Material The reinforcing material 30 is a reinforcing member for increasing the sectional strength (sectional modulus, plastic sectional modulus, or shear strength) of the tube 20.
As the reinforcing material 30, a rod, a pipe, a rope, or a belt having high tensile strength or high compressive strength can be used, and the material is not limited to metal, but may be high-strength fiber or resin.
Practically, commercially available steel materials such as reinforcing bars, steel bars, and PC steel bars are suitable.

<5>補強材の位置決め手段
端部ブラケット21を介して補強材30の両端部を管体20の外周面に固定し、中間ブラケット22を介して補強材30の両端部間を管体20の外周面に係留して支持することで、補強材30を位置決めする。
<5> Positioning Means of Reinforcing Material Both ends of the reinforcing material 30 are fixed to the outer peripheral surface of the tube 20 via the end bracket 21, and the both ends of the reinforcing material 30 are connected to the tube 20 via the intermediate bracket 22. The reinforcing member 30 is positioned by anchoring and supporting the outer peripheral surface.

<5.1>ブラケット
端部ブラケット21および中間ブラケット22は、補強材30を管体20の軸線と平行に位置決めする位置決め機能と、補強材30と管体20との間隔Sを一定に保つスペーサ機能を併有する。
<5.1> Bracket The end bracket 21 and the intermediate bracket 22 serve as a positioning function for positioning the reinforcing member 30 in parallel with the axis of the tubular body 20 and a spacer for keeping the distance S between the reinforcing member 30 and the tubular body 20 constant. Has both functions.

図1,2に例示した補強材30の位置決め手段について説明すると、管体20はその上下部の外周面に突設した一対の端部ブラケット21、21と、管体20の上下部間の外周面に突設した単数又は複数の中間ブラケット22とを有する。   The positioning means of the reinforcing member 30 illustrated in FIGS. 1 and 2 will be described. One or more intermediate brackets 22 protruding from the surface.

これらのブラケット21,22は管体20の軸線方向に沿って所定の間隔を隔てて配設してあり、各ブラケット21,22に開設した補強材30の位置決め孔21a,22aが同一線上に並んでいる。
補強材30は各ブラケット21,22の位置決め孔21a,22aを通じて管体20に位置決めが可能である。
These brackets 21 and 22 are arranged at predetermined intervals along the axial direction of the tube 20, and the positioning holes 21a and 22a of the reinforcing member 30 provided in each bracket 21 and 22 are aligned on the same line. In.
The reinforcing member 30 can be positioned on the tube 20 through the positioning holes 21a and 22a of the brackets 21 and 22, respectively.

位置決め孔21a,22aは図3(A)に示す円形等の閉鎖孔でもよいが、図3(B)に示したような屈曲した切欠状の開放孔でもよい。
位置決め孔21a,22aが閉鎖孔である場合は、補強材30を各ブラケット21,22の一方から貫挿して設置し、位置決め孔21a,22aが開放孔である場合は、補強材30を各ブラケット21,22の側方から差し込んで設置する。
The positioning holes 21a and 22a may be closed holes such as circles as shown in FIG. 3A, or may be bent notched open holes as shown in FIG. 3B.
When the positioning holes 21a and 22a are closed holes, the reinforcing member 30 is inserted through one of the brackets 21 and 22 and installed. When the positioning holes 21a and 22a are open holes, the reinforcing member 30 is connected to each bracket. It inserts from the side of 21 and 22, and installs.

<5.2>補強材の端部の固定
補強材30の端部は端部ブラケット21に固定する。
本例では補強材30の端部の固定手段として、ナット31を用いたねじ止め手段を適用した形態を示しているが、補強材30の端部の固定手段はねじ止め手段の他に、楔止め手段、ピン止め手段、溶接手段等の何れか一種を適用できる。
端部ブラケット21には耐荷材10の曲げ変形時に大きな外力が加わることから、図4に示すように端部ブラケット21と管体20の間に補強リブ23を設けて補強しておくとよい。
<5.2> Fixing the end of the reinforcing member The end of the reinforcing member 30 is fixed to the end bracket 21.
In this example, a form in which a screwing means using a nut 31 is applied as a means for fixing the end of the reinforcing material 30 is shown. However, the fixing means for the end of the reinforcing material 30 is a wedge in addition to the screwing means. Any one of a fixing means, a pin fixing means, a welding means and the like can be applied.
Since a large external force is applied to the end bracket 21 at the time of bending deformation of the load-bearing material 10, it is preferable to provide a reinforcing rib 23 between the end bracket 21 and the pipe body 20 as shown in FIG.

<5.3>補強材の両端部間の係留
本例では補強材30の両端部間を中間ブラケット22に固定せずに係留した形態について説明する。
「係留」とは管体20の径方向へ向けた補強材30の変位のみを規制する状態を指す。
<5.3> Mooring between Both Ends of Reinforcement In this example, a mode in which the both ends of reinforcement 30 are moored without being fixed to intermediate bracket 22 will be described.
“Mooring” refers to a state in which only the displacement of the reinforcing member 30 in the radial direction of the tube body 20 is restricted.

