JP6648536B2 - Warm-up promotion system for internal combustion engine - Google Patents

Warm-up promotion system for internal combustion engine Download PDF

Info

Publication number
JP6648536B2
JP6648536B2 JP2016012137A JP2016012137A JP6648536B2 JP 6648536 B2 JP6648536 B2 JP 6648536B2 JP 2016012137 A JP2016012137 A JP 2016012137A JP 2016012137 A JP2016012137 A JP 2016012137A JP 6648536 B2 JP6648536 B2 JP 6648536B2
Authority
JP
Japan
Prior art keywords
passage
flow path
exhaust gas
exhaust
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016012137A
Other languages
Japanese (ja)
Other versions
JP2017133382A (en
Inventor
欣也 井上
欣也 井上
田中 大
大 田中
優貴 土橋
優貴 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2016012137A priority Critical patent/JP6648536B2/en
Publication of JP2017133382A publication Critical patent/JP2017133382A/en
Application granted granted Critical
Publication of JP6648536B2 publication Critical patent/JP6648536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関の暖機を促進する暖機促進システムに関する。   The present invention relates to a warm-up promotion system for promoting warm-up of an internal combustion engine.

従来、内燃機関の始動直後に暖機を促進し、フリクションを低減して燃費の向上を図る暖機促進技術が検討されている。
例えば、下記特許文献1は、内燃機関に冷却媒体が導入される複数の冷却媒体通路を有し、この冷却媒体通路のうち、シリンダブロックに接続される第1の冷却媒体通路を流れる冷却媒体が、EGRクーラにおいて排気と熱交換するようにしている。同冷却媒体は、排気によって昇温されるのでシリンダブロックの暖機が促進されるとともに、内燃機関のその他の部位とで温度差を設け、各部を適切な温度状態にする。
2. Description of the Related Art Conventionally, a warm-up promotion technology that promotes warm-up immediately after the start of an internal combustion engine to reduce friction and improve fuel efficiency has been studied.
For example, Patent Document 1 below has a plurality of cooling medium passages through which a cooling medium is introduced into an internal combustion engine, and among the cooling medium passages, a cooling medium flowing through a first cooling medium passage connected to a cylinder block is provided. , The EGR cooler exchanges heat with the exhaust gas. Since the temperature of the cooling medium is increased by the exhaust gas, the warming-up of the cylinder block is promoted, and a temperature difference is provided between the cooling medium and other parts of the internal combustion engine to bring each part into an appropriate temperature state.

特開2011−47305号公報JP 2011-47305 A

上述した従来技術のようにEGRクーラの排熱を内燃機関の暖機に用いることにより、車両構成を複雑化せずに暖機の促進を図ることができる。一方で、上述した従来技術では、暖機をより効率的に行う上で改善の余地がある。   By using the exhaust heat of the EGR cooler for warming up the internal combustion engine as in the prior art described above, it is possible to promote warming up without complicating the vehicle configuration. On the other hand, in the above-described related art, there is room for improvement in performing warming-up more efficiently.

本発明は、このような事情に鑑みなされたものであり、その目的は、より効率的に内燃機関の暖機を促進することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to promote warming-up of an internal combustion engine more efficiently.

上述の目的を達成するため、発明にかかる内燃機関の暖機促進システムは、内燃機関から排出された排気ガスを車外に排出する排気通路の流路面積を変更する第1の流路調整機構と、前記第1の流路調整機構より排気ガス流れ上流側の前記排気通路から分岐し前記排気ガスを前記内燃機関の吸気通路に還流する排気再循環通路の流路面積を変更する第2の流路調整機構と、前記第2の流路調整機構より前記排気ガス流れ上流側の前記排気再循環通路から分岐し前記第1の流路調整機構より前記排気ガス流れ下流側の前記排気通路へと接続するバイパス通路の流路面積を変更する第3の流路調整機構と、前記バイパス通路との分岐より前記排気ガス流れ上流側の前記排気再循環通路上に設けられ、冷却媒体により前記排気ガスを冷却する排気クーラと、前記排気クーラと前記内燃機関とをつなぎ、前記冷却媒体と前記内燃機関との間の熱交換を可能とする冷却路と、前記第1の流路調整機構の前記排気ガス流れ上流側の前記排気通路内の圧力と、前記第2の流路調整機構の前記排気ガス流れ上流側の前記排気再還流通路内の圧力と、前記第3の流路調整機構の前記排気ガス流れ上流側の前記バイパス通路の圧力と、のうちいずれか1つの圧力を検出する圧力センサと、を備え、前記冷却媒体の温度が所定温度未満の場合、前記第1の流路調整機構、前記第2の流路調整機構および前記第3の流路調整機構は、それぞれの流路の流路面積を制限し、前記圧力が所定圧以上となった場合、前記第3の流路調整機構は前記バイパス通路の流路面積を拡大し、前記バイパス通路の流路面積が最大になった後も前記圧力が前記所定圧以上である場合、前記第1の流路調整機構は前記排気通路の流路面積を拡大する、ことを特徴とする。
発明にかかる内燃機関の暖機促進システムは、前記第3の流路調整機構は、前記第1の流路調整機構により制限された前記排気通路の流路面積よりも前記バイパス通路の流路面積を大きくする、ことを特徴とする。
発明にかかる内燃機関の暖機促進システムは、前記冷却媒体の温度が前記所定温度以上となった場合、前記第1の流路調整機構は、前記冷却媒体の温度が前記所定温度未満のときよりも前記排気通路の流路面積を大きくする、ことを特徴とする。
In order to achieve the above object, a warm-up promotion system for an internal combustion engine according to the present invention includes a first flow path adjusting mechanism for changing a flow path area of an exhaust passage for discharging exhaust gas discharged from the internal combustion engine to the outside of the vehicle. And changing a flow passage area of an exhaust recirculation passage branched from the exhaust passage on the exhaust gas flow upstream side of the first flow passage adjusting mechanism and returning the exhaust gas to an intake passage of the internal combustion engine. A flow path adjusting mechanism, and branching from the exhaust gas recirculation passage on the upstream side of the exhaust gas flow from the second flow path adjusting mechanism to the exhaust passage on the downstream side of the exhaust gas flow from the first flow path adjusting mechanism. A third flow path adjusting mechanism for changing a flow path area of a bypass passage connected to the exhaust passage, and a third flow path adjusting mechanism provided on the exhaust gas recirculation passage upstream of the exhaust gas flow from a branch with the bypass passage, wherein the cooling medium discharges the exhaust gas. Exhaust to cool gas And over La, the joint between the exhaust cooler and the internal combustion engine, a cooling passage that allows heat exchange between the cooling medium and the internal combustion engine, the exhaust gas stream upstream of the first flow path adjustment mechanism A pressure in the exhaust gas recirculation passage on the upstream side of the exhaust gas flow of the second flow path adjusting mechanism, and a pressure in the exhaust gas recirculation path on the upstream side of the exhaust gas flow of the second flow path adjusting mechanism. And a pressure sensor for detecting any one of the pressures in the bypass passage on the side of the cooling medium, and when the temperature of the cooling medium is lower than a predetermined temperature, the first flow path adjusting mechanism and the second The third flow path adjustment mechanism and the third flow path adjustment mechanism restrict the flow path area of each flow path, and when the pressure is equal to or higher than a predetermined pressure, the third flow path adjustment mechanism The passage area of the passage is enlarged, and the passage area of the bypass passage is reduced. If the pressure after it becomes large at the predetermined pressure or more, the first flow path adjustment mechanism to enlarge the flow passage area of the exhaust passage, characterized in that.
In the warm-up promotion system for an internal combustion engine according to the present invention, the third flow path adjusting mechanism may be configured such that the flow path area of the bypass path is larger than the flow path area of the exhaust path limited by the first flow path adjusting mechanism. The area is increased.
The warm-up promotion system for an internal combustion engine according to the present invention is configured such that, when the temperature of the cooling medium is equal to or higher than the predetermined temperature, the first flow path adjusting mechanism is configured to perform the operation when the temperature of the cooling medium is lower than the predetermined temperature. The flow passage area of the exhaust passage is larger than that of the exhaust passage.

