JP6648064B2 - Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion - Google Patents

Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion Download PDF

Info

Publication number
JP6648064B2
JP6648064B2 JP2017083208A JP2017083208A JP6648064B2 JP 6648064 B2 JP6648064 B2 JP 6648064B2 JP 2017083208 A JP2017083208 A JP 2017083208A JP 2017083208 A JP2017083208 A JP 2017083208A JP 6648064 B2 JP6648064 B2 JP 6648064B2
Authority
JP
Japan
Prior art keywords
silica
particles
composite fine
based composite
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017083208A
Other languages
Japanese (ja)
Other versions
JP2017214271A (en
Inventor
祐二 俵迫
祐二 俵迫
小松 通郎
通郎 小松
真也 碓田
真也 碓田
中山 和洋
和洋 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Publication of JP2017214271A publication Critical patent/JP2017214271A/en
Application granted granted Critical
Publication of JP6648064B2 publication Critical patent/JP6648064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体デバイス製造に使用される研磨剤として好適なシリカ系複合微粒子分散液に関し、特に基板上に形成された被研磨膜を、化学機械的研磨(ケミカルメカニカルポリッシング、CMP)で平坦化するためのシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用砥粒分散液に関する。   The present invention relates to a silica-based composite fine particle dispersion suitable as an abrasive used in the manufacture of semiconductor devices, and in particular, to planarize a film to be polished formed on a substrate by chemical mechanical polishing (Chemical Mechanical Polishing, CMP). The present invention relates to a silica-based composite fine particle dispersion, a method for producing the same, and a polishing abrasive dispersion containing the silica-based composite fine particle dispersion.

半導体基板、配線基板などの半導体デバイスなどは、高密度化・微細化することで高性能化を実現している。この半導体の製造工程においては、いわゆるケミカルメカニカルポリッシング(CMP)が適用されており、具体的にはシャロートレンチ素子分離、層間絶縁膜の平坦化、コンタクトプラグやCuダマシン配線の形成などに必須の技術となっている。   2. Description of the Related Art Semiconductor devices such as semiconductor substrates and wiring substrates achieve high performance by increasing the density and miniaturization. In the manufacturing process of this semiconductor, so-called chemical mechanical polishing (CMP) is applied, and specifically, a technique indispensable for shallow trench element isolation, flattening of an interlayer insulating film, formation of contact plugs and Cu damascene wiring, and the like. It has become.

一般にCMP用研磨剤は、砥粒とケミカル成分とからなり、ケミカル成分は対象被膜を酸化や腐食などさせることにより研磨を促進させる役割を担う。一方で砥粒は機械的作用により研磨する役割を持ち、コロイダルシリカやヒュームドシリカ、セリア粒子が砥粒として使われる。特にセリア粒子は酸化ケイ素膜に対して特異的に高い研磨速度を示すことから、シャロートレンチ素子分離工程での研磨に適用されている。
シャロートレンチ素子分離工程では、酸化ケイ素膜の研磨だけではなく、窒化ケイ素膜の研磨も行われる。素子分離を容易にするためには、酸化ケイ素膜の研磨速度が高く、窒化ケイ素膜の研磨速度が低い事が望ましく、この研磨速度比(選択比)も重要である。
Generally, the CMP polishing slurry is composed of abrasive grains and a chemical component, and the chemical component plays a role of promoting polishing by oxidizing or corroding a target film. On the other hand, abrasive grains have a role of polishing by mechanical action, and colloidal silica, fumed silica, and ceria particles are used as abrasive grains. In particular, since ceria particles exhibit a specifically high polishing rate for a silicon oxide film, they are applied to polishing in a shallow trench element isolation step.
In the shallow trench element isolation step, not only polishing of a silicon oxide film but also polishing of a silicon nitride film is performed. In order to facilitate element isolation, it is desirable that the polishing rate of the silicon oxide film is high and the polishing rate of the silicon nitride film is low. The polishing rate ratio (selectivity) is also important.

従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
Conventionally, as a method of polishing such a member, a relatively rough primary polishing process is performed, and then a precise secondary polishing process is performed, whereby a smooth surface or an extremely high-precision surface with few scratches or the like is obtained. The way to get is done.
Conventionally, for example, the following methods have been proposed for the polishing agent used for the secondary polishing as the finish polishing.

例えば、特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5〜10となる量比で攪拌混合し、続いて70〜100℃に急速加熱し、その温度で熟成することを特徴とする酸化セリウム単結晶からなる酸化セリウム超微粒子(平均粒子径10〜80nm)の製造方法が記載されており、更にこの製造方法によれば、粒子径の均一性が高く、かつ粒子形状の均一性も高い酸化セリウム超微粒子を提供できると記載されている。   For example, Patent Literature 1 discloses that an aqueous solution of cerous nitrate and a base are mixed under stirring at an amount ratio of pH 5 to 10, followed by rapid heating to 70 to 100 ° C and aging at that temperature. A method for producing ultrafine cerium oxide fine particles (average particle diameter: 10 to 80 nm) comprising a cerium oxide single crystal characterized by the following characteristics is further described. According to this production method, the particle diameter is high and the particle shape is high. It is described that cerium oxide ultrafine particles having high uniformity can be provided.

また、非特許文献1は、特許文献1に記載の酸化セリウム超微粒子の製造方法と類似した製造工程を含むセリアコートシリカの製造方法を開示している。このセリアコートシリカの製造方法は、特許文献1に記載の製造方法に含まれるような焼成―分散の工程を有さないものである。   Non-Patent Document 1 discloses a method for producing ceria-coated silica including a production step similar to the method for producing cerium oxide ultrafine particles described in Patent Document 1. This method for producing ceria-coated silica does not include a firing-dispersion step as included in the production method described in Patent Document 1.

さらに、特許文献2には、非晶質のシリカ粒子Aの表面に、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。また、好ましい態様として、非晶質のシリカ粒子Aの表面に、アルミニウム等の元素を含む非晶質の酸化物層であって、非晶質のシリカ層とは異なる非晶質の酸化物層Cを有し、さらに、その上にジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。そして、このようなシリカ系複合粒子は、非晶質のシリカ粒子Aの表面に、結晶質の酸化物層Bを有するために、研磨速度を向上させることができ、かつ、シリカ粒子に前処理をすることにより、焼成時に粒子同士の焼結が抑制され研磨スラリー中での分散性を向上させることができ、さらに、酸化セリウムを含まない、あるいは酸化セリウムの使用量を大幅に低減することができるので、安価であって研磨性能の高い研磨材を提供することができると記載されている。また、シリカ系粒子Aと酸化物層Bの間にさらに非晶質の酸化物層Cを有するものは、粒子の焼結抑制効果と研磨速度を向上させる効果に特に優れると記載されている。   Further, Patent Document 2 discloses that at least one kind selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium is provided on the surface of amorphous silica particles A. A silica-based composite particle having a crystalline oxide layer B containing an element is described. Further, as a preferred embodiment, an amorphous oxide layer containing an element such as aluminum, which is different from the amorphous silica layer, is provided on the surface of the amorphous silica particles A. C is a crystalline oxide layer further containing at least one element selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium B-containing silica-based composite particles are described. Since such a silica-based composite particle has a crystalline oxide layer B on the surface of the amorphous silica particle A, the polishing rate can be improved, and the silica particle is pretreated. By doing so, sintering of particles during firing is suppressed, dispersibility in the polishing slurry can be improved, and further, cerium oxide is not contained, or the use amount of cerium oxide can be significantly reduced. It is described that the method can provide an inexpensive abrasive having high polishing performance. Further, it is described that those having an amorphous oxide layer C between the silica-based particles A and the oxide layer B are particularly excellent in the effect of suppressing sintering of the particles and the effect of improving the polishing rate.

特許第2746861号公報Japanese Patent No. 2748661 特開2013−119131号公報JP 2013-119131 A

Seung−Ho Lee, Zhenyu Lu, S.V.Babu and Egon Matijevic、"Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria"、Journal of Materials Research、Volume 17、Issue 10、2002、pp2744−2749See Seung-Ho Lee, Zhenyu Lu, S.M. V. Babu and Egon Matijevic, "Chemical mechanical polishing of thermal oxide films using silicone particles coated with each cereal, 27th edition of the joint venture, and 27th edition of the journal."

しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の悪化、スクラッチ増加、研磨基材表面への研磨材の残留)を生じやすいことが判明した。
これは、焼成工程を含むセリア粒子の製造方法(焼成によりセリア粒子の結晶化度が高まる)に比べて、特許文献1に記載の酸化セリウム超微粒子の製法は、焼成工程を含まず、液相(硝酸第一セリウムを含む水溶液)から酸化セリウム粒子を結晶化させるだけなので、生成する酸化セリウム粒子の結晶化度が相対的に低く、また、焼成処理を経ないため酸化セリウムが母粒子と固着せず、酸化セリウム脱落し、が研磨基材の表面に残留することが主要因であると、本発明者は推定している。
However, when the present inventor actually manufactured and examined the cerium oxide ultrafine particles described in Patent Document 1, the polishing rate was low, and the surface of the polishing substrate had defects (deterioration of surface accuracy, increase of scratches, (Residual polishing material on the surface of the polishing base material).
This is because the method for producing ultrafine cerium oxide particles described in Patent Literature 1 does not include the sintering step, and is different from the method for producing ceria particles including the sintering step (the degree of crystallinity of the ceria particles is increased by sintering). Since the cerium oxide particles are only crystallized from the (aqueous solution containing cerous nitrate), the cerium oxide particles to be produced have relatively low crystallinity, and the cerium oxide solidifies with the base particles because it does not undergo a calcination treatment. The present inventor presumes that the main factor is that cerium oxide does not adhere and falls off and remains on the surface of the polishing substrate.

また、非特許文献1に記載のセリアコートシリカは焼成していないためセリアの結晶化度が低く、そのため、現実の研磨速度は低いと考えられ、また、セリアが脱落し、研磨基材の表面への粒子の残留も懸念される。   In addition, the ceria-coated silica described in Non-Patent Document 1 is not calcined, so the ceria crystallinity is low, and therefore, it is considered that the actual polishing rate is low, and the ceria drops off and the surface of the polishing base material is removed. There is also a concern that particles may remain on the surface.

さらに、特許文献2に記載の酸化物層Cを有する態様のシリカ系複合粒子を用いて研磨すると、アルミニウム等の不純物が半導体デバイスの表面に残留し、半導体デバイスへ悪影響を及ぼすこともあることを、本発明者は見出した。   Furthermore, when polishing is performed using the silica-based composite particles having the oxide layer C described in Patent Document 2, impurities such as aluminum remain on the surface of the semiconductor device, which may adversely affect the semiconductor device. The inventor has found out.

本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、基板上の砥粒残が少ない、基板Ra値の良化等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用砥粒分散液を提供することを目的とする。   An object of the present invention is to solve the above problems. That is, the present invention is capable of polishing at high speed even with a silica film, a Si wafer, or a difficult-to-process material, and at the same time, achieves high surface accuracy (low scratches, little abrasive grains remaining on the substrate, improvement of the substrate Ra value). And the like, a silica-based composite fine particle dispersion that can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate, a method for producing the same, and a polishing abrasive dispersion containing the silica-based composite fine particle dispersion. The purpose is to provide.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(8)である。
(1)非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面の一部にシリカ被膜を有している、下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの結晶子径が10〜25nmであること。
[4]前記子粒子の主成分である結晶性セリアにケイ素原子が固溶していること。
(2)前記子粒子に含まれるセリウム原子およびケイ素原子ついて、隣接するセリウム−ケイ素原子間距離をR1とし、隣接するセリウム−セリウム原子間距離をR2としたときに、R1<R2の関係を満たす、上記(1)に記載のシリカ系複合微粒子分散液。
(3)前記シリカ系複合微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(1)又は(2)に記載のシリカ系複合微粒子分散液。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
(4)上記(1)〜(3)の何れかに記載のシリカ系複合微粒子分散液を含む研磨用砥粒分散液。
(5)シリカ膜が形成された半導体基板の平坦化のために用いることを特徴とする上記(4)記載の研磨用砥粒分散液。
(6)pHが3〜8である、上記(5)に記載の研磨用砥粒分散液。
(7)下記の工程1〜工程3を含み、上記(1)〜(3)の何れかに記載のシリカ系複合微粒子分散液が得られることを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(ii)の処理をして焼成体解砕分散液を得る工程。
ii)溶媒を加えて、pH8.6〜10.8の範囲にて、湿式で解砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。
(8)前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(7)記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and have completed the present invention.
The present invention is the following (1) to (8).
(1) A mother particle having amorphous silica as a main component, a child particle having crystalline ceria as a main component on a surface thereof, and a silica coating on a part of the surface of the child particle. A silica-based composite fine particle dispersion containing silica-based composite fine particles having an average particle diameter of 50 to 350 nm and having the features of [1] to [4].
[1] The silica-based composite fine particles have a mass ratio of silica to ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] The silica-based composite fine particles have a crystallite diameter of the crystalline ceria of 10 to 25 nm measured by X-ray diffraction.
[4] A silicon atom is dissolved in crystalline ceria which is a main component of the child particles.
(2) Regarding cerium atoms and silicon atoms contained in the above-mentioned child particles, when the distance between adjacent cerium-silicon atoms is R 1 and the distance between adjacent cerium-cerium atoms is R 2 , R 1 <R 2 The silica-based composite fine particle dispersion according to the above (1), which satisfies the following relationship:
(3) The silica-based composite fine particles according to the above (1) or (2), wherein the content ratio of impurities contained in the silica-based composite fine particles is as shown in the following (a) and (b). Dispersion.
(A) The content of each of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 100 ppm or less.
(B) The content of each of U, Th, Cl, NO 3 , SO 4 and F is 5 ppm or less.
(4) A polishing abrasive dispersion containing the silica-based composite fine particle dispersion according to any one of the above (1) to (3).
(5) The polishing abrasive dispersion according to the above (4), which is used for flattening a semiconductor substrate on which a silica film is formed.
(6) The abrasive grain dispersion for polishing according to the above (5), wherein the pH is 3 to 8.
(7) A method for producing a silica-based composite fine particle dispersion, comprising the following steps 1 to 3, wherein the silica-based composite fine particle dispersion according to any one of the above (1) to (3) is obtained. .
Step 1: A silica fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and a cerium metal salt is continuously added thereto while maintaining the temperature at 5 to 98 ° C and the pH within a range of 7.0 to 9.0. A step of obtaining the precursor particle dispersion liquid containing the precursor particles by adding the precursor particles intermittently or intermittently.
Step 2: the precursor particle dispersion is dried, and calcined at 400~1,200 ° C., the resulting fired body, as engineering to obtain a sintered body disintegration dispersion was processed in the following (ii) .
( Ii) A solvent is added and the mixture is wet-crushed in a pH range of 8.6 to 10.8.
Step 3: a step of obtaining a silica-based composite fine particle dispersion by subjecting the fired body crushed dispersion to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more, and subsequently removing the sedimentation component.
(8) The method for producing a silica-based composite fine particle dispersion according to the above (7), wherein the content ratio of the impurities contained in the silica fine particles is as follows (a) and (b).
(A) The content of each of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 100 ppm or less.
(B) The content of each of U, Th, Cl, NO 3 , SO 4 and F is 5 ppm or less.

本発明によれば、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、被研磨基板の表面粗さ(Ra)が低いこと等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用砥粒分散液を提供することができる。
本発明のシリカ系複合微粒子分散液は、半導体デバイス表面の平坦化に有効であり、特にはシリカ絶縁膜が形成された基板の研磨に好適である。
ADVANTAGE OF THE INVENTION According to this invention, even if it is a silica film, a Si wafer, or a difficult-to-machine material, it can be polished at high speed, and at the same time, has high surface accuracy (low scratch, low surface roughness (Ra) of the substrate to be polished, etc.). The present invention provides a silica-based composite fine particle dispersion which can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate and a wiring substrate, a method for producing the same, and a polishing abrasive dispersion including the silica-based composite fine particle dispersion. can do.
The silica-based composite fine particle dispersion of the present invention is effective for flattening the surface of a semiconductor device, and is particularly suitable for polishing a substrate on which a silica insulating film is formed.

図1(a)は実施例4において得られたSEM像であり、図1(b)は実施例4において得られたTEM像である。FIG. 1A is an SEM image obtained in Example 4, and FIG. 1B is a TEM image obtained in Example 4. 実施例4において得られたX線回折パターンである。9 is an X-ray diffraction pattern obtained in Example 4. 図3(a)は比較例2において得られたSEM像であり、図3(b)は比較例2において得られたTEM像である。FIG. 3A is an SEM image obtained in Comparative Example 2, and FIG. 3B is a TEM image obtained in Comparative Example 2. 比較例2において得られたX線回折パターンである。9 is an X-ray diffraction pattern obtained in Comparative Example 2. 図5(a)は実施例4において得られたTEMであり、図5(b)は、図5(a)の一部を拡大したTEM像である。FIG. 5A is a TEM obtained in Example 4, and FIG. 5B is a TEM image in which a part of FIG. 5A is enlarged. 流動電位の滴定図である。FIG. 4 is a titration diagram of streaming potential.

本発明について説明する。
本発明は、非晶質シリカを主成分とする母粒子(「母粒子」のことを以下では「シリカ微粒子」ともいう)の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面の一部にシリカ被膜を有し、さらに下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液である。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの結晶子径が10〜25nmであること。
[4]前記子粒子の主成分である結晶性セリアにケイ素原子が固溶していること。
このようなシリカ系複合微粒子分散液を、以下では「本発明の分散液」ともいう。
また、本発明の分散液が含むシリカ系複合微粒子を、以下では「本発明の複合微粒子」ともいう。
The present invention will be described.
The present invention has child particles mainly composed of crystalline ceria on the surface of base particles mainly composed of amorphous silica (hereinafter, the “base particles” are also referred to as “silica fine particles”), further comprising by silica coating on a part of the surface of the daughter particles, further from the following [1] including the average particle diameter 50~350nm of silica composite particles comprising the features of [4], a silica-based composite fine particles dispersion is there.
[1] The silica-based composite fine particles have a mass ratio of silica to ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] The silica-based composite fine particles have a crystallite diameter of the crystalline ceria of 10 to 25 nm measured by X-ray diffraction.
[4] A silicon atom is dissolved in crystalline ceria which is a main component of the child particles.
Hereinafter, such a silica-based composite fine particle dispersion is also referred to as “dispersion of the present invention”.
In addition, the silica-based composite fine particles contained in the dispersion of the present invention are hereinafter also referred to as “composite fine particles of the present invention”.

また、本発明は、下記の工程1〜工程3を備え、本発明の分散液が得られる、シリカ系複合微粒子分散液の製造方法である。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(ii)の処理をして焼成体解砕分散液を得る工程。
ii)溶媒を加えて、pH8.6〜10.8の範囲にて、湿式で解砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。なお、相対遠心加速度とは、地球の重力加速度を1Gとして、その比で表したものである。
このようなシリカ系複合微粒子分散液の製造方法を、以下では「本発明の製造方法」ともいう。
Further, the present invention is a method for producing a silica-based composite fine particle dispersion, which comprises the following steps 1 to 3 and obtains the dispersion of the present invention.
Step 1: A silica fine particle dispersion obtained by dispersing silica fine particles in a solvent is stirred, and while maintaining the temperature at 5 to 98 ° C. and the pH range at 7.0 to 9.0, a cerium metal salt is continuously added thereto. A step of obtaining the precursor particle dispersion liquid containing the precursor particles by adding the precursor particles intermittently or intermittently.
Step 2: the precursor particle dispersion is dried, and calcined at 400~1,200 ° C., the resulting fired body, as engineering to obtain a sintered body disintegration dispersion was processed in the following (ii) .
( Ii) A solvent is added and the mixture is wet-crushed in a pH range of 8.6 to 10.8.
Step 3: a step of obtaining a silica-based composite fine particle dispersion by subjecting the fired body crushed dispersion to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more, and subsequently removing the sedimentation component. The relative centrifugal acceleration is expressed by a ratio of the gravitational acceleration of the earth to 1 G.
Hereinafter, the method for producing such a silica-based composite fine particle dispersion is also referred to as “the production method of the present invention”.

本発明の分散液は、本発明の製造方法によって製造することが好ましい。   The dispersion of the present invention is preferably produced by the production method of the present invention.

以下において、単に「本発明」と記した場合、本発明の分散液、本発明の複合微粒子及び本発明の製造方法のいずれをも意味するものとする。   Hereinafter, the term “the present invention” means any of the dispersion of the present invention, the composite fine particles of the present invention, and the production method of the present invention.

本発明の複合微粒子について説明する。   The composite fine particles of the present invention will be described.

<母粒子>
本発明の複合微粒子において、母粒子は非晶質シリカを主成分とする。
<Base particles>
In the composite fine particles of the present invention, the base particles are mainly composed of amorphous silica.

本発明における母粒子に含まれるシリカが非晶質であることは、例えば、次の方法で確認することができる。母粒子(シリカ微粒子)を含む分散液(シリカ微粒子分散液)を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、Cristobaliteのような結晶性シリカのピークは現れない。このことから、母粒子(シリカ微粒子)に含まれるシリカは非晶質であることを確認できる。   The fact that the silica contained in the base particles in the present invention is amorphous can be confirmed, for example, by the following method. After drying the dispersion liquid (silica fine particle dispersion) containing the base particles (silica fine particles), the mixture is pulverized using a mortar, for example, using a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Denki Co., Ltd.). When an X-ray diffraction pattern is obtained, a peak of crystalline silica such as Cristoballite does not appear. From this, it can be confirmed that the silica contained in the base particles (silica fine particles) is amorphous.

また「主成分」とは、含有率が90質量%以上であることを意味する。すなわち、母粒子において、非晶質シリカの含有率は90質量%以上である。この含有率は95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99.5質量%以上であることがより好ましい。
以下に示す本発明の説明において「主成分」の文言は、このような意味で用いるものとする。
The term “main component” means that the content is 90% by mass or more. That is, the content of the amorphous silica in the base particles is 90% by mass or more. This content is preferably at least 95% by mass, more preferably at least 98% by mass, and even more preferably at least 99.5% by mass.
In the following description of the present invention, the term "main component" is used in such a meaning.