<5.4>補強材を管体の外方に配置した理由
補強材30を管体20の外方に配設したのは、管体20の断面強度(断面係数又は塑性断面係数)を高めるためと、補強材30の取付作業性を改善するためである。
補強材30が小断面であっても、管体20の外周面から離隔して補強材30を取り付けることで、管体20の断面強度を高めることができる。
管体20の断面強度を高められることで管体20の小径化を実現できる。
さらに、補強材30の取付作業を管体20の外方で行えるので、補強材30の取付作業性がきわめてよくなる。
<5.4> Reason for arranging the reinforcing member outside the tube The reason for arranging the reinforcing member 30 outside the tube 20 is to increase the sectional strength (section coefficient or plastic section coefficient) of the tube 20. This is to improve the workability of attaching the reinforcing member 30.
Even if the reinforcing material 30 has a small cross section, the cross-sectional strength of the tubular body 20 can be increased by attaching the reinforcing material 30 away from the outer peripheral surface of the tubular body 20.
The diameter of the tube 20 can be reduced by increasing the sectional strength of the tube 20.
Further, since the mounting operation of the reinforcing member 30 can be performed outside the tubular body 20, the mounting operation of the reinforcing member 30 is extremely improved.

<5.5>補強材を中間ブラケットで支持する理由
補強材30の両端部のみを端部ブラケット21に固定しただけの構造であると、管体20の曲げ変形時に補強材30の追従性が悪くなり、引張側の補強材30においては管体20に接触し、圧縮側の補強材30では座屈が生じる等して補強材30による補強効果をほとんど期待できない。
<5.5> Reason for Supporting Reinforcement by Intermediate Bracket With a structure in which only both ends of the reinforcement 30 are fixed to the end bracket 21, the followability of the reinforcement 30 during bending deformation of the pipe 20 is improved. Thus, the reinforcing member 30 on the tension side comes into contact with the tubular body 20, and the reinforcing member 30 on the compression side hardly buckles.

そこで、管体20の曲げ変形に対する補強材30の追従性をよくするために、補強材30を中間ブラケット22で支持するようにした。
補強材30の両端部間を中間ブラケット22で支持することで、補強材30と管体20との間に形成された間隔Sをほぼ一定に保ったまま、補強材30を管体20の曲げ変形に追従させることができる。
補強材30の追従性は中間ブラケット22の間隔(中間ブラケット22の設置数)に比例してよくなると共に、圧縮側の補強材30に対する座屈抑制効果が高くなる。
Therefore, in order to improve the followability of the reinforcing member 30 with respect to the bending deformation of the tube 20, the reinforcing member 30 is supported by the intermediate bracket 22.
By supporting between the both ends of the reinforcing member 30 with the intermediate bracket 22, the reinforcing member 30 is bent while the space S formed between the reinforcing member 30 and the tube 20 is kept substantially constant. Deformation can be followed.
The followability of the reinforcing member 30 is improved in proportion to the interval between the intermediate brackets 22 (the number of the installed intermediate brackets 22), and the effect of suppressing the buckling of the reinforcing member 30 on the compression side is enhanced.

<5.6>補強材による管体の補強範囲
補強材30による補強範囲は、管体20の全長に亘って補強してもよいが、外力作用時に大きな曲げモーメントが生じる管体20の特定区間を部分的に補強してもよい。
図5は管体20の中央部分に補強材30を取り付けて部分的に補強した一例を示しているが、部分的な補強範囲は管体20に発生する曲げモーメントに応じて選択する。
<5.6> Range of Reinforcement of Pipe by Reinforcement The range of reinforcement by the reinforcement 30 may be reinforced over the entire length of the tube 20, but a specific section of the tube 20 where a large bending moment occurs when an external force acts. May be partially reinforced.
FIG. 5 shows an example in which the reinforcing member 30 is attached to the central portion of the tubular body 20 to partially reinforce the tubular body 20. The partial reinforcing range is selected according to the bending moment generated in the tubular body 20.

<5.7>管体に対する補強材の配設位置
管体20を平面視したときの補強材30の配設位置は、管体20に発生する曲げモーメント等に対抗し得るように、少なくとも管体20の引張領域(引張側)に補強材30が配設してあればよい。
管体20の圧縮領域(圧縮側)に配設した補強材30は、引張領域と同様に管体20の曲げ変形抵抗として機能する。
<5.7> Arrangement Position of Reinforcement Material with respect to Pipe Body The arrangement position of the reinforcement material 30 when the pipe body 20 is viewed in a plan view is at least a pipe position so as to oppose a bending moment or the like generated in the tube body 20. It is sufficient that the reinforcing material 30 is provided in the tension region (tensile side) of the body 20.
The reinforcing material 30 disposed in the compression region (compression side) of the tube 20 functions as the bending deformation resistance of the tube 20 similarly to the tension region.

図6に例示した管体20の周方向に沿った補強材30の配設位置について説明する。
同図のX,Yは耐荷材10に対する曲げモーメントの作用軸を示し、F、Fは引張領域に位置する補強材30の曲げ抵抗を示している。
An arrangement position of the reinforcing member 30 along the circumferential direction of the tube 20 illustrated in FIG. 6 will be described.
X in the figure, Y represents the operating shaft of the bending moment against the load bearing material 10, F X, F Y represents the bending resistance of the reinforcing member 30 located pull region.

図6(A)は管体20の左方一箇所に補強材30を配置した形態を示していて、X軸の正方向へ向けた管体20の曲げモーメントに対しては引張領域の補強材30が抵抗する。   FIG. 6A shows a form in which the reinforcing member 30 is disposed at one position on the left side of the tube 20. The bending member of the tube 20 in the positive direction of the X axis has a reinforcing member in the tensile region. 30 resists.