発明によれば、第1の流路調整機構、第2の流路調整機構および第3の流路調整機構に囲まれた領域(以下、単に「領域」という)、すなわち排気クーラを含む領域内の圧力を上昇させるので、この領域内の排気ガス温度が上昇するとともに、この領域内における排気ガスの流速が遅くなる。これにより、排気クーラ内で排気ガスから冷却媒体に移動する熱量が大きくなり、単に排気ガスを排気再循環通路に導入するよりも迅速に冷却媒体の温度を上昇させ、内燃機関の暖機を図る上で有利となる。
発明によれば、排気通路の流路面積よりもバイパス通路の流路面積を大きく
する。このため、排気通路から排気再循環通路に導入される排気ガス量と比較して排気再循環通路からバイパス通路に導入される排気ガス量が少なくなり、上記領域内の圧力を確実に上昇させる上で有利となる。
発明によれば、領域内の圧力が高くなり過ぎた場合に流路調整機構により圧力を調整するので、過度な圧力による配管の破損等を防止し、暖機促進システムの耐久性を向上させる上で有利となる。また、第3の流路調整機構を開ききってから第1の流路調整機構の開度を大きくするので、排気再循環通路に導入する排気ガス量を極力減らさずに領域内の圧力を調整し、短時間で内燃機関の暖機を行う上で有利となる。
発明によれば、冷却媒体の温度が所定温度以上となった場合には排気再循環通路に導入する排気ガス量を低減させ、排気クーラにおける冷却媒体との熱交換量を低減させる。このため、冷却媒体から内燃機関への熱の移送を防止し、内燃機関を適切な温度に維持する上で有利となる。
According to the present invention, an area surrounded by the first flow path adjustment mechanism, the second flow path adjustment mechanism, and the third flow path adjustment mechanism (hereinafter, simply referred to as an “area”), that is, an area including an exhaust cooler. Since the pressure inside the region is increased, the temperature of the exhaust gas in this region increases, and the flow rate of the exhaust gas in the region decreases. As a result, the amount of heat transferred from the exhaust gas to the cooling medium in the exhaust cooler increases, and the temperature of the cooling medium is increased more quickly than simply introducing the exhaust gas into the exhaust recirculation passage, thereby warming up the internal combustion engine. The above is advantageous.
According to the present invention, the flow passage area of the bypass passage is made larger than the flow passage area of the exhaust passage. Therefore, the amount of exhaust gas introduced from the exhaust gas recirculation passage into the bypass passage is smaller than the amount of exhaust gas introduced from the exhaust gas passage into the exhaust gas recirculation passage. Is advantageous.
According to the present invention, when the pressure in the region becomes excessively high, the pressure is adjusted by the flow path adjusting mechanism. Therefore, damage to the piping due to excessive pressure is prevented, and the durability of the warm-up promotion system is improved. The above is advantageous. Further, since the opening degree of the first flow path adjustment mechanism is increased after the third flow path adjustment mechanism is fully opened, the pressure in the region is adjusted without reducing the amount of exhaust gas introduced into the exhaust gas recirculation passage as much as possible. This is advantageous in warming up the internal combustion engine in a short time.
According to the present invention, when the temperature of the cooling medium becomes equal to or higher than the predetermined temperature, the amount of exhaust gas introduced into the exhaust gas recirculation passage is reduced, and the amount of heat exchange with the cooling medium in the exhaust cooler is reduced. Therefore, transfer of heat from the cooling medium to the internal combustion engine is prevented, which is advantageous in maintaining the internal combustion engine at an appropriate temperature.

実施の形態にかかる暖機促進システム10の構成を示す説明図である。It is an explanatory view showing the composition of the warming-up promotion system 10 concerning an embodiment. ECU50の機能的構成を示す説明図である。FIG. 3 is an explanatory diagram illustrating a functional configuration of an ECU 50. 内燃機関20の暖機運転中における暖機促進システム10の状態を示す説明図である。FIG. 2 is an explanatory diagram showing a state of a warm-up promotion system 10 during a warm-up operation of an internal combustion engine 20. 暖機運転中に内燃機関20に負荷が与えられた場合の状態を示す説明図である。FIG. 4 is an explanatory diagram illustrating a state when a load is applied to the internal combustion engine during a warm-up operation.

