JP6352060B2 - Polishing liquid composition for polishing silicon oxide film - Google Patents

Polishing liquid composition for polishing silicon oxide film Download PDF

Info

Publication number
JP6352060B2
JP6352060B2 JP2014118002A JP2014118002A JP6352060B2 JP 6352060 B2 JP6352060 B2 JP 6352060B2 JP 2014118002 A JP2014118002 A JP 2014118002A JP 2014118002 A JP2014118002 A JP 2014118002A JP 6352060 B2 JP6352060 B2 JP 6352060B2
Authority
JP
Japan
Prior art keywords
polishing
oxide film
ceria
silicon oxide
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014118002A
Other languages
Japanese (ja)
Other versions
JP2015231029A (en
Inventor
衣田 幸司
幸司 衣田
佑季 古高
佑季 古高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2014118002A priority Critical patent/JP6352060B2/en
Publication of JP2015231029A publication Critical patent/JP2015231029A/en
Application granted granted Critical
Publication of JP6352060B2 publication Critical patent/JP6352060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、酸化珪素膜研磨用研磨液組成物、及びこれを用いた半導体基板の製造方法に関する。   The present invention relates to a polishing liquid composition for polishing a silicon oxide film and a method for producing a semiconductor substrate using the same.

半導体素子の高集積化、微細化及び配線の多層化が進むに伴い、ウェーハ上に多層形成される導電層又は絶縁層において段差が大きくなりつつある。このような被研磨基板の段差を除去するために、1980年代の末に米国のIBM社により化学的除去工程及び機械的除去工程を結合させたCMP(ケミカルメカニカルポリッシング)技術といった新しい工程技術が開発された。このCMP技術とは、加工しようとする被研磨基板の表面と研磨パッドとを接触させた状態で研磨液をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面凹凸部分を化学的に反応させると共に機械的に除去して平坦化させる技術である。   As semiconductor elements are highly integrated, miniaturized, and the number of wiring layers is increasing, steps are increasing in conductive layers or insulating layers formed in multiple layers on a wafer. In order to remove such steps on the substrate to be polished, a new process technology such as CMP (Chemical Mechanical Polishing) technology was developed in the late 1980s by IBM in the United States, combining chemical and mechanical removal processes. It was done. This CMP technique is to move the substrate to be polished and the polishing pad relative to each other while supplying the polishing liquid to these contact portions in a state where the surface of the substrate to be polished and the polishing pad are in contact with each other. In this technique, the surface uneven portion of the substrate to be polished is chemically reacted and mechanically removed to flatten the surface.

CMP技術のパフォーマンスは、CMPの工程条件、研磨液の種類、研磨パッドの種類などによって決められる。これらの中でも、特に、研磨液は、CMP工程のパフォーマンスに最も大きな影響を及ぼす因子である。この研磨液に含まれる研磨粒子としては、シリカ(SiO2)やセリア(CeO2)が広く用いられている。 The performance of the CMP technique is determined by CMP process conditions, the type of polishing liquid, the type of polishing pad, and the like. Among these, the polishing liquid is a factor that has the greatest influence on the performance of the CMP process. As the abrasive particles contained in the polishing liquid, silica (SiO 2 ) and ceria (CeO 2 ) are widely used.

現在では、半導体素子の製造工程における、層間絶縁膜の平坦化、シャロートレンチ素子分離構造の形成、プラグ及び埋め込み金属配線の形成等を行う際には、このCMP技術が必須の技術となっている。近年、半導体素子の多層化、高精細化が飛躍的に進み、半導体素子の歩留まり及びスループット(収量)の更なる向上が要求されるようになってきている。それに伴い、CMP工程に関しても、研磨傷フリーで且つより高速な研磨が望まれるようになってきている。例えば、シャロートレンチ素子分離構造の形成工程では、被研磨膜(例えば、酸化珪素膜)に対する研磨ストッパ膜(例えば、窒化珪素膜)の研磨選択性(換言すると、研磨ストッパ膜の方が被研磨膜よりも研磨されにくいという研磨の選択性)を向上させて研磨傷(スクラッチ)の発生を防止すると同時に被研磨膜の研磨速度も向上させることが望まれている。   At present, this CMP technique is an indispensable technique when performing planarization of an interlayer insulating film, formation of a shallow trench element isolation structure, formation of a plug and a buried metal wiring, etc. in a semiconductor element manufacturing process. . In recent years, the multi-layered and high-definition of semiconductor elements have progressed dramatically, and further improvements in the yield and throughput of semiconductor elements have been demanded. Along with this, with respect to the CMP process, there is a demand for polishing without scratches and at a higher speed. For example, in the formation process of the shallow trench isolation structure, the polishing selectivity of the polishing stopper film (for example, silicon nitride film) with respect to the film to be polished (for example, silicon oxide film) (in other words, the polishing stopper film is more polished. It is desired to improve the polishing rate of the film to be polished while improving the selectivity of polishing that is harder to polish than the like and preventing the occurrence of polishing scratches.

特に、汎用的に用いられるメモリ分野では、スループット向上が重要な課題であり、スループット向上に向け、研磨剤の改良も進んでいる。例えば研磨粒子としてセリアを用いた場合、被研磨膜(酸化珪素膜)の研磨速度を向上させるためには、研磨粒子の粒子径を大きくすることが一般的に知られているが、粒子径を大きくすると、研磨傷の増加により品質面で劣るようになり、歩留まりを低下させる結果となる。   In particular, in the memory field that is used for general purposes, increasing throughput is an important issue, and improvement of abrasives is also progressing to improve throughput. For example, when ceria is used as the abrasive particles, it is generally known to increase the particle size of the abrasive particles in order to improve the polishing rate of the film to be polished (silicon oxide film). If it is increased, the quality becomes inferior due to an increase in polishing scratches, resulting in a decrease in yield.

そこで被研磨膜を高速で研磨しつつも研磨傷を低下させる手段として、非特許文献1には、セリアに崩壊性を付与した大粒子径セリアを含む研磨剤を用い、研磨中に大粒子セリアが崩壊することにより、高い研磨速度を発現しつつも研磨傷を低下させる技術が記載されている。一方で、シャロートレンチ素子分離構造の形成工程では、被研磨膜(例えば、酸化珪素膜)に対する研磨ストッパ膜(例えば、窒化珪素膜)の研磨選択性が求められる。シャロートレンチ素子分離構造の形成に用いられる研磨剤として、特許文献1には、酸化セリウム粒子と、分散剤と、遊離の―COOM基、フェノール性OH基、―SO3M基、―O・SO3H基、―PO42基又は―PO32基等のアニオン性基を有する水溶性有機低分子(MはH,NH4,またはNa,K等の金属原子)から選ばれる添加剤と、水とを含むCMP研磨剤が開示されている。特許文献1に記載のCMP研磨剤の解決課題は、酸化珪素絶縁膜の高平坦化である。特許文献2及び特許文献3には、カルボキシメチルセルロース等の改質セルロースを含むCMP用の水性組成物が開示されている。これらの水性組成物の解決課題としては、金属配線の過度なディッシングを伴わずに、金属を含有する半導体ウェーハの表面のCMPを行うことが挙げられる。 Therefore, as means for reducing polishing scratches while polishing a film to be polished at high speed, Non-Patent Document 1 uses an abrasive containing a large particle diameter ceria imparted with disintegration property to ceria, and a large particle ceria during polishing. Describes a technique for reducing polishing scratches while developing a high polishing rate by disintegrating. On the other hand, in the formation process of the shallow trench isolation structure, the polishing selectivity of the polishing stopper film (for example, silicon nitride film) with respect to the film to be polished (for example, silicon oxide film) is required. As an abrasive used for forming a shallow trench isolation structure, Patent Document 1 discloses cerium oxide particles, a dispersant, a free —COOM group, a phenolic OH group, a —SO 3 M group, —O · SO. Addition selected from water-soluble organic small molecules having an anionic group such as 3 H group, —PO 4 M 2 group or —PO 3 M 2 group (M is a metal atom such as H, NH 4 , or Na, K) A CMP abrasive containing an agent and water is disclosed. A problem to be solved by the CMP abrasive disclosed in Patent Document 1 is high planarization of the silicon oxide insulating film. Patent Documents 2 and 3 disclose an aqueous composition for CMP containing modified cellulose such as carboxymethyl cellulose. A problem to be solved by these aqueous compositions is to perform CMP on the surface of a semiconductor wafer containing metal without excessive dishing of the metal wiring.

日立評論 2008年2月号 62−67ページHitachi review February 2008 pages 62-67

特開2001−7060号公報Japanese Patent Laid-Open No. 2001-7060 特開2006−019747号公報JP 2006-019747 A 特開2006−019746号公報JP 2006-019746 A

近年の半導体分野においては高集積化が進んでおり、配線の複雑化や微細化が求められている。そのため、シャロートレンチ素子分離構造の形成工程において、シリコンウェーハの一方の主面側に形成する窒化珪素膜の厚みをできるだけ薄くする必要がある。よって、窒化珪素膜の上に形成された酸化珪素膜の研磨工程では、窒化珪素膜の研磨を極力抑制し、なおかつ、酸化珪素膜の研磨を高速で進行させることができるという「高い研磨選択性」に対する要求がますます高まっている。上記の要求に対し、ポリアクリル酸等の研磨助剤による研磨選択性の向上が試みられているが、窒化珪素膜の過剰研磨や平坦化不良の解決のためには、研磨助剤の高濃度添加が行われ、その結果として、酸化珪素膜の研磨速度を低下させる等の問題が生じている。故に、この試みでは、研磨選択性の向上の効果は不十分であった。また、研磨助剤の高濃度添加で研磨粒子の凝集が進行し、結果として研磨助剤の添加が研磨傷を増加させる要因ともなっている。   In recent years, high integration has been advanced in the semiconductor field, and the complexity and miniaturization of wiring have been demanded. Therefore, in the formation process of the shallow trench isolation structure, it is necessary to reduce the thickness of the silicon nitride film formed on one main surface side of the silicon wafer as much as possible. Therefore, in the polishing step of the silicon oxide film formed on the silicon nitride film, “high polishing selectivity” that the polishing of the silicon nitride film can be suppressed as much as possible and the polishing of the silicon oxide film can proceed at a high speed. Is increasingly demanding. In response to the above requirements, attempts have been made to improve polishing selectivity with a polishing aid such as polyacrylic acid. However, in order to solve excessive polishing of silicon nitride films and poor planarization, a high concentration of polishing aid is used. As a result, problems such as a reduction in the polishing rate of the silicon oxide film occur. Therefore, in this attempt, the effect of improving the polishing selectivity was insufficient. Further, agglomeration of abrasive particles proceeds with the addition of a high concentration of polishing aid, and as a result, the addition of the polishing aid is a factor that increases polishing scratches.

本発明は、半導体基板の製造過程のシャロートレンチ素子分離構造の形成工程で行われる酸化珪素膜の研磨の際に用いられ、高い生産性の担保に必要な酸化珪素膜の研磨速度を確保しつつも、窒化珪素膜の研磨を極力抑制し且つ酸化珪素膜の研磨を高速で進行させることができるという高い研磨選択性を呈し、且つ、研磨傷を低減できる酸化珪素膜研磨用研磨液組成物、及びこれを用いた半導体基板の製造方法を提供する。   INDUSTRIAL APPLICABILITY The present invention is used when a silicon oxide film is polished in a process of forming a shallow trench element isolation structure in the process of manufacturing a semiconductor substrate, while ensuring a polishing rate of the silicon oxide film necessary for ensuring high productivity. A polishing liquid composition for polishing a silicon oxide film that exhibits high polishing selectivity such that polishing of the silicon nitride film can be suppressed as much as possible and polishing of the silicon oxide film can proceed at a high speed, and can reduce polishing flaws, And the manufacturing method of a semiconductor substrate using the same is provided.

本発明の酸化珪素膜研磨用研磨液組成物は、下記成分A〜Cを含む。
成分A:(メタ)アクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体
成分B:シリカ粒子と前記シリカ粒子の表面の少なくとも一部を覆う粒状セリアとを含むセリアコートシリカ粒子
成分C:水系媒体
The polishing composition for polishing a silicon oxide film of the present invention contains the following components A to C.
Component A: Copolymer of (meth) acrylic acid monomer and sulfonic acid monomer having vinyl group Component B: Ceria-coated silica particles containing silica particles and granular ceria covering at least a part of the surface of the silica particles Component C: Aqueous media

本発明を利用した半導体基板の製造方法では、シリコン基板と前記シリコン基板の一方の主面側に配置された窒化珪素膜とを含む基板にトレンチを形成した後、トレンチ埋め込み用の酸化珪素膜を前記基板上に形成し、前記酸化珪素膜を、研磨液組成物を用いて少なくとも前記窒化珪素膜上の酸化珪素膜が除去されるまで研磨した後、前記窒化珪素膜をシリコン基板上から除去することにより、シャロートレンチ素子分離構造を形成する、ことを含む基板の製造方法おいて、前記研磨液組成物として本発明の酸化珪素膜研磨用研磨液組成物を用いる。   In a method for manufacturing a semiconductor substrate using the present invention, a trench is formed in a substrate including a silicon substrate and a silicon nitride film disposed on one main surface side of the silicon substrate, and then a silicon oxide film for filling the trench is formed. After forming the silicon oxide film on the substrate and polishing the silicon oxide film using a polishing composition until at least the silicon oxide film on the silicon nitride film is removed, the silicon nitride film is removed from the silicon substrate. Thus, in the method for producing a substrate including forming a shallow trench isolation structure, the polishing liquid composition for polishing a silicon oxide film of the present invention is used as the polishing liquid composition.