母粒子は非晶質シリカを主成分とし、その他のもの、例えば、結晶性シリカや不純物元素を含んでもよい。
例えば、前記母粒子(シリカ微粒子)において、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素(以下、「特定不純物群1」と称する場合がある)の含有率が、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。また、前記母粒子(シリカ微粒子)におけるU、Th、Cl、NO3、SO4及びFの各元素(以下、「特定不純物群2」と称する場合がある)の含有率は、それぞれ5ppm以下であることが好ましい。
一般に水硝子を原料として調製したシリカ微粒子は、原料水硝子に由来する前記特定不純物群1と前記特定不純物群2を合計で数千ppm程度含有する。
このようなシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、イオン交換処理を行って前記特定不純物群1と前記特定不純物群2の含有率を下げることは可能であるが、その場合でも前記特定不純物群1と前記特定不純物群2が合計で数ppmから数百ppm残留する。そのため水硝子を原料としたシリカ粒子を用いる場合は、酸処理等で不純物低減させることも行われている。
これに対し、アルコキシシランを原料として合成したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、通常、前記特定不純物群1及び前記特定不純物群2における各元素と各陰イオンの含有率は、それぞれ20ppm以下である。
なお、本発明において、母粒子(シリカ微粒子)におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの各々の含有率は、それぞれ次の方法を用いて測定して求めた値とする。
・Na及びK:原子吸光分光分析
・Ag、Al、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びTh:ICP(誘導結合プラズマ発光分光分析)
・Cl:電位差滴定法
・NO3、SO4及びF:イオンクロマトグラフ
The base particles contain amorphous silica as a main component, and may contain other materials, for example, crystalline silica or an impurity element.
For example, in the base particles (silica fine particles), each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr (hereinafter, referred to as “specific impurity group 1”). In some cases) is preferably 100 ppm or less. Further, it is preferably at most 50 ppm, more preferably at most 25 ppm, further preferably at most 5 ppm, still more preferably at most 1 ppm. The content of each of the elements U, Th, Cl, NO 3 , SO 4, and F (hereinafter sometimes referred to as “specific impurity group 2”) in the base particles (fine silica particles) is 5 ppm or less, respectively. Preferably, there is.
In general, silica fine particles prepared using water glass as a raw material contain the specific impurity group 1 and the specific impurity group 2 derived from the raw water glass in the order of several thousand ppm in total.
In the case of a silica fine particle dispersion in which such silica fine particles are dispersed in a solvent, it is possible to reduce the content of the specific impurity group 1 and the specific impurity group 2 by performing ion exchange treatment. However, the specific impurity group 1 and the specific impurity group 2 remain in a few ppm to a few hundred ppm in total. Therefore, when using silica particles made from water glass, impurities are also reduced by acid treatment or the like.
On the other hand, in the case of a silica fine particle dispersion in which silica fine particles synthesized using alkoxysilane as a raw material are dispersed in a solvent, the content of each element and each anion in the specific impurity group 1 and the specific impurity group 2 is usually used. Is 20 ppm or less in each case.
In the present invention, Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 and SO 4 in the base particles (silica fine particles) are used. And the content of each of F is a value determined by measurement using the following method.
-Na and K: Atomic absorption spectroscopy-Ag, Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U and Th: ICP (inductively coupled plasma emission spectroscopy)
· Cl: potentiometric titration · NO 3, SO 4 and F: ion chromatograph

後述のとおり本発明におけるシリカ系複合微粒子の平均粒子径は50〜350nmの範囲にあるので、その母粒子の平均粒子径は必然的に350nmより小さい値となる。なお、本願において母粒子の平均粒子径は、後述する本発明の製造方法が含む工程1で使用するシリカ微粒子分散液に含まれるシリカ微粒子の平均粒子径と同じとする。この母粒子の平均粒子径が30〜330nmの範囲であるシリカ系複合微粒子が好適に使用される。
母粒子の平均粒子径が上記のような範囲にあると、本発明の分散液を研磨剤として用いた場合にスクラッチが少なくなる。母粒子の平均粒子径が30nmよりも小さいと研磨レートが不足する傾向がある。平均粒子径が330nmよりも大きいと、かえって研磨レートが低下する傾向がある。また、基板の面精度が悪化する傾向がある。
As described below, since the average particle size of the silica-based composite fine particles in the present invention is in the range of 50 to 350 nm, the average particle size of the base particles is necessarily smaller than 350 nm. In the present application, the average particle diameter of the base particles is the same as the average particle diameter of the silica fine particles contained in the silica fine particle dispersion used in Step 1 included in the production method of the present invention described below. Silica-based composite fine particles having an average particle diameter of the base particles in the range of 30 to 330 nm are preferably used.
When the average particle diameter of the base particles is in the above range, scratches are reduced when the dispersion of the present invention is used as an abrasive. If the average particle size of the base particles is smaller than 30 nm, the polishing rate tends to be insufficient. If the average particle diameter is larger than 330 nm, the polishing rate tends to decrease. In addition, the surface accuracy of the substrate tends to deteriorate.

本発明における母粒子(シリカ微粒子)の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。シリカ微粒子を水等に分散させ、シリカ微粒子分散液を得た後、このシリカ微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
なお、測定装置は各工程の目的や想定される粒子径や粒度分布に応じて使い分けられる。具体的には約100nm以下で粒度の揃った原料の単分散シリカ微粒子はPAR−IIIを用い、100nm以上とサイズが大きな単分散の原料シリカ微粒子はLA−950で測定し、解砕によりミクロンメーターからナノメーターまで粒子径が幅広く変化する解砕工程では、公知の動的光散乱法による粒子径測定装置や公知のレーザー回折散乱法による測定装置(好ましくはマイクロトラックUPAやLA−950)を用いることが好ましい。
The average particle diameter of the base particles (silica fine particles) in the present invention means a value measured by a dynamic light scattering method or a laser diffraction scattering method. Specifically, it means a value obtained by measurement by the following method. After dispersing the silica fine particles in water or the like to obtain a silica fine particle dispersion, the silica fine particle dispersion is subjected to a particle diameter measuring device using a known dynamic light scattering method (for example, a Microtrack UPA device manufactured by Nikkiso Co., Ltd., The measurement is performed using a measuring apparatus (for example, LA-950 manufactured by HORIBA) using a laser diffraction scattering method (PAR-III manufactured by Otsuka Electronics Co., Ltd.).
In addition, the measuring device is properly used according to the purpose of each step, the assumed particle diameter and the particle size distribution. Specifically, monodisperse silica fine particles of a raw material having a uniform particle size of about 100 nm or less use PAR-III, and monodisperse raw silica fine particles having a large size of 100 nm or more are measured by LA-950. In the disintegration step in which the particle diameter varies widely from to nanometers, a particle diameter measuring device using a known dynamic light scattering method or a measuring device using a known laser diffraction scattering method (preferably, Microtrack UPA or LA-950) is used. Is preferred.

母粒子(シリカ微粒子)の形状は特に限定されず、例えば、球状、俵状、短繊維状、四面体状(三角錐型)、六面体状、八面体状、板状、不定形の他に表面に疣状突起を有するものや、金平糖状のものであってもよく、また、多孔質状のものであってもよいが、球状のものが好ましい。球状とは、単一粒子の母粒子の短径/長径比が0.8以下の粒子個数比が10%以下のものである。母粒子は、短径/長径比が0.8以下の粒子個数比が5%以下のものであることがより好ましく、0%のものであることがさらに好ましい。
短径/長径比は、後述する本発明の複合微粒子の短径/長径比の測定方法(画像解析法)と同様の方法で測定する。
The shape of the base particles (silica fine particles) is not particularly limited, and examples thereof include a spherical surface, a bale shape, a short fiber shape, a tetrahedral shape (triangular pyramid shape), a hexahedral shape, an octahedral shape, a plate shape, and an irregular shape. May have a wart-like protrusion, a spine-like one, or a porous one, but a spherical one is preferred. The term “spherical” means that the ratio of the number of particles having a minor axis / major axis ratio of 0.8 or less is 10% or less. The base particles preferably have a minor axis / major axis ratio of 0.8 or less and a particle number ratio of 5% or less, and more preferably 0%.
The minor axis / major axis ratio is measured by the same method as the below-described method of measuring the minor axis / major axis ratio (image analysis method) of the composite fine particles of the present invention.

<子粒子>
本発明の複合微粒子は、上記のような母粒子の表面上に子粒子を有する。ここで、シリカ被膜が全体を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。このような態様であっても、母粒子の表面上に子粒子が存在する態様であり、本発明の技術的範囲に含まれる。
<Child particle>
The composite fine particles of the present invention have child particles on the surface of the above-described base particles. Here, the child particles whose entirety is covered with the silica coating may be bonded to the base particles via the silica coating. Even such an embodiment is an embodiment in which the child particles are present on the surface of the base particle, and is included in the technical scope of the present invention.

本発明の複合微粒子において、子粒子は結晶性セリアを主成分とする。   In the composite fine particles of the present invention, the sub-particles mainly contain crystalline ceria.

前記子粒子が結晶性セリアであることは、例えば、本発明の分散液を、乾燥させたのち乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によって得たX線回折パターンにおいて、セリアの結晶相のみが検出されることから確認できる。なお、セリアの結晶相としては、Cerianite等が挙げられる。   The fact that the child particles are crystalline ceria means that, for example, the dispersion of the present invention is dried and then crushed using a mortar, for example, using a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Denki Co., Ltd.). This can be confirmed from the fact that only the ceria crystal phase is detected in the X-ray diffraction pattern obtained by the method (1). In addition, as the ceria crystal phase, Cerianite and the like can be mentioned.

子粒子は結晶性セリア(結晶性Ce酸化物)を主成分とし、その他のもの、例えばセリウム以外の元素を含んでもよい。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相のみが検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ないため、X線回折による検出範囲外となる。
なお、「主成分」の定義は前述の通りである。
The secondary particles have crystalline ceria (crystalline Ce oxide) as a main component, and may contain other elements, for example, elements other than cerium.
However, as described above, when the composite fine particles of the present invention are subjected to X-ray diffraction, only the ceria crystal phase is detected. In other words, even if a crystal phase other than ceria is included, the content is small, and therefore, is out of the detection range by X-ray diffraction.
The definition of “principal component” is as described above.

子粒子について、本発明の複合微粒子をX線回折に供して測定される、結晶性セリアの結晶子径は10〜25nmであり、11〜23nmであることが好ましく、12〜20nmであることがより好ましい。   Regarding the child particles, the crystallite diameter of the crystalline ceria measured by subjecting the composite fine particles of the present invention to X-ray diffraction is 10 to 25 nm, preferably 11 to 23 nm, and more preferably 12 to 20 nm. More preferred.

結晶性セリアの結晶子径は、X線回折パターンの最大ピークの半値全幅から求められる。そして、例えば(111)面の平均結晶子径は10〜25nm(半値全幅は0.86〜0.34°)であり、11〜23nm(半値全幅は0.78〜0.37°)であることがこのましく、12〜20nm(半値全幅は0.79〜0.43°)であることがより好ましい。なお、多くの場合は(111)面のピークの強度が最大になるが、またその結晶面は(111)面(2θ=28度近傍)に限定されず、他の結晶面、例えば(100)面のピークの強度が最大であってもよい。その場合も同様に算出でき、その場合の平均結晶子径の大きさは、上記の(111)面の平均結晶子径と同じであってよい。
子粒子の平均結晶子径の測定方法を、(111)面(2θ=28度近傍)の場合を例として以下に示す。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、下記のScherrerの式により、結晶子径を求めることができる。
D=Kλ/βcosθ
D:結晶子径(オングストローム)
K:Scherrer定数(ここでは、K=0.94)
λ:X線波長(1.7889オングストローム、Cuランプ)
β:半価幅(rad)
θ:反射角
The crystallite diameter of crystalline ceria is determined from the full width at half maximum of the maximum peak of the X-ray diffraction pattern. For example, the average crystallite diameter of the (111) plane is 10 to 25 nm (full width at half maximum is 0.86 to 0.34 °), and 11 to 23 nm (full width at half maximum is 0.78 to 0.37 °). More preferably, it is 12 to 20 nm (the full width at half maximum is 0.79 to 0.43 °). In many cases, the intensity of the peak of the (111) plane is maximized. However, the crystal plane is not limited to the (111) plane (around 2θ = 28 degrees), and is not limited to another crystal plane, for example, (100). The peak intensity of the surface may be maximum. In this case, the average crystallite diameter can be calculated in the same manner. In this case, the average crystallite diameter may be the same as the average crystallite diameter of the (111) plane.
The method of measuring the average crystallite diameter of the child particles will be described below by taking, as an example, the case of the (111) plane (around 2θ = 28 °).
First, the composite fine particles of the present invention are pulverized using a mortar, and an X-ray diffraction pattern is obtained using, for example, a conventionally known X-ray diffractometer (for example, RINT1400, manufactured by Rigaku Denki Co., Ltd.). Then, the half-value width of the peak of the (111) plane near 2θ = 28 degrees in the obtained X-ray diffraction pattern is measured, and the crystallite diameter can be obtained by the following Scherrer equation.
D = Kλ / βcosθ
D: crystallite diameter (angstrom)
K: Scherrer constant (here, K = 0.94)
λ: X-ray wavelength (1.7889 angstroms, Cu lamp)
β: half width (rad)
θ: reflection angle

子粒子の大きさは、母粒子より小さく、平均粒子径11〜26nmであることが好ましく、12〜23nmであることがより好ましい。子粒子の大きさは、透過型電子顕微鏡を用いて30万倍に拡大した写真投影図(例えば後述する図1(C))において、任意の50個の子粒子について平均粒子径を測定し、これらを単純平均して得た値を意味する。   The size of the child particles is smaller than that of the base particles, preferably has an average particle diameter of 11 to 26 nm, more preferably 12 to 23 nm. The size of the child particles was determined by measuring the average particle diameter of arbitrary 50 child particles in a photograph projection view (for example, FIG. 1 (C) described later) magnified 300,000 times using a transmission electron microscope. It means the value obtained by simply averaging these.

<シリカ被膜>
本発明の複合微粒子は、前記母粒子の表面上に前記子粒子を有し、さらにその子粒子の表面にシリカ被膜を有している。ここで、前記母粒子の表面に前記子粒子が結合しており、さらにそれらを覆うシリカ被膜を有していてもよい。すなわち、前記母粒子の表面に前記子粒子が結合してなる複合粒子の一部をシリカ被膜が覆っている。よって、本発明の複合微粒子の最表面にはシリカ被膜が存在している。
<Silica coating>
The composite fine particles of the present invention have the child particles on the surface of the base particles, and further have a silica coating on the surface of the child particles. Here, the child particles may be bonded to the surface of the base particles, and further have a silica coating covering them. That is, the part of the composite particles in which the child particles are attached to the surface of the mother particle silica film covers. Therefore, the silica coating is present on the outermost surface of the composite fine particles of the present invention.

本発明の複合微粒子について透過型電子顕微鏡を用いて観察して得られる像(TEM像)では、母粒子の表面に子粒子の像が濃く現れるが、その子粒子の外側、すなわち、本発明の複合微粒子の表面側には、相対的に薄い像として、シリカ被膜が現れる。また、子粒子(セリア微粒子)が母粒子(シリカ微粒子)と結合している態様であってよく、シリカ被膜が一部を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。
また、本発明の複合微粒子をEDS分析に供し、元素分布を得ると、粒子の表面側にCe濃度が高い部分が現れるが、さらにその外側にSi濃度が高い部分が現れる。
また、上記のように透過型電子顕微鏡によって特定した前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定を行って当該部分のSi原子数%及びCe原子数%を求めると、Si原子数%が非常に高いことを確認することができる。具体的には、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上となる。
In the image (TEM image) obtained by observing the composite fine particles of the present invention using a transmission electron microscope, an image of the child particles appears dark on the surface of the base particles, but outside the child particles, that is, the composite of the present invention. On the surface side of the fine particles, a silica coating appears as a relatively thin image. Further, an embodiment in which the child particles (ceria fine particles) are bonded to the base particles (silica fine particles) may be adopted, in which the child particles partially covered by the silica coating are bonded to the base particles via the silica coating. It may be.
When the composite fine particles of the present invention are subjected to EDS analysis to obtain an element distribution, a portion having a high Ce concentration appears on the surface side of the particles, and a portion having a high Si concentration appears further outside.
Further, when the EDS measurement in which the electron beam is selectively applied to the portion of the silica coating specified by the transmission electron microscope as described above is performed to determine the Si atom number% and the Ce atom%, the Si atom It can be seen that a few percent are very high. Specifically, the ratio of the number of Si atoms to the number of Ce atoms (% of Si atoms /% of Ce atoms) is 0.9 or more.

このようなシリカ被膜は、子粒子(セリア結晶粒子)と母粒子(シリカ微粒子)の結合(力)を助長すると考えられる。よって、例えば、本発明の分散液を得る工程で、焼成して得られたシリカ系複合微粒子について湿式による解砕を行うことで、シリカ系複合微粒子分散液が得られるが、シリカ被膜により、子粒子(セリア結晶粒子)が母粒子(シリカ微粒子)から外れる事を防ぐ効果があるものと考えられる。この場合、局部的な子粒子の脱落は問題なく、また、子粒子の表面の全てがシリカ被膜で覆われていなくても良い。子粒子が解砕工程で母粒子から外れない程度の強固さがあれば良い。
このような構造を備えると、本発明の分散液を研磨剤として用いた場合、研磨速度が高く、面精度やスクラッチの悪化が少ないと考えられる。
また、本発明の複合微粒子では子粒子の表面の一部はシリカ層によって被覆されているので、本発明の複合微粒子の最表面(最外殻)にはシリカのOH基が存在することになる。このため研磨剤として利用した場合に、本発明の複合微粒子は研磨基板表面の−OH基による電荷で反発しあい、その結果、研磨基板表面への付着が少なくなると考えられる。
また遊離セリアは正の電荷をもつため基板へ付着しやすい。本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、子粒子のセリア粒子が研磨時に脱落しても、その表面はシリカで覆われているため負の電荷を有しており、基板への付着を低減化する効果もある。
また、セリアはシリカや研磨基板、研磨パッドとは電位が異なり、pHはアルカリ性から中性付近でマイナスのゼータ電位が減少して行き、弱酸性領域では逆のプラスの電位を持つ。そのため電位の大きさの違いや極性の違いなどで研磨基材や研磨パッドに付着し、研磨基材や研磨パッドに残り易い。一方、本発明のシリカ系複合微粒子は、子粒子であるセリアがシリカ被膜でその一部が覆われているため、pHがアルカリ性から酸性までマイナスの電位を維持するため、研磨基材や研磨パッドへの砥粒残りが起きにくい。
Such a silica coating is considered to promote the bonding (force) between the child particles (ceria crystal particles) and the mother particles (silica fine particles). Thus, for example, in the step of obtaining the dispersion of the present invention, the silica-based composite fine particle dispersion is obtained by subjecting the silica-based composite fine particles obtained by firing to wet disintegration to obtain a silica-based composite fine particle dispersion. It is considered that the particles (ceria crystal particles) have an effect of preventing the particles from deviating from the base particles (silica fine particles). In this case, there is no problem that the child particles locally fall off, and the entire surface of the child particles does not have to be covered with the silica coating. It suffices that the particles have such a rigidity that the particles do not separate from the base particles in the crushing step.
When such a structure is provided, it is considered that when the dispersion of the present invention is used as an abrasive, the polishing rate is high, and the deterioration of surface accuracy and scratches is small.
Further, in the composite fine particles of the present invention, since a part of the surface of the child particles is covered with the silica layer, the OH group of silica exists on the outermost surface (outermost shell) of the composite fine particles of the present invention. . For this reason, when used as an abrasive, the composite fine particles of the present invention are repelled by the charge due to the -OH group on the surface of the polishing substrate, and as a result, it is thought that the adhesion to the surface of the polishing substrate is reduced.
In addition, free ceria has a positive charge and thus easily adheres to the substrate. When the composite fine particles of the present invention have a silica coating on the surface of the child particles, even if the ceria particles of the child particles fall off during polishing, the surface has a negative charge because it is covered with silica. This also has the effect of reducing adhesion to the substrate.
Further, ceria has a different potential from silica, a polishing substrate and a polishing pad, and has a negative zeta potential decreasing from alkaline to near neutral pH, and has an opposite positive potential in a weakly acidic region. Therefore, it adheres to the polishing base or the polishing pad due to the difference in the magnitude of the potential or the difference in the polarity, and tends to remain on the polishing base or the polishing pad. On the other hand, in the silica-based composite fine particles of the present invention, the ceria, which is a child particle, is partially covered with a silica coating, so that the pH maintains a negative potential from alkaline to acidic. Less abrasive particles remain on the surface.

シリカ被膜の厚さは、TEM像やSEM像から母粒子上のセリアの子粒子のシリカ被膜による被覆具合で概ね求められる。つまり、上記のように、TEM像では、母粒子の表面に粒子径が約20nm前後の子粒子の像が濃く現れ、その子粒子の外側に相対的に薄い像としてシリカ被膜が現れるので、子粒子の大きさと対比する事で、シリカ被膜の厚さを概ね求めることができる。この厚さは、SEM像から子粒子が凹凸としてハッキリ確認できて、TEM像からシリカ系複合微粒子の輪郭に凹凸が見られるのならば、シリカ被膜の厚さは20nmをはるかに下回る事が考えられる。一方、SEM像から子粒子の凹凸がはっきりせずに、TEM像からもシリカ系複合微粒子の輪郭に凹凸が見られないなら、シリカ被膜の厚さは約20nm前後であると考えられる。   The thickness of the silica coating is generally determined from the TEM image and the SEM image by the degree of coverage of the ceria child particles on the base particles with the silica coating. That is, as described above, in the TEM image, an image of a child particle having a particle diameter of about 20 nm appears densely on the surface of the base particle, and a silica coating appears as a relatively thin image outside the child particle. By comparing with the size of the silica film, the thickness of the silica coating can be approximately determined. As for this thickness, if the child particles can be clearly confirmed as irregularities from the SEM image, and if the irregularities are seen in the outline of the silica-based composite fine particles from the TEM image, it is considered that the thickness of the silica film is much less than 20 nm. Can be On the other hand, if the irregularities of the child particles are not clear from the SEM image and no irregularities are seen in the outline of the silica-based composite fine particles from the TEM image, it is considered that the thickness of the silica coating is about 20 nm.