図6(B)は管体20の左右二箇所に補強材30を配置した形態を示していて、X軸の正負方向へ向けた管体20の曲げモーメントに対しては、それぞれ引張領域に位置させた補強材30が引張抵抗として機能する。圧縮領域に位置させた補強材30は圧縮抵抗として機能する。   FIG. 6B shows a form in which the reinforcing members 30 are arranged at two positions on the left and right of the tube 20, and the bending moments of the tube 20 in the positive and negative directions of the X axis are respectively located in the tensile regions. The reinforced material 30 functions as a tensile resistance. The reinforcing member 30 located in the compression region functions as a compression resistance.

図6(C)は管体20の左右と下方の三箇所に補強材30を配置した形態を示していて、X軸の正負方向とY軸の正方向の三方向へ向けた管体20の曲げモーメントに対しては、それぞれ引張領域に位置させた補強材30が抵抗する。   FIG. 6C shows a form in which reinforcing members 30 are arranged at three positions on the left, right, and lower sides of the tube 20, and the tube 20 is oriented in three directions, ie, the positive and negative directions of the X axis and the positive direction of the Y axis. The stiffeners 30, each located in the tensile region, resist the bending moment.

図6(D)は管体20の上下左右にの四箇所に補強材30を配置した形態を示していて、X軸の正負方向とY軸の正負方向の四方向へ向けた管体20の曲げモーメントに対しては、それぞれ引張領域に位置する補強材30が抵抗する。   FIG. 6D shows a form in which reinforcing members 30 are arranged at four positions on the upper, lower, left, and right sides of the tube 20, and the tube 20 is directed in four directions of the positive and negative directions of the X axis and the positive and negative directions of the Y axis. The stiffeners 30, each located in the tensile region, resist the bending moment.

補強材30の配設位置は図6に例示した形態に限定されず、曲げモーメント等を考慮して適宜選択が可能である。
管体20の円周方向に向けて、例えば30°間隔や45°間隔等のように、管体20の円周方向に向けて補強材30を一定間隔に配置すると、管体20の強度を大きくすることができる。
The disposition position of the reinforcing member 30 is not limited to the form illustrated in FIG. 6 and can be appropriately selected in consideration of a bending moment and the like.
When the reinforcing members 30 are arranged at regular intervals in the circumferential direction of the tube 20, for example, at 30 ° intervals or 45 ° intervals, the strength of the tube 20 is reduced. Can be bigger.

[耐荷材の組立て方法]
図1に例示した耐荷材10の組立て方法について説明する。
[How to assemble load-bearing materials]
A method of assembling the load-bearing material 10 illustrated in FIG. 1 will be described.

<1>補強材の挿し込み
同一線上に位置する一方の端部ブラケット21側から挿し込んだ補強材30を、中間ブラケット22を経て他方の端部ブラケット21に挿し込む。
<1> Insertion of Reinforcing Material The reinforcing material 30 inserted from one end bracket 21 located on the same line is inserted into the other end bracket 21 via the intermediate bracket 22.

<2>補強材の端部の固定
各端部ブラケット21から外部へ突出する補強材30のねじ部にナット31を締め付け固定することで、耐荷材10の組立てを完了する。
補強材30の端部を管体20に固定する際、補強材30を緊張せずに固定するが、予め各補強材30に均等な緊張力を付与して固定してもよい。
<2> Fixing Ends of Reinforcement Material Nuts 31 are tightened and fixed to the threaded portions of the reinforcement material 30 protruding from each end bracket 21 to the outside, thereby completing the assembly of the load-bearing material 10.
When fixing the end of the reinforcing member 30 to the pipe body 20, the reinforcing member 30 is fixed without tension, but may be fixed by applying an equal tension to each reinforcing member 30 in advance.

<3>耐荷材の組立て場所
耐荷材10は予め工場等で補強材30を管体20に取り付けた完成形態で現場へ搬入してもよいが、ブラケット21,22のみを取り付けた管体20と補強材30とを現場に個別に搬入して、現場で耐荷材10を組み立ててもよい。
耐荷材10の構成資材を分解して現場へ搬入する後者の場合には、前者と比べて耐荷材10の搬入性と現場での取扱性がよくなる。
特に後者の場合は、溶接によらずに補強材30を管体20に取付けできるので、山間部等の現場へ溶接設備や電源設備を持ち込む必要がなくなる。
<3> Assembling place of load-bearing material The load-bearing material 10 may be transported to the site in a completed form in which the reinforcing material 30 is attached to the pipe 20 in a factory or the like beforehand. The reinforcing members 30 may be individually carried into the site, and the load bearing material 10 may be assembled at the site.
In the latter case, in which the constituent materials of the load-bearing material 10 are disassembled and transported to the site, the loadability of the load-bearing material 10 and the on-site handling are improved as compared with the former.
In particular, in the latter case, since the reinforcing member 30 can be attached to the pipe body 20 without welding, it is not necessary to bring welding equipment or power supply equipment to a site such as a mountain area.

[耐荷材の特性]
図7,8を参照して耐荷材10の特性について説明する。
[Characteristics of load bearing material]
The characteristics of the load bearing material 10 will be described with reference to FIGS.