本発明によれば、半導体基板の製造過程のシャロートレンチ素子分離構造の形成工程で行われる酸化珪素膜の研磨の際に用いられ、高い生産性の為の必要な酸化珪素膜の研磨速度を確保しつつも、窒化珪素膜の研磨を極力抑制し且つ酸化珪素膜の研磨を進行させることができるという高い研磨選択性を呈し、且つ、研磨傷を低減できる、酸化珪素膜研磨用研磨液組成物、および当該酸化珪素膜研磨用研磨液組成物を用いた半導体基板の製造方法を提供できる。   According to the present invention, a polishing rate of a silicon oxide film necessary for high productivity is ensured, which is used in polishing a silicon oxide film performed in a process of forming a shallow trench isolation structure in the process of manufacturing a semiconductor substrate. However, a polishing composition for polishing a silicon oxide film that exhibits high polishing selectivity such that polishing of the silicon nitride film can be suppressed as much as possible and polishing of the silicon oxide film can proceed, and polishing flaws can be reduced. And a method for producing a semiconductor substrate using the polishing composition for polishing a silicon oxide film.

本発明は、シリカ粒子の表面の少なくとも一部がセリアで被覆されたセリアコートシリカ粒子及び水系媒体を含有する酸化珪素膜研磨用研磨液組成物(以下「研磨液組成物」と略称する場合もある。)に、研磨助剤として、(メタ)アクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体を含有させることにより、シャロートレンチ素子分離構造(以下「素子分離構造」ともいう。)を形成する工程において、高い生産性の担保に必要な酸化珪素膜の研磨速度を確保しつつも、窒化珪素膜の研磨を極力抑制し且つ酸化珪素膜の研磨を高速で進行させることができるという高い研磨選択性を呈し、且つ、研磨傷を低減できるという知見に基づく。(メタ)アクリル酸モノマーとは、アクリル酸及びメタクリル酸から選ばれる少なくとも1種のモノマーを指す。   The present invention relates to a polishing composition for polishing a silicon oxide film containing ceria-coated silica particles in which at least a part of the surface of silica particles is coated with ceria and an aqueous medium (hereinafter sometimes abbreviated as “polishing liquid composition”). In addition, a shallow trench isolation structure (hereinafter also referred to as “element isolation structure”) is obtained by adding a copolymer of a (meth) acrylic acid monomer and a sulfonic acid monomer having a vinyl group as a polishing aid. In the process of forming the silicon oxide film, it is possible to suppress the polishing of the silicon nitride film as much as possible and advance the polishing of the silicon oxide film at a high speed while securing the polishing speed of the silicon oxide film necessary for ensuring high productivity. Based on the knowledge that high polishing selectivity is exhibited and polishing scratches can be reduced. The (meth) acrylic acid monomer refers to at least one monomer selected from acrylic acid and methacrylic acid.

本発明の効果発現のメカニズムの詳細は明らかではないが、以下の様に推定している。ほぼ中性下では、酸化珪素膜の表面は負に帯電し且つ親水性であり、一方、窒化珪素膜の表面は中性であるかやや正に帯電しており且つやや疎水性である。本発明の研磨液組成物に含まれる前記共重合体は、(メタ)アクリル酸モノマーに由来の構成単位中のカルボン酸の解離が少なく、適度な疎水性を示しており、且つ、アニオン性であり負の電荷を持つカルボン酸基とスルホン酸基を有しているので、窒化珪素膜に、近づき易く且つ吸着し易い。故に、酸化珪素膜の研磨が進行して窒化珪素膜が露出すると、前記研磨助剤は、疎水性相互作用と電荷的な相互作用の両方によって、窒化珪素膜に選択吸着する。本発明の研磨液組成物では、窒化珪素膜に吸着した前記研磨助剤の被膜の存在によって窒化珪素膜の研磨が抑制されるので、窒化珪素膜の研磨が抑制され且つ酸化珪素膜の研磨を進行させることができる。また、現状、研磨粒子として広く使用されている、粉砕法によって製造されたセリア粒子は、多くのエッジを有するのに対して、本発明の研磨液組成物に含まれるセリアコートシリカ粒子は、シリカ粒子表面の少なくとも一部が粒状セリアで被覆された構造である。そのために、本発明の研磨液組成物は、研磨粒子として粉砕法によって製造されたセリア粒子を含む従来の研磨液組成物よりも、研磨傷の発生が抑制されている。また、通常、研磨粒子の粒子形状が球状になると、被研磨面との摩擦抵抗の減少により、高い研磨速度を発現することはできないが、本発明の研磨液組成物に含まれるセリアコートシリカ粒子では、シリカ粒子上に微細な粒状セリアを被覆することにより、粒子表面上に微細な凹凸を有する構造となっているので、例えば、シリカ粒子形状が略球状であっても、この特殊な粒子構造により被研磨面との摩擦抵抗が向上され、高い研磨速度を発現するものと推定している。故に、本発明の研磨液組成物に含まれる前記共重合体とセリアコートシリカ粒子の併用により、窒化珪素膜の研磨を極力抑制しながら、酸化珪素膜の研磨を高速で進行させることができるという高い研磨選択性が呈されて、高いレベルで段差の解消を実現でき、更に、露出した窒化珪素膜への研磨傷発生を抑制することもできる。この高い研磨選択性と研磨傷発生の抑制効果とにより、本発明では、酸化珪素膜と窒化珪素膜とを含み、高度に平滑な面を得ることができる。但し、これらは推定であって、本発明は、これらメカニズムに限定されるものではない。   Although the details of the mechanism of the effect of the present invention are not clear, it is estimated as follows. Nearly neutral, the surface of the silicon oxide film is negatively charged and hydrophilic, while the surface of the silicon nitride film is neutral or slightly positively charged and slightly hydrophobic. The copolymer contained in the polishing liquid composition of the present invention has little dissociation of carboxylic acid in the structural unit derived from the (meth) acrylic acid monomer, exhibits moderate hydrophobicity, and is anionic. Since it has a negatively charged carboxylic acid group and sulfonic acid group, it is easy to approach and adsorb to the silicon nitride film. Therefore, when the polishing of the silicon oxide film proceeds and the silicon nitride film is exposed, the polishing aid is selectively adsorbed on the silicon nitride film by both hydrophobic interaction and charge interaction. In the polishing composition of the present invention, the polishing of the silicon nitride film is suppressed by the presence of the coating film of the polishing aid adsorbed on the silicon nitride film, so that the polishing of the silicon nitride film is suppressed and the polishing of the silicon oxide film is performed. Can be advanced. In addition, the ceria particles produced by the pulverization method, which are currently widely used as abrasive particles, have many edges, whereas the ceria-coated silica particles contained in the polishing liquid composition of the present invention are silica. It is a structure in which at least a part of the particle surface is coated with granular ceria. For this reason, the polishing liquid composition of the present invention is less susceptible to polishing scratches than conventional polishing liquid compositions containing ceria particles produced by grinding as abrasive particles. Further, normally, when the particle shape of the abrasive particles is spherical, a high polishing rate cannot be expressed due to a decrease in frictional resistance with the surface to be polished, but the ceria-coated silica particles contained in the polishing liquid composition of the present invention Then, by coating fine granular ceria on the silica particles, it has a structure with fine irregularities on the particle surface. For example, even if the silica particle shape is substantially spherical, this special particle structure Therefore, it is estimated that the frictional resistance with the surface to be polished is improved and a high polishing rate is exhibited. Therefore, the combined use of the copolymer and the ceria-coated silica particles contained in the polishing composition of the present invention allows the polishing of the silicon oxide film to proceed at a high speed while suppressing the polishing of the silicon nitride film as much as possible. High polishing selectivity is exhibited, so that the level difference can be eliminated at a high level, and the generation of polishing flaws on the exposed silicon nitride film can also be suppressed. Due to this high polishing selectivity and the effect of suppressing generation of polishing flaws, in the present invention, a highly smooth surface including a silicon oxide film and a silicon nitride film can be obtained. However, these are estimations, and the present invention is not limited to these mechanisms.

本発明は、一つの態様において、前記共重合体、セリアコートシリカ粒子及び水系媒体を含有する酸化珪素膜研磨用研磨液組成物に関する。本発明の酸化珪素膜研磨用研磨液組成物を用いれば、素子分離構造を形成する工程で行われる酸化珪素膜の研磨において、高い生産性のために必要な酸化珪素膜の研磨速度を確保でき、且つ、窒化珪素膜の過剰な研磨を抑制でき、優れた研磨選択性の達成が可能となる。また、研磨傷の低減も可能となる。   In one embodiment, the present invention relates to a polishing liquid composition for polishing a silicon oxide film containing the copolymer, ceria-coated silica particles, and an aqueous medium. By using the polishing composition for polishing a silicon oxide film of the present invention, the polishing rate of the silicon oxide film necessary for high productivity can be secured in the polishing of the silicon oxide film performed in the step of forming the element isolation structure. In addition, excessive polishing of the silicon nitride film can be suppressed, and excellent polishing selectivity can be achieved. Also, polishing scratches can be reduced.

本明細書において「研磨選択性」が高いと、窒化珪素膜の研磨速度に対する酸化珪素膜の研磨速度比(酸化珪素膜の研磨速度/窒化珪素膜の研磨速度)が大きくなる。   In this specification, when “polishing selectivity” is high, the ratio of the polishing rate of the silicon oxide film to the polishing rate of the silicon nitride film (the polishing rate of the silicon oxide film / the polishing rate of the silicon nitride film) increases.

[共重合体:成分A]
本発明の研磨液組成物は、研磨選択性向上、及び高い生産性の為に必要な酸化珪素膜の研磨速度を確保する観点から、(メタ)アクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体(成分A)を含む。本共重合体は、未中和の状態、アルカリにより中和された状態のどちらでもよい。
[Copolymer: Component A]
The polishing liquid composition of the present invention is a (meth) acrylic acid monomer and a sulfonic acid monomer having a vinyl group from the viewpoint of ensuring the polishing selectivity improvement and the polishing rate of the silicon oxide film required for high productivity. Contains a copolymer (component A). The copolymer may be in an unneutralized state or a neutralized state with an alkali.

前記アルカリにより中和された状態に関しては、研磨選択性向上、及び高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、中和に用いるアルカリはK、Na又はNH4が好ましい。また、共重合体の合成に用いられる(メタ)アクリル酸モノマーとビニル基を持つスルホン酸モノマーのモル比((メタ)アクリル酸モノマーのモル数/ビニル基を持つスルホン酸モノマーのモル数)は、研磨選択性及び高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、好ましくは(60/40)以上、より好ましくは(70/30)以上、更により好ましくは(80/20)以上、更により好ましくは(85/15)以上であり、好ましくは(98/2)以下、より好ましくは(95/5)以下、更により好ましくは(92.5/7.5)以下、更により好ましくは(91/9)以下である。(メタ)アクリル酸モノマー比率が多いと、窒化珪素膜の研磨抑制効果が優れ、またビニル基を持つスルホン酸量が多いと酸化珪素膜の研磨速度を向上させることができる。尚、前記モル比は、共重合体1分子中に含まれる(メタ)アクリル酸モノマーに由来の構成単位とビニル基を持つスルホン酸モノマーに由来の構成単位のモル比でもある。 With respect to the state neutralized by the alkali, the alkali used for neutralization is K, Na or NH 4 from the viewpoint of ensuring the polishing selectivity and the polishing rate of the silicon oxide film necessary for ensuring high productivity. preferable. In addition, the molar ratio of (meth) acrylic acid monomer and sulfonic acid monomer with vinyl group used for the synthesis of copolymer (number of moles of (meth) acrylic acid monomer / number of moles of sulfonic acid monomer with vinyl group) is From the viewpoint of securing the polishing rate of the silicon oxide film necessary for ensuring polishing selectivity and high productivity, it is preferably (60/40) or more, more preferably (70/30) or more, and even more preferably (80 / 20) or more, still more preferably (85/15) or more, preferably (98/2) or less, more preferably (95/5) or less, even more preferably (92.5 / 7.5). Hereinafter, it is still more preferably (91/9) or less. When the ratio of the (meth) acrylic acid monomer is large, the effect of suppressing the polishing of the silicon nitride film is excellent, and when the amount of sulfonic acid having a vinyl group is large, the polishing rate of the silicon oxide film can be improved. The molar ratio is also the molar ratio of the structural unit derived from the (meth) acrylic acid monomer contained in one molecule of the copolymer and the structural unit derived from the sulfonic acid monomer having a vinyl group.