以下に添付図面を参照して、本発明にかかる内燃機関の暖機促進システムの好適な実施の形態を詳細に説明する。
以下の説明において、「上流」、「下流」とは、それぞれ「排気ガス流れ上流」、「排気ガス流れ下流」を指す。
図1は、実施の形態にかかる暖機促進システム10の構成を示す説明図である。
内燃機関(エンジン)20から排出された排気ガスは、排気通路LAを通り車外へと排出される。排気通路LA上には、排気ガス中の有害成分を還元および酸化により浄化する触媒22、排気通路LAの流路面積を調整する第1の流路調整機構40、排気ガスが外部へ排出される際に発生する音を低減するマフラー24が設けられている。
Exemplary embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
In the following description, “upstream” and “downstream” respectively mean “upstream of exhaust gas flow” and “downstream of exhaust gas flow”.
FIG. 1 is an explanatory diagram illustrating a configuration of a warm-up promotion system 10 according to the embodiment.
The exhaust gas discharged from the internal combustion engine (engine) 20 is discharged to the outside of the vehicle through the exhaust passage LA. On the exhaust passage LA, a catalyst 22 for purifying harmful components in the exhaust gas by reduction and oxidation, a first passage adjusting mechanism 40 for adjusting the passage area of the exhaust passage LA, and the exhaust gas is discharged to the outside. A muffler 24 is provided to reduce the sound generated at the time.

排気通路LAのうち、第1の流路調整機構40より排気ガス流れ上流側の箇所P1からは、排気ガスを内燃機関20の吸気通路LDに還流する排気再循環通路LBが分岐している。本実施の形態では、排気再循環通路LBを第1の流路調整機構40の上流かつ触媒22の下流としている。排気再循環通路LBを通り内燃機関20で再度燃焼に用いられる排気ガスは、排気再循環(EGR:Exhaust Gas Recirculation)ガスとなる。
内燃機関20の吸気通路LDに還流される排気ガス量は、排気再循環通路LBの流路面積を変更する第2の流路調整機構(EGRバルブ)42を用いて調整する。第2の流路調整機構42は、排気再循環通路LBのうち後述するバイパス経路LCとの分岐位置P2より下流に設けられている。
In the exhaust passage LA, an exhaust recirculation passage LB that recirculates the exhaust gas to the intake passage LD of the internal combustion engine 20 branches from a point P1 on the exhaust gas flow upstream side of the first flow path adjusting mechanism 40. In the present embodiment, the exhaust gas recirculation passage LB is located upstream of the first flow path adjusting mechanism 40 and downstream of the catalyst 22. Exhaust gas that passes through the exhaust gas recirculation passage LB and is used for combustion again in the internal combustion engine 20 becomes exhaust gas recirculation (EGR) gas.
The amount of exhaust gas recirculated to the intake passage LD of the internal combustion engine 20 is adjusted using a second flow passage adjusting mechanism (EGR valve) 42 that changes the flow passage area of the exhaust recirculation passage LB. The second flow path adjusting mechanism 42 is provided in the exhaust gas recirculation path LB downstream of a branch position P2 with a bypass path LC described later.

排気再循環通路LB上には、高温の排気ガスを冷却する排気クーラ26が設けられている。排気クーラ26内には冷却液等の冷却媒体が循環し、この冷却媒体と排気ガスとが熱交換を行い、排気ガスを冷却する。
排気クーラ26には、冷却媒体が循環する排気クーラ冷却路28が接続されている。排気クーラ冷却路28は、排気クーラ26と内燃機関20とをつなぎ、排気クーラ26を経た冷却媒体と内燃機関20との間の熱交換を可能とする。
排気クーラ冷却路28内の冷却媒体を循環させ、積極的に排気との熱交換を行うために、ポンプ30を設置してもよい。ポンプ30は、少なくとも内燃機関20の暖機中に稼働するものとする。
An exhaust cooler 26 that cools high-temperature exhaust gas is provided on the exhaust gas recirculation passage LB. A cooling medium such as a cooling liquid circulates in the exhaust cooler 26, and the cooling medium exchanges heat with the exhaust gas to cool the exhaust gas.
An exhaust cooler cooling passage 28 through which a cooling medium circulates is connected to the exhaust cooler 26. The exhaust cooler cooling passage 28 connects the exhaust cooler 26 and the internal combustion engine 20 and enables heat exchange between the cooling medium passing through the exhaust cooler 26 and the internal combustion engine 20.
A pump 30 may be provided to circulate the cooling medium in the exhaust cooler cooling passage 28 and actively exchange heat with the exhaust. The pump 30 operates at least during warm-up of the internal combustion engine 20.

排気再循環通路LBのうち排気クーラ26の下流からは、排気クーラ26で冷却された排気ガスを吸気通路LDに還流せずに排気通路LAへと排出するバイパス通路LCが分岐している。すなわち、バイパス通路LCは、排気クーラ26の排気ガス流れ下流側かつ第2の流路調整機構44の排気ガス流れ上流側の排気再循環通路LBから分岐し、第1の流路調整機構40より排気ガス流れ下流側の排気通路LAへと接続する。本実施の形態では、バイパス通路LCの他端は、排気通路LA上のマフラー24よりも上流の位置P3に接続している。
また、バイパス経路LCのうち排気再循環通路LBとの分岐位置P2より下流には、バイパス通路LCの流路面積を変更する第3の流路調整機構44が設けられている。
From the exhaust recirculation passage LB, a bypass passage LC branches from the downstream of the exhaust cooler 26 to discharge the exhaust gas cooled by the exhaust cooler 26 to the exhaust passage LA without returning to the intake passage LD. That is, the bypass passage LC branches off from the exhaust recirculation passage LB on the downstream side of the exhaust gas flow of the exhaust cooler 26 and on the upstream side of the exhaust gas flow of the second flow path adjustment mechanism 44. It is connected to the exhaust passage LA on the downstream side of the exhaust gas flow. In the present embodiment, the other end of the bypass passage LC is connected to a position P3 upstream of the muffler 24 on the exhaust passage LA.
Further, a third flow path adjusting mechanism 44 that changes the flow area of the bypass path LC is provided downstream of the branch position P2 with the exhaust recirculation path LB in the bypass path LC.