なお、上記のように、最外層(母粒子側の反対)のシリカ被膜は、子粒子(セリア微粒子)の全体を完全に覆っていなくてもよい。すなわち、本発明の複合微粒子の最表面にはシリカ被膜が存在しているが、シリカ被膜が存在していない部分があってもよい。また、シリカ系複合微粒子の母粒子が露出する部分が存在しても構わない。   In addition, as described above, the silica coating of the outermost layer (opposite to the base particle side) may not completely cover the entirety of the child particles (ceria fine particles). That is, although the silica coating is present on the outermost surface of the composite fine particles of the present invention, there may be a portion where the silica coating is not present. Further, there may be a portion where the base particles of the silica-based composite fine particles are exposed.

<本発明の複合微粒子>
本発明の複合微粒子は、上記のように、母粒子の表面に、上記のような子粒子を有している。
<Composite fine particles of the present invention>
As described above, the composite fine particles of the present invention have the above-described child particles on the surface of the base particles.

本発明の複合微粒子において、シリカとセリアとの質量比は100:11〜316であり、100:30〜230であることが好ましく、100:30〜150であることがより好ましく、100:60〜120であることがさらに好ましい。シリカとセリアとの質量比は、概ね、母粒子と子粒子との質量比と同程度と考えられる。母粒子に対する子粒子の量が少なすぎると、母粒子同士が結合し、粗大粒子が発生する場合がある。この場合に本発明の分散液を含む研磨剤(研磨砥粒分散液)は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、シリカに対するセリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、粒子同士の融着が進む。その結果、基板表面の粗度が上昇(表面粗さRaの悪化)したり、スクラッチが増加する、更に遊離したセリアが基板に残留する、研磨装置の廃液配管等への付着といったトラブルを起こす原因ともなりやすい。
なお、前記質量比を算定する場合の対象となるシリカとは、次の(I)〜(III)の全てを含むものである。
(I)母粒子を構成するシリカ成分
(II)母粒子に子粒子(セリア成分)が結合してなる複合微粒子を、覆ってなるシリカ被膜に含まれるシリカ成分
(III)セリア子粒子中に固溶しているシリカ成分
In the composite fine particles of the present invention, the mass ratio of silica to ceria is 100: 11-316, preferably 100: 30-230, more preferably 100: 30-150, and 100: 60- More preferably, it is 120. It is considered that the mass ratio between silica and ceria is approximately the same as the mass ratio between the mother particles and the child particles. If the amount of the child particles is too small relative to the base particles, the base particles may be bonded to each other to generate coarse particles. In this case, the abrasive (polishing abrasive particle dispersion) containing the dispersion of the present invention may cause defects (decrease in surface accuracy such as increase in scratches) on the surface of the polishing base material. Also, if the amount of ceria relative to silica is too large, not only is it costly, but also resource risk increases. Further, fusion of the particles proceeds. As a result, the causes of troubles such as an increase in the roughness of the substrate surface (deterioration of the surface roughness Ra), an increase in scratches, the release of ceria remaining on the substrate, and adhesion to waste liquid piping of a polishing apparatus. It is easy to become.
The silica to be used in calculating the mass ratio includes all of the following (I) to (III).
(I) Silica component constituting mother particles (II) Composite fine particles obtained by bonding child particles (ceria component) to mother particles are solidified in silica component (III) ceria child particles contained in a covering silica coating. Dissolved silica component

本発明の複合微粒子におけるシリカ(SiO2)とセリア(CeO2)の含有率(質量%)は、まず本発明の複合微粒子の分散液(本発明の分散液)の固形分濃度を、1000℃灼熱減量を行って秤量により求める。
次に、所定量の本発明の複合微粒子に含まれるセリウム(Ce)の含有率(質量%)をICPプラズマ発光分析により求め、CeO2質量%に換算する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出することができる。
なお、本発明の製造方法においては、シリカとセリアの質量比は、本発明の分散液を調製する際に投入したシリカ源物質とセリア源物質との使用量から算定することもできる。これは、セリアやシリカが溶解し除去されるプロセスとなっていない場合に適用でき、そのような場合はセリアやシリカの使用量と分析値が良い一致を示す。
The content (% by mass) of silica (SiO 2 ) and ceria (CeO 2 ) in the composite fine particles of the present invention is determined by first setting the solid content concentration of the dispersion of the composite fine particles of the present invention (the dispersion of the present invention) to 1000 ° C. The weight loss is determined by igniting.
Next, the content (% by mass) of cerium (Ce) contained in a predetermined amount of the composite fine particles of the present invention is determined by ICP plasma emission analysis, and is converted to 2 % by mass of CeO. Then, assuming that the component other than CeO 2 constituting the composite fine particles of the present invention is SiO 2 , the SiO 2 mass% can be calculated.
In the production method of the present invention, the mass ratio of silica to ceria can also be calculated from the amounts of the silica source substance and the ceria source substance used when preparing the dispersion of the present invention. This can be applied when the process is not such that ceria or silica is dissolved and removed, and in such a case, the used amount of ceria and silica and the analysis value show good agreement.

本発明の複合微粒子はシリカ微粒子(母粒子)の表面に粒子状の結晶性セリア(子粒子)が焼結等して結合したものであってよい。この場合、本発明の複合微粒子は、凹凸の表面形状を有している。
すなわち、母粒子と子粒子との少なくとも一方(好ましくは双方)が、それらの接点において、焼結結合し、強固に結合していてもよい。ただし、シリカ被膜に覆われた子粒子が、そのシリカ被膜を介して母粒子と結合している場合もある。
The composite fine particles of the present invention may be those in which particulate crystalline ceria (child particles) are bonded to the surface of silica fine particles (base particles) by sintering or the like. In this case, the composite fine particles of the present invention have an uneven surface shape.
That is, at least one (preferably both) of the base particle and the child particle may be sinter-bonded and strongly bonded at their contact points. However, the child particles covered with the silica coating may be bonded to the base particles via the silica coating.

本発明の複合微粒子は、前記子粒子の主成分である結晶性セリアにケイ素原子が固溶していることを特徴としている。また、結晶性セリアにケイ素以外の元素が固溶していてもよい。一般に固溶とは、2種類以上の元素(金属の場合も非金属の場合もある)が互いに溶け合い、全体が均一の固相となっているものを意味し、固溶して得られる固溶体は、置換型固溶体と侵入型固溶体とに分類される。置換型固溶体は、原子半径が近い原子において容易に起こり得るが、CeとSiは原子半径が大きく違うため、少なくとも置換型固溶体は生じ難いと見られる。またCerianiteの結晶構造において、Ce中心からみたCeの配位数は8であるが、例えばSiがCeと1対1で置換した場合はCeの配位数は7となるはずである。しかし本発明の複合微粒子の分析結果においてはCe中心からみたCeの平均配位数は7.9で、さらにSiの平均配位数は1.1であることから、本発明の複合微粒子は侵入型であると推定している。そのうえ、本発明の複合微粒子の分析結果からも、隣接するCe−Siの原子間距離は、隣接するCe−Ceの原子間距離よりも小さいことから、本発明の複合微粒子は、侵入型固溶体であると推察される。すなわち、子粒子に含まれるセリウム原子およびケイ素原子について、セリウム−ケイ素原子間距離をR1とし、セリウム−セリウム原子間距離をR2としたときにR1<R2の関係を満たすことが好ましい。
従来、砥粒としてセリア粒子を用いてシリカ膜付基板やガラス基材を研磨すると、他の無機酸化物粒子を用いた場合に比べて、特異的に高い研磨速度を示すことが知られている。セリア粒子がシリカ膜付基板に対して、特に高い研磨速度を示す理由の一つとして、セリア粒子が被研磨基板上のシリカ被膜に対して、高い化学反応性を持つことが指摘されている。
本発明の複合微粒子は、その外表面側に存在する子粒子(セリア微粒子)において、Si原子がCeO2結晶に侵入型の固溶をしていると見られる。Si原子の固溶により、CeO2結晶の結晶歪みが生じることで、CeO2の化学反応性を助長する結果、上記の高い研磨速度を示すものと推察される。
なお、上記のR1、R2等の、セリウム原子およびケイ素原子の原子間距離は、後述する実施例に説明する方法で測定して得た平均結合距離を意味するものとする。
The composite fine particles of the present invention are characterized in that silicon atoms are dissolved in crystalline ceria which is a main component of the above-mentioned child particles. Further, an element other than silicon may be dissolved in crystalline ceria. Generally, solid solution means that two or more types of elements (which may be metallic or non-metallic) are dissolved together and form a uniform solid phase as a whole. , Are classified into substitutional solid solutions and interstitial solid solutions. A substitutional solid solution can easily occur at an atom having a close atomic radius, but it is considered that at least a substitutional solid solution is unlikely to be formed because Ce and Si have greatly different atomic radii. In the crystal structure of Cerianite, the coordination number of Ce as viewed from the center of Ce is 8. For example, when Si is substituted with Ce in a one-to-one correspondence, the coordination number of Ce should be 7. However, according to the analysis results of the composite fine particles of the present invention, the average coordination number of Ce from the center of Ce is 7.9, and the average coordination number of Si is 1.1. Presumed to be type. In addition, from the analysis results of the composite fine particles of the present invention, the interatomic distance between adjacent Ce-Si is smaller than the interatomic distance between adjacent Ce-Ce. Therefore, the composite fine particles of the present invention are interstitial solid solutions. It is presumed that there is. That is, for the cerium atom and the silicon atom contained in the child particles, it is preferable to satisfy the relationship of R 1 <R 2 when the distance between cerium and silicon atoms is R 1 and the distance between cerium and cerium atoms is R 2. .
Conventionally, it has been known that polishing a substrate with a silica film or a glass substrate using ceria particles as abrasive grains shows a specifically high polishing rate as compared with the case of using other inorganic oxide particles. . It is pointed out that one of the reasons why ceria particles exhibit a particularly high polishing rate with respect to a substrate with a silica film is that the ceria particles have high chemical reactivity with respect to a silica coating on a substrate to be polished.
In the composite fine particles of the present invention, in the child particles (ceria fine particles) present on the outer surface side, it is considered that Si atoms form an interstitial solid solution in the CeO 2 crystal. It is presumed that the solid solution of Si atoms causes crystal distortion of the CeO 2 crystal, thereby promoting the chemical reactivity of CeO 2 , resulting in the high polishing rate described above.
The interatomic distance between cerium atom and silicon atom, such as R 1 and R 2 , means an average bonding distance obtained by a method described in Examples described later.

本発明の複合微粒子の形状は、格別に制限されるものではないが、実用上は、粒子連結型であることが好ましい。粒子連結型とは、2個以上の母粒子同士が各々一部において結合しているものを意味する。母粒子同士は少なくとも一方(好ましくは双方)がそれらの接点において溶着し、好ましくは双方が固着することで強固に結合しているものと考えられる。ここで、母粒子同士が結合した後に、その表面に子粒子が結合した場合の他、母粒子の表面に子粒子が結合した後、他のものに結合した場合であっても、粒子連結型とする。
連結型であると基板との接触面積を多くとることができるため、研磨エネルギーを効率良く基板へ伝えることができる。そのため、研磨速度が高い。また、粒子当たりの研磨圧力が単粒子よりも低くなるためスクラッチも少ない。
The shape of the composite fine particles of the present invention is not particularly limited, but is preferably a particle-connected type in practical use. The particle-coupled type means one in which two or more base particles are partially bonded to each other. It is considered that at least one (preferably both) of the base particles is welded at their contact point, and preferably both are firmly bonded by being fixed. Here, in addition to the case where the child particles are bonded to the surface after the mother particles are bonded to each other, even if the child particles are bonded to the surface of the base particle and then bonded to other particles, the particle connection type And
The connection type allows a large contact area with the substrate, so that the polishing energy can be efficiently transmitted to the substrate. Therefore, the polishing rate is high. Further, since the polishing pressure per particle is lower than that of a single particle, scratches are small.

本発明の複合微粒子において、画像解析法で測定された短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合は50%以上であることが好ましい。
ここで、画像解析法で測定された短径/長径比が0.80以下である粒子は、原則的に粒子結合型のものと考えられる。
In the composite fine particles of the present invention, the number ratio of particles having a ratio of minor axis / major axis of 0.80 or less (preferably 0.67 or less) measured by an image analysis method is preferably 50% or more.
Here, particles having a minor axis / major axis ratio of 0.80 or less measured by the image analysis method are considered to be of a particle-bound type in principle.

画像解析法による短径/長径比の測定方法を説明する。透過型電子顕微鏡により、本発明の複合微粒子を倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。これより、短径/長径比(DS/DL)を求める。そして、写真投影図で観察される任意の50個の粒子において、短径/長径比が0.80以下である粒子の個数割合(%)を求める。   A method of measuring the ratio of minor axis / major axis by image analysis will be described. In a photographic projection image obtained by photographing the composite fine particles of the present invention with a transmission electron microscope at a magnification of 250,000 (or 500,000), the maximum diameter of the particles is taken as the major axis, and the length is measured. , And its value is defined as the major axis (DL). Further, a point on the long axis that bisects the long axis is determined, two points where a straight line perpendicular to the long axis intersects the outer edge of the particle are determined, and the distance between the two points is measured to obtain the short diameter (DS). From this, the ratio of minor axis / major axis (DS / DL) is determined. Then, the number ratio (%) of particles having a ratio of minor axis / major axis of 0.80 or less is obtained for any 50 particles observed in the photographic projection.

本発明の複合微粒子では、短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合が55%以上であることが好ましく、65%以上であることがより好ましい。この範囲の本発明の複合微粒子は、研磨材として使用した際に、研磨速度が高くなり好ましい。   In the composite fine particles of the present invention, the number ratio of particles having a minor axis / major axis ratio of 0.80 or less (preferably 0.67 or less) is preferably 55% or more, more preferably 65% or more. . The composite fine particles of the present invention in this range have a high polishing rate when used as an abrasive, and are therefore preferable.

本発明の複合微粒子は前述の粒子連結型であることがより好ましいが、その他の形状のもの、例えば球状粒子を含んでいてもよい。   The composite fine particles of the present invention are more preferably of the above-mentioned particle connection type, but may contain other shapes, for example, spherical particles.

本発明の複合微粒子は、比表面積が4〜100m2/gであることが好ましく、30〜60m2/gであることがより好ましい。 The composite fine particles of the present invention preferably have a specific surface area of 4 to 100 m 2 / g, more preferably 30 to 60 m 2 / g.

ここで、比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
Here, a method for measuring the specific surface area (BET specific surface area) will be described.
First, a dried sample (0.2 g) is put into a measurement cell, degassed at 250 ° C. for 40 minutes in a nitrogen gas stream, and then the sample is mixed with 30% by volume of nitrogen and 70% by volume of helium. The liquid nitrogen temperature is maintained in an air stream, and nitrogen is equilibrium-adsorbed to the sample. Next, the temperature of the sample is gradually raised to room temperature while flowing the above-mentioned mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured by a previously prepared calibration curve.
Such a BET specific surface area measurement method (nitrogen adsorption method) can be performed using, for example, a conventionally known surface area measurement device.
In the present invention, the specific surface area means a value measured by such a method unless otherwise specified.

本発明の複合微粒子の平均粒子径は50〜350nmであることが好ましく、170〜260nmであることがより好ましい。本発明の複合微粒子の平均粒子径が50〜350nmの範囲にある場合、研磨材として適用した際に研磨速度が高くなり好ましい。
本発明の複合微粒子の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。本発明の複合微粒子を水に分散させ、この複合微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
The average particle diameter of the composite fine particles of the present invention is preferably from 50 to 350 nm, more preferably from 170 to 260 nm. When the average particle diameter of the composite fine particles of the present invention is in the range of 50 to 350 nm, the polishing rate is high when applied as an abrasive, which is preferable.
The average particle diameter of the composite fine particles of the present invention means a value measured by a dynamic light scattering method or a laser diffraction scattering method. Specifically, it means a value obtained by measurement by the following method. The composite fine particles of the present invention are dispersed in water, and this composite fine particle dispersion is subjected to a particle diameter measurement apparatus using a known dynamic light scattering method (for example, a Microtrack UPA apparatus manufactured by Nikkiso Co., Ltd., or a PAR-III manufactured by Otsuka Electronics Co., Ltd.). ) Or using a measuring device by laser diffraction scattering method (for example, LA-950 manufactured by HORIBA).

本発明の複合微粒子において、前記特定不純物群1の各元素の含有率は、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。また、本発明の複合微粒子における前記特定不純物群2の各元素の含有率は、それぞれ5ppm以下であることが好ましい。本発明の複合微粒子における特定不純物群1及び前記特定不純物群2それぞれの元素の含有率を低減させる方法については、母粒子(シリカ微粒子)について述べた方法が適用できる。
なお、本発明の複合微粒子における前記特定不純物群1と前記特定不純物群2の各々の元素の含有率は、ICP(誘導結合プラズマ発光分光分析装置)を用いて測定して求める値とする。
In the composite fine particles of the present invention, the content of each element of the specific impurity group 1 is preferably 100 ppm or less. Further, it is preferably at most 50 ppm, more preferably at most 25 ppm, further preferably at most 5 ppm, still more preferably at most 1 ppm. The content of each element of the specific impurity group 2 in the composite fine particles of the present invention is preferably 5 ppm or less. As a method for reducing the content of each element of the specific impurity group 1 and the specific impurity group 2 in the composite fine particles of the present invention, the method described for the base particles (silica fine particles) can be applied.
The content of each element of the specific impurity group 1 and the specific impurity group 2 in the composite fine particles of the present invention is a value obtained by measuring using ICP (inductively coupled plasma emission spectroscopy).

本発明の複合微粒子は、前記特定不純物群1の各元素含有率がそれぞれ100ppm以下であり、前記特定不純物群2の各元素含有率がそれぞれ5ppm以下であることを特徴とする複合酸化物微粒子である場合と、必ずしもこの条件を満たさない複合酸化物微粒子である場合がある。このうち、前者は、高純度な研磨剤の適用が求められる用途、例えば、半導体基板、配線基板などの半導体デバイスなどの研磨用途において研磨剤として好適に使用することができる。また、後者は、高純度な研磨剤の適用が求められない用途、例えば、ガラス研磨などに適用される。もちろん、前者は、高純度な研磨剤の適用が求められない用途にも当然に適用可能である。   The composite fine particles of the present invention are characterized in that the content of each element of the specific impurity group 1 is 100 ppm or less and the content of each element of the specific impurity group 2 is 5 ppm or less, respectively. In some cases, there are cases where the composite oxide fine particles do not necessarily satisfy this condition. Among them, the former can be suitably used as an abrasive in applications requiring the application of a high-purity abrasive, for example, in polishing of semiconductor devices such as semiconductor substrates and wiring boards. In addition, the latter is applied to applications where application of a high-purity abrasive is not required, such as glass polishing. Of course, the former can naturally be applied to applications where application of a high-purity abrasive is not required.

<本発明の分散液>
本発明の分散液について説明する。
本発明の分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
<Dispersion of the present invention>
The dispersion of the present invention will be described.
The dispersion of the present invention is one in which the composite fine particles of the present invention as described above are dispersed in a dispersion solvent.

本発明の分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の分散液は、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで研磨スラリーとして好適に用いられる。   The dispersion of the present invention contains water and / or an organic solvent as a dispersion solvent. As the dispersion solvent, for example, water such as pure water, ultrapure water, or ion-exchanged water is preferably used. Further, the dispersion of the present invention is polished by adding at least one selected from the group consisting of a polishing accelerator, a surfactant, a pH adjuster and a pH buffer as an additive for controlling polishing performance. It is suitably used as a slurry.

また、本発明の分散液を備える分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent including the dispersion of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol and ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoki Glycol ether acetates such as ethyl acetate; methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, esters such as ethylene carbonate; aromatic hydrocarbons such as benzene, toluene, xylene; hexane, heptane, isooctane; Aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, and chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl- Organic solvents such as pyrrolidones such as 2-pyrrolidone can be used. These may be used by mixing with water.

本発明の分散液に含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。   The solid concentration contained in the dispersion of the present invention is preferably in the range of 0.3 to 50% by mass.

本発明の分散液は、カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が―110.0〜―15.0となる流動電位曲線が得られるものであることが好ましい。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
In the dispersion of the present invention, when cationic colloid titration is performed, the ratio of the flow potential change (ΔPCD) represented by the following formula (1) to the addition amount (V) of the cationic colloid titrant in a knick ( It is preferable that a streaming potential curve in which ΔPCD / V) is −110.0 to −15.0 can be obtained.
ΔPCD / V = (IC) / V Equation (1)
C: streaming potential (mV) in the knick
I: streaming potential (mV) at the starting point of the streaming potential curve
V: Amount of the cationic colloid titrant added in the knick (ml)

ここで、カチオンコロイド滴定は、固形分濃度を1質量%に調整した本発明の分散液80gにカチオンコロイド滴定液を添加することで行う。カチオンコロイド滴定液として、0.001Nポリ塩化ジアリルジメチルアンモニウム溶液を用いる。その他の測定条件は文献やメーカー推奨の常法にのっとって好適な方法で行われる。   Here, the cationic colloid titration is performed by adding the cationic colloid titrant to 80 g of the dispersion of the present invention in which the solid content concentration is adjusted to 1% by mass. A 0.001N polydiallyldimethylammonium chloride solution is used as a cationic colloid titrant. Other measurement conditions are measured by a suitable method according to a literature or an ordinary method recommended by a manufacturer.

このカチオンコロイド滴定によって得られる流動電位曲線とは、カチオン滴定液の添加量(ml)をX軸、本発明の分散液の流動電位(mV)をY軸に取ったグラフである。
また、クニックとは、カチオンコロイド滴定によって得られる流動電位曲線において急激に流動電位が変化する点(変曲点)である。そして点(変曲点)における流動電位をC(mV)とし、点(変曲点)におけるカチオンコロイド滴定液の添加量をV(ml)とする。
流動電位曲線の開始点とは、滴定前の本発明の分散液における流動電位である。具体的には、カチオンコロイド滴定液の添加量が0である点を開始点とする。この点における流動電位をI(mV)とする。
The streaming potential curve obtained by the cationic colloid titration is a graph in which the addition amount (ml) of the cationic titrant is plotted on the X-axis and the streaming potential (mV) of the dispersion of the present invention is plotted on the Y-axis.
A knick is a point (inflection point) where the streaming potential changes abruptly in the streaming potential curve obtained by cationic colloid titration. The streaming potential at the point (inflection point) is C (mV), and the addition amount of the cationic colloid titrant at the point (inflection point) is V (ml).
The starting point of the streaming potential curve is the streaming potential of the dispersion of the present invention before titration. Specifically, the point at which the amount of the cationic colloid titrant added is 0 is defined as the starting point. The streaming potential at this point is defined as I (mV).