前記共重合体の重量平均分子量(Mw)は、研磨選択性向上、及び高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、好ましくは1000以上、より好ましくは2000以上、更に好ましくは5000以上であり、好ましくは50000以下、より好ましくは30000以下、更に好ましくは25000以下である。重量平均分子量が大きければ窒化珪素膜の研磨抑制効果に優れ、重量平均分子量が小さくなると酸化珪素膜の研磨速度が向上する。尚、前記共重合体の重量平均分子量(Mw)は、後述の実施例に記載の液体クロマトグラフィーを用いて測定した値である。   The weight average molecular weight (Mw) of the copolymer is preferably 1000 or more, more preferably 2000 or more, from the viewpoint of ensuring polishing selectivity and a polishing rate of the silicon oxide film necessary for ensuring high productivity. More preferably, it is 5000 or more, Preferably it is 50000 or less, More preferably, it is 30000 or less, More preferably, it is 25000 or less. When the weight average molecular weight is large, the effect of suppressing the polishing of the silicon nitride film is excellent, and when the weight average molecular weight is small, the polishing rate of the silicon oxide film is improved. In addition, the weight average molecular weight (Mw) of the said copolymer is the value measured using the liquid chromatography as described in the below-mentioned Example.

本発明の研磨液組成物に含まれる前記共重合体としては、研磨選択性向上、及び高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、アクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体、アクリル酸とビニルスルホン酸の共重合体、アクリル酸とメタクリルスルホン酸の共重合体、メタクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体、メタクリル酸とビニルスルホン酸の共重合体、メタクリル酸とメタクリルスルホン酸の共重合体、及びこれらのアンモニウム塩又はアルカリ金属塩が挙げられる。これらは、1種または2種以上組み合わせて用いることができる。これらの中でも、研磨選択性向上、及び高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体、アクリル酸とビニルスルホン酸の共重合体、メタクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体、及びメタクリル酸とビニルスルホン酸の共重合体、これらのアルカリ金属塩、及びこれらのアンモニウム塩からなる群から選ばれる少なくとも1種が好ましく、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体、又はアクリル酸とビニルスルホン酸の共重合体、これらのアルカリ金属塩、及びこれらのアンモニウム塩からなる群から選ばれる少なくとも1種がより好ましく、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体、そのアルカリ金属塩、及びそのアンモニウム塩からなる群から選ばれる少なくとも1種が更に好ましく、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体のアルカリ金属塩、及びアクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体のアンモニウム塩からなる群から選ばれる少なくとも1種が更により好ましい。   As the copolymer contained in the polishing liquid composition of the present invention, acrylic acid and 2-acrylamide- are used from the viewpoint of improving the polishing selectivity and securing the polishing rate of the silicon oxide film necessary for ensuring high productivity. 2-methylpropanesulfonic acid copolymer, acrylic acid and vinylsulfonic acid copolymer, acrylic acid and methacrylsulfonic acid copolymer, methacrylic acid and 2-acrylamido-2-methylpropanesulfonic acid copolymer , A copolymer of methacrylic acid and vinyl sulfonic acid, a copolymer of methacrylic acid and methacryl sulfonic acid, and ammonium salts or alkali metal salts thereof. These can be used alone or in combination of two or more. Among these, from the viewpoint of ensuring polishing selectivity and ensuring the polishing rate of the silicon oxide film necessary for ensuring high productivity, a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, acrylic acid And vinyl sulfonic acid copolymers, methacrylic acid and 2-acrylamido-2-methylpropane sulfonic acid copolymers, and methacrylic acid and vinyl sulfonic acid copolymers, their alkali metal salts, and their ammonium salts Preferably, at least one selected from the group consisting of: a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, or a copolymer of acrylic acid and vinylsulfonic acid, their alkali metal salts, and these More preferred is at least one selected from the group consisting of ammonium salts of acrylic acid and 2-a More preferred is at least one selected from the group consisting of a copolymer of rilamido-2-methylpropanesulfonic acid, an alkali metal salt thereof, and an ammonium salt thereof, and a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. Even more preferred is at least one selected from the group consisting of alkali metal salts of polymers and ammonium salts of copolymers of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid.

本発明の研磨液組成物中の前記共重合体(成分A)の含有量は、前記共重合体(成分A)とセリアコートシリカ粒子(成分B)と前記水系媒体(成分C)の質量の合計を100質量%とすると、研磨選択性向上、及び高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上、更により好ましくは0.25質量%以上であり、好ましくは5質量%以下、より好ましくは2.5質量%以下、更に好ましくは1.0質量%以下、更により好ましくは0.75質量%以下である。   Content of the said copolymer (component A) in the polishing liquid composition of this invention is the mass of the said copolymer (component A), a ceria coat silica particle (component B), and the said aqueous medium (component C). When the total is 100% by mass, it is preferably 0.05% by mass or more, more preferably 0.1% by mass, from the viewpoint of improving the polishing selectivity and securing the polishing rate of the silicon oxide film necessary for ensuring high productivity. % Or more, more preferably 0.2% by mass or more, still more preferably 0.25% by mass or more, preferably 5% by mass or less, more preferably 2.5% by mass or less, and further preferably 1.0% by mass. % Or less, still more preferably 0.75 mass% or less.

[研磨粒子:成分B]
本発明の研磨液組成物に含まれる前記研磨粒子は、高い生産性の為に必要な酸化珪素膜の研磨速度を確保し、研磨傷を低減させる観点から、シリカ粒子の表面の少なくとも一部が粒状セリアで被覆されたセリアコートシリカ粒子を含む。
[Abrasive particles: Component B]
The polishing particles contained in the polishing liquid composition of the present invention have at least a part of the surface of the silica particles from the viewpoint of ensuring the polishing rate of the silicon oxide film necessary for high productivity and reducing polishing scratches. Ceria-coated silica particles coated with granular ceria are included.

動的光散乱法により測定される前記セリアコートシリカ粒子の平均一次粒子径は、好ましくは30nm以上、より好ましくは45nm以上であり、好ましくは300nm以下、より好ましくは200nm以下である。セリアコートシリカ粒子の平均一次粒子径が大きいと酸化珪素膜の研磨速度は高まり、逆に小さいと研磨傷は少なくなる。前記セリアコートシリカ粒子の平均一次粒子径は、後述する実施例に記載の方法により測定できる。   The average primary particle diameter of the ceria-coated silica particles measured by a dynamic light scattering method is preferably 30 nm or more, more preferably 45 nm or more, preferably 300 nm or less, more preferably 200 nm or less. When the average primary particle diameter of the ceria-coated silica particles is large, the polishing rate of the silicon oxide film is increased. Conversely, when the ceria-coated silica particles are small, the polishing scratches are reduced. The average primary particle diameter of the ceria-coated silica particles can be measured by the method described in Examples described later.

本発明の研磨液組成物に含まれる前記研磨粒子は、酸化珪素膜の研磨速度の向上と研磨傷の低減の観点から、シリカ粒子を被覆するセリアは結晶性を有し、更にその形状は、粒状であり、好ましくは略球状である。また、粒状セリアの透過型電子顕微観察により測定される平均一次粒子径は、研磨速度の観点から好ましくは5nm以上、より好ましくは7.5nm以上、更に好ましくは10nm以上であり、好ましくは40nm以下、より好ましくは30nm以下、更に好ましくは25nm以下である。シリカ粒子を被覆する粒状セリアの平均一次粒子径が5nm以上では粒状セリアの合成が容易となり、また40nm以下ではシリカ粒子上に粒状セリアが均一に被覆されて研磨傷の発生を効果的に抑制することができる。尚、粒状セリアの平均一次粒子径は、後述する実施例に記載の方法により測定できる。   From the viewpoint of improving the polishing rate of the silicon oxide film and reducing polishing scratches, the ceria that covers the silica particles has crystallinity, and the shape of the abrasive particles contained in the polishing liquid composition of the present invention is: It is granular and is preferably approximately spherical. Further, the average primary particle diameter measured by transmission electron microscopic observation of granular ceria is preferably 5 nm or more, more preferably 7.5 nm or more, further preferably 10 nm or more, preferably 40 nm or less from the viewpoint of polishing rate. More preferably, it is 30 nm or less, More preferably, it is 25 nm or less. When the average primary particle diameter of the granular ceria that coats the silica particles is 5 nm or more, the synthesis of the granular ceria becomes easy, and when it is 40 nm or less, the granular ceria is uniformly coated on the silica particles to effectively suppress the generation of polishing flaws. be able to. In addition, the average primary particle diameter of granular ceria can be measured by the method as described in the Example mentioned later.

粒状セリアによって被覆されたシリカ粒子は、酸化珪素膜の研磨速度の向上と研磨傷の低減の観点から、コロイダルシリカであると好ましく、その形状は略球状であると好ましい。また、使用するコロイダルシリカ粒子の透過型電子顕微観察により測定される平均一次粒子径は、研磨速度の観点から好ましくは15nm以上、より好ましくは20nm以上、更に好ましくは40nm以上であり、好ましくは300nm以下、より好ましくは200nm以下、更に好ましくは150nm以下である。シリカ粒子の平均一次粒子径が15nm以上では酸化珪素膜の研磨速度を効果的に向上でき、300nm以下では研磨傷の発生を効果的に抑制できる。尚、シリカ粒子の平均一次粒子径は、後述する実施例に記載の方法により測定できる。   The silica particles coated with the granular ceria are preferably colloidal silica from the viewpoint of improving the polishing rate of the silicon oxide film and reducing polishing scratches, and the shape thereof is preferably substantially spherical. Further, the average primary particle diameter measured by transmission electron microscopic observation of the colloidal silica particles to be used is preferably 15 nm or more, more preferably 20 nm or more, still more preferably 40 nm or more, preferably 300 nm from the viewpoint of polishing rate. Hereinafter, it is more preferably 200 nm or less, and further preferably 150 nm or less. When the average primary particle diameter of the silica particles is 15 nm or more, the polishing rate of the silicon oxide film can be effectively improved, and when it is 300 nm or less, generation of polishing flaws can be effectively suppressed. In addition, the average primary particle diameter of a silica particle can be measured by the method as described in the Example mentioned later.

セリアコートシリカ粒子の製造過程で、シリカ粒子の被覆に使用されるセリアの量をシリカとの質量比(セリア/シリカ)で表わすと、好ましくは0.25以上、より好ましくは0.33以上、更に好ましくは0.4以上であり、好ましくは2以下、より好ましくは1.5以下、更に好ましくは1.2以下である。セリアの被覆量を多くすると酸化珪素膜の研磨速度を大きくすることができ、セリアの被覆量を少なくすると、シリカ粒子上に被覆できずに遊離状態となったセリアの凝集体の生成を抑制して研磨傷の発生を抑制できる。尚、この被覆量については、被覆する粒状セリアの粒子径の関係で変動はあるものの、おおむね記載した質量比で被覆すると、良好な研磨特性を得ることができる。また、「シリカ粒子の被覆に使用されるセリアの量」とは、セリアの供給源の使用量から換算されるセリアの質量を意味する。   In the process of producing ceria-coated silica particles, the amount of ceria used for coating the silica particles is expressed as a mass ratio with silica (ceria / silica), preferably 0.25 or more, more preferably 0.33 or more, More preferably, it is 0.4 or more, preferably 2 or less, more preferably 1.5 or less, and still more preferably 1.2 or less. Increasing the coating amount of ceria can increase the polishing rate of the silicon oxide film, and decreasing the coating amount of ceria suppresses the formation of ceria aggregates that cannot be coated on silica particles and become free. Thus, the generation of polishing scratches can be suppressed. Although the coating amount varies depending on the particle diameter of the granular ceria to be coated, good polishing characteristics can be obtained by covering with the generally described mass ratio. Further, “the amount of ceria used for coating silica particles” means the mass of ceria converted from the amount of ceria source used.