1.耐荷材を片持ち構造で支持した場合
<1>耐荷材の曲げ耐力
図7は防護柵の支柱のように耐荷材10の下部を支持構造物40で支持し、片持ち構造とした支持形態を示している。
耐荷材10の右方から左方へ向けて荷重が作用することで耐荷材10に曲げモーメントMが生じる。この曲げモーメントMに対して、引張領域の補強材30aが管体20の曲げ抵抗部材として機能するだけでなく、圧縮領域の補強材30bも管体20の曲げ抵抗部材として機能する。
すなわち、引張領域の補強材30aの全長に亘って均等な張力が生じ、補強材30aに生じた均等な張力が管体20の上部と下部にそれぞれ伝えられて、管体20の補強区間に亘って均等な引張力及び圧縮力が伝達される。
したがって、耐荷材10の曲げモーメントMが、管体20単体の曲げ耐力に達しても耐荷材10に曲げが生じず、曲げモーメントMは耐荷材10を通じて支持構造物40に支持される。
このように、耐荷材10は管体20の周囲に補強材30a,30bを取り付けることで、管体20の最大曲げ耐力が格段に向上する。
1. When the load-bearing material is supported by the cantilever structure <1> Bending strength of the load-bearing material FIG. 7 shows a support form in which the lower part of the load-bearing material 10 is supported by the support structure 40 like a support fence post, and the cantilever structure is used. Is shown.
When a load acts on the load-bearing material 10 from right to left, a bending moment M is generated in the load-bearing material 10. With respect to the bending moment M, not only the reinforcing member 30a in the tension region functions as a bending resistance member of the tube 20, but also the reinforcing member 30b in the compression region functions as a bending resistance member of the tube 20.
That is, an equal tension is generated over the entire length of the reinforcing member 30a in the tension region, and the equal tension generated in the reinforcing member 30a is transmitted to the upper and lower portions of the tubular body 20, respectively, and is extended over the reinforcing section of the tubular body 20. And uniform tensile and compressive forces are transmitted.
Therefore, even if the bending moment M of the load-bearing material 10 reaches the bending strength of the tube body 20 alone, no bending occurs in the load-bearing material 10, and the bending moment M is supported by the support structure 40 through the load-bearing material 10.
As described above, by attaching the reinforcing members 30a and 30b to the periphery of the tubular body 20, the maximum bending strength of the tubular body 20 is remarkably improved.

<2>変形中における耐荷材の曲げ耐力
曲げモーメントMが耐荷材10の曲げ剛性を超えると、管体20の曲げ変形に追従して引張領域と圧縮領域の補強材30a,30bが変形する。
耐荷材10の変形中において、中間ブラケット22のスペーサ機能により、引張領域と圧縮領域の補強材30a,30bと管体20との間隔S,Sがほぼ一定に保たれると共に、管体20に設けた補強材30a,30bが抵抗部材として機能し続ける。
したがって、管体20が変形とともに曲げ耐力の限界に達しても耐力の増加が期待できて耐荷材10の変形中においても良好な曲げ耐力を維持できる。
<2> Bending strength of load-bearing material during deformation When the bending moment M exceeds the bending stiffness of load-bearing material 10, reinforcing members 30 a and 30 b in the tensile region and the compression region follow the bending deformation of tube 20.
During deformation of the load bearing material 10, the spacer function of the intermediate bracket 22, the tensile region and a reinforcing member 30a of the compression region, along with spacing S 1, S 2 and 30b and the tube 20 is maintained substantially constant, the tube The reinforcing members 30a and 30b provided on the member 20 continue to function as resistance members.
Therefore, even if the tube 20 reaches the limit of the bending strength with the deformation, an increase in the strength can be expected, and the good bending strength can be maintained even during the deformation of the load-bearing material 10.

<3>補強材の座屈について
管体20の引張領域では圧縮力が生じないので、引張領域に設けた補強材30bには座屈が生じない。
補強材30a,30bの断面径に応じて中間ブラケット22の配置間隔を適正に設定することで、圧縮領域に設けた補強材30bは座屈が生じ難くなる
<3> Buckling of Reinforcement Since no compressive force is generated in the tension region of the tube body 20, no buckling occurs in the reinforcement 30b provided in the tension region.
By appropriately setting the arrangement intervals of the intermediate brackets 22 according to the cross-sectional diameters of the reinforcing members 30a and 30b, the reinforcing member 30b provided in the compression region is less likely to buckle.

2.耐荷材を梁構造で支持した場合
<1>耐荷材の曲げ耐力
図8は建築用途の耐震補強材のように耐荷材10の両端を支持した梁構造とした支持形態を示している。
水平においた耐荷材10の中央に下向きの荷重Fが作用した場合も、片持ち構造で支持した形態と同様に、引張領域に設けた補強材30aが管体20の曲げ抵抗部材として機能し、圧縮領域に設けた補強材30bが管体20の曲げ抵抗部材として機能するため、管体20の最大曲げ耐力が格段に向上する。
2. When the load-bearing material is supported by a beam structure <1> Bending strength of the load-bearing material FIG. 8 shows a supporting form in which a beam structure in which both ends of the load-bearing material 10 are supported like a seismic reinforcement material for building use.
Even when a downward load F is applied to the center of the horizontal load-bearing material 10, the reinforcing member 30a provided in the tension region functions as a bending resistance member of the tube 20, similarly to the form supported by the cantilever structure, Since the reinforcing member 30b provided in the compression region functions as a bending resistance member of the tube 20, the maximum bending strength of the tube 20 is significantly improved.

<2>変形中における耐荷材の曲げ耐力
管体20の変形中においても、引張領域と圧縮領域の補強材30a,30bが管体20との間隔S,Sをほぼ一定に保ちながら追従して変形するので、耐荷材10の変形中においても良好な曲げ耐力を維持できる。
<2> followed even during the deformation of the load bearing material bending strength tube 20 during deformation, reinforcement 30a of the tension zones and the compression region, while 30b is keeping the spacing S 1, S 2 of the tube 20 substantially constant Therefore, good bending strength can be maintained even during the deformation of the load-bearing material 10.