上記のΔPCD/Vの値が−110.0〜−15.0であると、本発明の分散液を研磨剤として用いた場合、研磨剤の研磨速度がより向上する。このΔPCD/Vは、本発明の複合微粒子表面におけるシリカ被膜の被覆具合及び/又は複合微粒子の表面における子粒子の露出具合あるいは脱離しやすいシリカの存在を反映していると考えられる。ΔPCD/Vの値が上記範囲内であると、湿式による解砕時において子粒子は脱離する事が少なく、研磨速度も高いと本発明者は推定している。逆にΔPCD/Vの値が−110.0よりもその絶対値が大きい場合は、複合微粒子表面がシリカ被膜で全面覆われているため解砕工程にて子粒子脱落は起き難いが研磨時にシリカが脱離しがたく研磨速度が低下する。一方、−15.0よりもその絶対値が小さい場合は脱落が起きやすいと考えられる。上記範囲内であると、研磨時において子粒子表面が適度に露出して子粒子の脱落が少なく、研磨速度がより向上すると本発明者は推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。   When the value of ΔPCD / V is from -110.0 to -15.0, the polishing rate of the abrasive is further improved when the dispersion of the present invention is used as the abrasive. This ΔPCD / V is considered to reflect the degree of coating of the silica coating on the surface of the composite fine particles of the present invention and / or the degree of exposure of the child particles on the surface of the composite fine particles or the presence of silica that is easily detached. The present inventor estimates that when the value of ΔPCD / V is within the above range, the detachment of the child particles during wet pulverization is small and the polishing rate is high. Conversely, if the absolute value of ΔPCD / V is larger than -110.0, the composite fine particle surface is entirely covered with the silica coating, so that it is difficult for child particles to fall off in the crushing step, but the silica particles are polished during polishing. Is difficult to be removed, and the polishing rate decreases. On the other hand, if the absolute value is smaller than -15.0, it is considered that dropout is likely to occur. The present inventors presume that when the content is in the above range, the surface of the child particles is appropriately exposed during polishing, the falling of the child particles is small, and the polishing rate is further improved. ΔPCD / V is more preferably -100.0 to -15.0, and further preferably -100.0 to -20.0.

本発明の分散液は、そのpH値を3〜8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(シリカ系複合微粒子)の残留が生じ難いからである。   When the pH value of the dispersion of the present invention is in the range of 3 to 8, before the start of cationic colloid titration, that is, when the titer is zero, the streaming potential becomes a negative potential. Is preferred. This is because if the streaming potential is maintained at a negative potential, abrasive grains (silica-based composite fine particles) are unlikely to remain on the polishing substrate, which also exhibits a negative surface potential.

本発明の分散液の製造方法は特に限定されないが、次に説明する本発明の製造方法によって製造することが好ましい。   The method for producing the dispersion of the present invention is not particularly limited, but is preferably produced by the production method of the present invention described below.

<本発明の製造方法>
本発明の製造方法について説明する。
本発明の製造方法は以下に説明する工程1〜工程3を備える。
<Production method of the present invention>
The manufacturing method of the present invention will be described.
The manufacturing method of the present invention includes Steps 1 to 3 described below.

<本発明の製造方法>
<工程1>
工程1ではシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用意する。
本発明の製造方法により、半導体デバイスなどの研磨に適用するシリカ系複合微粒子分散液を調製しようとする場合は、シリカ微粒子分散液として、アルコキシシランの加水分解により製造したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用いることが好ましい。なお、従来公知のシリカ微粒子分散液(水硝子を原料として調製したシリカ微粒子分散液等)を原料とする場合は、シリカ微粒子分散液を酸処理し、更に脱イオン処理して使用することが好ましい。この場合、シリカ微粒子に含まれるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの含有率が少なくなり、具体的には、100ppm以下となり得るからである。
なお、具体的には、工程1で使用する原料であるシリカ微粒子分散液中のシリカ微粒子として、次の(a)と(b)の条件を満たすものが好適に使用される。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
<Production method of the present invention>
<Step 1>
In step 1, a silica fine particle dispersion in which silica fine particles are dispersed in a solvent is prepared.
According to the production method of the present invention, when attempting to prepare a silica-based composite fine particle dispersion applied to polishing of a semiconductor device or the like, silica fine particles produced by hydrolysis of alkoxysilane are dispersed in a solvent as a silica fine particle dispersion. It is preferable to use a dispersion liquid of silica fine particles. When a conventionally known silica fine particle dispersion (such as a silica fine particle dispersion prepared using water glass as a raw material) is used as a raw material, the silica fine particle dispersion is preferably subjected to an acid treatment and further deionized. . In this case, the contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 , SO 4 and F contained in the silica fine particles Is, specifically, 100 ppm or less.
Specifically, as the silica fine particles in the silica fine particle dispersion, which is a raw material used in step 1, those satisfying the following conditions (a) and (b) are preferably used.
(A) The content of each of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 100 ppm or less.
(B) The content of each of U, Th, Cl, NO 3 , SO 4 and F is 5 ppm or less.

シリカ微粒子は、平均粒子径が30〜330nmの範囲にあって、画像解析法で測定された短径/長径比が0.95〜1.0の範囲にあるものであることが好ましい。   The silica fine particles preferably have an average particle diameter in the range of 30 to 330 nm and a ratio of minor axis / major axis measured by the image analysis method in the range of 0.95 to 1.0.

工程1では、上記のようなシリカ微粒子が溶媒に分散したシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る。   In Step 1, the silica fine particle dispersion liquid in which the silica fine particles are dispersed in a solvent as described above is stirred, and while maintaining the temperature at 5 to 98 ° C. and the pH range at 7.0 to 9.0, the cerium metal is added thereto. The salt is added continuously or intermittently to obtain a precursor particle dispersion containing the precursor particles.

前記シリカ微粒子分散液における分散媒は水を含むことが好ましく、水系のシリカ微粒子分散液(水ゾル)を使用することが好ましい。   The dispersion medium in the silica fine particle dispersion preferably contains water, and it is preferable to use an aqueous silica fine particle dispersion (water sol).

前記シリカ微粒子分散液における固形分濃度は、SiO2換算基準で1〜40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程でのシリカ濃度が低くなり生産性が悪くなり得る。 The solid content concentration in the silica fine particle dispersion is preferably 1 to 40% by mass in terms of SiO 2 . If this solid content is too low, the silica concentration in the production process will be low, and the productivity may be poor.

また、陽イオン交換樹脂又は陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、シリカ微粒子分散液の脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去したシリカ微粒子分散液は表面にケイ素を含む水酸化物を形成させやすいのでより好ましい。なお、脱イオン処理はこれらに限定されるものではない。   In addition, the impurities are extracted with a cation exchange resin or an anion exchange resin, or a mineral acid, an organic acid, or the like, and the silica fine particle dispersion liquid is subjected to deionization as necessary using an ultrafiltration membrane or the like. Can be. A silica fine particle dispersion from which impurity ions and the like have been removed by deionization treatment is more preferable because a hydroxide containing silicon is easily formed on the surface. The deionization treatment is not limited to these.

工程1では、上記のようなシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加する。
セリウムの金属塩は限定されるものではないが、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムや塩化第一セリウムが好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物が生成し、それらは速やかにシリカ微粒子に凝集沈着機構で付着するので結合性酸化物形成の効率が高く好ましい。しかしこれら金属塩に含まれる硫酸イオン、塩化物イオン、硝酸イオンなどは、腐食性を示す。そのため調合後に後工程で洗浄し5ppm以下に除去する必要がある。一方、炭酸塩は炭酸ガスとして調合中に放出され、またアルコキシドは分解してアルコールとなるため、好ましい。
In step 1, the cerium metal salt is continuously or intermittently added to the silica fine particle dispersion as described above, while maintaining the temperature at 5 to 98 ° C. and the pH range at 7.0 to 9.0. To be added.
The metal salt of cerium is not limited, but chloride, nitrate, sulfate, acetate, carbonate, metal alkoxide and the like of cerium can be used. Specific examples include cerous nitrate, cerium carbonate, cerous sulfate, cerous chloride and the like. Of these, cerous nitrate and cerous chloride are preferred. Crystalline cerium oxide is generated from the solution that has become supersaturated at the same time as the neutralization, and these are quickly attached to the silica fine particles by a coagulation deposition mechanism. However, sulfate ions, chloride ions, nitrate ions and the like contained in these metal salts show corrosiveness. Therefore, it is necessary to wash it in a post-process after the preparation to remove it to 5 ppm or less. On the other hand, carbonates are released during the preparation as carbon dioxide gas, and alkoxides are decomposed into alcohol, which is preferable.

シリカ微粒子分散液に対するセリウムの金属塩の添加量は、得られる本発明の複合微粒子におけるシリカとセリアとの質量比が、前述のように、100:11〜316の範囲となる量とする。
なお、本発明のシリカ系複合微粒子分散液の製造方法において、セリウムの金属塩は、通常、セリウムの金属塩に水又は水系溶媒、酸などを加えてセリウム金属塩水溶液としたものが使用される。セリウム金属塩水溶液のセリア濃度は、格別に制限されるものではないが、作業性等を考慮すると、セリア濃度は1〜40質量%の範囲が好ましい。
The amount of the cerium metal salt added to the silica fine particle dispersion is such that the mass ratio of silica to ceria in the obtained composite fine particles of the present invention is in the range of 100: 11 to 316, as described above.
In the method for producing a silica-based composite fine particle dispersion of the present invention, the cerium metal salt is usually a cerium metal salt obtained by adding water or an aqueous solvent, an acid, etc. to form a cerium metal salt aqueous solution. . The ceria concentration of the cerium metal salt aqueous solution is not particularly limited, but in consideration of workability and the like, the ceria concentration is preferably in the range of 1 to 40% by mass.

シリカ微粒子分散液にセリウムの金属塩を添加した後、撹拌する際の温度は5〜98℃であることが好ましく、10〜95℃であることがより好ましい。この温度が低すぎるとシリカの溶解度が著しく低下するため、セリアの結晶化が制御されなくなり、粗大なセリアの結晶性酸化物が生成して、シリカ微粒子(母粒子)への付着が起こり難くなる事が考えられる。
逆に、この温度が高すぎるとシリカの溶解度が著しく増し、結晶性のセリア酸化物の生成が抑制される事が考えられる。更に、反応器壁面にスケールなどが生じやすくなり好ましくない。
After the addition of the cerium metal salt to the silica fine particle dispersion, the temperature at the time of stirring is preferably from 5 to 98 ° C, more preferably from 10 to 95 ° C. If the temperature is too low, the solubility of silica is remarkably reduced, so that the crystallization of ceria is not controlled, and coarse ceria crystalline oxide is generated, so that adhesion to silica fine particles (base particles) becomes difficult to occur. Things are possible.
Conversely, if the temperature is too high, the solubility of silica will increase significantly, and the generation of crystalline ceria oxide may be suppressed. Further, scale and the like are easily generated on the wall surface of the reactor, which is not preferable.

また、撹拌する際の時間は0.5〜24時間であることが好ましく、0.5〜18時間であることがより好ましい。この時間が短すぎると結晶性の酸化セリウムが十分に形成できないため好ましくない。逆に、この時間が長すぎても結晶性の酸化セリウムの形成はそれ以上反応が進まず不経済となる。なお、前記セリウム金属塩の添加後に、所望により5〜98℃で熟成しても構わない。熟成により、セリウム化合物が母粒子に沈着する反応をより促進させることができる。   The time for stirring is preferably 0.5 to 24 hours, more preferably 0.5 to 18 hours. If the time is too short, crystalline cerium oxide cannot be formed sufficiently, which is not preferable. Conversely, if this time is too long, the formation of crystalline cerium oxide will not proceed further and will be uneconomical. After the addition of the cerium metal salt, aging may be performed at 5 to 98 ° C. if desired. The aging can further promote the reaction of depositing the cerium compound on the base particles.

また、シリカ微粒子分散液にセリウムの金属塩を添加し、撹拌する際のシリカ微粒子分散液のpH範囲は7.0〜9.0とするが、7.6〜8.6とすることが好ましい。この際、アルカリ等を添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。   The pH range of the silica fine particle dispersion at the time of adding the cerium metal salt to the silica fine particle dispersion and stirring the mixture is 7.0 to 9.0, but preferably 7.6 to 8.6. . At this time, it is preferable to adjust the pH by adding an alkali or the like. As an example of such an alkali, a known alkali can be used. Specific examples include, but are not limited to, aqueous ammonia solutions, aqueous alkali hydroxides, alkaline earth metals, and aqueous solutions of amines.

このような工程1によって、本発明の複合微粒子の前駆体である粒子(前駆体粒子)を含む分散液(前駆体粒子分散液)が得られる。   By such a process 1, a dispersion liquid (precursor particle dispersion liquid) containing particles (precursor particles) which are precursors of the composite fine particles of the present invention is obtained.

工程1で得られた前駆体粒子分散液を、工程2に供する前に、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。   Before the precursor particle dispersion obtained in the step 1 is subjected to the step 2, the precursor particle dispersion may be further diluted or concentrated using pure water or ion-exchanged water and then subjected to the next step 2.

なお、前駆体粒子分散液における固形分濃度は1〜27質量%であることが好ましい。   The solid content concentration in the precursor particle dispersion is preferably from 1 to 27% by mass.

また、所望により、前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜、イオン交換膜、遠心分離などを用いて脱イオン処理してもよい。   If desired, the precursor particle dispersion may be deionized using a cation exchange resin, an anion exchange resin, an ultrafiltration membrane, an ion exchange membrane, centrifugation, or the like.

工程1は、より好適には、シリカ微粒子分散液の温度範囲を5〜52℃とし、pH範囲を7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子分散液を調製し、更に該前駆体粒子分散液を温度5〜52℃で熟成することにより行われる。工程1をこのような条件で行った場合、セリウムの金属塩あるいは水酸化セリウムがシリカと液相で反応し、セリウムシリケート化合物が生成し、セリアの結晶成長が阻害される。また同時にセリア微結晶も生成し、母粒子上にセリウムシリケート化合物及びセリアの微結晶が形成される。   In the step 1, more preferably, the metal salt of cerium is added continuously or intermittently while keeping the temperature range of the silica fine particle dispersion at 5 to 52 ° C and maintaining the pH range at 7.0 to 9.0. Then, a precursor particle dispersion is prepared, and the precursor particle dispersion is aged at a temperature of 5 to 52 ° C. When Step 1 is performed under such conditions, the metal salt of cerium or cerium hydroxide reacts with silica in a liquid phase to generate a cerium silicate compound, and inhibits ceria crystal growth. At the same time, ceria microcrystals are generated, and cerium silicate compounds and ceria microcrystals are formed on the mother particles.

<工程2>
工程2では、前駆体粒子分散液を乾燥させた後、400〜1,200℃で焼成する。
<Step 2>
In the step 2, the precursor particle dispersion is dried and then fired at 400 to 1,200 ° C.

乾燥する方法は特に限定されない。従来公知の乾燥機を用いて乾燥させることができる。具体的には、箱型乾燥機、バンド乾燥機、スプレードライアー等を使用することができる。
なお、好適には、さらに乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、強固な凝集体が生成することを抑制できるからである。
乾燥後、焼成する温度は400〜1200℃であるが、800〜1100℃であることが好ましく、1000〜1090℃であることがより好ましい。このような温度範囲において焼成すると、母粒子上のセリウムシリケート化合物からセリウムが拡散してセリアの結晶化が十分に進行し、その結果セリア粒子はシリカ層で被覆される。また、セリア微粒子の表面に存在するシリカ被膜が、適度に厚膜化し、母粒子と子粒子とが強固に結合する。また、このような温度範囲において焼成すると、子粒子の主成分である結晶性セリアにケイ素原子が固溶する。したがって、子粒子に含まれるセリウム原子およびケイ素原子について、セリウム−ケイ素原子間距離をR1とし、セリウム−セリウム原子間距離をR2としたときに、R1<R2の関係を満たすものとなり得る。この温度が高すぎると、セリアの結晶が異常成長したり、セリア粒子上のシリカ被膜が厚くなり母粒子との結合が進むが、セリアの子粒子を厚く覆う事も予想され、母粒子を構成する非晶質シリカが結晶化したり、粒子同士の融着が進む可能性もある。
The method for drying is not particularly limited. Drying can be performed using a conventionally known dryer. Specifically, a box dryer, a band dryer, a spray dryer, or the like can be used.
Preferably, it is further recommended that the pH of the precursor particle dispersion before drying is 6.0 to 7.0. This is because when the pH of the precursor particle dispersion before drying is set to 6.0 to 7.0, it is possible to suppress the formation of a strong aggregate.
After drying, the temperature for baking is 400 to 1200 ° C, preferably 800 to 1100 ° C, and more preferably 1000 to 1090 ° C. When baking is performed in such a temperature range, cerium diffuses from the cerium silicate compound on the base particles, and crystallization of ceria sufficiently proceeds. As a result, the ceria particles are covered with a silica layer. In addition, the silica coating present on the surface of the ceria fine particles is appropriately thickened, and the mother particles and the child particles are firmly bonded. Further, when firing is performed in such a temperature range, silicon atoms form a solid solution in crystalline ceria which is a main component of the child particles. Accordingly, the cerium atom and a silicon atom contained in the daughter particles, cerium - between silicon atoms distance and R 1, cerium - between cerium atom distance is taken as R 2, it will satisfy the relationship of R 1 <R 2 obtain. If this temperature is too high, the ceria crystals will grow abnormally, and the silica coating on the ceria particles will become thicker and bond with the mother particles. The resulting amorphous silica may crystallize or the fusion of particles may proceed.

工程2では、焼成して得られた焼成体に次の(ii)の処理をして焼成体解砕分散液を得る
ii)溶媒を加えて、pH8.6〜10.8(好ましくは9.0〜10.6)の範囲にて、湿式で解砕処理する
湿式の解砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等、ロータ・ステータ式ホモジナイザー、超音波分散式ホモジナイザー、分散液中の微粒子同士をぶつける衝撃粉砕機等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石等を原料としたビーズを挙げることができる。
記(ii)の処理において、溶媒としては、水及び/又は有機溶媒が使用される。例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。また、(ii)の処理により得られる焼成体解砕分散液の固形分濃度は、格別に制限されるものではないが、例えば、0.3〜50質量%の範囲にあることが好ましい。
In step 2, the fired body obtained by firing is subjected to the following process ( ii) to obtain a fired body crushed dispersion .
( Ii) A solvent is added, and the mixture is wet-crushed in a pH range of 8.6 to 10.8 (preferably 9.0 to 10.6) .
Can also be used conventionally known devices as wet-type crushing device, for example, a batch-type bead mill such as a basket mill, horizontal, vertical, annular type continuous type bead mill, sand grinder mill, ball mill, Examples thereof include a wet medium stirring mill (wet crusher) such as a rotor-stator type homogenizer, an ultrasonic dispersion type homogenizer, and an impact crusher that crushes fine particles in a dispersion liquid. Examples of the beads used in the wet medium stirring mill include beads made of glass, alumina, zirconia, steel, flint stone, or the like.
Before Symbol Te processing smell (ii), as the solvent, water and / or organic solvent is used. For example, it is preferable to use water such as pure water, ultrapure water, and ion-exchanged water. Moreover, the solid concentration of the sintered body disintegration dispersion obtained by the process of (ii) are, but are not particularly limited, for example, has preferably in the range of 0.3 to 50 wt% .

なお、前記(ii)の湿式による解砕を行う場合は、溶媒のpHを8.6〜10.8(好ましくは9.0〜10.6)に維持しながら湿式による解砕を行うことが好ましい。pHをこの範囲に維持すると、カチオンコロイド滴定を行った場合に、前記式(1)で表される、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られるシリカ系複合微粒子分散液を、最終的により容易に得ることができる。
すなわち、前述の好ましい態様に該当する本発明の分散液が得られる程度に、解砕を行うことが好ましい。前述のように、好ましい態様に該当する本発明の分散液を研磨剤に用いた場合、研磨速度がより向上するからである。これについて本発明者は、本発明の複合微粒子表面におけるシリカ被膜が適度に薄くなること、及び/又は複合微粒子表面の一部に子粒子が適度に露出することで、研磨速度がより向上し、且つセリアの子粒子の脱落を制御できると推定している。また、シリカ被膜が薄いか剥げた状態であるため、子粒子が研磨時にある程度脱離しやすくなると推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。
In the case of performing the wet disintegration of (ii), the wet disintegration may be performed while maintaining the pH of the solvent at 8.6 to 10.8 (preferably 9.0 to 10.6). preferable. When the pH is maintained in this range, when the cationic colloid titration is performed, the flow potential change (ΔPCD) represented by the above formula (1) and the addition amount (V) of the cationic colloid titrant in the knick are determined. Finally, a silica-based composite fine particle dispersion having a streaming potential curve with a ratio (ΔPCD / V) of −110.0 to −15.0 can be obtained more easily.
That is, it is preferable to carry out crushing to such an extent that the dispersion liquid of the present invention corresponding to the above-mentioned preferred embodiment is obtained. This is because, as described above, when the dispersion of the present invention, which corresponds to a preferred embodiment, is used as an abrasive, the polishing rate is further improved. In this regard, the present inventors have found that the silica coating on the surface of the composite fine particles of the present invention is appropriately thin, and / or that the child particles are appropriately exposed on a part of the surface of the composite fine particles, whereby the polishing rate is further improved, In addition, it is estimated that shedding of ceria child particles can be controlled. In addition, it is estimated that since the silica coating is thin or peeled off, the child particles are likely to detach to some extent during polishing. ΔPCD / V is more preferably -100.0 to -15.0, and further preferably -100.0 to -20.0.