また、排気再循環通路LBには通路内の圧力を検出する圧力センサ18が設けられている。
本実施の形態では、圧力センサ18が排気再循環通路LBのうち排気クーラ26の下流に設けられているものとするが、圧力センサ18の設置位置は、内燃機関20、第1の流路調整機構40、第2の流路調整機構42および第3の流路調整機構44で囲まれる領域R(図3の網掛け部)の圧力を検出できる箇所であればどこでもよい。例えば、圧力センサ18を排気クーラ26より下流で分岐位置P2より上流の排気再循環通路LBに配置した場合は、排気クーラ26で冷却された排気の圧力を検出するため排気ガスからの熱害を受けにくい。
Further, the exhaust gas recirculation passage LB is provided with a pressure sensor 18 for detecting a pressure in the passage.
In the present embodiment, it is assumed that the pressure sensor 18 is provided downstream of the exhaust cooler 26 in the exhaust gas recirculation passage LB, but the pressure sensor 18 is installed in the internal combustion engine 20, the first flow path adjustment. Any location can be used as long as the pressure in the region R (the shaded portion in FIG. 3) surrounded by the mechanism 40, the second flow path adjustment mechanism 42, and the third flow path adjustment mechanism 44 can be detected. For example, when the pressure sensor 18 is disposed in the exhaust recirculation passage LB downstream of the exhaust cooler 26 and upstream of the branch position P2, heat damage from the exhaust gas is detected in order to detect the pressure of the exhaust cooled by the exhaust cooler 26. Hard to receive.

内燃機関20には、高負荷運転時等に発生するノッキングを検出するノックセンサ19が取り付けられている。ノックセンサ19は、内燃機関20のノッキング振動を圧電素子等で検出する。ノックセンサ19は後述するECU50に接続されており、ノックセンサ19によりノッキングが検出された場合、ECU50は内燃機関20での点火リタード等を行う。   The internal combustion engine 20 is provided with a knock sensor 19 that detects knocking that occurs during a high-load operation or the like. Knock sensor 19 detects knocking vibration of internal combustion engine 20 using a piezoelectric element or the like. The knock sensor 19 is connected to an ECU 50 described later. When knocking is detected by the knock sensor 19, the ECU 50 performs ignition retard or the like in the internal combustion engine 20.

また、内燃機関20には、燃焼室周辺にウォータージャケットが設けられており、ウォータージャケット内を循環する冷却媒体と燃焼室との間で熱交換を行うことにより、燃焼による内燃機関20の過熱を防止している。
前述した排気クーラ冷却路28は内燃機関20内のウォータージャケットと連通し、排気クーラ26を経た冷却媒体をウォータージャケット内に導入する。
なお、排気クーラ冷却路28には冷却媒体の温度を検出する温度センサ16が設けられている。
The internal combustion engine 20 is provided with a water jacket around the combustion chamber. By performing heat exchange between a cooling medium circulating in the water jacket and the combustion chamber, overheating of the internal combustion engine 20 due to combustion is reduced. Preventing.
The above-described exhaust cooler cooling passage 28 communicates with a water jacket in the internal combustion engine 20, and introduces the cooling medium that has passed through the exhaust cooler 26 into the water jacket.
The exhaust cooler cooling passage 28 is provided with a temperature sensor 16 for detecting the temperature of the cooling medium.

また、ウォータージャケットにはエンジン冷却路34も連通されている。エンジン冷却路34は、内燃機関20とラジエータ32とをつなぎ、内燃機関20から熱を奪い温度が上昇した冷却媒体はラジエータ32で冷却され、内燃機関20へと還流される。
エンジン冷却路34には、ポンプ36およびサーモスタット弁38が設けられている。
ポンプ36は、エンジン冷却路34内の冷却媒体を循環させる。
サーモスタット弁38はラジエータ32の上流に設けられており、冷却媒体が所定温度(例えば70℃など)未満の場合、すなわち暖気中は閉となってラジエータ32への冷却媒体の進入を阻止する。この場合、冷却媒体はラジエータバイパス路34Aを通り、冷却されずに循環する。
また、冷却媒体が所定温度以上の場合、すなわち暖気完了後にはサーモスタット弁38は開となってラジエータ32に冷却媒体を進入させる。この場合、冷却媒体はラジエータ32で冷却され温度が低下する。
上述のようにエンジン冷却路34および排気クーラ冷却路28は共に内燃機関20のウォータージャケットに連通しており、それぞれの冷却路を通った冷却媒体はウォータージャケット内で混合する。
An engine cooling path 34 is also connected to the water jacket. The engine cooling passage 34 connects the internal combustion engine 20 and the radiator 32, and the cooling medium whose temperature has risen by removing heat from the internal combustion engine 20 is cooled by the radiator 32 and returned to the internal combustion engine 20.
The engine cooling passage 34 is provided with a pump 36 and a thermostat valve 38.
The pump 36 circulates a cooling medium in the engine cooling path 34.
The thermostat valve 38 is provided upstream of the radiator 32, and closes when the cooling medium is lower than a predetermined temperature (for example, 70 ° C.), that is, during warm air, and prevents the cooling medium from entering the radiator 32. In this case, the cooling medium circulates without cooling through the radiator bypass passage 34A.
When the temperature of the cooling medium is equal to or higher than the predetermined temperature, that is, after the completion of warm-up, the thermostat valve 38 is opened to allow the cooling medium to enter the radiator 32. In this case, the cooling medium is cooled by the radiator 32 and the temperature decreases.
As described above, both the engine cooling passage 34 and the exhaust cooler cooling passage 28 communicate with the water jacket of the internal combustion engine 20, and the cooling medium that has passed through each cooling passage is mixed in the water jacket.

第1の流路調整機構40および第3の流路調整機構44は、例えばバタフライ弁であり、弁棒Sを中心に弁体Dが0度から90度の範囲で回転することによって、それぞれの調整対象通路の流路面積を調整する。
図1は、第1の流路調整機構40および第3の流路調整機構44がそれぞれの調整対象通路の流路面積を最小(流路面積=ゼロ)、すなわち全閉にしている状態を図示している。この時、弁体Dの回転角度は0度である。弁体Dの回転角度が90度になると、通路の流路面積は最大(流路面積≒配管断面積)、すなわち全開となる。
The first flow path adjustment mechanism 40 and the third flow path adjustment mechanism 44 are, for example, butterfly valves, and each of the first and second flow path adjustment mechanisms 44 and 90 is rotated by a valve body D around a valve rod S in a range of 0 to 90 degrees. The passage area of the passage to be adjusted is adjusted.
FIG. 1 is a diagram illustrating a state in which the first flow path adjusting mechanism 40 and the third flow path adjusting mechanism 44 minimize the flow path area of each of the adjustment target paths (flow path area = 0), that is, fully close. Is shown. At this time, the rotation angle of the valve body D is 0 degree. When the rotation angle of the valve body D becomes 90 degrees, the flow passage area of the passage becomes the maximum (flow passage area / piping cross-sectional area), that is, fully open.