セリアコートシリカ粒子の製造方法としては、シリア粒子にセリアを沈着させることで行うことができる。例えば、硝酸セリウムを溶解させた水溶液をシリカ粒子の分散液に滴下してシリカ粒子上にセリアを沈着させる方法や、硝酸アンモニウムセリウムの熱加水分解による方法やアルコキシドを用いた方法等、シリカ粒子上に水酸化セリウム又は酸化セリウムを生成できる方法であれば、従来から公知のいずれの方法でもよい。シリカ粒子上に水酸化セリウムを生成する場合は、焼成により水酸化セリウムを酸化セリウムにすればよい。これらの方法で生成されたセリアコートシリカ粒子は、焼成によって相互にくっついた粒子同士が分離するようにほぐされてから用いてもよい。   A method for producing ceria-coated silica particles can be performed by depositing ceria on Syria particles. For example, a method in which an aqueous solution in which cerium nitrate is dissolved is dropped into a dispersion of silica particles to deposit ceria on the silica particles, a method by thermal hydrolysis of ammonium cerium nitrate, a method using alkoxide, etc. Any conventionally known method may be used as long as it can produce cerium hydroxide or cerium oxide. When producing cerium hydroxide on the silica particles, the cerium hydroxide may be converted to cerium oxide by firing. The ceria-coated silica particles produced by these methods may be used after being loosened so that the particles adhered to each other are separated by firing.

本発明の研磨液組成物中の前記セリアコートシリカ粒子(成分B)の含有量は、前記共重合体(成分A)とセリアコートシリカ粒子(成分B)と前記水系媒体(成分C)の質量の合計を100質量%とすると、研磨選択性向上、及び高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.25質量%以上、更により好ましくは0.5質量%以上であり、好ましくは5.0質量%以下、より好ましくは2.5質量%以下、更に好ましくは2.0質量%以下、更により好ましくは1.5質量%以下である。   The content of the ceria-coated silica particles (component B) in the polishing composition of the present invention is the mass of the copolymer (component A), ceria-coated silica particles (component B), and the aqueous medium (component C). Is 100% by mass, preferably 0.1% by mass or more, more preferably 0.2% from the viewpoint of ensuring polishing selectivity and ensuring a polishing rate of the silicon oxide film necessary for ensuring high productivity. % By mass or more, more preferably 0.25% by mass or more, still more preferably 0.5% by mass or more, preferably 5.0% by mass or less, more preferably 2.5% by mass or less, still more preferably 2%. It is 0.0 mass% or less, More preferably, it is 1.5 mass% or less.

本発明の研磨液組成物中の前記共重合体(成分A)と前記セリアコートシリカ粒子(成分B)の質量比(共重合体の質量/セリアコートシリカ粒子の質量)は、研磨選択性向上及び研磨傷の低減の観点から、好ましくは0.02以上、より好ましくは0.1以上、更に好ましくは0.2以上であり、高い生産性の担保に必要な酸化珪素膜の研磨速度を確保する観点から、好ましくは25以下、より好ましくは10以下、更に好ましくは1以下である。   The mass ratio of the copolymer (component A) and the ceria-coated silica particles (component B) in the polishing liquid composition of the present invention (the mass of the copolymer / the mass of the ceria-coated silica particles) is improved in polishing selectivity. From the viewpoint of reducing polishing scratches, it is preferably 0.02 or more, more preferably 0.1 or more, and still more preferably 0.2 or more, to ensure the polishing rate of the silicon oxide film necessary for ensuring high productivity. In view of the above, it is preferably 25 or less, more preferably 10 or less, and still more preferably 1 or less.

[水系媒体:成分C]
本発明の研磨液組成物は、水系媒体を含有する。水系媒体としては、水、及び水と水に可溶な溶媒との混合物が挙げられる。前記水に可溶な溶媒としては、メタノール、エタノール、イソプロパノール等の低級アルコールが挙げられ、研磨工程での安全性の観点からエタノールが好ましい。また、前記水系媒体としては、半導体基板の品質向上の観点からイオン交換水、蒸留水、超純水等の水からなるとより好ましい。
[Aqueous medium: Component C]
The polishing liquid composition of the present invention contains an aqueous medium. Examples of the aqueous medium include water and a mixture of water and a water-soluble solvent. Examples of the water-soluble solvent include lower alcohols such as methanol, ethanol, and isopropanol, and ethanol is preferable from the viewpoint of safety in the polishing process. The aqueous medium is more preferably water such as ion-exchanged water, distilled water or ultrapure water from the viewpoint of improving the quality of the semiconductor substrate.

本発明の研磨液組成物中の水系媒体(成分C)の含有量は、共重合体(成分A)とセリアコートシリカ粒子(成分B)と水系媒体(成分C)の質量の合計を100質量%とすると、共重合体(成分A)とセリアコートシリカ粒子(成分B)とを除いた残余であればよい。   The content of the aqueous medium (component C) in the polishing composition of the present invention is 100 mass of the total mass of the copolymer (component A), ceria-coated silica particles (component B), and aqueous medium (component C). %, It is sufficient if it is the remainder excluding the copolymer (component A) and ceria-coated silica particles (component B).

[その他の成分]
本発明の研磨液組成物は、本発明の効果を損なわない範囲で、pH調整剤、成分(B)以外の研磨助剤等を含有してもよい。これらの任意成分の含有量は、酸化珪素膜の研磨速度確保の観点から、0.001質量%以上が好ましく、0.0025質量%以上がより好ましく、0.01質量%以上が更に好ましく、研磨選択性の向上の観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。
[Other ingredients]
The polishing composition of the present invention may contain a pH adjuster, a polishing aid other than the component (B), and the like as long as the effects of the present invention are not impaired. The content of these optional components is preferably 0.001% by mass or more, more preferably 0.0025% by mass or more, still more preferably 0.01% by mass or more, from the viewpoint of ensuring the polishing rate of the silicon oxide film. From the viewpoint of improving selectivity, it is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less.

[研磨液組成物]
本発明の研磨液組成物は、(メタ)アクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体(成分A)、セリアコートシリカ粒子(成分B)及び水系媒体(成分C)を含有する。本発明の研磨液組成物は、例えば、前記(メタ)アクリル酸と2-アクリルアミド‐2−メチルプロパンスルホン酸の共重合体、前記水系媒体及び前記セリアコートシリカ粒子の水分散液を混合する工程を含む製造方法によって製造できる。好ましくは、研磨助剤としての(メタ)アクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体の水スラリーを水系媒体に溶解して得られる研磨助剤水溶液と、セリアコートシリカ粒子を水系媒体に分散して得られるセリアコートシリカ粒子分散液とを用意し、研磨助剤水溶液を攪拌しながら、前記セリアコートシリカ粒子分散液と、必要に応じて前記pH調整剤等のその他の成分を、研磨助剤水溶液に添加(滴下)して研磨液組成物を得ることができる。
[Polishing liquid composition]
The polishing composition of the present invention contains a copolymer of (meth) acrylic acid monomer and a sulfonic acid monomer having a vinyl group (component A), ceria-coated silica particles (component B), and an aqueous medium (component C). . The polishing composition of the present invention includes, for example, a step of mixing the copolymer of (meth) acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, the aqueous medium, and an aqueous dispersion of the ceria-coated silica particles. It can manufacture by the manufacturing method containing. Preferably, an aqueous polishing aid solution obtained by dissolving an aqueous slurry of a copolymer of (meth) acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid as a polishing aid in an aqueous medium, and ceria-coated silica particles And a ceria-coated silica particle dispersion obtained by dispersing in a water-based medium, while stirring the polishing aid aqueous solution, the ceria-coated silica particle dispersion and, if necessary, other pH adjusting agents and the like. A component can be added (dropped) to the aqueous polishing aid solution to obtain a polishing composition.

本発明の研磨液組成物の25℃におけるpHは、研磨装置の保護、酸化珪素膜の研磨速度向上、研磨選択性向上、及びセリアコートシリカ粒子の分散性向上の観点から、好ましくは3以上、より好ましくは4以上、更に好ましくは5以上、更により好ましくは5.5以上であり、研磨条件の制御容易性の向上、研磨選択性の向上、窒化珪素膜の研磨抑制及びセリアコートシリカ粒子の分散性向上の観点から、好ましくは9以下、より好ましくは8.5以下、更に好ましくは7.5以下、更により好ましくは6.5以下である。尚、pHの測定条件の詳細は実施例に示す通りである。   The pH of the polishing composition of the present invention at 25 ° C. is preferably 3 or more from the viewpoint of protecting the polishing apparatus, improving the polishing rate of the silicon oxide film, improving the polishing selectivity, and improving the dispersibility of the ceria-coated silica particles. More preferably 4 or more, still more preferably 5 or more, and even more preferably 5.5 or more. Improvement of controllability of polishing conditions, improvement of polishing selectivity, suppression of polishing of silicon nitride film and ceria-coated silica particles From the viewpoint of improving dispersibility, it is preferably 9 or less, more preferably 8.5 or less, still more preferably 7.5 or less, and even more preferably 6.5 or less. The details of the pH measurement conditions are as shown in the examples.

本発明の研磨液組成物は、本発明の効果が損なわれない範囲で、そのpHを調整して用いることができる。低く調整する場合に用いられるpH調整剤としては、酸性化合物であれば特に限定されないが、例えば、塩酸、硝酸、硫酸等の無機酸、酢酸、シュウ酸、クエン酸、及びリンゴ酸等の有機酸が挙げられる。なかでも、汎用性の観点から、塩酸、硝酸及び酢酸が好ましく、塩酸及び酢酸がより好ましい。   The polishing composition of the present invention can be used by adjusting its pH within a range where the effects of the present invention are not impaired. The pH adjuster used for the adjustment is not particularly limited as long as it is an acidic compound. For example, inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid, and organic acids such as acetic acid, oxalic acid, citric acid, and malic acid are used. Is mentioned. Among these, hydrochloric acid, nitric acid and acetic acid are preferable from the viewpoint of versatility, and hydrochloric acid and acetic acid are more preferable.

研磨液組成物のpHを高く調整する場合に用いられるpH調整剤としては、アルカリ性化合物であれば特に限定されないが、例えば、アンモニア、及び水酸化カリウム等の無機アルカリ化合物、アルキルアミン、及びアルカノールアミン等の有機アルカリ化合物が挙げられる。なかでも、半導体基板の品質向上の観点から、アンモニア及びアルキルアミンが好ましく、アンモニアがより好ましい。   The pH adjuster used for adjusting the pH of the polishing composition to be high is not particularly limited as long as it is an alkaline compound. For example, ammonia and inorganic alkali compounds such as potassium hydroxide, alkylamine, and alkanolamine And organic alkali compounds such as Among these, from the viewpoint of improving the quality of the semiconductor substrate, ammonia and alkylamine are preferable, and ammonia is more preferable.

成分(B)以外の研磨助剤としては、セリアコートシリカ粒子の分散性向上の観点から、アニオン性化合物及びノニオン性化合物が好ましく、アニオン性界面活性剤及びノニオン性界面活性剤等がより好ましい。アニオン性界面活性剤としては、ポリアクリル酸等のアニオン性ポリマー、アルキルエーテル酢酸塩、アルキルエーテルリン酸塩、及びアルキルエーテル硫酸塩が挙げられる。ノニオン性界面活性剤としては、ポリアクリルアミド等のノニオン性ポリマー、及びポリオキシアルキレンアルキルエーテルが挙げられる。   As the polishing aid other than the component (B), an anionic compound and a nonionic compound are preferable from the viewpoint of improving dispersibility of the ceria-coated silica particles, and an anionic surfactant and a nonionic surfactant are more preferable. Examples of the anionic surfactant include anionic polymers such as polyacrylic acid, alkyl ether acetates, alkyl ether phosphates, and alkyl ether sulfates. Examples of nonionic surfactants include nonionic polymers such as polyacrylamide, and polyoxyalkylene alkyl ethers.

本願の研磨液組成物の実施形態は、全ての成分が予め混合された状態で市場に供給される、いわゆる1液型に限定されず、使用時混合されるいわゆる2液型であってもよい。2液型の研磨液組成物では、上記水系媒体が、第1水系媒体と第2水系媒体とに分かれており、研磨液組成物は、例えば、セリアコートシリカ粒子と(メタ)アクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体の一部を第1水系媒体に分散して得られるセリアコートシリカ粒子分散液と、残余の(メタ)アクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体を第2水系媒体に溶解して得られる研磨助剤水溶液とから構成してもよい。   The embodiment of the polishing composition of the present application is not limited to a so-called one-component type that is supplied to the market in a state where all components are pre-mixed, and may be a so-called two-component type that is mixed at the time of use. . In the two-pack type polishing liquid composition, the aqueous medium is divided into a first aqueous medium and a second aqueous medium. The polishing liquid composition includes, for example, ceria-coated silica particles, (meth) acrylic acid, 2 -A ceria-coated silica particle dispersion obtained by dispersing a part of a copolymer of acrylamide-2-methylpropanesulfonic acid in a first aqueous medium, and the remaining (meth) acrylic acid and 2-acrylamido-2-methyl You may comprise from the aqueous solution of a grinding aid obtained by melt | dissolving the copolymer of a propanesulfonic acid in a 2nd aqueous medium.

セリアコートシリカ粒子分散液と研磨助剤水溶液の混合は、研磨対象の表面への供給前に行われてもよいし、これらは別々に供給されて被研磨基板の表面上で混合されてもよい。   The ceria-coated silica particle dispersion and the polishing aid aqueous solution may be mixed before being supplied to the surface to be polished, or they may be supplied separately and mixed on the surface of the substrate to be polished. .