[実施例2]
以降に他の実施例について説明するが、その説明に際し、前記した実施例と同一の部位は同一の符号を付してその詳しい説明を省略する。
[Example 2]
Hereinafter, other embodiments will be described. In the description, the same portions as those in the above-described embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

<1>他の耐荷材
図9A,9Bを参照して、中間ブラケット22と補強材30との貫挿部をナット31又は溶接等で剛結した他の耐荷材10について説明する。
図9Aは耐荷材10の下部を支持した片持ち構造とした支持形態を示し、図9Bは耐荷材10の両端を支持した梁構造とした支持形態を示している。
<1> Other load-bearing materials With reference to FIGS. 9A and 9B, another load-bearing material 10 in which the penetrating portion between the intermediate bracket 22 and the reinforcing material 30 is rigidly connected by a nut 31 or welding or the like will be described.
FIG. 9A shows a support form having a cantilever structure that supports the lower portion of the load-bearing material 10, and FIG. 9B shows a support form having a beam structure that supports both ends of the load-bearing material 10.

本例の耐荷材10は耐荷材本体である管体20と、管体20の外方であって管体20の軸線と平行に配設した単数又は複数の補強材30とを具備することは先の実施例1と同様である。
本例では、補強材30の端部と端部ブラケット21との貫挿部を剛結するだけでなく、補強材30の両端部間と中間ブラケット22との貫挿部を剛結する。
The load-bearing material 10 of the present example may include a tube 20 which is a load-bearing material main body, and one or more reinforcing members 30 disposed outside the tube 20 and parallel to the axis of the tube 20. This is the same as in the first embodiment.
In this example, not only is the rigid portion between the end portion of the reinforcing member 30 and the end bracket 21, but also the rigid portion between the both end portions of the reinforcing member 30 and the intermediate portion 22.

<2>本例の耐荷材の作用効果
本例では既述した作用効果に加えて以下の特有の効果を奏する。
本例では補強材30の端部だけでなく、補強材30の両端部間を中間ブラケット22を介して管体20に剛結したことで、引張領域に位置する補強材30aの両端部間においては、中間ブラケット22のスパン単位で引張抵抗が生じ、圧縮領域に位置する補強材30bの両端部間においては中間ブラケット22のスパン単位で圧縮抵抗が生じる。
補強材30a,30bが中間ブラケット22と剛結してあることから、管体20の圧縮領域に位置する補強材30bは、引張領域に位置する補強材30aと同等に機能する。
このように、本例では補強材30a,30bの軸力が全長に亘って平均化されない。
<2> Effects of the load-bearing material of this example In this example, the following specific effects are obtained in addition to the effects described above.
In this example, not only the ends of the reinforcing member 30 but also both ends of the reinforcing member 30 are rigidly connected to the tubular body 20 via the intermediate bracket 22, so that both ends of the reinforcing member 30 a located in the tensile region are not formed. For example, a tensile resistance is generated for each span of the intermediate bracket 22, and a compression resistance is generated for each span of the intermediate bracket 22 between both ends of the reinforcing member 30b located in the compression area.
Since the reinforcing members 30a and 30b are rigidly connected to the intermediate bracket 22, the reinforcing member 30b located in the compression region of the tubular body 20 functions similarly to the reinforcing member 30a located in the tension region.
Thus, in this example, the axial forces of the reinforcing members 30a and 30b are not averaged over the entire length.

そのため、図9Aに示すように耐荷材10を片持ち構造の防護柵の支柱として用いた場合は、管体20を大径化したり、管厚を厚くしたりせずに、支柱の断面強度(断面係数)を高くすることができる。
特に耐荷材10を端末支柱に適用すると、控えロープを介して端末支柱を支持していた端末アンカーを省略かることができる。
For this reason, as shown in FIG. 9A, when the load-bearing material 10 is used as a support for a cantilevered protective fence, the cross-sectional strength of the support (without increasing the diameter of the tube 20 or increasing the thickness of the tube) is used. Section modulus) can be increased.
In particular, when the load bearing material 10 is applied to the terminal support, the terminal anchor supporting the terminal support via the stay rope can be omitted.

図9Bを参照しながら梁構造の形態で支持した耐荷材10の作用効果について説明する。
耐荷材10のスパン中央に荷重Fが作用した場合、引張領域に位置する補強材30aの両端部間においては、中間ブラケット22のスパン単位で引張抵抗が生じ、圧縮領域に位置する補強材30bの両端部間においては中間ブラケット22のスパン単位で圧縮抵抗が生じる。
耐荷材10を梁構造の形態で用いた場合にも、管体20の圧縮領域に位置する補強材30bが引張領域に位置する補強材30aと同等に補強機能を発揮する。
したがって、本形態においても、引張領域と圧縮領域の補強材30a,30bが管体20との間隔S,Sをほぼ一定に保ちながら追従して変形するので、耐荷材10の変形中においても良好な曲げ耐力を維持する。
The operation and effect of the load-bearing material 10 supported in the form of a beam structure will be described with reference to FIG. 9B.
When a load F is applied to the center of the span of the load-bearing material 10, a tensile resistance is generated in the span unit of the intermediate bracket 22 between both ends of the reinforcing member 30a located in the tensile region, and the reinforcing member 30b located in the compressing region. A compression resistance is generated between the two ends in units of the span of the intermediate bracket 22.
Even when the load-bearing material 10 is used in the form of a beam structure, the reinforcing material 30b located in the compression region of the pipe 20 exhibits the same reinforcing function as the reinforcing material 30a located in the tension region.
Therefore, also in the present embodiment, the reinforcing members 30a and 30b in the tension region and the compression region follow and deform while keeping the distances S 1 and S 2 between the tube 20 substantially constant. Also maintains good bending strength.