<工程3>
工程3では、工程2において得られた前記焼成体解砕分散液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、シリカ系複合微粒子散液を得る。
具体的には、前記焼成体解砕分散液について、遠心分離処理による分級で粗大粒子や短径/長径比が0.8未満の連結粒子の除去を行う。遠心分離処理における相対遠心加速度は300G以上とする。遠心分離処理後、沈降成分を除去し、シリカ系複合微粒子分散液を得ることができる。相対遠心加速度の上限は格別に制限されるものではないが、実用上は10,000G以下で使用される。
工程3では、上記の条件を満たす遠心分離処理を備えることが必要である。遠心加速度が上記の条件に満たない場合は、シリカ系複合微粒子分散液中に粗大粒子が残存するため、シリカ系複合微粒子分散液を用いた研磨材などの研磨用途に使用した際に、スクラッチが発生する原因となる。
本発明では、上記の製造方法によって得られるシリカ系複合微粒子分散液を、更に乾燥させて、シリカ系複合微粒子を得ることができる。乾燥方法は特に限定されず、例えば、従来公知の乾燥機を用いて乾燥させることができる。
<Step 3>
In the step 3, the fired body disintegrated dispersion obtained in the step 2 is subjected to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more, and subsequently, the sediment component is removed to obtain a silica-based composite fine particle dispersion.
Specifically, coarse particles and connected particles having a minor axis / major axis ratio of less than 0.8 are removed from the fired body crushed dispersion by classification by centrifugation. The relative centrifugal acceleration in the centrifugal separation process is 300 G or more. After the centrifugation treatment, the sediment components are removed to obtain a silica-based composite fine particle dispersion. The upper limit of the relative centrifugal acceleration is not particularly limited, but is practically used at 10,000 G or less.
In step 3, it is necessary to provide a centrifugal separation process satisfying the above conditions. When the centrifugal acceleration is less than the above conditions, coarse particles remain in the silica-based composite fine particle dispersion, so that when used for polishing applications such as an abrasive using the silica-based composite fine particle dispersion, scratches may occur. This will cause it to occur.
In the present invention, the silica-based composite fine particle dispersion obtained by the above production method can be further dried to obtain silica-based composite fine particles. The drying method is not particularly limited, and for example, drying can be performed using a conventionally known dryer.

このような本発明の製造方法によって、本発明の分散液を得ることができる。
また、シリカ微粒子分散液にセリウムの金属塩を添加した際に、調合液の還元電位が正の値をとることが望ましい。酸化還元電位が負となった場合、セリウム化合物がシリカ粒子表面に沈着せずに板状・棒状などのセリウム単独粒子が生成するからである。酸化還元電位を正に保つ方法として過酸化水素などの酸化剤を添加したり、エアーを吹き込む方法が挙げられるが、これらに限定されるものではない。
The dispersion of the present invention can be obtained by such a production method of the present invention.
Further, when the cerium metal salt is added to the silica fine particle dispersion, it is desirable that the reduction potential of the preparation has a positive value. This is because when the oxidation-reduction potential becomes negative, the cerium compound is not deposited on the surface of the silica particles, and cerium single particles such as plate-like and rod-like particles are generated. Examples of a method for maintaining the oxidation-reduction potential at a positive value include a method of adding an oxidizing agent such as hydrogen peroxide and a method of blowing air, but are not limited thereto.

<研磨用砥粒分散液>
本発明の分散液を含む液体は、研磨砥粒分散液(以下では「本発明の研磨用砥粒分散液」ともいう)として好ましく用いることができる。特にはSiO2絶縁膜が形成された半導体基板の平坦化用の研磨砥粒分散液として好適に使用することができる。
ここで本発明の研磨用砥粒分散液を用いてシリカ膜が形成された半導体基板を平坦化する場合、本発明の研磨用砥粒分散液のpHを3〜8とすることが好ましい。
<Abrasive dispersion liquid for polishing>
The liquid containing the dispersion of the present invention can be preferably used as a polishing abrasive dispersion (hereinafter also referred to as “polishing abrasive dispersion of the present invention”). In particular, it can be suitably used as a polishing abrasive dispersion for planarizing a semiconductor substrate on which an SiO 2 insulating film is formed.
Here, when the semiconductor substrate on which the silica film is formed is flattened using the polishing slurry dispersion liquid of the present invention, the pH of the polishing slurry dispersion liquid of the present invention is preferably set to 3 to 8.

本発明の研磨用砥粒分散液は半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ない、基板への砥粒の残留が少ないなどの効果に優れている。   The abrasive dispersion liquid for polishing according to the present invention has excellent effects such as a high polishing rate when polishing a semiconductor substrate and the like, little scratches (scratch) on the polished surface during polishing, and little residual abrasive grains on the substrate. ing.

本発明の研磨用砥粒分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用砥粒分散液は、添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで研磨スラリーとして好適に用いることができる。   The abrasive dispersion liquid for polishing of the present invention contains water and / or an organic solvent as a dispersion solvent. As the dispersion solvent, for example, water such as pure water, ultrapure water, or ion-exchanged water is preferably used. Further, the abrasive grain dispersion for polishing of the present invention is obtained by adding at least one selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer as an additive. It can be suitably used as a polishing slurry.

<研磨促進剤>
本発明の研磨用砥粒分散液には、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
<Polishing accelerator>
The abrasive dispersion liquid for polishing of the present invention varies depending on the type of the material to be polished, but a conventionally known polishing accelerator can be used as necessary. Such examples include hydrogen peroxide, peracetic acid, urea peroxide, and the like, and mixtures thereof. When a polishing composition containing such a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.

研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩及びこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。   Other examples of the polishing accelerator include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid, and hydrofluoric acid, organic acids such as acetic acid, and sodium, potassium, ammonium, and amine salts of these acids. And the like. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished made of a composite component, the polishing rate for a specific component of the material to be polished is promoted so that a flat polishing is finally achieved. You can get a surface.

本発明の研磨用砥粒分散液が研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。   When the abrasive dispersion for polishing of the present invention contains a polishing accelerator, the content is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. .

<界面活性剤及び/又は親水性化合物>
本発明の研磨用砥粒分散液の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤又は親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
<Surfactant and / or hydrophilic compound>
A cationic, anionic, nonionic, amphoteric surfactant or a hydrophilic compound can be added to improve the dispersibility and stability of the abrasive dispersion liquid for polishing of the present invention. Both the surfactant and the hydrophilic compound have a function of reducing the contact angle to the surface to be polished, and a function of promoting uniform polishing. As the surfactant and / or the hydrophilic compound, for example, those selected from the following group can be used.

陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。   Examples of the anionic surfactant include carboxylate, sulfonate, sulfate, and phosphate. As the carboxylate, soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxylate Acid sulfonate, acylated peptide; alkyl sulfonate, alkylbenzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate Salts include sulfated oils, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; and phosphate salts such as alkyl phosphates, polyoxyethylene or polyoxyphosphates. Can pyrene alkyl allyl ether phosphates.

陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。   As cationic surfactants, aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, imidazolinium salts; carboxybetaine type, sulfobetaine type as amphoteric surfactants, Amino carboxylate, imidazolinium betaine, lecithin, alkylamine oxide can be mentioned.

非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキル及びアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。   Examples of the nonionic surfactant include an ether type, an ether ester type, an ester type, and a nitrogen-containing type. Examples of the ether type include polyoxyethylene alkyl and alkyl phenyl ether, alkyl allyl formaldehyde condensed polyoxyethylene ether, and polyoxyethylene poly. Oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ethers, and as the ether ester type, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, as an ester type Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester , Sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amide, and the like. Other examples include a fluorine-based surfactant.

界面活性剤としては陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩及びカリウム塩が好ましい。   As the surfactant, an anionic surfactant or a nonionic surfactant is preferable, and as the salt, an ammonium salt, a potassium salt, a sodium salt and the like can be mentioned, and an ammonium salt and a potassium salt are particularly preferable.

さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステル及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。   Further, as other surfactants and hydrophilic compounds, esters such as glycerin ester, sorbitan ester and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl Polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene Ethers such as recall, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether and alkenyl polypropylene glycol; polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; Polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), poly Acrylic acid, polyacrylamide, amino polyacrylamide, ammonium polyacrylate, sodium polyacrylate, Polycarboxylic acids and salts thereof such as rimidic acid, ammonium polyamic acid salt, polyamic acid sodium salt and polyglyoxylic acid; vinyl polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrolein; ammonium methyltaurate and sodium methyltaurate Sodium methyl sulfate, ethyl ammonium sulfate, butyl ammonium sulfate, sodium vinyl sulfonate, sodium 1-allyl sulfonate, sodium 2-allyl sulfonate, sodium methoxymethyl sulfonate, ammonium ethoxymethyl sulfonate Salts, sulfonic acids such as 3-ethoxypropylsulfonic acid sodium salt, and salts thereof; propionamide, acrylamide, methylurea, nicotinamide, succinamide, and sulf And amides such as phenylamide.

なお、適用する被研磨基材がガラス基板等である場合は、何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属又はハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。   When the substrate to be polished is a glass substrate or the like, any of the surfactants can be suitably used. However, in the case of a silicon substrate for a semiconductor integrated circuit or the like, an alkali metal or an alkaline earth is used. In the case where the influence of contamination by a class of metal or halide is disliked, it is desirable to use an acid or its ammonium salt-based surfactant.

本発明の研磨用砥粒分散液が界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用砥粒分散液の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。   When the abrasive grain dispersion of the present invention contains a surfactant and / or a hydrophilic compound, the content thereof should be 0.001 to 10 g in 1 L of the abrasive grain dispersion in total. Is preferred, more preferably 0.01 to 5 g, and particularly preferably 0.1 to 3 g.

界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用砥粒分散液の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。   In order to obtain a sufficient effect, the content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing slurry dispersion liquid, and is preferably 10 g or less from the viewpoint of preventing a reduction in polishing rate. .

界面活性剤又は親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。   One or more surfactants or hydrophilic compounds may be used, or two or more surfactants or hydrophilic compounds may be used in combination.

<複素環化合物>
本発明の研磨用砥粒分散液を適用する被研磨基材に金属が含まれる場合、金属に不動態層又は溶解抑制層を形成させることで被研磨基材の侵食を抑制するために、本発明の研磨用砥粒分散液へ複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
<Heterocyclic compound>
In the case where a metal to be polished is applied to the substrate to be polished to which the abrasive grain dispersion of the present invention is applied, in order to suppress erosion of the substrate to be polished by forming a passivation layer or a dissolution suppressing layer on the metal, The abrasive dispersion of the invention may contain a heterocyclic compound. Here, the “heterocyclic compound” is a compound having a heterocyclic ring containing one or more hetero atoms. A hetero atom means an atom other than a carbon atom or a hydrogen atom. Heterocycle means a cyclic compound having at least one heteroatom. Heteroatom means only those atoms that form a part of a heterocyclic ring system, which is located external to the ring system, separated from the ring system by at least one non-conjugated single bond, An atom which is part of a further substituent of is not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As examples of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole, and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1,2,4-triazole and the like, but are not limited thereto.

本発明の研磨用砥粒分散液に複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。   The content of the heterocyclic compound in the abrasive dispersion of the present invention is preferably 0.001 to 1.0% by mass, and more preferably 0.001 to 0.7% by mass. Is more preferable, and further preferably 0.002 to 0.4% by mass.

<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸又は塩基を添加して研磨用組成物のpHを調節することができる。
<PH adjuster>
The pH of the polishing composition can be adjusted by adding an acid or a base as needed to enhance the effect of each of the above additives.

本発明の研磨用砥粒分散液をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。   When adjusting the abrasive grain dispersion of the present invention to have a pH of 7 or more, an alkaline one is used as a pH adjuster. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, and tetramethylamine are used.

本発明の研磨用砥粒分散液をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。   When adjusting the abrasive grain dispersion of the present invention to a pH of less than 7, an acidic pH adjuster is used. For example, mineral acids such as hydrochloric acid and nitric acid such as hydroxy acids such as acetic acid, lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.

<pH緩衝剤>
本発明の研磨用砥粒分散液のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩又は有機酸などを使用することができる。
<PH buffer>
In order to keep the pH value of the abrasive dispersion of the present invention constant, a pH buffer may be used. As the pH buffer, for example, phosphates and borates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium tetraborate tetrahydrate, or organic acids can be used.

また、本発明の研磨用砥粒分散液の分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Further, as a dispersion solvent of the abrasive grain dispersion of the present invention, for example, alcohols such as methanol, ethanol, isopropanol, n-butanol, methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol; Ketones such as isophorone and cyclohexanone; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran Ethers; glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol and ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butane Glycol ether acetates such as xyl ethyl acetate; esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate and ethylene carbonate; aromatic hydrocarbons such as benzene, toluene and xylene; hexane, heptane, isooctane Hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, and chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone; N-octyl Organic solvents such as pyrrolidones such as -2-pyrrolidone can be used. These may be used by mixing with water.

本発明の研磨用砥粒分散液に含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。   It is preferable that the solid content concentration contained in the abrasive grain dispersion liquid of the present invention is in the range of 0.3 to 50% by mass. If the solid content is too low, the polishing rate may decrease. Conversely, even if the solid content concentration is too high, the polishing rate is rarely further improved, which may be uneconomical.

以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

<実験1>
初めに、実施例及び比較例における各測定方法及び試験方法の詳細について説明する。各実施例及び比較例について、以下の各測定結果及び試験結果を第1表に記す。
<Experiment 1>
First, details of each measurement method and test method in Examples and Comparative Examples will be described. Table 1 shows the following measurement results and test results for each example and comparative example.

[成分の分析]
[シリカ微粒子(母粒子)]
後述するシリカ微粒子分散液のSiO2重量について、珪酸ナトリウムを原料としたシリカ微粒子の場合は1000℃灼熱減量を行って秤量により求めた。またアルコキシシランを原料としたシリカ微粒子の場合は、シリカ微粒子分散液を150℃で1時間乾燥させた後に秤量して求めた。
[Analysis of components]
[Silica fine particles (base particles)]
Regarding the SiO 2 weight of the silica fine particle dispersion described later, in the case of silica fine particles using sodium silicate as the raw material, the weight was determined by igniting at 1000 ° C. In the case of silica fine particles using alkoxysilane as a raw material, the silica fine particle dispersion was dried at 150 ° C. for 1 hour and then weighed.

[シリカ系複合微粒子]
各元素の含有率は、以下の方法によって測定するものとする。
初めに、シリカ系複合微粒子分散液からなる試料約1g(固形分20質量%)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液でNa、Kは原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定する。
次に、100mlのメスフラスコにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。そして、これを用いて、Al、Ag、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びThについてICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、各元素における測定値とする。
以下、特に断りがない限り、本発明におけるNa、Al、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの成分の含有率(含有量)は、このような方法で測定して得た値を意味するものとする。
[Silica-based composite fine particles]
The content of each element shall be measured by the following method.
First, about 1 g (solid content: 20% by mass) of a sample composed of the silica-based composite fine particle dispersion is collected in a platinum dish. 3 ml of phosphoric acid, 5 ml of nitric acid and 10 ml of hydrofluoric acid are added and heated on a sand bath. After drying, a small amount of water and 50 ml of nitric acid are added and dissolved, put in a 100 ml measuring flask, and water is added to make 100 ml. In this solution, Na and K are measured with an atomic absorption spectrometer (for example, Z-2310 manufactured by Hitachi, Ltd.).
Next, the operation of collecting 10 ml of the separated solution from the solution contained in the 100 ml measuring flask into a 20 ml measuring flask is repeated five times to obtain 5 10 ml of separated solutions. Using this, Al, Ag, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U and Th are standardly added by an ICP plasma emission spectrometer (eg, SII, SPS5520). Measure with. Here, a blank is also measured by the same method, and the blank is subtracted for adjustment, to obtain a measured value for each element.
Hereinafter, unless otherwise specified, the contents (contents) of the components of Na, Al, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U and Th in the present invention are as follows. Means a value obtained by such a method.

各陰イオンの含有率は、以下の方法によって測定するものとする。
<Cl>
シリカ系複合微粒子分散液からなる試料20g(固形分20質量%)にアセトンを加え100mlに調整し、この溶液に、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行う。
別途ブランク測定として、アセトン100mlに酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で滴定を行った場合の滴定量を求めておき、試料を用いた場合の滴定量から差し引き、試料の滴定量とした。
The content of each anion shall be measured by the following method.
<Cl>
Acetone was added to 20 g (solid content 20% by mass) of a sample composed of the silica-based composite fine particle dispersion to adjust the volume to 100 ml. The analysis is performed by a potentiometric titration method (manufactured by Kyoto Electronics: potentiometric titrator AT-610).
Separately, as a blank measurement, a titer was determined by adding 5 ml of acetic acid and 4 ml of a 0.001 mol sodium chloride solution to 100 ml of acetone and titrating with a 0.002 mol silver nitrate solution, and then titrating with a sample. To obtain the titer of the sample.

<NO3、SO4、F>
シリカ系複合微粒子分散液からなる試料5g(固形分20質量%)を水で希釈して100mlのメスフラスコにおさめ、50mlの遠沈管に入れて、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
<NO 3 , SO 4 , F>
A 5 g sample (solid content: 20% by mass) composed of a silica-based composite fine particle dispersion was diluted with water, placed in a 100 ml volumetric flask, placed in a 50 ml centrifuge tube, and centrifuged at 4000 rpm with a centrifuge (HIMAC CT06E manufactured by Hitachi). The solution obtained by removing the sedimented components by centrifugation at for 20 minutes was analyzed by ion chromatography (ICS-1100 manufactured by DIONEX).

<SiO2、CeO2
シリカ系複合微粒子におけるシリカとセリアの含有率を求める場合、まずシリカ系複合微粒子分散液の固形分濃度を、1000℃灼熱減量を行って秤量により求める。次にCeについて、Al〜Th等と同様にICPプラズマ発光分析装置(例えば、SII製、SPS5520)を用いて標準添加法で測定を行い、得られたCe含有率からCeO2質量%を算出する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出する。
<SiO 2 , CeO 2 >
When determining the content of silica and ceria in the silica-based composite fine particles, first, the solid content concentration of the silica-based composite fine particle dispersion liquid is determined by weighing at 1000 ° C. after loss on ignition. Next, Ce is measured by a standard addition method using an ICP plasma emission spectrometer (for example, SII, SPS5520) in the same manner as Al to Th and the like, and CeO 2 mass% is calculated from the obtained Ce content. . Then, the components other than CeO 2 constituting the composite fine particles of the present invention are assumed to be SiO 2 , and the SiO 2 mass% is calculated.

なお、シリカ微粒子(母粒子)における各元素又は各陰イオンの含有率は、上記シリカ系複合微粒子の分析方法において、試料をシリカ系複合微粒子分散液に代えて、シリカ微粒子分散液を用いることにより行った。   The content of each element or each anion in the silica fine particles (base particles) can be determined by using the silica fine particle dispersion instead of the sample in the above-described method of analyzing the silica fine particles. went.

[X線回折法、結晶子径の測定]
前述の方法に則り、実施例及び比較例で得られたシリカ系複合微粒子分散液を従来公知の乾燥機を用いて乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、前述のように、得られたX線回折パターンにおける2θ=28度近傍の(111)面(2θ=28度近傍)のピークの半値全幅を測定し、Scherrerの式により、結晶子径を求めた。
[X-ray diffraction method, measurement of crystallite diameter]
According to the method described above, the silica-based composite fine particle dispersions obtained in Examples and Comparative Examples were dried using a conventionally known dryer, and the obtained powder was crushed in a mortar for 10 minutes, and subjected to X-ray diffraction. An X-ray diffraction pattern was obtained with an apparatus (RINT1400, manufactured by Rigaku Denki Co., Ltd.), and the crystal form was identified.
Further, as described above, the full width at half maximum of the peak of the (111) plane near 2θ = 28 ° (near 2θ = 28 °) in the obtained X-ray diffraction pattern was measured, and the crystallite diameter was calculated by Scherrer's equation. I asked.

<平均粒子径>
実施例及び比較例で得られたシリカ微粒子分散液及びシリカ系複合微粒子分散液について、これに含まれる粒子の平均粒子径を前述の方法で測定した。具体的には、シリカ微粒子分散液については大塚電子社製PAR−IIIを用い、シリカ系複合微粒子分散液についてはHORIBA社製LA950装置を用いた。
ここで、PAR−IIIの測定条件は以下の通りである。
あらかじめ準備しておいた0.56質量%濃度のアンモニア水をシリカ微粒子分散液へ添加して固形分濃度が1.0質量%となるように調整し、プラスチック製の測定セルに充填した。測定時はPINHOLE SELECTORとATTENUATOR FILTERで散乱強度が8000〜12000となるように光量を調整し、溶媒の屈折率は水の値を使用して測定を行った。
また、LA−950測定条件は以下の通りである。
LA−950V2のバージョンは7.02、アルゴリズムオプションは標準演算、固体の屈折率1.450、溶媒(純水)の屈折率1.333、反復回数は15回、サンプル投入バスの循環速度は5、撹拌速度は2とし、あらかじめこれらを設定した測定シーケンスを使用して測定を行った。そして、測定サンプルをスポイトを使用して原液のまま装置のサンプル投入口に投入した。ここで透過率(R)の数値が90%になるように投入した。そして、透過率(R)の数値が安定した後、超音波を5分間照射し粒子径の測定を行った。
<Average particle size>
With respect to the silica fine particle dispersions and silica-based composite fine particle dispersions obtained in Examples and Comparative Examples, the average particle diameter of the particles contained therein was measured by the above-described method. Specifically, PAR-III manufactured by Otsuka Electronics Co., Ltd. was used for the silica fine particle dispersion, and LA950 apparatus manufactured by HORIBA was used for the silica-based composite fine particle dispersion.
Here, the measurement conditions of PAR-III are as follows.
Ammonia water having a concentration of 0.56% by mass prepared in advance was added to the silica fine particle dispersion to adjust the solid content concentration to 1.0% by mass, and filled in a plastic measuring cell. At the time of measurement, the amount of light was adjusted so that the scattering intensity was 8000 to 12000 by PINHOLE SELECTOR and ATTENATOR FILTER, and the refractive index of the solvent was measured using the value of water.
The LA-950 measurement conditions are as follows.
Version of LA-950V2 is 7.02, algorithm option is standard operation, refractive index of solid is 1.450, refractive index of solvent (pure water) is 1.333, number of repetitions is 15 times, circulation speed of sample input bath is 5 The stirring speed was set to 2, and measurement was performed using a measurement sequence in which these were set in advance. Then, the measurement sample was put into the sample inlet of the apparatus as it was in the form of a stock solution using a dropper. Here, it was charged so that the numerical value of the transmittance (R) became 90%. Then, after the numerical value of the transmittance (R) was stabilized, ultrasonic waves were irradiated for 5 minutes to measure the particle diameter.