また、第2の流路調整機構42は、例えば、一般的なEGRバルブの構造であるグローブバルブである。
第2の流路調整機構42は、吸気通路LDへの排気ガスの還流量(EGRガス量)に基づいてその開度が制御される。
より詳細には、後述するECU50は、内燃機関20の負荷、回転数および領域Rの圧力と第2の流路調整機構42の開度(排気再循環通路LBの流路面積、EGRガス量)との関係を示すEGR導入マップを有しており、当該EGR導入マップに基づいて第2の流路調整機構42の開度を変更する。
第2の流路調整機構42が全閉になっている場合、排気再循環通路LBの流路面積は最小(流路面積=ゼロ)となり、第2の流路調整機構42が全開になっている場合、排気再循環通路LBの流路面積は最大(流路面積≒配管断面積)となる。
The second flow path adjusting mechanism 42 is, for example, a globe valve having a general EGR valve structure.
The degree of opening of the second flow path adjustment mechanism 42 is controlled based on the amount of exhaust gas recirculated to the intake passage LD (EGR gas amount).
More specifically, the ECU 50, which will be described later, determines the load of the internal combustion engine 20, the number of revolutions, the pressure in the region R, and the opening degree of the second flow path adjustment mechanism 42 (the flow area of the exhaust recirculation passage LB, the EGR gas amount). And an EGR introduction map indicating the relationship between the second passage adjustment mechanism 42 and the opening degree of the second flow path adjustment mechanism 42 is changed based on the EGR introduction map.
When the second flow path adjustment mechanism 42 is fully closed, the flow path area of the exhaust gas recirculation passage LB becomes minimum (flow path area = zero), and the second flow path adjustment mechanism 42 is fully opened. In such a case, the flow passage area of the exhaust gas recirculation passage LB becomes the maximum (flow passage area / pipe cross-sectional area).

これら第1の流路調整機構40、第2の流路調整機構42および第3の流路調整機構44は、内燃機関20の運転状態を制御するECU50によってその開閉状態が制御されている。
図2は、ECU50の機能的構成を示す説明図である。
ECU(Engine Control Unit)50は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成される。
ECU50には、ドライバのアクセル操作量を検知するアクセルペダルセンサ52や車両各輪の回転速度を検知する車輪速センサ54、上述した温度センサ16および圧力センサ18、ノックセンサ19等の各種センサが接続されている。
The opening / closing state of the first flow path adjustment mechanism 40, the second flow path adjustment mechanism 42, and the third flow path adjustment mechanism 44 is controlled by the ECU 50 that controls the operation state of the internal combustion engine 20.
FIG. 2 is an explanatory diagram showing a functional configuration of the ECU 50.
An ECU (Engine Control Unit) 50 includes a CPU, a ROM for storing and storing a control program and the like, a RAM as an operation area of the control program, an EEPROM for rewritably holding various data, and an interface unit for interfacing with peripheral circuits and the like. It is comprised including.
The ECU 50 is connected to an accelerator pedal sensor 52 for detecting the amount of accelerator operation by the driver, a wheel speed sensor 54 for detecting the rotational speed of each wheel of the vehicle, and various sensors such as the above-described temperature sensor 16, pressure sensor 18, and knock sensor 19. Have been.

本実施の形態では、ECU50は、冷却媒体の温度および内燃機関20の運転状態に基づいて、以下のように各流路調整機構の開閉状態を制御する。
図3は、内燃機関20の暖機運転中における暖機促進システム10の状態を示す説明図である。
車両の始動直後等には内燃機関20の温度が低くなっているため、内燃機関20の暖機を促進する暖機運転を行う。暖機運転を行うか否かは、ECU50が温度センサ16の検出値を用いて判断する。すなわち、温度センサ16の検出値が所定温度未満の場合、ECU50は暖機促進システム10を以下のような状態とする。
なお、図3では内燃機関20に負荷は与えられていない(例えばアイドリング状態)ものとする。
また、暖機運転中にはサーモスタット弁38が閉となっているため、ラジエータ32による冷却媒体の冷却は行われない。
In the present embodiment, the ECU 50 controls the opening / closing state of each flow path adjusting mechanism as follows based on the temperature of the cooling medium and the operating state of the internal combustion engine 20.
FIG. 3 is an explanatory diagram illustrating a state of the warm-up promotion system 10 during the warm-up operation of the internal combustion engine 20.
Immediately after the start of the vehicle or the like, the temperature of the internal combustion engine 20 is low, so that the warm-up operation for promoting the warm-up of the internal combustion engine 20 is performed. Whether or not to perform the warm-up operation is determined by the ECU 50 using the detection value of the temperature sensor 16. That is, when the detection value of the temperature sensor 16 is lower than the predetermined temperature, the ECU 50 sets the warm-up promotion system 10 in the following state.
In FIG. 3, it is assumed that no load is applied to the internal combustion engine 20 (for example, an idling state).
During the warm-up operation, the cooling medium is not cooled by the radiator 32 because the thermostat valve 38 is closed.

暖機運転中、ECU50は、第1の流路調整機構40、第2の流路調整機構42および第3の流路調整機構44により、排気通路LA、排気再循環通路LBおよびバイパス通路LCの流路面積をそれぞれ制限する。
より詳細には、例えば第1の流路調整機構40の弁体Dの回転角度を0度とし全閉状態とするとともに、第3の流路調整機構44を例えば弁体Dの回転角度を45度とし半開状態とする。すなわち、第3の流路調整機構44は、第1の流路調整機構40により制限された排気通路LAの流路面積よりもバイパス通路LCの流路面積を大きくする。
また、上述のように内燃機関20に負荷は与えられておらず、第2の流路調整機構42は全閉状態となっている。
During the warm-up operation, the ECU 50 controls the exhaust passage LA, the exhaust recirculation passage LB, and the bypass passage LC by the first passage adjustment mechanism 40, the second passage adjustment mechanism 42, and the third passage adjustment mechanism 44. Restrict the flow channel area.
More specifically, for example, the rotation angle of the valve body D of the first flow path adjustment mechanism 40 is set to 0 degree to be in the fully closed state, and the third flow path adjustment mechanism 44 is set to, for example, the rotation angle of the valve body D of 45 degrees. Degrees and half open. That is, the third flow path adjusting mechanism 44 makes the flow path area of the bypass passage LC larger than the flow area of the exhaust passage LA restricted by the first flow path adjusting mechanism 40.
Further, as described above, no load is applied to the internal combustion engine 20, and the second flow path adjustment mechanism 42 is in a fully closed state.