<3>直ひずみの「平面保持の原理」
補強材30と中間ブラケット22を剛結した本例では、耐荷材10を片持ち構造で支持した形態で、耐荷材10の下端部に大きい断面力が発生しても、耐荷材10の両端部間に位置する補強材30a,30bが互いに断面力を伝達するので、直ひずみの「平面保持の原理」が成立する。
耐荷材10を梁構造で支持した形態においても、直ひずみの「平面保持の原理」が成立する。
そのため、耐荷材10の耐力を正確に計算できて、耐荷材10の耐力評価に対する信頼性が高くなる。
本例では実施例1と比較して耐荷材10の耐力評価に対する信頼性がより高くなる。
<3>"Principle of plane retention" of direct strain
In this embodiment in which the reinforcing member 30 and the intermediate bracket 22 are rigidly connected, the load-bearing material 10 is supported by a cantilever structure, and even if a large sectional force is generated at the lower end of the load-bearing material 10, both ends of the load-bearing material 10 Since the reinforcing members 30a and 30b located therebetween transmit the sectional force to each other, the "principle of holding a plane" of the direct strain is established.
Even in a form in which the load bearing material 10 is supported by a beam structure, the “principle of holding a plane” of direct strain is established.
Therefore, the proof stress of the load-bearing material 10 can be accurately calculated, and the reliability of the proof stress evaluation of the load-bearing material 10 increases.
In the present embodiment, the reliability of the load-bearing material 10 for the proof stress evaluation is higher than in the first embodiment.

[実施例3]
<1>他の耐荷材
図10を参照して、補強材30による補強区間において、中間ブラケット22の配置間隔が異なるように変化させた他の耐荷材10について説明する。
[Example 3]
<1> Other Load-bearing Materials With reference to FIG. 10, another load-bearing material 10 in which the arrangement intervals of the intermediate brackets 22 are changed so as to be different in the reinforcing section by the reinforcing material 30 will be described.

外力作用時にける耐荷材10の曲げ応力はその全長に亘って均一ではなく、耐荷材10の支持形態(片持ち構造又は梁構造)により耐荷材10の長さ方向に沿って曲げ応力に大小の差が生じる。
そこで、大きな曲げ応力の発生が想定される区間においては、中間ブラケット22の配置間隔を狭くする。
The bending stress of the load-bearing material 10 under the action of an external force is not uniform over its entire length, and the supporting form (cantilever structure or beam structure) of the load-bearing material 10 causes a large or small bending stress along the length direction of the load-bearing material 10. There is a difference.
Therefore, in a section where a large bending stress is expected to occur, the arrangement interval of the intermediate bracket 22 is narrowed.

図10に例示した耐荷材10では、管体20の中央部に大きな曲げ応力が発生することから、管体20の中央部における中間ブラケット22の配置間隔P〜Pを狭くし、曲げ応力が小さな管体20の上下部においては中間ブラケット22の配置間隔P,Pを広くしてある。 In the load-bearing material 10 illustrated in FIG. 10, since a large bending stress is generated at the center of the tube 20, the arrangement intervals P 3 to P 5 of the intermediate brackets 22 at the center of the tube 20 are reduced, and the bending stress is reduced. There are widening the arrangement interval P 1, P 8 of the intermediate bracket 22 in the upper and lower portions of the small tube 20.

<2>本例の耐荷材の作用効果
本例では既述した作用効果に加え、発生応力の大きさに応じて中間ブラケット22の配置間隔を変え、管体20の補強を必要とする区間の中間ブラケット22と補強材30を剛結することで、効果的に補強できる。
<2> Functions and Effects of the Load Bearing Material of the Present Example In addition to the functions and effects described above, in this example, the interval between the intermediate brackets 22 is changed according to the magnitude of the generated stress, and the section of the section that requires reinforcement of the tube 20 is required. By rigidly connecting the intermediate bracket 22 and the reinforcing member 30, the reinforcing member can be effectively reinforced.

[実施例4]
<1>他の耐荷材
図11を参照して、管体20の引張領域が管体20の長さ方向に沿って異なる場合に、補強材30の取付位置を管体20の上下部で異なるようにした他の耐荷材10について説明する。
本例では、管体20の上半部と下半部で引張領域が異なるときに、各引張領域に補強材30を取り付けて個別に補強する。
図11では、管体20の右方上半と左方下半に引張領域が生じる場合を例示していて、管体20の右方上半と左方下半にそれぞれ補強材30a,30aを取り付けて個別に補強している。
[Example 4]
<1> Other Load-bearing Materials Referring to FIG. 11, when the tensile region of the tube 20 is different along the length of the tube 20, the mounting position of the reinforcing member 30 is different between the upper and lower portions of the tube 20. The other load bearing material 10 will be described.
In this example, when the tensile region is different between the upper half and the lower half of the tube 20, the reinforcing material 30 is attached to each tensile region and individually reinforced.
FIG. 11 illustrates a case where a tensile region is formed in the upper right half and the lower left half of the tubular body 20, and reinforcing materials 30a, 30a are provided in the upper right half and the lower left half of the tubular body 20, respectively. Installed and reinforced individually.