<短径/長径比率>
実施例及び比較例で得られたシリカ微粒子分散液及びシリカ系複合微粒子分散液が含む各粒子について、透過型電子顕微鏡(Transmission Electron Microscope;日立製作所社製、型番:S−5500)を用いて倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とした。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とした。そして、比(DS/DL)を求めた。この測定を任意の50個の粒子について行い、単一粒子としての短径/長径比が0.8以下の粒子の個数比率(%)を求めた。
<Short diameter / long diameter ratio>
Magnification of each particle contained in the silica fine particle dispersion and the silica-based composite fine particle dispersion obtained in Examples and Comparative Examples using a transmission electron microscope (Transmission Electron Microscope; manufactured by Hitachi, Ltd., model number: S-5500). In a photographic projection obtained by photographing at a magnification of 250,000 (or 500,000), the maximum diameter of the particles was taken as the major axis, the length was measured, and the value was taken as the major diameter (DL). In addition, a point on the long axis that bisects the long axis was determined, two points where a straight line perpendicular to the long axis intersected the outer edge of the particle were determined, and the distance between the two points was measured to obtain the short diameter (DS). Then, the ratio (DS / DL) was determined. This measurement was performed on arbitrary 50 particles, and the number ratio (%) of particles having a minor axis / major axis ratio of 0.8 or less as a single particle was determined.

[研磨試験方法]
<SiO2膜の研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含む分散液(研磨用砥粒分散液)を調整した。ここで固形分濃度は0.6質量%で硝酸を添加してpHは5.0とした。
次に、被研磨基板として、熱酸化法により作製したSiO2絶縁膜(厚み1μm)基板を準備した。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC-1000/SUBA400同心円タイプ」)を使用し、基板荷重0.5MPa、テーブル回転速度90rpmで研磨用砥粒分散液を50ml/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。
なお研磨傷の観察は、5枚の基板を研磨し光学顕微鏡を用いて絶縁膜表面を観察することで行った。評価基準は以下の通り。
・5枚を観察して、線状痕が多すぎて目視でカウントできない・・・「非常に多い」
・5枚を観察して、1枚でも線状痕が認められた・・・「有り」
・5枚を観察して、線状痕が認められなかった・・・・「明確には認められない」
[Polishing test method]
<Polishing of SiO 2 film>
Dispersions (polishing abrasive dispersions) containing the silica-based composite fine particle dispersions obtained in each of the examples and comparative examples were prepared. Here, the solid content concentration was 0.6% by mass, and nitric acid was added to adjust the pH to 5.0.
Next, as a substrate to be polished, an SiO 2 insulating film (thickness: 1 μm) substrate prepared by a thermal oxidation method was prepared.
Next, the substrate to be polished is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad ("IC-1000 / SUBA400 concentric type", manufactured by Nitta Haas) is used. Polishing was performed by supplying the abrasive dispersion liquid for polishing at a rotation speed of 90 rpm at a rate of 50 ml / min for 1 minute.
Then, the change in weight of the substrate to be polished before and after polishing was obtained, and the polishing rate was calculated.
The surface smoothness (surface roughness Ra) of the polishing substrate was measured using an atomic force microscope (AFM, manufactured by Hitachi High-Tech Science Corporation).
The polishing scratches were observed by polishing five substrates and observing the surface of the insulating film using an optical microscope. The evaluation criteria are as follows.
・ Observing 5 sheets, there are too many linear marks and cannot be counted visually ... "very much"
・ Observation of 5 sheets showed linear marks even on 1 sheet ... "Yes"
・ Observation of 5 sheets, no linear marks were observed .... "Not clearly observed"

<アルミハードディスクの研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含む分散液(研磨用砥粒分散液)を調整した。ここで固形分濃度は9質量%で硝酸を添加してpHを2.0に調整した。
アルミハードディスク用基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板負荷0.05MPa、テーブル回転速度30rpmで研磨用砥粒分散液を20ml/分の速度で5分間供給して研磨を行い、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Maicro―Max)を使用し、調整リングでZoom15の拡大レベルに調整して全面観察し、65.97cm2に相当する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計し、次の基準に従って評価した。
線状痕の個数 評 価
50個未満 「非常に少ない」
50個から80個未満 「少ない」
80個以上 「多い」
少なくとも80個以上で総数をカウントできない程多い 「※」
<Polishing of aluminum hard disk>
Dispersions (polishing abrasive dispersions) containing the silica-based composite fine particle dispersions obtained in each of the examples and comparative examples were prepared. Here, the solid content concentration was 9% by mass and nitric acid was added to adjust the pH to 2.0.
The substrate for the aluminum hard disk is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad is used at a substrate load of 0.05 MPa and a table rotation speed of 30 rpm using a polishing pad (“Polytex φ12” manufactured by Nitta Haas). Polishing is performed by supplying the particle dispersion at a rate of 20 ml / min for 5 minutes, and using an ultra-fine defect / visualization macro device (manufactured by Vision PSYTEC, product name: Micro-Max), the zoom level of Zoom 15 is adjusted with an adjustment ring. The number of scratches (linear marks) on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled, and evaluated according to the following criteria.
Evaluation of the number of linear marks Less than 50 "Very little"
50 to less than 80 "less"
80 or more "many"
At least 80 or more such that the total number cannot be counted.

<準備工程1>
《高純度珪酸液》の調製
SiO2濃度が24.06質量%、Na2O濃度が7.97質量%の珪酸ナトリウム水溶液を用意した。そして、この珪酸ナトリウム水溶液にSiO2濃度が5.0質量%となるように純水を添加した。
<Preparation process 1>
Preparation of << High Purity Silicate Solution >> An aqueous solution of sodium silicate having an SiO 2 concentration of 24.06% by mass and a Na 2 O concentration of 7.97% by mass was prepared. Then, pure water was added to the aqueous sodium silicate solution so that the SiO 2 concentration became 5.0% by mass.

[酸性珪酸液]
得られた5.0質量%の珪酸ナトリウム水溶液18kgを、6Lの強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の酸性珪酸液18kgを得た。
得られた酸性珪酸液のSiO2濃度は4.7質量%であった。
[Acid silicic acid solution]
18 kg of the obtained 5.0 mass% aqueous sodium silicate solution was passed through 6 L of a strongly acidic cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.0 h -1 to adjust the pH to 2.7. 18 kg of an acidic silicic acid solution was obtained.
The SiO 2 concentration of the obtained acidic silicate solution was 4.7% by mass.

[高純度珪酸液]
次に、酸性珪酸液を、強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の高純度珪酸液を得た。得られた高純度珪酸液のSiO2濃度は4.4質量%であった。
[High purity silicate liquid]
Next, the acidic silicate solution was passed through a strongly acidic cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.0 h -1 to obtain a high-purity silicate solution having a pH of 2.7. The SiO 2 concentration of the obtained high-purity silica solution was 4.4% by mass.

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:25nm)》の調製
514.5gの高純度珪酸液を攪拌しながら、純水42gへ添加し、次いで、さらに15%のアンモニア水を1,584.6g添加し、その後83℃に昇温して30分保持した。
次に、さらに高純度珪酸液13,700gを18時間かけて添加し、添加終了後に83℃を保持したまま熟成を行い、25nmのシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
Preparation of << Silica Fine Particle Dispersion (Average Particle Diameter of Silica Fine Particles: 25 nm) >> 514.5 g of high-purity silicic acid solution was added to 42 g of pure water while stirring, and then 15% aqueous ammonia was added to 1,584 g of 1,584. Then, the temperature was raised to 83 ° C. and maintained for 30 minutes.
Next, 13,700 g of a high-purity silicic acid solution was further added over 18 hours, and after completion of the addition, aging was performed while maintaining the temperature at 83 ° C., to obtain a 25-nm silica fine particle dispersion.
The obtained silica fine particle dispersion was cooled to 40 ° C., and concentrated with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei) to a SiO 2 concentration of 12% by mass.

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:45nm)》の調製
963gの12質量%の25nmシリカ微粒子分散液を攪拌しながら、純水991gへ加えた。次いで、さらに15%アンモニア水1,414gを添加し、その後87℃に昇温して30分保持した。
次に、さらに高純度珪酸液12,812gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、45nmのシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
Preparation of << Silica Fine Particle Dispersion (Silica Fine Particle Average Particle Diameter: 45 nm) >> 963 g of 12% by mass of 25 nm silica fine particle dispersion was added to 991 g of pure water while stirring. Next, 1,414 g of 15% aqueous ammonia was further added, and then the temperature was raised to 87 ° C. and maintained for 30 minutes.
Next, 12,812 g of a high-purity silicic acid solution was further added over 18 hours, and after completion of the addition, aging was performed while maintaining the temperature at 87 ° C., to obtain a 45 nm silica fine particle dispersion.
The obtained silica fine particle dispersion was cooled to 40 ° C., and concentrated with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei) to a SiO 2 concentration of 12% by mass.

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:70nm)》の調製
平均粒子径45nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液(SiO2濃度12質量%)を705g用意し、これを撹拌しながら、純水705gへ加えた。次いで、さらに15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に、さらに高純度珪酸液7,168gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、平均粒子径70nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を得た。なお、ここでシリカ微粒子の平均粒子径は、動的光散乱法(動的光散乱法粒子径測定装置:PAR−III)によって測定して得られた値である。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
Preparation of << Silica Fine Particle Dispersion (Average Particle Diameter of Silica Fine Particles: 70 nm) >> 705 g of a silica fine particle dispersion (SiO 2 concentration: 12% by mass) prepared by dispersing silica fine particles having an average particle diameter of 45 nm in a solvent is prepared. Was added to 705 g of pure water while stirring. Next, 50 g of 15% aqueous ammonia was further added, and then the temperature was raised to 87 ° C. and maintained for 30 minutes.
Next, 7,168 g of a high-purity silicic acid solution is further added over 18 hours, and after completion of the addition, aging is performed while maintaining at 87 ° C., and a silica fine particle dispersion in which silica fine particles having an average particle diameter of 70 nm are dispersed in a solvent. I got Here, the average particle size of the silica fine particles is a value obtained by measurement by a dynamic light scattering method (dynamic light scattering method particle size measuring apparatus: PAR-III).
The obtained silica fine particle dispersion was cooled to 40 ° C., and concentrated with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei) to a SiO 2 concentration of 12% by mass.

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:96nm)》の調製
平均粒子径70nmのシリカ微粒子が溶媒に分散してなる分散液(SiO2濃度:12質量%)を1,081g用意し、これを撹拌しながら、純水1,081gへ加えた。次いで、さらに15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に、さらに高純度珪酸液6,143gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、平均粒子径96nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を得た。なお、ここでシリカ微粒子の平均粒子径は、動的光散乱法(動的光散乱法粒子径測定装置:PAR−III)によって測定して得られた値である。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。濃縮後のシリカ微粒子分散液に陰イオン交換樹脂 三菱化学社製 SANUP Bを添加して陰イオンを除去した。
<< Preparation of Silica Fine Particle Dispersion (Silica Fine Particle Average Particle Diameter: 96 nm) >> 1,081 g of a dispersion liquid (SiO 2 concentration: 12% by mass) prepared by dispersing silica fine particles having an average particle diameter of 70 nm in a solvent is prepared. This was added to 1,081 g of pure water while stirring. Next, 50 g of 15% aqueous ammonia was further added, and then the temperature was raised to 87 ° C. and maintained for 30 minutes.
Next, 6,143 g of a high-purity silicate solution is further added over 18 hours, and after completion of the addition, aging is performed while maintaining the temperature at 87 ° C., and a silica fine particle dispersion in which silica fine particles having an average particle diameter of 96 nm are dispersed in a solvent. I got Here, the average particle size of the silica fine particles is a value obtained by measurement by a dynamic light scattering method (dynamic light scattering method particle size measuring apparatus: PAR-III).
The obtained silica fine particle dispersion was cooled to 40 ° C., and concentrated with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei) to a SiO 2 concentration of 12% by mass. Anion exchange resin SANUP B manufactured by Mitsubishi Chemical Corporation was added to the concentrated silica fine particle dispersion to remove anions.

<準備工程2>
準備工程1で得られた96nmのシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。
<Preparation process 2>
Ultrapure water was added to the 96-nm silica fine particle dispersion obtained in the preparation step 1 to obtain 6,000 g of the solution A having a SiO 2 solid content concentration of 3% by mass.

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。 Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (4N high-purity reagent, manufactured by Kanto Chemical Co., Ltd.) to obtain a B solution of 2.5% by mass in terms of CeO 2 .

次に、A液(6,000g)を50℃まで昇温して、撹拌しながら、ここへB液(8,453g、SiO2の100質量部に対して、CeO2が117.4質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85を維持するようにした。
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄し電気伝導度が75μS/cmまで洗浄を行った。洗浄を終了して得られた前駆体粒子分散液Aは、固形分濃度が7質量%で、レーザー回折散乱法粒子径(HORIBA社製LA−950)は4.6μm[メジアン径]であった。
Next, the temperature of the liquid A (6,000 g) was raised to 50 ° C., and while stirring, the liquid B (8,453 g, 100 parts by mass of SiO 2 ) was mixed with 117.4 parts by mass of CeO 2. Was added over 18 hours. During this time, the liquid temperature was maintained at 50 ° C., and 3% aqueous ammonia was added as needed to maintain the pH at 7.85.
When the addition of the solution B was completed, the temperature of the solution was raised to 93 ° C. and aging was performed for 4 hours. After completion of ripening, it was allowed to cool by standing in a room and cooled to room temperature, and then washed while supplying ion-exchanged water with an ultramembrane to wash the electric conductivity to 75 μS / cm. The precursor particle dispersion liquid A obtained after the completion of the washing had a solid content concentration of 7% by mass, and the particle diameter by laser diffraction / scattering method (LA-950, manufactured by HORIBA) was 4.6 μm [median diameter]. .

<準備工程3>
次に準備工程2で得られた前駆体粒子分散液Aに3質量%酢酸を加えてpHを6.5に調整して、120℃の乾燥機中で15時間乾燥させた後、1062℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。
<Preparation process 3>
Next, 3% by mass acetic acid was added to the precursor particle dispersion liquid A obtained in the preparation step 2 to adjust the pH to 6.5, followed by drying in a dryer at 120 ° C. for 15 hours. Firing was performed for 2 hours using a muffle furnace to obtain a powdered fired body.

得られた焼成体100gにイオン交換水300gを加え、さらに3%アンモニア水溶液を用いてpHを9.2に調整した後、φ0.25mmの石英ビーズ(大研化学工業株式会社製)にて湿式解砕(カンペ(株)製バッチ式卓上サンドミル)を120分行った。解砕後に44メッシュの金網を通してビーズを分離した。得られた焼成体解砕分散液の固形分濃度は7質量%で回収重量は1200gであった。なお、解砕中にはアンモニア水溶液を添加してpHを9.2に保った。
次いで得られた焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、675Gで3分間処理し、軽液(沈降成分を除去した上澄み液)を回収し、シリカ系複合微粒子分散液を得た。シリカ系複合微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.208μm(208nm)であった。
To 100 g of the obtained fired body, 300 g of ion-exchanged water was added, and the pH was adjusted to 9.2 with a 3% aqueous ammonia solution. Crushing (batch type desktop sand mill manufactured by Campe Co., Ltd.) was performed for 120 minutes. After crushing, the beads were separated through a 44 mesh wire mesh. The solid content concentration of the obtained fired body disintegrated dispersion was 7% by mass, and the recovered weight was 1200 g. During the crushing, an aqueous ammonia solution was added to maintain the pH at 9.2.
Next, the obtained fired body disintegrated dispersion is treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") at 675 G for 3 minutes to recover a light liquid (supernatant from which settled components have been removed). Thus, a silica-based composite fine particle dispersion was obtained. The average particle diameter (median diameter) of the silica-based composite fine particle dispersion was measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA) and found to be 0.208 μm (208 nm).

<実施例1>
実施例1では、準備工程3で得られたシリカ系複合微粒子分散液について2回目の解砕処理および遠心分離処理を行った。その方法について以下に説明する。なお、2回目の解砕処理および遠心分離処理を行って得られたシリカ系複合微粒子分散液も、当然、本発明の分散液に相当する。
準備工程3で得られたシリカ系複合微粒子分散液にイオン交換水を添加して固形分濃度を20質量%に調整した液を1kg準備した。そして、この液について、解砕機(アシザワファインテック社製、LMZ−06)を用いて解砕した。ここで解砕はφ0.25mmの石英ビーズを用い、充填率を85%とし、周速を10m/sとし、1L/分の条件で循環させて80分解砕した。なお、解砕機の粉砕室及び配管中にイオン交換水が残存するため解砕時の濃度は10質量%であった。また解砕中は3%のアンモニアを添加してpHを9.2に保った。解砕後に粉砕室を水押しして回収した固形分は9.3質量%であった。
次いで解砕した分散液を、遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度:1700Gで102秒処理した。そして、軽液を回収し、シリカ系複合微粒子分散液を得た。得られたシリカ系複合微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.196μm(196nm)であった。
<Example 1>
In Example 1, the second disintegration treatment and centrifugation treatment were performed on the silica-based composite fine particle dispersion obtained in the preparation step 3. The method will be described below. In addition, the silica-based composite fine particle dispersion obtained by performing the second crushing treatment and the centrifugation treatment naturally corresponds to the dispersion of the present invention.
1 kg of a liquid whose solid content concentration was adjusted to 20% by mass by adding ion-exchanged water to the silica-based composite fine particle dispersion obtained in the preparation step 3 was prepared. This liquid was crushed using a crusher (LMZ-06, manufactured by Ashizawa Finetech Co., Ltd.). Here, crushing was performed using quartz beads having a diameter of 0.25 mm, a filling rate of 85%, a peripheral speed of 10 m / s, and circulation under the conditions of 1 L / min. The concentration at the time of crushing was 10% by mass because ion-exchanged water remained in the crushing chamber and piping of the crusher. During the crushing, the pH was maintained at 9.2 by adding 3% ammonia. After the disintegration, the solid content recovered by water-pressing the pulverizing chamber was 9.3% by mass.
Subsequently, the disintegrated dispersion liquid was treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") at a relative centrifugal acceleration of 1700 G for 102 seconds. Then, the light liquid was recovered to obtain a silica-based composite fine particle dispersion. When the average particle diameter (median diameter) of the obtained silica-based composite fine particle dispersion was measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA), it was 0.196 μm (196 nm).

得られたシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子についてX線回折法によって測定したところ、Cerianiteの回折パターンが見られた。   When the silica-based composite fine particles contained in the obtained dispersion liquid of silica-based composite fine particles were measured by an X-ray diffraction method, a Cerianite diffraction pattern was observed.

次にシリカ系複合微粒子分散液を用いて研磨試験を行った。また、研磨用砥粒分散液に含まれるシリカ系複合微粒子の短径/長径比を測定した。
なお、原料としたシリカ微粒子分散液に含まれるシリカ微粒子の平均粒子径、シリカ微粒子の不純物の含有率、シリカ系複合微粒子におけるシリカ100質量部に対するセリアの質量部、シリカ系複合微粒子調製時の焼成温度、シリカ系複合微粒子の結晶子径、結晶型、シリカ系複合微粒子に含まれる不純物の含有率、シリカ系複合微粒子の平均粒子径、シリカ系複合微粒子の短径/長径比が0.8以下の粒子個数比及び研磨性能(研磨速度、表面粗さ、SiO2膜の研磨における研磨傷の観察結果、アルミハードディスクの研磨におけるスクラッチ個数)の測定結果を第1表〜第3表に示す。以降の実施例、比較例も同様である。
Next, a polishing test was performed using the silica-based composite fine particle dispersion. Further, the ratio of the minor axis / major axis of the silica-based composite fine particles contained in the polishing slurry dispersion liquid was measured.
The average particle diameter of the silica fine particles contained in the silica fine particle dispersion liquid used as the raw material, the content of impurities in the silica fine particles, the mass of ceria with respect to 100 parts by mass of silica in the silica composite fine particles, and the firing during the preparation of the silica composite fine particles Temperature, crystallite diameter of silica-based composite fine particles, crystal form, content of impurities contained in silica-based composite fine particles, average particle diameter of silica-based composite fine particles, ratio of minor axis / major axis of silica-based composite fine particles of 0.8 or less Tables 1 to 3 show the measurement results of the particle number ratio and the polishing performance (polishing speed, surface roughness, observation results of polishing scratches in polishing a SiO 2 film, and the number of scratches in polishing of an aluminum hard disk). The same applies to the following examples and comparative examples.

<実施例2>
実施例2では、準備工程3で得られたシリカ系複合微粒子分散液について2回目の解砕処理および遠心分離処理を行った。その方法について以下に説明する。なお、2回目の解砕処理および遠心分離処理を行って得られたシリカ系複合微粒子分散液も、当然、本発明の分散液に相当する。
準備工程3で得られたシリカ系複合微粒子分散液にイオン交換水を添加して固形分濃度5質量%に調整した。次いでKOKUSAN社製、高速遠心分離機H−660で4Lローターを使用し、相対遠心加速度:10,000G、通液速度1L/分の条件で通液させ、遠心分離を行った。遠心分離した後に得られたシリカ微粒子分散液は、固形分が1.8%濃度であり、レーザー回折散乱法で測定した平均粒子径が0.200μm(200nm)[メジアン径]であった。
<Example 2>
In Example 2, the second disintegration treatment and centrifugation treatment were performed on the silica-based composite fine particle dispersion obtained in the preparation step 3. The method will be described below. In addition, the silica-based composite fine particle dispersion obtained by performing the second crushing treatment and the centrifugation treatment naturally corresponds to the dispersion of the present invention.
Ion-exchanged water was added to the silica-based composite fine particle dispersion obtained in Preparation Step 3 to adjust the solid content concentration to 5% by mass. Next, using a 4 L rotor with a high-speed centrifugal separator H-660 manufactured by KOKUSAN, the liquid was passed under the conditions of a relative centrifugal acceleration of 10,000 G and a liquid passing speed of 1 L / min, followed by centrifugation. The silica fine particle dispersion obtained after centrifugation had a solid content of 1.8% and an average particle diameter of 0.200 μm (200 nm) [median diameter] measured by a laser diffraction scattering method.