尚、上記において説明した各成分の含有量は、研磨工程での使用時における含有量であるが、本実施形態の研磨液組成物は、その安定性が損なわれない範囲で濃縮された状態で保存および供給されてもよい。この場合、製造・輸送コストを低くできる点で好ましい。そしてこの濃縮液は、必要に応じて前述の水系媒体で適宜希釈して研磨工程で使用することができる。希釈割合としては5〜100倍が好ましい。   In addition, although content of each component demonstrated above is content at the time of use at a grinding | polishing process, the polishing liquid composition of this embodiment is in the state concentrated in the range which does not impair the stability. It may be stored and supplied. In this case, it is preferable in that the production / transport cost can be reduced. This concentrated liquid can be appropriately diluted with the above-mentioned aqueous medium as necessary and used in the polishing step. The dilution ratio is preferably 5 to 100 times.

[半導体基板の製造方法]
本発明の研磨液組成物は、半導体基板の素子分離構造を形成する工程で行われる研磨に好適に使用できる。本発明の半導体基板の製造方法の具体例としては、まず、シリコン基板を酸化炉内で酸素に晒すことよりその表面に二酸化シリコン層を成長させ、次いで、当該二酸化シリコン層上に窒化珪素(Si3N4)膜を、例えばCVD法(化学気相成長法)にて形成する。次に、シリコン基板と前記シリコン基板の一方の主面側に配置された窒化珪素膜とを含む基板、例えば、シリコン基板の二酸化シリコン層上に窒化珪素膜が形成された基板に、フォトリソグラフィー技術を用いてトレンチを形成する。次いで、例えば、シランガスと酸素ガスを用いたCVD法により、トレンチ埋め込み用の酸化珪素(SiO2)膜を形成し、窒化珪素膜が酸化珪素膜で覆われた被研磨基板を得る。酸化珪素膜の形成により、前記トレンチは酸化珪素膜の酸化珪素で満たされ、窒化珪素膜の前記シリコン基板側の面の反対面は酸化珪素膜によって被覆される。
[Method for Manufacturing Semiconductor Substrate]
The polishing composition of the present invention can be suitably used for polishing performed in the step of forming an element isolation structure of a semiconductor substrate. As a specific example of the method for producing a semiconductor substrate of the present invention, first, a silicon substrate is exposed to oxygen in an oxidation furnace to grow a silicon dioxide layer on the surface, and then silicon nitride (Si3N) is formed on the silicon dioxide layer. 4 ) A film is formed by, for example, CVD (chemical vapor deposition). Next, a photolithography technique is applied to a substrate including a silicon substrate and a silicon nitride film disposed on one main surface side of the silicon substrate, for example, a substrate in which a silicon nitride film is formed on a silicon dioxide layer of a silicon substrate. Is used to form a trench. Next, a silicon oxide (SiO 2 ) film for filling a trench is formed by, for example, a CVD method using silane gas and oxygen gas to obtain a substrate to be polished in which the silicon nitride film is covered with the silicon oxide film. By forming the silicon oxide film, the trench is filled with silicon oxide of the silicon oxide film, and the surface of the silicon nitride film opposite to the silicon substrate side is covered with the silicon oxide film.

このようにして形成された酸化珪素膜のシリコン基板側の面の反対面は、下層の凸凹に対応して形成された段差を有する。次いで、CMP法により、酸化珪素膜を、少なくとも窒化珪素膜のシリコン基板側の面の反対面が露出するまで研磨し、より好ましくは、酸化珪素膜の表面と窒化珪素膜の表面とが面一になるまで酸化珪素膜を研磨する。本発明の研磨液組成物は、このCMP法による研磨を行う工程に用いられる。CMP法による研磨では、被研磨基板の表面と研磨パッドとを接触させた状態で、研磨液組成物をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面の凹凸部分を平坦化させる。尚、本発明の半導体基板の製造方法において、シリコン基板の二酸化シリコン層と窒化珪素膜の間に他の絶縁膜が形成されていてもよいし、酸化珪素膜と窒化珪素膜の間に他の絶縁膜が形成されていてもよい。   The surface opposite to the surface on the silicon substrate side of the silicon oxide film thus formed has a step formed corresponding to the unevenness of the lower layer. Next, the silicon oxide film is polished by CMP until at least the opposite surface of the silicon nitride film to the silicon substrate side is exposed. More preferably, the surface of the silicon oxide film and the surface of the silicon nitride film are flush with each other. The silicon oxide film is polished until The polishing composition of the present invention is used in the step of polishing by this CMP method. In polishing by the CMP method, in a state where the surface of the substrate to be polished and the polishing pad are in contact with each other, by moving the substrate to be polished and the polishing pad relatively while supplying the polishing liquid composition to these contact portions, The uneven portion on the surface of the substrate to be polished is flattened. In the method of manufacturing a semiconductor substrate according to the present invention, another insulating film may be formed between the silicon dioxide layer and the silicon nitride film of the silicon substrate, or other insulating film may be formed between the silicon oxide film and the silicon nitride film. An insulating film may be formed.

研磨パッドの回転数は、研磨液組成物が1液型、2液型のいずれであっても、30〜200r/minが好ましく、45〜150r/minがより好ましく、60〜100r/minが更に好ましい。被研磨基板の回転数は、130〜200r/minが好ましく、45〜150r/minがより好ましく、60〜100r/minが更に好ましい。   The rotational speed of the polishing pad is preferably 30 to 200 r / min, more preferably 45 to 150 r / min, even more preferably 60 to 100 r / min, regardless of whether the polishing composition is a one-component type or a two-component type. preferable. The rotational speed of the substrate to be polished is preferably 130 to 200 r / min, more preferably 45 to 150 r / min, and still more preferably 60 to 100 r / min.

研磨パッドを備えた研磨装置に設定される研磨荷重は、研磨液組成物が1液型、2液型のいずれであっても、荷重が大きすぎることに起因して生じる平坦化への悪影響および傷の発生を抑制する観点から、500g重/cm2以下が好ましく、400g重/cm2以下がより好ましく、350g重/cm2以下が更に好ましい。一方、研磨時間の短縮化の観点から、20g重/cm2以上が好ましく、50g重/cm2以上がより好ましく、100g重/cm2以上が更に好ましい。 The polishing load set in the polishing apparatus provided with the polishing pad is not affected by the adverse effect on the flattening caused by the load being too large, regardless of whether the polishing liquid composition is one-pack type or two-pack type. From the viewpoint of suppressing the generation of scratches, 500 gf / cm 2 or less is preferable, 400 gf / cm 2 or less is more preferable, and 350 gf / cm 2 or less is more preferable. On the other hand, from the viewpoint of shortening the polishing time, 20 gf / cm 2 or more is preferable, 50 gf / cm 2 or more is more preferable, and 100 gf / cm 2 or more is more preferable.

研磨液組成物の供給速度は、研磨の効率性の観点から、500mL/min以下が好ましく、400mL/min以下がより好ましく、300mL/min以下が更に好ましい。一方、研磨液組成物の供給速度は、酸化珪素膜の研磨速度向上の観点から、10mL/min以上が好ましく、30mL/min以上がより好ましい。   From the viewpoint of polishing efficiency, the supply rate of the polishing composition is preferably 500 mL / min or less, more preferably 400 mL / min or less, and even more preferably 300 mL / min or less. On the other hand, the supply rate of the polishing composition is preferably 10 mL / min or more, and more preferably 30 mL / min or more from the viewpoint of improving the polishing rate of the silicon oxide film.

本開示はさらに以下の一又は複数の実施形態に関する。   The present disclosure further relates to one or more of the following embodiments.