<2>本例の耐荷材の作用効果
本例では管体20の引張領域が管体20の長さ方向に沿って異なる場合の補強に好適である。
耐荷材10を例えば斜面途中の地中に埋め込んだ防護柵の支柱に適用した場合、支柱の地上部では斜面山側に引張領域が発生し、地表からある区間より下方の地中部では谷側に引張領域が発生するので、支柱の最適補強が可能となる。
<2> Action and Effect of the Load Bearing Material of the Present Example The present example is suitable for reinforcement in a case where the tensile regions of the tube 20 are different along the length direction of the tube 20.
For example, when the load-bearing material 10 is applied to a pillar of a protective fence embedded in the ground on a slope, a tension region occurs on the slope mountain side on the ground portion of the pillar, and the tensile region is pulled toward the valley side in a ground portion below a certain section from the ground surface. Since an area is generated, optimal reinforcement of the column is possible.

[実施例5]
<1>他の耐荷材
以上の実施例では、中間ブラケット22による補強材30の支持形態に関し、剛結せずに係留して支持する形態と、剛結して支持する形態の2つについて説明した。
[Example 5]
<1> Other Load-bearing Materials In the above embodiments, two forms of supporting the reinforcing member 30 by the intermediate bracket 22 are described: a form in which the reinforcing member 30 is moored without being rigidly connected, and a form in which the reinforcing member 30 is rigidly supported. did.

図12を参照して、これら二つの支持形態を組み合わせた他の耐荷材10について説明する。
管体20の引張領域においては、補強材30aを剛結せずに係留する形態で中間ブラケット22に支持させ、管体20の圧縮領域においては、補強材30bを剛結する形態で中間ブラケット22に支持させるようにする。
With reference to FIG. 12, another load-bearing material 10 combining these two support forms will be described.
In the tension region of the tube 20, the intermediate member 22 is supported by the intermediate bracket 22 in a form in which the reinforcing member 30a is moored without being rigidly connected. In the compression region of the tube 20, the intermediate member 22 is rigidly connected to the reinforcing member 30b. To support.

<2>本例の耐荷材の作用効果
本例では既述した作用効果に加え、管体20の引張領域と圧縮領域に応じて補強材30a,30bの支持形態を使い分けることで、経済的でかつ合理的に管体20を補強することができる。特に、管体20の圧縮領域では補強材30bの座屈抑制効果が高くなる。
<2> Effects of the load-bearing material of this example In this example, in addition to the effects described above, the support form of the reinforcing members 30a and 30b is selectively used in accordance with the tension region and the compression region of the pipe 20, which is economical. And the pipe body 20 can be rationally reinforced. In particular, the buckling suppression effect of the reinforcing member 30b is increased in the compression region of the tube 20.

10・・・・耐荷材
20・・・・管体
21・・・・端部ブラケット
22・・・・中間ブラケット
30・・・・補強材
31・・・・ナット
40・・・・支持構造物
10 Load-bearing material 20 Tube 21 End bracket 22 Intermediate bracket 30 Reinforcement member 31 Nut 40 Supporting structure

Claims (11)

外力作用時に曲げモーメントが生じる耐荷材であって、
外力作用時に長さ方向に沿って引張応力が生じる引張領域と、外力作用時に長さ方向に沿って圧縮応力が生じる圧縮領域とが形成される管体と、
前記管体の外方であって管体の軸線と平行に管体の引張領域又は圧縮領域の何れか一方の領域に配設した単数又は複数の補強材とからなり、
前記補強材の端部を管体の外周面にそれぞれ固定し
前記管体の外周面に単数又は複数の中間ブラケットを突設し、
外力作用時に補強材と管体の外周面との間に形成される間隔を保ったまま、補強材を管体の曲げ変形に追従するように、前記中間ブラケットを介して補強材の両端部間を管体に支持したことを特徴とする、
耐荷材。
A load-bearing material that generates a bending moment when an external force acts ,
A tube in which a tensile region where a tensile stress occurs along the length direction when an external force is applied, and a compression region where a compressive stress is generated along the length direction when an external force is applied,
One or more reinforcing members disposed outside the tube body and in one of the tension region and the compression region of the tube body in parallel with the axis of the tube body,
Fixing the end of the reinforcing material to the outer peripheral surface of the tubular body ,
Protruding one or more intermediate brackets on the outer peripheral surface of the tube,
While maintaining the space formed between the reinforcing member and the outer peripheral surface of the tube when an external force is applied, the reinforcing member follows the bending deformation of the tube between the ends of the reinforcing member via the intermediate bracket. Characterized by being supported by a tubular body ,
Carrying material.
前記補強材を管体の引張領域及び圧縮領域に取り付けたことを特徴とする、請求項1に記載の耐荷材。 Characterized in that fitted with the reinforcing member in the tension zones and compression area of the tube, load bearing material of claim 1. 前記補強材を管体の全長に亘って又は管体の一部に取り付けたことを特徴とする、請求項1又は2に記載の耐荷材。   The load-bearing material according to claim 1, wherein the reinforcing material is attached to the entire length of the tubular body or to a part of the tubular body. 前記中間ブラケットを介して補強材を管体の外周面から離隔して支持したことを特徴とする、請求項1乃至3の何れか一項に記載の耐荷材。 The load-bearing material according to any one of claims 1 to 3, wherein a reinforcing material is supported at a distance from an outer peripheral surface of the tubular body via the intermediate bracket. 前記補強材の両端部間を管体の外周面に突設した中間ブラケットに固定せずに係留して支持することを特徴とする、請求項1乃至4の何れか一項に記載の耐荷材。 The load-bearing material according to any one of claims 1 to 4, wherein the reinforcing member is supported by being anchored without being fixed to an intermediate bracket projecting from an outer peripheral surface of the tubular body. . 前記補強材の両端部間を管体の外周面に突設した中間ブラケットに剛結して支持することを特徴とする、請求項1乃至4の何れか一項に記載の耐荷材。 The load-carrying material according to any one of claims 1 to 4, wherein a portion between both ends of the reinforcing member is rigidly supported by an intermediate bracket protruding from an outer peripheral surface of the tubular body. 管体の引張領域においては管体の外周面に突設した中間ブラケットに補強材を剛結せずに係留して支持し、管体の圧縮領域においては管体の外周面に突設した中間ブラケットに補強材を剛結して支持することを特徴とする、請求項1乃至4の何れか一項に記載の耐荷材。 In the tension region of the tube, the reinforcing material is moored and supported without being rigidly connected to the intermediate bracket projecting from the outer surface of the tube, and in the compression region of the tube, the intermediate member protrudes from the outer surface of the tube. The load-bearing material according to any one of claims 1 to 4, wherein a reinforcing material is rigidly supported on the bracket and supported. 前記管体に生じる曲げモーメントに応じて、補強材の両端部間を管体に支持する中間ブラケットの配置間隔が異なることを特徴とする、請求項乃至7の何れか一項に記載の耐荷材。 The load bearing according to any one of claims 1 to 7, wherein an arrangement interval of the intermediate brackets that supports the reinforcing member between both ends thereof is different depending on a bending moment generated in the tubular body. Wood. 前記補強材の剛結手段が、ねじ止め手段、楔止め手段、ピン止め手段、溶接手段の何れか一種であることを特徴とする、請求項6又は7に記載の耐荷材。   The load-bearing material according to claim 6, wherein the stiffening unit of the reinforcing member is any one of a screwing unit, a wedge unit, a pin unit, and a welding unit. 前記補強材が棒材、管材、ロープ材、又はベルト材の何れか一種であることを特徴とする、請求項1乃至9の何れか一項に記載の耐荷材。   The load-bearing material according to any one of claims 1 to 9, wherein the reinforcing material is any one of a rod, a pipe, a rope, and a belt. 前記耐荷材が防護柵の支柱、杭構造体又は建築用途の耐震補強材であることを特徴とする、請求項1乃至10の何れか一項に記載の耐荷材。   The load-bearing material according to any one of claims 1 to 10, wherein the load-bearing material is a pillar of a protective fence, a pile structure, or an earthquake-resistant reinforcing material for building use.
JP2019139664A 2019-07-30 2019-07-30 Carrying material Active JP6651147B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019139664A JP6651147B1 (en) 2019-07-30 2019-07-30 Carrying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019139664A JP6651147B1 (en) 2019-07-30 2019-07-30 Carrying material