この場合、内燃機関20から排出された排気ガスは、全量が排気再循環通路LBに導入され、排気クーラ26を通過する。また、バイパス通路LCを通過して車外に排出される排気ガス量が制限され、内燃機関20、第1の流路調整機構40、第2の流路調整機構42および第3の流路調整機構44で囲まれる領域R(網掛け部)内の圧力が上昇し、この領域R内の排気ガス温度が高くなる。また、領域R内における排気ガスの流速が遅くなり、領域R内に排気ガスが滞在する時間が長くなる。
これにより、排気クーラ26内で排気ガスから冷却媒体に移動する熱量が大きくなり、単に排気ガスを排気再循環通路LBに導入するよりも迅速に冷却媒体の温度を上昇させ、内燃機関20の暖機を図ることができる。
また、一般に触媒22は低温時に性能が低下することが知られているが、本実施の形態では触媒22が領域R内に配置されているため、短時間で触媒22の温度を上昇させることができ、触媒22の性能を効率的に発揮させることができる。
In this case, the entire amount of the exhaust gas discharged from the internal combustion engine 20 is introduced into the exhaust gas recirculation passage LB, and passes through the exhaust cooler 26. Further, the amount of exhaust gas discharged to the outside of the vehicle through the bypass passage LC is restricted, and the internal combustion engine 20, the first flow path adjustment mechanism 40, the second flow path adjustment mechanism 42, and the third flow path adjustment mechanism The pressure in a region R (shaded portion) surrounded by 44 increases, and the exhaust gas temperature in this region R increases. Further, the flow velocity of the exhaust gas in the region R becomes slow, and the time during which the exhaust gas stays in the region R becomes longer.
As a result, the amount of heat transferred from the exhaust gas to the cooling medium in the exhaust cooler 26 increases, and the temperature of the cooling medium is increased more quickly than simply introducing the exhaust gas into the exhaust recirculation passage LB, thereby warming the internal combustion engine 20. Opportunity.
In general, it is known that the performance of the catalyst 22 decreases at low temperatures. However, in the present embodiment, since the catalyst 22 is disposed in the region R, it is possible to increase the temperature of the catalyst 22 in a short time. As a result, the performance of the catalyst 22 can be efficiently exhibited.

図4は、暖機運転中に内燃機関20に負荷が与えられた場合の状態を示す説明図である。
暖機運転中にアクセルペダルが踏み込まれ内燃機関20に負荷が与えられた場合、内燃機関20からの排気ガス量が増加する。このため、図3に示す負荷が与えられていない状態よりも領域R内の圧力が上昇する。
なお、上述したEGR導入マップに従って第2の流路調整機構42が開放されて、一部の排気ガスは排気再循環通路LBを介して吸気通路LDに還流される。
FIG. 4 is an explanatory diagram illustrating a state when a load is applied to the internal combustion engine 20 during the warm-up operation.
When the accelerator pedal is depressed during the warm-up operation and a load is applied to the internal combustion engine 20, the amount of exhaust gas from the internal combustion engine 20 increases. For this reason, the pressure in the region R increases more than in the state where no load is applied as shown in FIG.
In addition, the second flow path adjusting mechanism 42 is opened according to the above-described EGR introduction map, and a part of the exhaust gas is returned to the intake path LD via the exhaust recirculation path LB.

圧力センサ18で検出された領域R内の圧力が所定圧以上となった場合、ECU50は、まず図4Aに示すように第3の流路調整機構44の開度を大きくしてバイパス通路LCの流路面積を拡大する。これにより、バイパス通路LCを介して車外に排出される排気ガス量が増加して領域R内の圧力が低下する。このとき第3の流路調整機構44の開度は、領域R内の圧力が所定圧未満となるまで広げられる。
また、内燃機関20からの排気ガス量が多い場合など、第3の流路調整機構44を全開にしてバイパス通路LCの流路面積を最大にした後も領域R内が所定圧以上である場合、ECU50は、図4Bに示すように第1の流路調整機構40の開度を大きくして排気通路LAの流路面積を拡大する。これにより、排気再循環通路LBに導入される排気ガス量が低減して領域R内の圧力が低下する。
このようにすることで、領域R内の圧力上昇により配管の破損等が生じるのを防止しながら、排気ガスから冷却媒体への熱量移動を促進させ、早期に内燃機関20の暖機を図ることができる。
なお、図4Aのように、まず第3の流路調整機構44のみの開度を調整するのは、第1の流路調整機構40の開度を大きくした場合、排気再循環通路LBに導入される排気ガス量が減少し、排気クーラ26における熱交換量が低減して暖機完了までの所要時間が長くなってしまうためである。
When the pressure in the region R detected by the pressure sensor 18 becomes equal to or higher than the predetermined pressure, the ECU 50 first increases the opening degree of the third flow path adjustment mechanism 44 to increase the opening degree of the bypass passage LC as shown in FIG. 4A. Increase the flow area. As a result, the amount of exhaust gas discharged outside the vehicle via the bypass passage LC increases, and the pressure in the region R decreases. At this time, the opening degree of the third flow path adjusting mechanism 44 is increased until the pressure in the region R becomes lower than the predetermined pressure.
Further, when the amount of exhaust gas from the internal combustion engine 20 is large, for example, when the third passage adjustment mechanism 44 is fully opened to maximize the passage area of the bypass passage LC, the pressure in the region R is equal to or higher than a predetermined pressure. The ECU 50 increases the opening degree of the first flow path adjusting mechanism 40 to increase the flow path area of the exhaust passage LA as shown in FIG. 4B. As a result, the amount of exhaust gas introduced into the exhaust gas recirculation passage LB decreases, and the pressure in the region R decreases.
By doing so, the heat transfer from the exhaust gas to the cooling medium is promoted while preventing the piping from being damaged due to the pressure increase in the region R, and the internal combustion engine 20 is warmed up early. Can be.
As shown in FIG. 4A, first, the opening of only the third flow path adjusting mechanism 44 is adjusted when the opening of the first flow path adjusting mechanism 40 is increased. This is because the amount of exhaust gas to be reduced decreases, the amount of heat exchange in the exhaust cooler 26 decreases, and the time required for completing warm-up increases.