<1> 窒化珪素膜上の酸化珪素膜を研磨する酸化珪素膜研磨用研磨液組成物であって、下記成分A〜Cを含む、酸化珪素膜研磨用研磨液組成物。
成分A:アクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体
成分B:シリカ粒子と前記シリカ粒子の表面の少なくとも一部を覆う粒状セリアとを含むセリアコートシリカ粒子
成分C:水系媒体
<2> 前記成分Aにおけるモル比((メタ)アクリル酸モノマーのモル数/ビニル基を持つスルホン酸モノマーのモル数)は、好ましくは(60/40)以上、より好ましくは(70/30)以上、更により好ましくは(80/20)以上、更により好ましくは(85/15)以上であり、好ましくは(98/2)以下、より好ましくは(95/5)以下、更により好ましくは(92.5/7.5)以下、更により好ましくは(91/9)以下である、前記<1>に記載の酸化珪素膜研磨用研磨液組成物。
<3> 前記共重合体の重量平均分子量が、好ましくは1000以上、より好ましくは2000以上、更に好ましくは5000以上であり、好ましくは50000以下、より好ましくは30000以下、更に好ましくは25000以下である、前記<1>又は<2>に記載の酸化珪素膜研磨用研磨液組成物。
<4> 前記成分Aが、好ましくは、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合体、そのアルカリ金属、及びそのアンモニウム塩からなる群から選ばれる少なくとも1種である、前記<1>から<3>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<5> 前記成分Bが、平均一次粒子径が好ましくは15nm以上300nm以下のシリカ粒子を、平均一次粒子径が好ましくは5nm以上40nm以下の粒状セリアで被覆され、且つセリアとシリカの質量比(セリア/シリカ)が好ましくは0.25以上2以下のセリアコートシリカ粒子である、前記<1>から<4>のいずれかの項に記載の酸化珪素膜研磨用研磨液組成物。
<6> 前記粒状セリアの平均一次粒子径が、より好ましくは7.5nm以上、更に好ましくは10nm以上であり、より好ましくは30nm以下、更に好ましくは25nm以下である、前記<5>に記載の酸化珪素膜研磨用研磨液組成物。
<7> 前記シリカ粒子の平均一次粒子径が、より好ましくは20nm以上、更に好ましくは40nm以上であり、より好ましくは200nm以下、更に好ましくは150nm以下である、前記<5>又は<6>に記載の酸化珪素膜研磨用研磨液組成物。
<8> 前記セリアコートシリカ粒子における、質量比(セリア/シリカ)が、好ましくは0.33以上、より好ましくは0.4以上であり、好ましくは1.5以下、より好ましくは1.2以下である、前記<5>から<7>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<9> 前記セリアコートシリカ粒子の平均一次粒子径が、好ましくは30nm以上、より好ましくは45nm以上であり、好ましくは300nm以下、より好ましくは200nm以下である、前記<1>から<8>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<10> 前記酸化珪素膜研磨用研磨液組成物中の前記成分Aの含有量が、前記共重合体(成分A)とセリアコートシリカ粒子(成分B)と前記水系媒体(成分C)の質量の合計を100質量%とすると、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上、更により好ましくは0.25質量%以上であり、好ましくは5質量%以下、より好ましくは2.5質量%以下、更に好ましくは1.0質量%以下、更により好ましくは0.75質量%以下である、前記<1>から<9>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<11> 前記酸化珪素膜研磨用研磨液組成物中の前記(成分B)の含有量が、前記共重合体(成分A)と前記セリアコートシリカ粒子(成分B)と前記水系媒体(成分C)の質量の合計を100質量%とすると、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.25質量%以上、更により好ましくは0.5質量%以上であり、好ましくは5.0質量%以下、より好ましくは2.5質量%以下、更に好ましくは2.0質量%以下、更により好ましくは1.5質量%以下である、前記<1>から<10>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<12> 前記酸化珪素膜研磨用研磨液組成物中の前記共重合体(成分A)と前記セリアコートシリカ粒子(成分B)の質量比(共重合体の質量/セリアコートシリカ粒子の質量)が、好ましくは0.02以上、より好ましくは0.1以上、更に好ましくは0.2以上であり、好ましくは25以下、より好ましくは10以下、更に好ましくは1以下である、前記<1>から<11>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<13> 前記酸化珪素膜研磨用研磨液組成物の25℃におけるpHが、好ましくは3以上、より好ましくは4以上、更に好ましくは5以上、更により好ましくは5.5以上であり、好ましくは9以下、より好ましくは8.5以下、更に好ましくは7.5以下、更により好ましくは6.5以下である、前記<1>から<12>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<14> 前記水系媒体が、第1水系媒体と第2水系媒体とに分かれており、
前記酸化珪素膜研磨用研磨液組成物は、セリアコートシリカ粒子(成分B)と前記成分Aの一部を前記第1水系媒体に分散して得られるセリアコートシリカ粒子分散液と、残余の前記成分Aを第2水系媒体に溶解して得られる研磨助剤水溶液とから構成される2液型である、前記<1>から<13>のいずれかに記載の酸化珪素膜研磨用研磨液組成物。
<15> アクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体(成分A)、シリカ粒子と前記シリカ粒子の表面の少なくとも一部を覆う粒状セリアとを含むセリアコートシリカ粒子(成分B)、及び水系媒体(成分C)を混合する工程を含む、酸化珪素膜研磨用研磨液組成物の製造方法。
<16> 前記工程において、(メタ)アクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体の水スラリーを水系媒体に溶解して得られる研磨助剤水溶液と、セリアコートシリカ粒子を水系媒体に分散して得られるセリアコートシリカ粒子分散液とを混合する、前記<15>に記載の酸化珪素膜研磨用研磨液組成物の製造方法。
<17> シリコン基板と前記シリコン基板の一方の主面側に配置された窒化珪素膜とを含む基板にトレンチを形成した後、トレンチ埋め込み用の酸化珪素膜を前記基板上に形成し、前記酸化珪素膜を、研磨液組成物を用いて少なくとも前記窒化珪素膜上の酸化珪素膜が除去されるまで研磨した後、前記窒化珪素膜をシリコン基板上から除去することにより、シャロートレンチ素子分離構造を形成する、ことを含む半導体基板の製造方法おいて、
前記研磨液組成物が、前記<1>から<14>のいずれかに記載の酸化珪素膜研磨用研磨液組成物である半導体基板の製造方法。
<1> A polishing liquid composition for polishing a silicon oxide film for polishing a silicon oxide film on a silicon nitride film, the polishing liquid composition for polishing a silicon oxide film comprising the following components A to C:
Component A: Copolymer of acrylic acid monomer and sulfonic acid monomer having vinyl group Component B: Ceria-coated silica particles containing silica particles and granular ceria covering at least part of the surface of the silica particles Component C: aqueous medium <2> The molar ratio (number of moles of (meth) acrylic acid monomer / number of moles of sulfonic acid monomer having a vinyl group) in component A is preferably (60/40) or more, more preferably (70/30) or more. Even more preferably (80/20) or more, still more preferably (85/15) or more, preferably (98/2) or less, more preferably (95/5) or less, still more preferably (92 5 / 7.5) or less, and even more preferably (91/9) or less, the polishing composition for polishing a silicon oxide film according to <1>.
<3> The copolymer has a weight average molecular weight of preferably 1000 or more, more preferably 2000 or more, still more preferably 5000 or more, preferably 50000 or less, more preferably 30000 or less, and further preferably 25000 or less. The polishing composition for polishing a silicon oxide film according to <1> or <2>.
<4> The component A is preferably at least one selected from the group consisting of a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, an alkali metal thereof, and an ammonium salt thereof. The polishing composition for polishing a silicon oxide film according to any one of <1> to <3>.
<5> The component B is coated with silica particles having an average primary particle diameter of preferably 15 nm to 300 nm with granular ceria having an average primary particle diameter of preferably 5 nm to 40 nm, and the mass ratio of ceria to silica ( The polishing composition for polishing a silicon oxide film according to any one of <1> to <4>, wherein (ceria / silica) is preferably ceria-coated silica particles of 0.25 to 2.
<6> The average primary particle diameter of the granular ceria is more preferably 7.5 nm or more, further preferably 10 nm or more, more preferably 30 nm or less, and further preferably 25 nm or less, according to the above <5>. Polishing liquid composition for polishing silicon oxide film.
<7> The average primary particle size of the silica particles is more preferably 20 nm or more, further preferably 40 nm or more, more preferably 200 nm or less, and further preferably 150 nm or less, in the above <5> or <6> A polishing liquid composition for polishing a silicon oxide film according to the description.
<8> The mass ratio (ceria / silica) in the ceria-coated silica particles is preferably 0.33 or more, more preferably 0.4 or more, preferably 1.5 or less, more preferably 1.2 or less. The polishing composition for polishing a silicon oxide film according to any one of <5> to <7>, wherein
<9> The average primary particle diameter of the ceria-coated silica particles is preferably 30 nm or more, more preferably 45 nm or more, preferably 300 nm or less, more preferably 200 nm or less, from the above <1> to <8> The polishing composition for polishing a silicon oxide film according to any one of the above.
<10> The content of the component A in the polishing composition for polishing a silicon oxide film is the mass of the copolymer (component A), ceria-coated silica particles (component B), and the aqueous medium (component C). Is 100% by mass, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and even more preferably 0.25% by mass or more. <1> to <9>, preferably 5% by mass or less, more preferably 2.5% by mass or less, further preferably 1.0% by mass or less, and still more preferably 0.75% by mass or less. The polishing composition for polishing a silicon oxide film according to any one of the above.
<11> The content of the (component B) in the polishing composition for polishing a silicon oxide film is such that the copolymer (component A), the ceria-coated silica particles (component B), and the aqueous medium (component C). )) Is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.25% by mass or more, and even more preferably 0.5% by mass. <1>, preferably 5.0% by mass or less, more preferably 2.5% by mass or less, still more preferably 2.0% by mass or less, and still more preferably 1.5% by mass or less. To <10>. A polishing liquid composition for polishing a silicon oxide film.
<12> Mass ratio of the copolymer (component A) and the ceria-coated silica particles (component B) in the polishing composition for polishing a silicon oxide film (mass of copolymer / mass of ceria-coated silica particles) However, it is preferably 0.02 or more, more preferably 0.1 or more, still more preferably 0.2 or more, preferably 25 or less, more preferably 10 or less, still more preferably 1 or less, <1> To <11>. A polishing liquid composition for polishing a silicon oxide film.
<13> The pH at 25 ° C. of the polishing composition for polishing a silicon oxide film is preferably 3 or more, more preferably 4 or more, still more preferably 5 or more, still more preferably 5.5 or more, preferably Polishing for polishing a silicon oxide film according to any one of <1> to <12>, which is 9 or less, more preferably 8.5 or less, still more preferably 7.5 or less, and even more preferably 6.5 or less. Liquid composition.
<14> The aqueous medium is divided into a first aqueous medium and a second aqueous medium,
The polishing composition for polishing a silicon oxide film comprises a ceria-coated silica particle dispersion obtained by dispersing ceria-coated silica particles (component B) and a part of the component A in the first aqueous medium, and the remaining The polishing composition for polishing a silicon oxide film according to any one of <1> to <13>, wherein the polishing composition is a two-component type comprising a polishing aid aqueous solution obtained by dissolving Component A in a second aqueous medium. object.
<15> Ceria-coated silica particles (component B) comprising a copolymer of acrylic acid monomer and a sulfonic acid monomer having a vinyl group (component A), silica particles and granular ceria covering at least a part of the surface of the silica particles. And a method for producing a polishing composition for polishing a silicon oxide film, comprising a step of mixing an aqueous medium (component C).
<16> In the above step, an aqueous polishing aid solution obtained by dissolving an aqueous slurry of a copolymer of (meth) acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid in an aqueous medium, and ceria-coated silica particles The method for producing a polishing composition for polishing a silicon oxide film according to <15>, wherein a ceria-coated silica particle dispersion obtained by dispersing in an aqueous medium is mixed.
<17> After forming a trench in a substrate including a silicon substrate and a silicon nitride film disposed on one main surface side of the silicon substrate, a silicon oxide film for filling the trench is formed on the substrate, and the oxidation After polishing the silicon film using a polishing composition until at least the silicon oxide film on the silicon nitride film is removed, the silicon nitride film is removed from the silicon substrate, thereby forming a shallow trench element isolation structure. In a method of manufacturing a semiconductor substrate including forming,
A method for producing a semiconductor substrate, wherein the polishing composition is the polishing composition for polishing a silicon oxide film according to any one of <1> to <14>.

1.研磨液組成物の調製
〔研磨液組成物の調製例1〕
成分(B)としてアクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体と、イオン交換水とを均一に混合し、研磨助剤水溶液を得た。前記研磨助剤水溶液を攪拌しながら、当該水溶液中に、セリアコートシリカ粒子分散液(分散媒:イオン交換水)と、pH調整剤としての1N塩酸水溶液を加え、更にイオン交換水を加えて濃度調整を行い、実施例1の研磨液組成物を得た。各成分の質量比は、表1に記載した研磨液組成物の組成及びpHとなるように、調整した。
1. Preparation of polishing liquid composition [Preparation Example 1 of polishing liquid composition]
As a component (B), a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid and ion-exchanged water were uniformly mixed to obtain an aqueous polishing aid solution. While stirring the aqueous polishing aid solution, a ceria-coated silica particle dispersion (dispersion medium: ion-exchanged water) and a 1N hydrochloric acid aqueous solution as a pH adjuster are added to the aqueous solution, and ion-exchanged water is further added to the concentration. Adjustment was performed and the polishing liquid composition of Example 1 was obtained. The mass ratio of each component was adjusted to be the composition and pH of the polishing composition described in Table 1.

〔研磨液組成物の調製例2〕
表1に記載した研磨液組成物の組成及びpHとなるように、各成分の量を調整した他は、前記研磨液組成物の調製例1と同様の方法で、実施例2〜16、参考例1〜3、及び比較例1〜5の研磨液組成物を得た。pH調整剤としては、pHを低く調整する場合は1mol/L塩酸を用い、pHを高く調整する場合は1質量%アンモニア水を用いた。
[Preparation Example 2 of Polishing Liquid Composition]
Except that the amount of each component was adjusted so as to be the composition and pH of the polishing composition described in Table 1, Examples 2 to 16, Reference Example 2 were prepared in the same manner as in Preparation Example 1 of the polishing composition. Polishing liquid compositions of Examples 1 to 3 and Comparative Examples 1 to 5 were obtained. As a pH adjuster, 1 mol / L hydrochloric acid was used when adjusting the pH low, and 1 mass% aqueous ammonia was used when adjusting the pH high.

[セリアコートシリカ粒子の製造方法]
(1)<セリアコートシリカ粒子の製造方法1>
実施例1〜9、参考例1〜3、及び比較例4〜5の研磨液組成物の調製に用いたセリアコートシリカ粒子の製造方法は下記の通りである。
まず、平均一次粒子径が80nmの球状シリカ粒子(日揮触媒化成工業製、カタロイドSI−80PW)の20質量%水分散液を調製し、当該球状シリカ水分散液に、CeO2原料として硝酸セリウムを溶解させた水溶液を滴下し、同時に3質量%のアンモニア水溶液を別途滴下して、pHを約8に維持しながらセリウムをシリカ上に沈着させた。この滴下の間、球状シリカ水分散液は50℃に維持するために加温した。滴下終了後、反応液を100℃に4時間の加熱することにより熟成して、沈着させたセリアを結晶化させた。その後、得られた粒子を濾別、水での洗浄を十分に実施したのち、乾燥機にて100℃で乾燥させた。この状態で得られた乾燥粉を研磨液組成物の調製に使用してもよいが、ここでは更に乾燥粉について1000℃で2時間焼成を行った後、焼成によって相互にくっついた粒子同士を分離するために得られた焼成粉末をほぐして平均一次粒子径が110nmのセリアコートシリカ粒子を得た。当該セリアコートシリカ粒子をTEM(透過型電子顕微鏡)にて観察したところ、シリカ粒子表面が粒状セリアで被覆されていた。
[Method for producing ceria-coated silica particles]
(1) <Method 1 for producing ceria-coated silica particles>
The manufacturing method of the ceria coat silica particle used for preparation of the polishing liquid composition of Examples 1-9 , Reference Examples 1-3, and Comparative Examples 4-5 is as follows.
First, a 20% by mass aqueous dispersion of spherical silica particles (manufactured by JGC Catalysts & Chemicals, Cataloid SI-80PW) having an average primary particle size of 80 nm is prepared, and cerium nitrate is added as a CeO 2 raw material to the spherical silica aqueous dispersion. A dissolved aqueous solution was dropped, and simultaneously, a 3 mass% ammonia aqueous solution was dropped separately, and cerium was deposited on silica while maintaining the pH at about 8. During this addition, the spherical silica aqueous dispersion was heated to maintain at 50 ° C. After completion of the dropwise addition, the reaction solution was aged by heating at 100 ° C. for 4 hours to crystallize the deposited ceria. Thereafter, the obtained particles were separated by filtration and sufficiently washed with water, and then dried at 100 ° C. with a dryer. The dried powder obtained in this state may be used for the preparation of the polishing composition, but here the dried powder is further baked at 1000 ° C. for 2 hours, and then the particles adhered to each other are separated by baking. The fired powder thus obtained was loosened to obtain ceria-coated silica particles having an average primary particle size of 110 nm. When the ceria-coated silica particles were observed with a TEM (transmission electron microscope), the surface of the silica particles was coated with granular ceria.