Publications (2)

Publication Number Publication Date
JP6651147B1 true JP6651147B1 (en) 2020-02-19
JP2021021287A JP2021021287A (en) 2021-02-18

Family

ID=69568366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019139664A Active JP6651147B1 (en) 2019-07-30 2019-07-30 Carrying material

Country Status (1)

Country Link
JP (1) JP6651147B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7345950B1 (en) 2023-06-28 2023-09-19 有限会社吉田構造デザイン Protective fence and its reinforcement method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4050715B2 (en) * 2003-08-21 2008-02-20 三栄開発株式会社 Seismic structure
JP2005083068A (en) * 2003-09-09 2005-03-31 Nippon Steel Metal Prod Co Ltd Cushioning material for civil engineering structure, rock fall preventive fence, and its construction method
JP4874925B2 (en) * 2007-10-10 2012-02-15 新日本製鐵株式会社 Prevention fence such as falling rocks
JP5306530B1 (en) * 2012-10-16 2013-10-02 日本サミコン株式会社 Protective fence reinforcement structure
JP5610251B1 (en) * 2014-05-02 2014-10-22 独立行政法人土木研究所 Roadside snow fence
JP6228946B2 (en) * 2015-02-10 2017-11-08 株式会社ライテク Protective fence

Also Published As

Publication number Publication date
JP2021021287A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP5069534B2 (en) Outer shell reinforcement structure of existing building
KR100671429B1 (en) Horizontal supporting structure of shear wall
US10934734B1 (en) Damped reinforced joint for beam-column connection
WO2015140890A1 (en) Column structure and base member
JP4419088B2 (en) Seismic reinforcement structure for buildings
JP2007321486A (en) Armed pipe aseismatic structure and armed pipe aseismatic reinforcing method
WO2015140889A1 (en) Column structure and base member
WO2005066419A1 (en) Method of applying prestress and connecting means used therein and prestressed concrete beam therefrom
JP4888915B2 (en) Building structure using composite structural beams with beam ends made of PC
JP6651147B1 (en) Carrying material
JP2001262774A (en) Steel concrete composite structural member
JP4672459B2 (en) Building reinforcement method
WO2017170732A1 (en) Beam-to-column connection structure and steel reinforced concrete column
CN209742073U (en) Assembly type self-resetting frame system connected by FRP (fiber reinforced plastic) pipes
JP5583382B2 (en) Concrete parts
JP4386804B2 (en) Seismic reinforcement structure for existing steel towers
JP3791478B2 (en) Pile head joint structure
KR101209363B1 (en) Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same
JP6102010B2 (en) Pile reinforcement structure of existing building and its construction method
KR100720730B1 (en) Concrete filled composite double tube and method connecting the tube with the other
JP2011202471A (en) Structural member
JP3681367B2 (en) Joint structure of steel column and foundation concrete
JP2005155058A (en) Beam member of rc structure
JP3629700B2 (en) Filled steel pipe for protection structures such as rockfall and avalanche and its manufacturing method
JP7426253B2 (en) truss beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200107

R150 Certificate of patent or registration of utility model

Ref document number: 6651147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250