また、冷却媒体の温度が所定温度以上となり、暖機が完了した場合、ECU50は第1の流路調整機構40の開度を大きくし、暖機中(冷却媒体の温度が所定温度未満のとき)よりも排気通路LAの流路面積を拡大する。
これにより、排気再循環通路LBに導入される排気ガス量が減少して、排気クーラ26内で排気ガスから冷却媒体に移動する熱量が低減し、内燃機関20の過熱を防止することができる。
When the temperature of the cooling medium becomes equal to or higher than the predetermined temperature and the warm-up is completed, the ECU 50 increases the opening degree of the first flow path adjusting mechanism 40, and during the warm-up (when the temperature of the cooling medium is lower than the predetermined temperature). ), The flow passage area of the exhaust passage LA is enlarged.
As a result, the amount of exhaust gas introduced into the exhaust recirculation passage LB decreases, the amount of heat transferred from the exhaust gas to the cooling medium in the exhaust cooler 26 decreases, and overheating of the internal combustion engine 20 can be prevented.

以上説明したように、実施の形態にかかる暖機促進システム10によれば、内燃機関20の暖機中に排気クーラ26を含む領域R内の圧力を上昇させるので、この領域R内の排気ガス温度が上昇するとともに、この領域R内における排気ガスの流速が遅くなる。これにより、排気クーラ26内で排気ガスから冷却媒体に移動する熱量が大きくなり、単に排気ガスを排気再循環通路LBに導入するよりも迅速に冷却媒体の温度を上昇させ、内燃機関20の暖機を図る上で有利となる。
また、暖機促進システム10によれば、排気通路LAの流路面積よりもバイパス通路LCの流路面積を大きくする。このため、排気通路LAから排気再循環通路LBに導入される排気ガス量と比較して排気再循環通路LBからバイパス通路LCに導入される排気ガス量が少なくなり、上記領域内Rの圧力を確実に上昇させる上で有利となる。
また、暖機促進システム10によれば、領域R内の圧力が高くなり過ぎた場合に各流路調整機構により圧力を調整するので、過度な圧力による配管の破損等を防止し、暖機促進システム10の耐久性を向上させる上で有利となる。また、この時第3の流路調整機構44を開ききってから第1の流路調整機構40の開度を大きくするので、排気再循環通路LBに導入する排気ガス量を極力減らさずに領域R内の圧力を調整し、短時間で内燃機関20の暖機を行う上で有利となる。
また、暖機促進システム10によれば、冷却媒体の温度が所定温度以上となった場合には排気再循環通路LBに導入する排気ガス量を低減し、排気クーラ26における冷却媒体との熱交換量を低減させる。このため、冷却媒体によって内燃機関20が過熱されるのを防止し、内燃機関20を適切な温度に維持する上で有利となる。
As described above, according to the warm-up promotion system 10 according to the embodiment, the pressure in the region R including the exhaust cooler 26 is increased during the warm-up of the internal combustion engine 20, so that the exhaust gas in the region R is increased. As the temperature increases, the flow rate of the exhaust gas in the region R decreases. As a result, the amount of heat transferred from the exhaust gas to the cooling medium in the exhaust cooler 26 increases, and the temperature of the cooling medium is increased more quickly than simply introducing the exhaust gas into the exhaust recirculation passage LB, thereby warming the internal combustion engine 20. This is advantageous for planning.
Further, according to the warm-up promoting system 10, the flow passage area of the bypass passage LC is made larger than the flow passage area of the exhaust passage LA. Therefore, the amount of exhaust gas introduced from the exhaust gas recirculation passage LB to the bypass passage LC becomes smaller than the amount of exhaust gas introduced from the exhaust passage LA to the exhaust gas recirculation passage LB, and the pressure in the region R is reduced. This is advantageous in assuredly ascending.
Further, according to the warm-up promotion system 10, when the pressure in the region R becomes too high, the pressure is adjusted by the respective flow path adjusting mechanisms. Therefore, breakage of piping due to excessive pressure is prevented, and warm-up is promoted. This is advantageous in improving the durability of the system 10. At this time, since the opening degree of the first flow path adjusting mechanism 40 is increased after the third flow path adjusting mechanism 44 is fully opened, the area of the exhaust gas introduced into the exhaust gas recirculation passage LB is not reduced as much as possible. This is advantageous in adjusting the pressure in the R and warming up the internal combustion engine 20 in a short time.
Further, according to the warm-up promoting system 10, when the temperature of the cooling medium becomes equal to or higher than the predetermined temperature, the amount of exhaust gas introduced into the exhaust recirculation passage LB is reduced, and heat exchange with the cooling medium in the exhaust cooler 26 is performed. Reduce the volume. For this reason, it is advantageous to prevent the internal combustion engine 20 from being overheated by the cooling medium and maintain the internal combustion engine 20 at an appropriate temperature.

10……暖機促進システム、20……内燃機関、26……排気クーラ、28……排気クーラ冷却路、32……ラジエータ、34……エンジン冷却路、40……第1の流路調整機構、42……第2の流路調整機構、44……第3の流路調整機構、50……ECU、52……アクセルペダルセンサ、54……車輪速センサ、LA……排気通路、LB……排気再循環通路、LC……バイパス通路。   10 warm-up promotion system, 20 internal combustion engine, 26 exhaust cooler, 28 exhaust cooler cooling path, 32 radiator, 34 engine cooling path, 40 first flow path adjusting mechanism , 42 second flow path adjusting mechanism, 44 third flow adjusting mechanism, 50 ECU, 52 accelerator pedal sensor 54 wheel speed sensor LA exhaust path LB ... Exhaust recirculation passage, LC ... Bypass passage.