(2)<セリアコートシリカ粒子の製造方法2>
実施例10〜12の研磨液組成物の調製に用いたセリアコートシリカ粒子の製造方法は下記の通りである。
CeO2原料として使用する硝酸セリウム量を<セリアコートシリカ粒子の製造方法1>の場合の1/3量としたこと以外は、<セリアコートシリカ粒子の製造方法1>と同様の方法にて平均一次粒子径が110nmのセリアコートシリカ粒子を得た。当該セリアコートシリカ粒子をTEM(透過型電子顕微鏡)にて観察したところ、シリカ粒子表面が粒状セリアで被覆されていた。
(2) <Method 2 for producing ceria-coated silica particles>
The manufacturing method of the ceria coat silica particle used for preparation of the polishing liquid composition of Examples 10-12 is as follows.
The average amount of cerium nitrate used as the CeO 2 raw material was the same as in the <Method 1 for producing ceria-coated silica particles> except that the amount was 1/3 of that in the case of <Method 1 for producing ceria-coated silica particles> Ceria-coated silica particles having a primary particle size of 110 nm were obtained. When the ceria-coated silica particles were observed with a TEM (transmission electron microscope), the surface of the silica particles was coated with granular ceria.

(3)<セリアコートシリカ粒子の製造方法3>
実施例13〜14の研磨液組成物の調製に用いたセリアコートシリカ粒子の製造方法は下記の通りである。
平均一次粒子径が80nmの球状シリカ粒子(日揮触媒化成工業製、カタロイドSI−80PW)の20質量%水分散液に代えて、平均一次粒子径が45nmの球状シリカ粒子(日揮触媒化成工業製、カタロイドSI−45P)の20質量%水分散液を用いたこと以外は、<セリアコートシリカ粒子の製造方法1>と同様の方法にて平均一次粒子径が65nmのセリアコートシリカ粒子を得た。当該セリアコートシリカ粒子をTEM(透過型電子顕微鏡)にて観察したところ、シリカ粒子表面が粒状セリアで被覆されていた。
(3) <Method 3 for producing ceria-coated silica particles>
The manufacturing method of the ceria coat silica particle used for preparation of the polishing liquid composition of Examples 13-14 is as follows.
Instead of a 20% by mass aqueous dispersion of spherical silica particles having an average primary particle size of 80 nm (manufactured by JGC Catalysts & Chemicals, Cataloid SI-80PW), spherical silica particles having an average primary particle size of 45 nm (manufactured by JGC Catalysts & Chemicals, Ceria-coated silica particles having an average primary particle diameter of 65 nm were obtained in the same manner as in <Method 1 for producing ceria-coated silica particles> except that a 20% by mass aqueous dispersion of cataloid SI-45P) was used. When the ceria-coated silica particles were observed with a TEM (transmission electron microscope), the surface of the silica particles was coated with granular ceria.

(4)<セリアコートシリカ粒子の製造方法4>
実施例15〜16の研磨液組成物の調製に用いたセリアコートシリカ粒子の製造方法は下記の通りである。
平均一次粒子径が80nmの球状シリカ粒子(日揮触媒化成工業製、カタロイドSI−80PW)の20質量%水分散液に代えて、平均一次粒子径が120nmの球状シリカ粒子(日揮触媒化成工業製、カタロイドSI−120P)の20質量%水分散液を用いたこと以外は、<セリアコートシリカ粒子の製造方法1>と同様の方法にて平均一次粒子径が160nmのセリアコートシリカ粒子を得た。
(4) <Method 4 for producing ceria-coated silica particles>
The manufacturing method of the ceria coat silica particle used for preparation of the polishing liquid composition of Examples 15-16 is as follows.
Instead of a 20% by mass aqueous dispersion of spherical silica particles having an average primary particle size of 80 nm (manufactured by JGC Catalysts & Chemicals, Cataloid SI-80PW), spherical silica particles having an average primary particle size of 120 nm (manufactured by JGC Catalysts & Chemicals, Ceria-coated silica particles having an average primary particle size of 160 nm were obtained in the same manner as in <Method 1 for producing ceria-coated silica particles> except that a 20% by mass aqueous dispersion of cataloid SI-120P) was used.

[アクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体の製造方法]
実施例1〜16、参考例1〜3、の研磨液組成物の調製に用いたアクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸の共重合体の製造方法は以下の通りである。アクリル酸と2−アクリルアミド‐2−メチルプロパンスルホン酸とのモル比が90:10又は80:20となるようにこれらを重合して共重合体を得た。まず、イオン交換水125gを98℃に昇温し、ここに各モノマーを所定量同時に滴下するとともに、イオン交換水で希釈した開始剤である過硫酸アンモニウムを滴下し、重合を開始した。反応液の温度を約98℃に保持したまま重合を続行し、所定時間経過後、反応液に35質量%過酸化水素水を添加して重合を終了させた。その後、反応液の温度を40℃にまで下げた後、反応液をアンモニア水にて中和して共重合体を得た。共重合体の重量平均分子量の制御は、開始剤濃度を調整することで行った。
[Method for producing a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid]
The manufacturing method of the copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid used for the preparation of the polishing liquid compositions of Examples 1 to 16 and Reference Examples 1 to 3 is as follows. These were polymerized so that the molar ratio of acrylic acid to 2-acrylamido-2-methylpropanesulfonic acid was 90:10 or 80:20 to obtain a copolymer. First, 125 g of ion-exchanged water was heated to 98 ° C., and a predetermined amount of each monomer was added dropwise thereto at the same time, and ammonium persulfate as an initiator diluted with ion-exchanged water was added dropwise to initiate polymerization. Polymerization was continued while maintaining the temperature of the reaction solution at about 98 ° C., and after a predetermined time, 35% by mass of hydrogen peroxide was added to the reaction solution to terminate the polymerization. Thereafter, the temperature of the reaction solution was lowered to 40 ° C., and then the reaction solution was neutralized with aqueous ammonia to obtain a copolymer. The weight average molecular weight of the copolymer was controlled by adjusting the initiator concentration.

比較例の研磨液組成物の調製の際、比較例1〜5では、ポリマーとしてポリアクリル酸を用い、比較例1〜3では研磨粒子として,下記の粉砕法で製造されたセリア粒子(平均一次粒子径135nm、平均結晶子径20nm)の水分散液(バイコウスキー社製、固形分40質量%、分散媒:イオン交換水)を用いた。   In preparing the polishing composition of the comparative example, in Comparative Examples 1 to 5, polyacrylic acid was used as a polymer, and in Comparative Examples 1 to 3, ceria particles (average primary particles) produced by the following pulverization method were used as abrasive particles. An aqueous dispersion having a particle diameter of 135 nm and an average crystallite diameter of 20 nm (manufactured by Baikowski, solid content of 40% by mass, dispersion medium: ion-exchanged water) was used.

研磨液組成物のpH、セリアコートシリカ粒子の平均一次粒子径、セリアコートシリカ粒子の製造に用いたシリカ粒子の平均一次粒子径及びセリアコートシリカ粒子中の粒状セリアの平均一次粒子径は以下の方法により測定した。   The pH of the polishing composition, the average primary particle diameter of the ceria-coated silica particles, the average primary particle diameter of the silica particles used in the production of the ceria-coated silica particles, and the average primary particle diameter of the granular ceria in the ceria-coated silica particles are as follows: Measured by the method.

(a)研磨液組成物のpH測定
研磨液組成物の25℃におけるpH値は、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定した値であり、電極の研磨液組成物への浸漬後1分後の数値である。
(A) Measurement of pH of polishing liquid composition The pH value at 25 ° C of the polishing liquid composition is a value measured using a pH meter (Toa Denki Kogyo Co., Ltd., HM-30G). It is a numerical value 1 minute after immersion in the water.

(b)セリアコートシリカ粒子の平均一次粒子径
セリアコートシリカ粒子の平均一次粒子径は、固形分濃度が0.1質量%のセリアコートシリカ粒子スラリーを準備し、これをマルバーン社製、ゼータサイザーナノZS(動的光散乱法)にて測定し、得られた体積平均粒子径を平均一次粒子径とした。
(B) Average primary particle diameter of ceria-coated silica particles The average primary particle diameter of ceria-coated silica particles was prepared as a ceria-coated silica particle slurry having a solid content concentration of 0.1% by mass. Measurement was performed by nano ZS (dynamic light scattering method), and the obtained volume average particle size was defined as the average primary particle size.

(c)シリカ粒子の平均一次粒子径
セリアコートシリカ粒子の原料であるシリカ粒子の体積平均粒子径(nm)は固形分濃度が0.1質量%のシリカ粒子スラリーを準備し、これをマルバーン社製、ゼータサイザーナノZS(動的光散乱法)にて測定し、得られた体積平均粒子径を平均一次粒子径とした。セリアコート後のシリカ粒子の平均一次粒子径は、TEM(透過型電子顕微鏡)より得られる画像を用い、シリカ粒子50個の大きさを計測し、これらを平均して得た。
(C) Average primary particle diameter of silica particles A silica particle slurry having a solid content concentration of 0.1% by mass is prepared as a volume average particle diameter (nm) of silica particles as a raw material of ceria-coated silica particles. Manufactured by Zeta Sizer Nano ZS (dynamic light scattering method), and the volume average particle size obtained was defined as the average primary particle size. The average primary particle diameter of the silica particles after ceria coating was obtained by measuring the size of 50 silica particles using an image obtained from a TEM (transmission electron microscope) and averaging these.

(d)粒状セリアの平均一次粒子径
シリカ粒子上の粒状セリアの平均一次粒子径は、TEM(透過型電子顕微鏡)より得られる画像を用い、シリカ粒子上の粒状セリア100個の粒子径を計測し、これらを平均して得た。別法として、セリアコートシリカ粒子の粉体を粉末X線回折測定にかけ、29〜30°付近に出現するセリアの(1,1,1)面のピークの半値幅、回折角度を用い、シェラー式より得られる結晶子径を平均一次粒子径としてもよい。
シェラー式:結晶子径(Å)=K×λ/(β×cosθ)
K:シェラー定数、λ:X線の波長=1.54056Å、β:半値幅、θ:回折角2θ/θ
(D) Average primary particle diameter of granular ceria The average primary particle diameter of granular ceria on silica particles is measured by measuring the particle diameter of 100 granular ceria on silica particles using an image obtained from a TEM (transmission electron microscope). These were obtained on average. Alternatively, ceria-coated silica particles are subjected to powder X-ray diffraction measurement, using the half-width and diffraction angle of the ceria (1,1,1) plane that appears around 29-30 °, and the Scherrer equation It is good also considering the crystallite diameter obtained more as an average primary particle diameter.
Scherrer formula: crystallite diameter (Å) = K × λ / (β × cos θ)
K: Scherrer constant, λ: X-ray wavelength = 1.54056 mm, β: half-width, θ: diffraction angle 2θ / θ

(e)ポリマーの重量平均分子量の測定方法
実施例1〜16、参考例1〜3、及び比較例1〜5の研磨液組成物の調製に用いたポリマーの重量平均分子量の測定方法は下記の通りである。
ポリマーの重量平均分子量は、液体クロマトグラフィー(株式会社日立製作所製、L−6000型高速液体クロマトグラフィー)を使用し、ゲル・パーミエーション・クロマトグラフィー(GPC)によって下記条件で測定した。
検出器:ショーデックスRI SE−61示差屈折率検出器
カラム:東ソー株式会社製のG4000PWXLとG2500PWXLを直列につないだものを使用した。
溶離液:0.2Mリン酸緩衝液/アセトニトリル=90/10(容量比)で0.5g/100mLの濃度に調整し、20μLを用いた。
カラム温度:40℃
流速:1.0mL/min
標準ポリマー:重量平均分子量が既知の単分散ポリエチレングリコール
(E) Measuring method of weight average molecular weight of polymer The measuring method of the weight average molecular weight of the polymer used for preparation of polishing liquid composition of Examples 1-16 , Reference Examples 1-3, and Comparative Examples 1-5 is the following. Street.
The weight average molecular weight of the polymer was measured under the following conditions by gel permeation chromatography (GPC) using liquid chromatography (manufactured by Hitachi, Ltd., L-6000 type high performance liquid chromatography).
Detector: Shodex RI SE-61 differential refractive index detector Column: G4000PWXL and G2500PWXL manufactured by Tosoh Corporation were connected in series.
Eluent: 0.2 M phosphate buffer / acetonitrile = 90/10 (volume ratio) was adjusted to a concentration of 0.5 g / 100 mL, and 20 μL was used.
Column temperature: 40 ° C
Flow rate: 1.0 mL / min
Standard polymer: monodispersed polyethylene glycol with known weight average molecular weight

2.研磨液組成物(実施例1〜16、参考例1〜3、及び比較例1〜5)の評価
[試験片の作成]
シリコンウェーハの片面に、TEOS−プラズマCVD法で厚さ2000nmの酸化珪素膜(酸化膜)を形成したものから、40mm×40mmの正方形片を切り出し、酸化膜試験片を得た。同様に、シリコンウェーハの片面に、CVD法で厚さ300nmの窒化珪素膜(窒化膜)を形成したものから、40mm×40mmの正方形片を切り出し、窒化膜試験片を得た。
2. Evaluation of polishing composition (Examples 1 to 16, Reference Examples 1 to 3, and Comparative Examples 1 to 5) [Creation of test pieces]
From a silicon oxide film (oxide film) having a thickness of 2000 nm formed on one side of a silicon wafer by TEOS-plasma CVD method, a 40 mm × 40 mm square piece was cut out to obtain an oxide film test piece. Similarly, from a silicon nitride film (nitride film) having a thickness of 300 nm formed on one side of a silicon wafer, a 40 mm × 40 mm square piece was cut out to obtain a nitride film test piece.