<実施例3>
準備工程2で得られた前駆体粒子分散液Aを4.0kg準備した。そして、これを解砕機(アシザワファインテック社製、LMZ−06)を用いて解砕した。ここで解砕はφ0.25mmの石英ビーズを用い、充填率を60%とし、周速を8m/sとし、2L/分の条件で20パスさせて解砕を行った。なお、前駆体粒子分散液Aの解砕中は、ここへアンモニア水などの添加は行わなかった。解砕後の前駆体微粒子分散液AのpHは9.0であった。また、解砕後の前駆体微粒子分散液Aについてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.225μmであった。
次に、解砕後の前駆体微粒子分散液Aに3質量%酢酸を加えてpHを6.5に調整し、120℃の乾燥機中で15時間乾燥させた後、1062℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。
得られた焼成体100gにイオン交換水300gを加え、さらに3%アンモニア水溶液を用いてpHを9.2に調整した後、解砕機(カンペ(株)製、バッチ式卓上サンドミル)を用いて湿式で60分間、解砕処理を行った。解砕処理では、φ0.25mmの石英ビーズ(大研化学工業株式会社製)を用いた。なお、解砕中にはアンモニア水溶液を添加してpHを9.2に保った。このようにして固形分濃度2.4質量%の焼成体解砕分散液1020gを得た。
さらに焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度:1700Gで102秒処理し、軽液を回収し、シリカ系複合微粒子分散液を得た。得られたシリカ系複合微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.198μm(198nm)であった。
<Example 3>
4.0 kg of the precursor particle dispersion liquid A obtained in the preparation step 2 was prepared. This was crushed using a crusher (LMZ-06, manufactured by Ashizawa Finetech Co., Ltd.). Here, crushing was performed using quartz beads having a diameter of 0.25 mm, a filling rate of 60%, a peripheral speed of 8 m / s, and 20 passes at 2 L / min. During the disintegration of the precursor particle dispersion A, no aqueous ammonia or the like was added thereto. The pH of the precursor fine particle dispersion A after crushing was 9.0. Further, the average particle diameter (median diameter) of the crushed precursor fine particle dispersion liquid A measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA) was 0.225 μm.
Next, 3% by mass acetic acid was added to the crushed precursor fine particle dispersion A to adjust the pH to 6.5, and the mixture was dried in a dryer at 120 ° C. for 15 hours. For 2 hours to obtain a powdered fired body.
300 g of ion-exchanged water was added to 100 g of the obtained fired body, and the pH was adjusted to 9.2 with a 3% aqueous ammonia solution. For 60 minutes. In the crushing treatment, quartz beads having a diameter of 0.25 mm (manufactured by Daiken Chemical Industry Co., Ltd.) were used. During the crushing, an aqueous ammonia solution was added to maintain the pH at 9.2. Thus, 1020 g of a crushed dispersion of the fired body having a solid content of 2.4% by mass was obtained.
Further, the crushed dispersion of the calcined body is treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") at a relative centrifugal acceleration of 1700 G for 102 seconds, and the light liquid is recovered. I got The average particle diameter (median diameter) of the obtained silica-based composite fine particle dispersion was measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA), and was found to be 0.198 μm (198 nm).

<実施例4>
準備工程1で得られたシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。
<Example 4>
Ultrapure water was added to the silica fine particle dispersion obtained in the preparation step 1 to obtain 6,000 g of the solution A having a SiO 2 solid content concentration of 3% by mass.

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。 Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (4N high-purity reagent, manufactured by Kanto Chemical Co., Ltd.) to obtain a B solution of 2.5% by mass in terms of CeO 2 .

次に、A液6,000g(dry180g)を18℃に保ち、これを撹拌しながら、ここへB液8,453g(dry211.3g)を18時間かけて添加した。この間、液温を18℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.7を維持するようにした。添加終了後に、液温18℃で4時間熟成を行った。その後、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が4.3質量%、pHが4.3(25℃にて)、電導度が170μs/cm(25℃にて)であった。   Next, 6,000 g (dry 180 g) of the solution A was kept at 18 ° C., and while stirring this, 8,453 g (dry 211.3 g) of the solution B was added thereto over 18 hours. During this time, the liquid temperature was maintained at 18 ° C., and 3% aqueous ammonia was added as needed to maintain the pH at 7.7. After completion of the addition, aging was performed at a liquid temperature of 18 ° C. for 4 hours. Thereafter, washing was performed while supplying ion-exchanged water with an ultramembrane. The precursor particle dispersion obtained after the completion of the washing has a solid content of 4.3% by mass, a pH of 4.3 (at 25 ° C.), and an electric conductivity of 170 μs / cm (at 25 ° C.). there were.

次に得られた前駆体粒子分散液を120℃の乾燥機中で16時間乾燥させた後、1030℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。   Next, the obtained precursor particle dispersion was dried in a dryer at 120 ° C. for 16 hours, and then fired for 2 hours using a muffle furnace at 1030 ° C. to obtain a powdery fired body.

得られた焼成体100gにイオン交換水300gを加え、さらに3%アンモニア水溶液を加えてpHを9.2に調整した後、解砕機(カンペ(株)製、バッチ式卓上サンドミル)を用いて湿式で90分間、解砕処理を行った。解砕処理では、φ0.25mmの石英ビーズ(大研化学工業株式会社製)を用いた。そして、解砕後に44メッシュの金網を通してビーズを分離した。なお、解砕中はアンモニア水溶液を添加して、pHを9.2に保った。このようにして固形分濃度3.1質量%の焼成体解砕分散液1115gを得た。
さらに焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度:1700Gで102秒処理し、軽液を回収し、シリカ系複合微粒子分散液を得た。得られたシリカ系複合微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.194μm(194nm)であった。
After adding 300 g of ion-exchanged water to 100 g of the obtained fired body and further adjusting the pH to 9.2 by adding a 3% aqueous ammonia solution, a wet method was performed using a crusher (manufactured by Campe Co., Ltd., batch-type tabletop sand mill). For 90 minutes. In the crushing treatment, quartz beads having a diameter of 0.25 mm (manufactured by Daiken Chemical Industry Co., Ltd.) were used. After crushing, the beads were separated through a 44 mesh wire mesh. During the crushing, an aqueous ammonia solution was added to maintain the pH at 9.2. Thus, 1115 g of a fired body disintegration dispersion having a solid content of 3.1% by mass was obtained.
Further, the crushed dispersion of the calcined body is treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") at a relative centrifugal acceleration of 1700 G for 102 seconds, and the light liquid is recovered. I got When the average particle diameter (median diameter) of the obtained silica-based composite fine particle dispersion was measured by using a laser diffraction scattering method (LA-950, manufactured by HORIBA), it was 0.194 μm (194 nm).

また、実施例4で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子についてSEM,TEMを用いて観察した。SEM像とTEM像(50,000倍)を図1(a)、(b)に示す。   The silica-based composite fine particles contained in the dispersion liquid of silica-based composite fine particles obtained in Example 4 were observed using SEM and TEM. FIGS. 1A and 1B show an SEM image and a TEM image (magnification: 50,000).

さらに、実施例4で得られたシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子のX線回折パターンを図2に示す。   FIG. 2 shows an X-ray diffraction pattern of the silica-based composite fine particles contained in the dispersion liquid of silica-based composite fine particles obtained in Example 4.

図2のX線回折パターンでは、かなりシャープなCerianiteの結晶であり、TEMやSEM像からセリア結晶粒子がシリカ表面と強く焼結しているように見える。
また、図1からは、シリカ系複合微粒子の最表面に、薄いシリカ被膜が覆うように存在している様子が観察された。
In the X-ray diffraction pattern of FIG. 2, it is a very sharp Cerianite crystal, and it can be seen from the TEM and SEM images that the ceria crystal particles are strongly sintered on the silica surface.
Further, from FIG. 1, it was observed that a thin silica coating was present on the outermost surface of the silica-based composite fine particles so as to cover the silica-based composite fine particles.

<実施例5>
準備工程1で得られたシリカ微粒子分散液にイオン交換水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。
<Example 5>
Ion-exchanged water was added to the silica fine particle dispersion obtained in the preparation step 1 to obtain 6,000 g of the solution A having a SiO 2 solid content concentration of 3% by mass.

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。 Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (4N high-purity reagent, manufactured by Kanto Chemical Co., Ltd.) to obtain a B solution of 2.5% by mass in terms of CeO 2 .

次に、A液(6,000g)を50℃まで昇温して、撹拌しながら、ここへB液(8,453g、SiO2の100質量部に対して、CeO2が117.4質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85を維持するようにした。
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄し、電気伝導度が75μS/cmまで洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが9.1(25℃にて)、レーザー回折散乱法粒子径(HORIBA社製LA−950)は4.6μmであった。
Next, the temperature of the liquid A (6,000 g) was raised to 50 ° C., and while stirring, the liquid B (8,453 g, 100 parts by mass of SiO 2 ) was mixed with 117.4 parts by mass of CeO 2. Was added over 18 hours. During this time, the liquid temperature was maintained at 50 ° C., and 3% aqueous ammonia was added as needed to maintain the pH at 7.85.
When the addition of the solution B was completed, the temperature of the solution was raised to 93 ° C. and aging was performed for 4 hours. After ripening, it was allowed to cool by standing in a room and cooled to room temperature, and then washed while supplying ion-exchanged water with an ultramembrane, and washed until the electric conductivity reached 75 μS / cm. The precursor particle dispersion obtained after the completion of the washing has a solid content concentration of 7% by mass, a pH of 9.1 (at 25 ° C.), and a laser diffraction scattering particle size (LA-950 manufactured by HORIBA). It was 4.6 μm.

次に得られた前駆体粒子分散液に3質量%酢酸水溶液を加えてpHを6.5に調整して、120℃の乾燥機中で15時間乾燥させた後、1062℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。   Next, a 3% by mass aqueous acetic acid solution is added to the obtained precursor particle dispersion to adjust the pH to 6.5, and after drying in a dryer at 120 ° C. for 15 hours, a muffle furnace at 1062 ° C. is used. For 2 hours to obtain a powdered fired body.

得られた焼成体310gと、イオン交換水430gとを、1Lの柄付きビーカーに入れ、そこへ3%アンモニア水溶液を加え、撹拌しながら超音波浴槽中で10分間超音波を照射し、pH10(温度は25℃)の懸濁液を得た。
次に、事前に設備洗浄を行った解砕機(アシザワファインテック株式会社製、LMZ06)にφ0.25mmの石英ビーズ595gを投入し、水運転を行った。さらに上記の懸濁液を解砕機のチャージタンクに充填した(充填率85%)。なお、解砕機の粉砕室及び配管中に残留したイオン交換水を考慮すると、解砕時の濃度は25質量%である。そして、解砕機におけるディスクの周速を12m/sec、パス回数を25回、及び1パス当たりの滞留時間を0.43分間とする条件で湿式解砕を行った。また、解砕時の懸濁液のpHを10に維持するように、パス毎に3%アンモニア水溶液を添加した。このようにして、固形分濃度22質量%の焼成体解砕分散液を得た。
次いで得られた焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度675Gで3分間、遠心分離処理し、沈降成分を除去し、シリカ系複合微粒子分散液を得た。得られたシリカ系複合微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.208μm(208nm)であった。
310 g of the obtained fired body and 430 g of ion-exchanged water are put into a 1-L beaker with a handle, a 3% aqueous ammonia solution is added thereto, and ultrasonic waves are irradiated for 10 minutes in an ultrasonic bath with stirring to obtain a pH of 10 ( A temperature of 25 ° C.) was obtained.
Next, 595 g of quartz beads having a diameter of 0.25 mm was charged into a crusher (LMZ06, manufactured by Ashizawa Finetech Co., Ltd.) that had been washed in advance, and a water operation was performed. Further, the above suspension was filled in a charge tank of a crusher (filling rate: 85%). In consideration of the ion-exchanged water remaining in the pulverizing chamber and the pipe of the pulverizer, the concentration at the time of pulverization is 25% by mass. Then, wet crushing was performed under the conditions that the peripheral speed of the disk in the crusher was 12 m / sec, the number of passes was 25, and the residence time per pass was 0.43 minutes. In addition, a 3% aqueous ammonia solution was added for each pass so as to maintain the pH of the suspension at the time of crushing at 10. In this way, a fired body crushed dispersion having a solid content of 22% by mass was obtained.
Next, the obtained fired body disintegrated dispersion liquid was subjected to centrifugal separation at a relative centrifugal acceleration of 675 G for 3 minutes using a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number “CR21G”) to remove settled components, A composite fine particle dispersion was obtained. The average particle diameter (median diameter) of the obtained silica-based composite fine particle dispersion was measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA), and was 0.208 μm (208 nm).

<実施例6>
準備工程1の過程において得られた平均粒子径70nmのシリカ微粒子分散液にイオン交換水を添加してSiO2固形分濃度が3.0質量%のA液6,000gを得た
次に、硝酸セリウム(III)6水和物にイオン交換水を加え、CeO2換算で3.0質量%のB液を得た。
次に、A液6,000g(dry180.0g)を15.5℃に冷却して、撹拌しながら、ここへB液7044.2g(dry211.3g)を18時間かけて添加した。この間、液温を15.5℃に維持しておき、また必要に応じて3.0質量%のアンモニア水を添加して、pHを8.3〜8.6となるように保った。そして、B液の添加が終了したら、液温を15.5℃に保ったまま4時間熟成を行った。なお、A液へB液を添加している間および熟成中は調合液にエアーを吹き込みつづけ、酸化還元電位を100〜200mVに保った。
熟成終了後は、限外膜を用いてろ過した後にイオン交換水を補給して洗浄する作業を、電気伝導度が26μS/cmまで繰り返し行い、前駆体粒子分散液を得た。
次に、得られた前駆体粒子分散液に3.0質量%の酢酸を加えてpHを6.5に調整し、120℃の乾燥機中で15時間乾燥させた後、1064℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。
得られた焼成体100gにイオン交換水300gを加え、さらに3.0質量%のアンモニア水溶液を加えてpH10.0に調整した後、解砕機(カンペ(株)製、バッチ式卓上サンドミル)を用いて湿式で270分間、解砕処理を行った。解砕処理では、φ0.25mmの石英ビーズを用いた。そして、解砕後に44メッシュの金網を通してビーズを分離した。なお、解砕中はアンモニア水溶液を添加して、pHを10.0に保った。このようにして固形分濃度6.6質量%の焼成体解砕分散液1151gを得た。
さらに焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度:1700Gで102秒処理し、軽液(沈降成分を除去した上澄み液)を回収し、シリカ系複合微粒子分散液を得た。そして、得られたシリカ系複合微粒子分散液について実施例1と同様に評価を行った。
<Example 6>
Ion-exchanged water was added to the silica fine particle dispersion having an average particle diameter of 70 nm obtained in the process of the preparation step 1 to obtain 6,000 g of the liquid A having a SiO 2 solid content concentration of 3.0% by mass. Ion-exchanged water was added to cerium (III) hexahydrate to obtain a liquid B of 3.0 mass% in terms of CeO 2 .
Next, 6,000 g (dry 180.0 g) of solution A was cooled to 15.5 ° C., and 7044.2 g (dry 211.3 g) of solution B was added thereto over 18 hours while stirring. During this time, the liquid temperature was maintained at 15.5 ° C., and if necessary, 3.0% by mass of aqueous ammonia was added to maintain the pH at 8.3 to 8.6. When the addition of the solution B was completed, aging was performed for 4 hours while maintaining the solution temperature at 15.5 ° C. During the addition of the solution B to the solution A and during the ripening, air was continuously blown into the mixture to keep the oxidation-reduction potential at 100 to 200 mV.
After completion of the aging, the operation of filtering using an ultra-membrane and then supplying ion-exchanged water and washing was repeated up to an electric conductivity of 26 μS / cm to obtain a precursor particle dispersion.
Next, 3.0 mass% of acetic acid was added to the obtained precursor particle dispersion to adjust the pH to 6.5. After drying in a dryer at 120 ° C. for 15 hours, a muffle furnace at 1064 ° C. Was fired for 2 hours to obtain a powdered fired body.
After adding 300 g of ion-exchanged water to 100 g of the obtained fired body and further adjusting the pH to 10.0 by adding a 3.0% by mass aqueous ammonia solution, a crusher (manufactured by Campe Co., Ltd., batch-type desktop sand mill) was used. The crushing treatment was performed for 270 minutes in a wet manner. In the crushing treatment, quartz beads having a diameter of 0.25 mm were used. After crushing, the beads were separated through a 44 mesh wire mesh. During the crushing, an aqueous ammonia solution was added to keep the pH at 10.0. Thus, 1151 g of a fired body disintegrated dispersion having a solid content of 6.6% by mass was obtained.
Further, the fired body disintegrated dispersion liquid was treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") at a relative centrifugal acceleration of 1700 G for 102 seconds to obtain a light liquid (a supernatant liquid from which sediment components were removed). This was collected to obtain a silica-based composite fine particle dispersion. Then, the obtained silica-based composite fine particle dispersion was evaluated in the same manner as in Example 1.

<実施例7>
準備工程1で得られた96nmのシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA液2,500gを得た。
<Example 7>
Ultrapure water was added to the 96-nm silica fine particle dispersion obtained in the preparation step 1 to obtain 2,500 g of solution A having a SiO 2 solid content concentration of 3% by mass.

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で3.0質量%のB液を得た。 Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (4N high-purity reagent, manufactured by Kanto Chemical Co., Ltd.) to obtain a liquid B of 3.0 mass% in terms of CeO 2 .

次に、A液2,500g(dry75g)を18℃まで昇温して、撹拌しながら、ここへB液5,833.3g(dry175g)を18時間かけて添加した。この間、液温を18℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.8を維持するようにした。そして、B液の添加が終了したら、液温を18℃に保ったまま4時間熟成を行った。なお、A液へB液を添加している間および熟成中は調合液にエアーを吹き込みつづけ、酸化還元電位を100〜200mVに保った。
熟成終了後は、限外膜を用いてろ過した後にイオン交換水を補給して洗浄する作業を、電気伝導度が26μS/cmまで繰り返し行い、前駆体粒子分散液を得た。洗浄終了後の前駆体粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.33μmであった。
Next, 2,500 g (dry 75 g) of solution A was heated to 18 ° C., and 5,833.3 g (dry 175 g) of solution B was added thereto with stirring over 18 hours. During this time, the liquid temperature was maintained at 18 ° C., and 3% aqueous ammonia was added as needed to maintain the pH at 7.8. When the addition of the solution B was completed, the solution was aged for 4 hours while keeping the solution temperature at 18 ° C. During the addition of the solution B to the solution A and during the ripening, air was continuously blown into the mixture to keep the oxidation-reduction potential at 100 to 200 mV.
After completion of the aging, the operation of filtering using an ultra-membrane and then supplying ion-exchanged water and washing was repeated up to an electric conductivity of 26 μS / cm to obtain a precursor particle dispersion. The average particle diameter (median diameter) of the precursor particle dispersion liquid after washing was measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA), and was 0.33 μm.

次に得られた前駆体粒子分散液に3質量%酢酸を加えてpHを6.5に調整し、120℃の乾燥機中で15時間乾燥させた後、1028℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。   Next, the obtained precursor particle dispersion liquid was adjusted to pH 6.5 by adding 3% by mass acetic acid, dried in a dryer at 120 ° C. for 15 hours, and then dried in a muffle furnace at 1028 ° C. for 2 hours. The firing was performed for a time to obtain a powdered fired body.

得られた焼成体100gにイオン交換水300gを加え、さらに3.0質量%のアンモニア水溶液を加えてpH10.0に調整した後、解砕機(カンペ(株)製、バッチ式卓上サンドミル)を用いて湿式で120分間、解砕処理を行った。解砕処理では、φ0.25mmの石英ビーズを用いた。そして、解砕後に44メッシュの金網を通してビーズを分離した。なお、解砕中はアンモニア水溶液を添加して、pHを9.2に保った。このようにして固形分濃度7.2質量%の焼成体解砕分散液1121gを得た。
さらに焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度:675Gで3分間し、軽液(沈降成分を除去した上澄み液)を回収し、シリカ系複合微粒子分散液を得た。そして、得られたシリカ系複合微粒子分散液について実施例1と同様に評価を行った。
300 g of ion-exchanged water was added to 100 g of the obtained fired body, and a 3.0 mass% aqueous ammonia solution was further added to adjust the pH to 10.0. Then, a crusher (manufactured by Campe Co., Ltd., batch-type tabletop sand mill) was used. Crushing treatment was performed for 120 minutes in a wet manner. In the crushing treatment, quartz beads having a diameter of 0.25 mm were used. After crushing, the beads were separated through a 44 mesh wire mesh. During the crushing, an aqueous ammonia solution was added to maintain the pH at 9.2. Thus, 1121 g of a fired body disintegrated dispersion having a solid content of 7.2% by mass was obtained.
Further, the crushed dispersion of the calcined body is subjected to a relative centrifugal acceleration: 675 G for 3 minutes using a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") for 3 minutes to collect a light liquid (a supernatant liquid from which sedimentation components have been removed). Thus, a silica-based composite fine particle dispersion was obtained. Then, the obtained silica-based composite fine particle dispersion was evaluated in the same manner as in Example 1.

<比較例1>
準備工程1で得られた96nmのシリカ微粒子分散液について、平均粒子径等の各測定を行った。
<Comparative Example 1>
With respect to the 96-nm silica fine particle dispersion obtained in the preparation step 1, each measurement such as the average particle diameter was performed.

<比較例2>
準備工程2で得られた前駆体粒子分散液Aについて、平均粒子径等の各測定を行った。
<Comparative Example 2>
With respect to the precursor particle dispersion liquid A obtained in the preparation step 2, each measurement such as the average particle diameter was performed.