Claims (3)

内燃機関から排出された排気ガスを車外に排出する排気通路の流路面積を変更する第1の流路調整機構と、
前記第1の流路調整機構より排気ガス流れ上流側の前記排気通路から分岐し前記排気ガスを前記内燃機関の吸気通路に還流する排気再循環通路の流路面積を変更する第2の流路調整機構と、
前記第2の流路調整機構より前記排気ガス流れ上流側の前記排気再循環通路から分岐し前記第1の流路調整機構より前記排気ガス流れ下流側の前記排気通路へと接続するバイパス通路の流路面積を変更する第3の流路調整機構と、
前記バイパス通路との分岐より前記排気ガス流れ上流側の前記排気再循環通路上に設けられ、冷却媒体により前記排気ガスを冷却する排気クーラと、
前記排気クーラと前記内燃機関とをつなぎ、前記冷却媒体と前記内燃機関との間の熱交換を可能とする冷却路と、
前記第1の流路調整機構の前記排気ガス流れ上流側の前記排気通路内の圧力と、前記第2の流路調整機構の前記排気ガス流れ上流側の前記排気再還流通路内の圧力と、前記第3の流路調整機構の前記排気ガス流れ上流側の前記バイパス通路の圧力と、のうちいずれか1つの圧力を検出する圧力センサと、を備え、
前記冷却媒体の温度が所定温度未満の場合、前記第1の流路調整機構、前記第2の流路調整機構および前記第3の流路調整機構は、それぞれの流路の流路面積を制限し、
前記圧力が所定圧以上となった場合、前記第3の流路調整機構は前記バイパス通路の流路面積を拡大し、
前記バイパス通路の流路面積が最大になった後も前記圧力が前記所定圧以上である場合、前記第1の流路調整機構は前記排気通路の流路面積を拡大する、
ことを特徴とする内燃機関の暖機促進システム。
A first flow path adjusting mechanism that changes a flow path area of an exhaust passage that discharges exhaust gas discharged from the internal combustion engine to the outside of the vehicle;
A second flow path that changes a flow area of an exhaust recirculation passage that branches from the exhaust passage upstream of the first flow passage adjusting mechanism and that recirculates the exhaust gas to an intake passage of the internal combustion engine; An adjustment mechanism;
A bypass passage branched from the exhaust gas recirculation passage upstream of the second flow passage adjustment mechanism and upstream of the exhaust gas flow and connected to the exhaust passage downstream of the first flow passage adjustment mechanism and downstream of the exhaust gas flow; A third flow path adjusting mechanism for changing a flow path area;
An exhaust cooler that is provided on the exhaust gas recirculation passage on the exhaust gas flow upstream side of the branch with the bypass passage, and cools the exhaust gas with a cooling medium;
A cooling path that connects the exhaust cooler and the internal combustion engine and enables heat exchange between the cooling medium and the internal combustion engine;
Pressure in the exhaust passage on the exhaust gas flow upstream side of the first flow path adjustment mechanism, and pressure in the exhaust gas recirculation passage on the exhaust gas flow upstream side of the second flow path adjustment mechanism; A pressure sensor that detects any one of the pressure of the bypass passage on the exhaust gas flow upstream side of the third flow path adjustment mechanism,
When the temperature of the cooling medium is lower than a predetermined temperature, the first flow path adjustment mechanism, the second flow path adjustment mechanism, and the third flow path adjustment mechanism limit the flow path area of each flow path. And
When the pressure is equal to or higher than a predetermined pressure, the third flow path adjusting mechanism enlarges the flow path area of the bypass passage,
When the pressure is equal to or higher than the predetermined pressure even after the flow passage area of the bypass passage is maximized, the first flow passage adjustment mechanism enlarges the flow passage area of the exhaust passage.
A warming-up system for an internal combustion engine, characterized in that:
前記第3の流路調整機構は、前記第1の流路調整機構により制限された前記排気通路の流路面積よりも前記バイパス通路の流路面積を大きくする、
ことを特徴とする請求項1記載の内燃機関の暖機促進システム。
The third flow path adjusting mechanism increases a flow area of the bypass passage than a flow area of the exhaust passage limited by the first flow path adjusting mechanism.
The warming-up system for an internal combustion engine according to claim 1, wherein:
前記冷却媒体の温度が前記所定温度以上となった場合、
前記第1の流路調整機構は、前記冷却媒体の温度が前記所定温度未満のときよりも前記排気通路の流路面積を大きくする、
ことを特徴とする請求項1または2記載の内燃機関の暖機促進システム。
When the temperature of the cooling medium is equal to or higher than the predetermined temperature,
The first flow path adjustment mechanism increases the flow path area of the exhaust passage than when the temperature of the cooling medium is lower than the predetermined temperature.
The warm-up promotion system for an internal combustion engine according to claim 1 or 2, wherein:
JP2016012137A 2016-01-26 2016-01-26 Warm-up promotion system for internal combustion engine Active JP6648536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012137A JP6648536B2 (en) 2016-01-26 2016-01-26 Warm-up promotion system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012137A JP6648536B2 (en) 2016-01-26 2016-01-26 Warm-up promotion system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017133382A JP2017133382A (en) 2017-08-03
JP6648536B2 true JP6648536B2 (en) 2020-02-14

Family

ID=59504250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012137A Active JP6648536B2 (en) 2016-01-26 2016-01-26 Warm-up promotion system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6648536B2 (en)

Also Published As

Publication number Publication date
JP2017133382A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6051989B2 (en) Engine cooling system
JP5699839B2 (en) Engine cooling system
JP6339701B2 (en) Cooling control device for internal combustion engine
JP6090138B2 (en) Engine cooling system
JP6064981B2 (en) Control device for internal combustion engine
US20180038267A1 (en) Cooling Device of Internal Combustion Engine for Vehicle and Control Method Thereof
JP2011047305A (en) Internal combustion engine
JP6536708B2 (en) EGR system for internal combustion engine
JP2018178881A (en) Egr cooling device
JP2010229878A (en) Cooling system of internal combustion engine
EP3327272B1 (en) Control device for internal combustion engine
JP6648536B2 (en) Warm-up promotion system for internal combustion engine
US9551270B2 (en) Control device for coolant flow in an internal combustion engine
JP2012082723A (en) Cooling device of internal combustion engine
JP5994450B2 (en) Control device for variable flow pump
JP6421597B2 (en) Intake air temperature controller
JP4775196B2 (en) Engine supercharger
JP7135402B2 (en) cooling system
JP2017133383A (en) Exhaust gas recirculation system for internal combustion engine
JP2011220171A (en) Apparatus for controlling internal combustion engine
JP6544375B2 (en) Internal combustion engine cooling system
JP2006143012A (en) Temperature adjusting device for vehicle
JP6443728B2 (en) Engine exhaust heat recovery system
JP6306337B2 (en) Control device for internal combustion engine
JP2006037931A (en) Intake air heating device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R151 Written notification of patent or utility model registration

Ref document number: 6648536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151