<比較例3>
0.7質量%のアンモニア水3.63kgを準備し、これを93℃に昇温した(A液)。次いでCeO2として1.6質量%の硝酸セリウム溶液5.21kg(B液)を準備し、A液にB液を1時間かけて添加した。添加終了後は93℃を保持して3時間熟成を行った。熟成後の溶液のpHは8.4であった。熟成した溶液を冷却後、相対遠心加速度:5000Gで遠心分離し、上澄み液を除去した。そして、沈殿したケーキにイオン交換水を加えて撹拌してレスラリーを行い、再度、相対遠心加速度:5000Gで遠心分離を行う処理を、スラリーの電導度が100μS/cm以下になるまで繰り返した。電導度が100μS/cm以下となったスラリーを固形分濃度6.0質量%に調整して超音波で分散し、セリア微粒子分散液を得た。
得られたセリア微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.116μmであった。
またX線で結晶子径、結晶型を測定したところ、結晶子径は18nmで、Cerianiteの結晶型を示した。
このセリア微粒子分散液を硝酸でpHを5.0に調整し、固形分濃度0.6質量の研磨用砥粒分散液を得た。この研磨用砥粒分散液で熱酸化膜の研磨を行った。結果を第1表〜第3表に示す。
<Comparative Example 3>
3.63 kg of 0.7 mass% aqueous ammonia was prepared and heated to 93 ° C. (Solution A). Next, 5.21 kg (solution B) of a 1.6 mass% cerium nitrate solution as CeO 2 was prepared, and solution B was added to solution A over 1 hour. After completion of the addition, the mixture was aged at 93 ° C. for 3 hours. The pH of the solution after aging was 8.4. After cooling the aged solution, it was centrifuged at a relative centrifugal acceleration of 5000 G, and the supernatant was removed. Then, ion-exchanged water was added to the precipitated cake, and the mixture was stirred and reslurried, and the process of centrifuging again at a relative centrifugal acceleration of 5000 G was repeated until the conductivity of the slurry became 100 μS / cm or less. The slurry having an electric conductivity of 100 μS / cm or less was adjusted to a solid concentration of 6.0% by mass and dispersed by ultrasonic waves to obtain a ceria fine particle dispersion.
The average particle diameter (median diameter) of the obtained ceria fine particle dispersion was measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA) and found to be 0.116 μm.
When the crystallite size and crystal form were measured by X-ray, the crystallite diameter was 18 nm, indicating a Cerianite crystal form.
The pH of this ceria fine particle dispersion was adjusted to 5.0 with nitric acid to obtain a polishing abrasive dispersion having a solid content of 0.6 mass. The thermal oxide film was polished with this abrasive grain dispersion. The results are shown in Tables 1 to 3.

<比較例4>
次に準備工程2で得られた前駆体粒子分散液Aに3質量%酢酸を加えてpHを6.5に調整して、120℃の乾燥機中で15時間乾燥させた後、1250℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。
<Comparative Example 4>
Next, 3% by mass acetic acid was added to the precursor particle dispersion liquid A obtained in the preparation step 2 to adjust the pH to 6.5, and the mixture was dried in a dryer at 120 ° C. for 15 hours. Firing was performed for 2 hours using a muffle furnace to obtain a powdered fired body.

得られた焼成体100gにイオン交換水300gを加え、さらに3%アンモニア水溶液を用いてpHを9.2に調整した後、φ0.25mmの石英ビーズ(大研化学工業株式会社製)にて湿式解砕(カンペ(株)製バッチ式卓上サンドミル)を120分行った。解砕後に44メッシュの金網を通してビーズを分離した。得られた焼成体解砕分散液の固形分濃度は7.1質量%で回収重量は1183gであった。なお、解砕中にはアンモニア水溶液を添加してpHを9.2に保った。
次いで得られた焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、675Gで3分間処理し、軽液(沈降成分を除去した上澄み液)を回収し、シリカ系複合微粒子分散液を得た。シリカ系複合微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.221μm(221nm)であった。
To 100 g of the obtained fired body, 300 g of ion-exchanged water was added, and the pH was adjusted to 9.2 with a 3% aqueous ammonia solution. Crushing (batch type desktop sand mill manufactured by Campe Co., Ltd.) was performed for 120 minutes. After crushing, the beads were separated through a 44 mesh wire mesh. The solid content concentration of the obtained fired body disintegrated dispersion was 7.1% by mass, and the recovered weight was 1183 g. During the crushing, an aqueous ammonia solution was added to maintain the pH at 9.2.
Next, the obtained fired body disintegrated dispersion is treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") at 675 G for 3 minutes to recover a light liquid (supernatant from which settled components have been removed). Thus, a silica-based composite fine particle dispersion was obtained. When the average particle diameter (median diameter) of the silica-based composite fine particle dispersion was measured using a laser diffraction scattering method (LA-950, manufactured by HORIBA), it was 0.221 μm (221 nm).

<比較例5>
次に準備工程2で得られた前駆体粒子分散液Aに3質量%酢酸を加えてpHを6.5に調整して、120℃の乾燥機中で15時間乾燥させた後、390℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。
<Comparative Example 5>
Next, 3% by mass acetic acid was added to the precursor particle dispersion liquid A obtained in the preparation step 2 to adjust the pH to 6.5, and the mixture was dried in a dryer at 120 ° C. for 15 hours. The powder was fired for 2 hours using a muffle furnace to obtain a powdered fired body.

得られた焼成体100gにイオン交換水300gを加え、さらに3%アンモニア水溶液を用いてpHを9.2に調整した後、φ0.25mmの石英ビーズ(大研化学工業株式会社製)にて湿式解砕(カンペ(株)製バッチ式卓上サンドミル)を120分行った。解砕後に44メッシュの金網を通してビーズを分離した。得られた焼成体解砕分散液の固形分濃度は7.2質量%で回収重量は1167gであった。なお、解砕中にはアンモニア水溶液を添加してpHを9.2に保った。
次いで得られた焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、675Gで3分間処理し、軽液(沈降成分を除去した上澄み液)を回収し、シリカ系複合微粒子分散液を得た。シリカ系複合微粒子分散液についてレーザー回折散乱法(HORIBA社製LA−950)を用いて平均粒子径(メジアン径)を測定したところ、0.194μm(194nm)であった。
To 100 g of the obtained fired body, 300 g of ion-exchanged water was added, and the pH was adjusted to 9.2 with a 3% aqueous ammonia solution. Crushing (batch type desktop sand mill manufactured by Campe Co., Ltd.) was performed for 120 minutes. After crushing, the beads were separated through a 44 mesh wire mesh. The solid content concentration of the obtained fired body disintegrated dispersion was 7.2% by mass, and the recovered weight was 1167 g. During the crushing, an aqueous ammonia solution was added to maintain the pH at 9.2.
Next, the obtained fired body disintegrated dispersion is treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number "CR21G") at 675 G for 3 minutes to recover a light liquid (supernatant from which settled components have been removed). Thus, a silica-based composite fine particle dispersion was obtained. When the average particle diameter (median diameter) of the silica-based composite fine particle dispersion was measured by a laser diffraction scattering method (LA-950, manufactured by HORIBA), it was 0.194 μm (194 nm).

<比較例6>
準備工程2で得られた前駆体粒子Aに3質量%酢酸を加えてpHを6.5に調整して、120℃の乾燥機中で15時間乾燥させた後、1250℃のマッフル炉を用いて2時間焼成を行い、粉状の焼成体を得た。
得られた焼成体310gにイオン交換水430gを加え、さらに3.0質量%のアンモニア水を加えて、pH11.0に調整した後、撹拌しながら超音波浴槽中で10分間超音波を照射して懸濁液を得た。
次に事前に設備洗浄をおこなった解砕機(アシザワファインテック株式会社製、LMZ06)にφ0.25mmの石英ビーズ595gを投入し、水運転を行った。さらに上記懸濁液を解砕機のチャージタンクに充填した(充填率85%)。なお、解砕機の粉砕室及び配管中に残留したイオン交換水を考慮すると、解砕時の濃度は25質量%である。そして、解砕機におけるディスクの周速を14m/秒、パス回数30回とする条件で湿式解砕を行った。また解砕時の懸濁液のpHを11に維持するように、パス毎に3%アンモニア水溶液を添加した。このようにして、固形分濃度20質量%の焼成体解砕分散液を得た。
次いで得られた焼成体解砕分散液を遠心分離装置(日立工機株式会社製、CR21G)にて相対遠心加速度675Gで3分間、遠心分離を行い、沈降成分を除去し、シリカ系複合微粒子分散液を得た。
<Comparative Example 6>
To the precursor particles A obtained in the preparation step 2, 3% by mass acetic acid was added to adjust the pH to 6.5, and the mixture was dried in a dryer at 120 ° C for 15 hours. For 2 hours to obtain a powdered fired body.
430 g of ion-exchanged water was added to 310 g of the obtained fired body, and further, ammonia water of 3.0% by mass was added to adjust the pH to 11.0. To obtain a suspension.
Next, 595 g of quartz beads having a diameter of 0.25 mm was put into a crusher (LMZ06, manufactured by Ashizawa Finetech Co., Ltd.) that had been washed in advance, and a water operation was performed. Further, the suspension was filled in a charge tank of a crusher (filling rate: 85%). In consideration of the ion-exchanged water remaining in the pulverizing chamber and the pipe of the pulverizer, the concentration at the time of pulverization is 25% by mass. The wet crushing was performed under the conditions that the peripheral speed of the disk in the crusher was 14 m / sec and the number of passes was 30 times. In addition, a 3% aqueous ammonia solution was added for each pass so that the pH of the suspension at the time of crushing was maintained at 11. Thus, a fired body disintegrated dispersion having a solid content concentration of 20% by mass was obtained.
Next, the obtained fired body disintegrated dispersion was centrifuged at a relative centrifugal acceleration of 675 G for 3 minutes using a centrifugal separator (CR21G, manufactured by Hitachi Koki Co., Ltd.) to remove sedimentation components and to disperse silica-based composite fine particles. A liquid was obtained.

<実験2> 被膜のEDS組成分析
実施例4で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子について、透過型電子顕微鏡(日本電子社製、JEM−2100F、電界放射型透過電子顕微鏡(Cs補正付属)、加速電子:120kV、倍率:50,000倍)を用いて観察し、子粒子(セリア結晶粒子)の外側に被膜が存在することを確認し、その後、この被膜の部分へ選択的に電子ビームを当てたEDS測定を行った。
エネルギー分散型X線分光測定(EDS)の測定条件を以下に示す。
シリカ系複合微粒子を純水中で分散させた後、カーボン支持膜付きCuメッシュに載せて、以下の測定装置にて測定を行った。
測定装置:日本電子社製、UTW型Si(Li)半導体検出器
ビーム系:0.2nm
<Experiment 2> EDS composition analysis of coating film The silica-based composite fine particles contained in the dispersion liquid of silica-based composite fine particles obtained in Example 4 were analyzed with a transmission electron microscope (JEM-2100F, JEOL, field emission transmission electron microscope). (Attached to Cs correction), accelerated electron: 120 kV, magnification: 50,000 times), and confirmed that a film was present outside the child particles (ceria crystal particles). EDS measurement was performed by selectively applying an electron beam.
The measurement conditions of energy dispersive X-ray spectrometry (EDS) are shown below.
After the silica-based composite fine particles were dispersed in pure water, the particles were placed on a Cu mesh provided with a carbon support film and measured with the following measuring device.
Measuring device: JEOL Ltd., UTW type Si (Li) semiconductor detector Beam system: 0.2 nm

透過型電子顕微鏡を用いて観察して得た写真(TEM像)を図5(a)(b)に示す。そして、図5(a)(b)によって確認された子粒子(セリア結晶粒子)の外側にシリカ被膜の部分へ選択的に電子ビームを当てたEDS測定の結果、1.74keV付近にSiの強度ピークが現れ、4.84keV付近にCeの強度ピークが現れた。そしてSi原子数%は0.836atom%、Ceの原子数%は0.277であり、Siの原子数%/Ceの原子数%は3.018と算出された。同様に実施例1、7、比較例1、3についても同様の測定を行った結果を第4表に示す。なお、比較例1、3は被膜が確認されなかった。   FIGS. 5A and 5B show photographs (TEM images) obtained by observation using a transmission electron microscope. 5 (a) and 5 (b), the result of EDS measurement in which an electron beam was selectively applied to a portion of the silica coating on the outside of the child particles (ceria crystal particles) confirmed that the intensity of Si was around 1.74 keV. A peak appeared, and an intensity peak of Ce appeared around 4.84 keV. The atomic% of Si was 0.836 atom%, the atomic% of Ce was 0.277, and the atomic% of Si / the atomic% of Ce was calculated to be 3.018. Similarly, Tables 4 show the results of the same measurements performed on Examples 1 and 7 and Comparative Examples 1 and 3. In Comparative Examples 1 and 3, no coating was confirmed.

<実験3>
実施例2、4、7及び比較例3、6で得られた各シリカ系複合微粒子分散液について、流動電位の測定及びカチオンコロイド滴定を行った。滴定装置として、流動電位滴定ユニット(PCD−500)を搭載した自動滴定装置AT−510(京都電子工業製)を用いた。
まず、固形分濃度を1質量%に調整したシリカ系複合微粒子分散液へ0.05%の塩酸水溶液を添加してpH6に調整した。次に、その液の固形分として0.8gに相当する量を100mlのトールビーカーに入れ、流動電位の測定を行った。次にカチオンコロイド滴定液(0.001Nポリ塩化ジアリルジメチルアンモニウム溶液)を5秒間隔、1回の注入量0.2ml、注入速度2秒/mlで20mlを添加して滴定を行った。そして、カチオンコロイド滴定液の添加量(ml)をX軸、シリカ系複合微粒子分散液の流動電位(mV)をY軸にプロットして、流動電位曲線の開始点における流動電位I(mV)、ならびにクニックにおける流動電位C(mV)及びカチオンコロイド滴定液の添加量V(ml)を求め、ΔPCD/V=(I−C)/Vを算出した。結果を第5表に示す。また流動電位曲線を図4に示す。
<Experiment 3>
For each of the silica-based composite fine particle dispersions obtained in Examples 2, 4, and 7 and Comparative Examples 3 and 6, measurement of streaming potential and titration of cationic colloid were performed. As the titrator, an automatic titrator AT-510 (manufactured by Kyoto Electronics Industry) equipped with a streaming potential titrator (PCD-500) was used.
First, a 0.05% hydrochloric acid aqueous solution was added to a silica-based composite fine particle dispersion having a solid concentration adjusted to 1% by mass to adjust the pH to 6. Next, an amount equivalent to 0.8 g as a solid content of the liquid was placed in a 100 ml tall beaker, and the streaming potential was measured. Next, titration was performed by adding a cationic colloid titrant (0.001 N polydiallyldimethylammonium chloride solution) at an interval of 5 seconds, 20 ml at an injection rate of 0.2 ml and an injection speed of 2 seconds / ml. Then, the addition amount (ml) of the cationic colloid titrant is plotted on the X-axis, and the streaming potential (mV) of the silica-based composite fine particle dispersion is plotted on the Y-axis, and the streaming potential I (mV) at the starting point of the streaming potential curve is plotted. In addition, the streaming potential C (mV) and the addition amount V (ml) of the cationic colloid titrant in the knick were determined, and ΔPCD / V = (IC) / V was calculated. The results are shown in Table 5. FIG. 4 shows a streaming potential curve.

<実験4>
[Si固溶状態の測定]
実施例5で調製したシリカ系複合微粒子分散液を、X線吸収分光測定装置(Rigaku社製のR−XAS Looper)を用いて、CeL III吸収端(5727eV)におけるX線吸収スペクトルを測定し、そのX線吸収スペクトルに現れるEXAFS振動を得た。解析にはRigaku製ソフトウエアREX−2000を使用し、セリウム周辺の酸素及びセリウムの平均配位原子数N、平均結合距離Rを得た。結果を第6表に示す。
第6表の結果から、セリウムの周辺には酸素、ケイ素およびセリウムが存在し、セリウム−酸素原子間距離は2.4Åで、セリウム―セリウム原子間距離は3.8Åであるのに対して、セリウム−ケイ素の原子間距離は3.2Åであることが確認された。またXRDの分析結果から、セリウムはCerianiteの結晶型でCeO2として存在していることから、酸化セリウム中にSiが固溶していると考えられる。
実施例1、実施例4、比較例3、比較例4についても同様に測定を行った。結果を第6表に示す。
<Experiment 4>
[Measurement of Si solid solution state]
The silica-based composite fine particle dispersion prepared in Example 5 was measured for an X-ray absorption spectrum at a CeL III absorption end (5727 eV) using an X-ray absorption spectrometer (R-XAS Looper manufactured by Rigaku). EXAFS vibrations appearing in the X-ray absorption spectrum were obtained. Rigaku software REX-2000 was used for analysis, and the average number of coordinating atoms N and the average bond distance R of oxygen and cerium around cerium were obtained. The results are shown in Table 6.
From the results in Table 6, oxygen, silicon and cerium exist around cerium, the distance between cerium and oxygen atoms is 2.4 °, and the distance between cerium and cerium atoms is 3.8 °, It was confirmed that the interatomic distance between cerium and silicon was 3.2 °. Also, from the XRD analysis results, it is considered that Si is dissolved in cerium oxide because cerium exists as CeO 2 in the crystal form of Cerianite.
The same measurement was performed for Example 1, Example 4, Comparative Example 3, and Comparative Example 4. The results are shown in Table 6.

本発明の複合微粒子は、不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。   Since the composite fine particles of the present invention do not contain impurities, they can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate and a wiring substrate.

Claims (8)

非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面の一部にシリカ被膜を有している、下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの結晶子径が10〜25nmであること。
[4]前記子粒子の主成分である結晶性セリアにケイ素原子が固溶していること。
[1] The following [1] in which child particles having crystalline ceria as a main component are provided on the surface of base particles mainly containing amorphous silica, and a silica coating is further provided on a part of the surface of the child particles. A silica-based composite fine particle dispersion containing silica-based composite fine particles having an average particle diameter of 50 to 350 nm and having the characteristics of [4] to [4].
[1] The silica-based composite fine particles have a mass ratio of silica to ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] The silica-based composite fine particles have a crystallite diameter of the crystalline ceria of 10 to 25 nm measured by X-ray diffraction.
[4] A silicon atom is dissolved in crystalline ceria which is a main component of the child particles.
前記子粒子に含まれるセリウム原子およびケイ素原子ついて、隣接するセリウム−ケイ素原子間距離をR1とし、隣接するセリウム−セリウム原子間距離をR2としたときに、R1<R2の関係を満たす、請求項1に記載のシリカ系複合微粒子分散液。 For cerium atom and a silicon atom contained in the child particles, adjacent cerium - between silicon atoms distance and R 1, adjacent cerium - between cerium atom distance it is taken as R 2, the relationship of R 1 <R 2 The silica-based composite fine particle dispersion according to claim 1, which is filled. 前記シリカ系複合微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項1又は2に記載のシリカ系複合微粒子分散液。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
The silica-based composite fine particle dispersion according to claim 1 or 2, wherein the content ratio of impurities contained in the silica-based composite fine particles is as shown in the following (a) and (b).
(A) The content of each of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 100 ppm or less.
(B) The content of each of U, Th, Cl, NO 3 , SO 4 and F is 5 ppm or less.
請求項1〜3の何れかに記載のシリカ系複合微粒子分散液を含む研磨用砥粒分散液。   A polishing abrasive dispersion containing the silica-based composite fine particle dispersion according to claim 1. シリカ膜が形成された半導体基板の平坦化のために用いることを特徴とする請求項4記載の研磨用砥粒分散液。   The abrasive grain dispersion for polishing according to claim 4, which is used for flattening a semiconductor substrate on which a silica film is formed. pHが3〜8である、請求項5に記載の研磨用砥粒分散液。   The abrasive grain dispersion for polishing according to claim 5, which has a pH of 3 to 8. 下記の工程1〜工程3を含み、請求項1〜3の何れかに記載のシリカ系複合微粒子分散液が得られることを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(ii)の処理をして焼成体解砕分散液を得る工程。
ii)溶媒を加えて、pH8.6〜10.8の範囲にて、湿式で解砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。
A method for producing a silica-based composite fine particle dispersion, comprising the following steps 1 to 3, wherein the silica-based composite fine particle dispersion according to any one of claims 1 to 3 is obtained.
Step 1: A silica fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and a cerium metal salt is continuously added thereto while maintaining the temperature at 5 to 98 ° C and the pH within a range of 7.0 to 9.0. A step of obtaining the precursor particle dispersion liquid containing the precursor particles by adding the precursor particles intermittently or intermittently.
Step 2: the precursor particle dispersion is dried, and calcined at 400~1,200 ° C., the resulting fired body, as engineering to obtain a sintered body disintegration dispersion was processed in the following (ii) .
( Ii) A solvent is added and the mixture is wet-crushed in a pH range of 8.6 to 10.8.
Step 3: a step of obtaining a silica-based composite fine particle dispersion by subjecting the fired body crushed dispersion to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more, and subsequently removing the sedimentation component.
前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項7記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
The method for producing a silica-based composite fine particle dispersion according to claim 7, wherein the content ratio of impurities contained in the silica fine particles is as follows (a) and (b).
(A) The content of each of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 100 ppm or less.
(B) The content of each of U, Th, Cl, NO 3 , SO 4 and F is 5 ppm or less.
JP2017083208A 2016-04-22 2017-04-19 Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion Active JP6648064B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086612 2016-04-22
JP2016086612 2016-04-22

Publications (2)

Publication Number Publication Date
JP2017214271A JP2017214271A (en) 2017-12-07
JP6648064B2 true JP6648064B2 (en) 2020-02-14

Family

ID=60576510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083208A Active JP6648064B2 (en) 2016-04-22 2017-04-19 Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion

Country Status (1)

Country Link
JP (1) JP6648064B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015200B2 (en) * 2018-03-29 2022-02-02 日揮触媒化成株式会社 Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359479B2 (en) * 1995-11-07 2002-12-24 三井金属鉱業株式会社 Abrasive, manufacturing method and polishing method
KR100574225B1 (en) * 2003-10-10 2006-04-26 요업기술원 Silica/Ceria/Silica Composite Particles for CMP slurry and Process for its production
JP2007061989A (en) * 2005-09-02 2007-03-15 Hitachi Maxell Ltd Polishing composite-oxide particle and slurry abrasive
JP6385307B2 (en) * 2014-03-31 2018-09-05 日揮触媒化成株式会社 Plate-like particle and polishing composition containing the plate-like particle
JP6352060B2 (en) * 2014-06-06 2018-07-04 花王株式会社 Polishing liquid composition for polishing silicon oxide film

Also Published As

Publication number Publication date
JP2017214271A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6948423B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
US10920120B2 (en) Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
KR102394895B1 (en) Silica-based composite fine particle dispersion and method for preparing the same
JP7020865B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP6829007B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
JP6920430B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion
JP6703437B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing the silica-based composite fine particle dispersion
JP6710100B2 (en) Method for producing silica-based composite fine particle dispersion
JP7037918B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP7038022B2 (en) Abrasive grain dispersion for polishing containing ceria-based fine particle dispersion, its manufacturing method, and ceria-based fine particle dispersion.
JP2021127359A (en) Ceria-based composite fine particle dispersion, method for producing the same, and ceria-based composite fine particle dispersion-containing polishing abrasive grain dispersion
JP6648064B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion
JP6616794B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion
JP2020050571A (en) Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
JP2020079163A (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive grain dispersion containing ceria-based composite fine particle dispersion
JP6588050B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP6616795B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP7015200B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP2021014375A (en) Ceria-based fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing ceria-based fine particle dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6648064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250