[酸化膜の研磨速度の測定]
研磨装置として、定盤径300mmのムサシノ電子社製「MA−300」を用いた。また、研磨パッドとしては、ニッタ・ハース社製の硬質ウレタンパッド「IC−1000/Sub400」を用いた。前記研磨装置の定盤に、前記研磨パッドを貼り付けた。前記試験片をホルダーにセットし、試験片の酸化珪素膜を形成した面が下になるように(酸化膜が研磨パッドに面するように)ホルダーを研磨パッドに載せた。さらに、試験片にかかる荷重が300g重/cm2となるように、錘をホルダーに載せた。研磨パッドを貼り付けた定盤の中心に、研磨液組成物を50mL/minの速度で滴下しながら、定盤及びホルダーのそれぞれを同じ回転方向に90r/minで2分間回転させて、酸化膜試験片の研磨を行った。研磨後、超純水を用いて洗浄し、乾燥して、酸化膜試験片を後述の光干渉式膜厚測定装置による測定対象とした。
[Measurement of polishing rate of oxide film]
As a polishing apparatus, “MA-300” manufactured by Musashino Electronics Co., Ltd. having a surface plate diameter of 300 mm was used. As the polishing pad, a hard urethane pad “IC-1000 / Sub400” manufactured by Nitta Haas was used. The polishing pad was attached to the surface plate of the polishing apparatus. The test piece was set in a holder, and the holder was placed on the polishing pad so that the surface of the test piece on which the silicon oxide film was formed faced down (so that the oxide film faces the polishing pad). Further, a weight was placed on the holder so that the load applied to the test piece was 300 g weight / cm 2 . While dropping the polishing composition at a speed of 50 mL / min on the center of the surface plate to which the polishing pad is attached, each of the surface plate and the holder is rotated in the same direction of rotation at 90 r / min for 2 minutes to obtain an oxide film. The specimen was polished. After polishing, the substrate was washed with ultrapure water and dried, and the oxide film test piece was used as a measurement object by an optical interference type film thickness measuring device described later.

研磨前及び研磨後において、光干渉式膜厚測定装置(大日本スクリーン社製「ラムダエースVM−1000」)を用いて、酸化膜の膜厚を測定した。酸化膜の研磨速度は下記式により算出した。酸化膜の研磨速度を下記表1に示す。
酸化膜の研磨速度(nm/min)
=[研磨前の酸化膜厚さ(nm)−研磨後の酸化膜厚さ(nm)]/研磨時間(min)
Before and after polishing, the thickness of the oxide film was measured using an optical interference type film thickness measuring device (“Lambda Ace VM-1000” manufactured by Dainippon Screen). The polishing rate of the oxide film was calculated by the following formula. The polishing rate of the oxide film is shown in Table 1 below.
Polishing rate of oxide film (nm / min)
= [Oxide film thickness before polishing (nm)-Oxide film thickness after polishing (nm)] / Polishing time (min)

[窒化膜の研磨速度の測定]
試験片として酸化膜試験片の代わりに窒化膜試験片を用いること以外は、前記[酸化膜の研磨速度の測定]と同様に、窒化膜の研磨、膜厚の測定及び研磨速度の算出を行った。窒化膜の研磨速度を下記表1に示す。
[Measurement of polishing rate of nitride film]
The nitride film was polished, the film thickness was measured, and the polishing rate was calculated in the same manner as in [Measurement of oxide film polishing rate], except that a nitride film test piece was used instead of the oxide film test piece. It was. The polishing rate of the nitride film is shown in Table 1 below.

[研磨速度比]
窒化膜の研磨速度に対する酸化膜の研磨速度の比を研磨速度比とし、下記式により算出した。研磨速度比の値が大きいほど、研磨選択性が良好であるため、段差解消に対する能力が高い。結果を下記表1に示す。
研磨速度比=酸化膜の研磨速度(nm/min)/窒化膜の研磨速度(nm/min)
[Polishing speed ratio]
The ratio of the polishing rate of the oxide film to the polishing rate of the nitride film was defined as the polishing rate ratio and was calculated by the following formula. The larger the value of the polishing rate ratio, the better the polishing selectivity and the higher the ability to eliminate the step. The results are shown in Table 1 below.
Polishing rate ratio = polishing rate of oxide film (nm / min) / polishing rate of nitride film (nm / min)

[研磨傷(スクラッチ数)の測定方法]
測定機器:光学顕微鏡(ビジョンテック社製、VMX-3100)
評価:研磨後、洗浄及び乾燥した、酸化膜試験片及び窒化膜試験片を平坦基板に貼り付け、光源を照射後、暗視野条件で観察して、研磨傷を計測した。尚、本開示において「研磨傷」とは、光学顕微鏡により検出される長さが1μm以上の傷である。
[Measurement method of polishing scratches (number of scratches)]
Measuring instrument: Optical microscope (Vision Tech, VMX-3100)
Evaluation: After polishing, cleaned and dried oxide film test pieces and nitride film test pieces were attached to a flat substrate, irradiated with a light source, then observed under dark field conditions, and polishing scratches were measured. In the present disclosure, the “polishing scratch” is a scratch having a length of 1 μm or more detected by an optical microscope.

Figure 0006352060
Figure 0006352060

表1に示されるように、研磨粒子としてセリアコートシリカ粒子を用い、ポリマーとしてアクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体を用いた実施例1〜16の研磨液組成物を用いた場合は、比較例の研磨液組成物を用いるよりも、高い生産性の為の必要な酸化膜の研磨速度を確保しながら、研磨選択性が優れ且つ研磨傷が低減されていた。 As shown in Table 1, the polishing liquid compositions of Examples 1 to 16 using ceria-coated silica particles as abrasive particles and a copolymer of acrylic acid monomer and sulfonic acid monomer having a vinyl group as a polymer were used. In this case, the polishing selectivity was excellent and the polishing scratches were reduced while ensuring the polishing rate of the oxide film required for high productivity, compared with the case of using the polishing composition of the comparative example .

本発明の研磨液組成物は、高い生産性の為の必要な酸化膜の研磨速度を確保しながら、研磨選択性の向上と研磨傷の低減が可能であるので、例えば、高密度化又は高集積化用の半導体基板の製造方法において有用である。   The polishing liquid composition of the present invention can improve polishing selectivity and reduce polishing scratches while ensuring a polishing rate of an oxide film necessary for high productivity. This is useful in a method for manufacturing a semiconductor substrate for integration.

Claims (7)

窒化珪素膜上の酸化珪素膜を研磨する酸化珪素膜研磨用研磨液組成物であって、下記成分A〜Cを含む、酸化珪素膜研磨用研磨液組成物。
成分A:(メタ)アクリル酸モノマーとビニル基を持つスルホン酸モノマーの共重合体であって、前記共重合体の合成に用いられるモノマーのモル比((メタ)アクリル酸モノマー/ビニル基を持つスルホン酸モノマー)が(85/15)以上(98/2)以下の共重合体
成分B:シリカ粒子と前記シリカ粒子の表面の少なくとも一部を覆う粒状セリアとを含むセリアコートシリカ粒子
成分C:水系媒体
A polishing liquid composition for polishing a silicon oxide film for polishing a silicon oxide film on a silicon nitride film, the polishing liquid composition for polishing a silicon oxide film comprising the following components A to C:
Component A: a copolymer of a (meth) acrylic acid monomer and a sulfonic acid monomer having a vinyl group, the molar ratio of monomers used for the synthesis of the copolymer (having a (meth) acrylic acid monomer / vinyl group) Copolymer component B having a sulfonic acid monomer) of (85/15) or more and (98/2) or less : Ceria-coated silica particles containing silica particles and granular ceria covering at least a part of the surface of the silica particles Component C: Aqueous media
前記セリアコートシリカ粒子における質量比(セリア/シリカ)が、0.4以上2以下である、請求項1に記載の酸化珪素膜研磨用研磨液組成物。  The polishing composition for polishing a silicon oxide film according to claim 1, wherein a mass ratio (ceria / silica) in the ceria-coated silica particles is 0.4 or more and 2 or less. 前記成分Bが、平均一次粒子径が15nm以上300nm以下のシリカ粒子が、平均一次粒子径が5nm以上40nm以下の粒状セリアで被覆されたセリアコートシリカ粒子である、請求項1又は2に記載の酸化珪素膜研磨用研磨液組成物。 Wherein component B has an average primary particle diameter of 15nm or more 300nm or less of the silica particles, average primary particle diameter of ceria-coated silica particles coated with 40nm or less granular ceria than 5 nm, according to claim 1 or 2 Polishing liquid composition for polishing silicon oxide film. 前記成分Aが、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合体、そのアルカリ金属、及びそのアンモニウム塩からなる群から選ばれる少なくとも1種である、請求項1から3のいずれかの項に記載の酸化珪素膜研磨用研磨液組成物。 The component A is at least one selected from the group consisting of a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, an alkali metal thereof, and an ammonium salt thereof . The polishing composition for polishing a silicon oxide film according to any one of the items. 前記共重合体の重量平均分子量が1000以上50000以下である請求項1から4のいずれかの項に記載の酸化珪素膜研磨用研磨液組成物。   The polishing composition for polishing a silicon oxide film according to any one of claims 1 to 4, wherein the copolymer has a weight average molecular weight of 1,000 to 50,000. 前記酸化珪素膜研磨用研磨液組成物中の前記成分Aの含有量が、前記成分Aと前記成分Bと前記成分Cの質量の合計を100質量%とすると、0.5質量%以上5質量%以下である請求項1から5のいずれかの項に記載の酸化珪素膜研磨用研磨液組成物。 The content of the component A in the polishing composition for polishing a silicon oxide film is 0.5 % by mass or more and 5% by mass when the total mass of the component A, the component B, and the component C is 100% by mass. The polishing composition for polishing a silicon oxide film according to any one of claims 1 to 5, wherein the polishing composition is at most%. 前記成分Aと前記成分Bの質量比(共重合体/セリアコートシリカ粒子)が0.5以上25以下である、請求項1から6のいずれかの項に記載の酸化珪素膜研磨用研磨液組成物。  The polishing liquid for polishing a silicon oxide film according to any one of claims 1 to 6, wherein a mass ratio of the component A and the component B (copolymer / ceria-coated silica particles) is 0.5 or more and 25 or less. Composition.
JP2014118002A 2014-06-06 2014-06-06 Polishing liquid composition for polishing silicon oxide film Active JP6352060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118002A JP6352060B2 (en) 2014-06-06 2014-06-06 Polishing liquid composition for polishing silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118002A JP6352060B2 (en) 2014-06-06 2014-06-06 Polishing liquid composition for polishing silicon oxide film

Publications (2)

Publication Number Publication Date
JP2015231029A JP2015231029A (en) 2015-12-21
JP6352060B2 true JP6352060B2 (en) 2018-07-04

Family

ID=54887651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118002A Active JP6352060B2 (en) 2014-06-06 2014-06-06 Polishing liquid composition for polishing silicon oxide film

Country Status (1)

Country Link
JP (1) JP6352060B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115096A1 (en) * 2015-01-12 2016-07-21 Air Products And Chemicals, Inc. Composite abrasive particles for chemical mechanical planarization composition and method of use thereof
JP6603142B2 (en) * 2015-01-20 2019-11-06 日揮触媒化成株式会社 Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion
JP6582567B2 (en) * 2015-06-03 2019-10-02 日立化成株式会社 Slurry and manufacturing method thereof, and polishing method
JP6598719B2 (en) * 2016-03-30 2019-10-30 日揮触媒化成株式会社 Method for producing silica-based composite particle dispersion
JP6616794B2 (en) * 2016-04-22 2019-12-04 日揮触媒化成株式会社 Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion
JP6648064B2 (en) * 2016-04-22 2020-02-14 日揮触媒化成株式会社 Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion
JP6703437B2 (en) * 2016-04-22 2020-06-03 日揮触媒化成株式会社 Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing the silica-based composite fine particle dispersion
JP6616795B2 (en) * 2016-04-22 2019-12-04 日揮触媒化成株式会社 Polishing abrasive dispersion containing silica composite fine particles
US10844259B2 (en) * 2016-04-22 2020-11-24 Jgc Catalysts And Chemicals Ltd. Silica-based composite fine particle dispersion and method for manufacturing same
JP6588050B2 (en) * 2016-04-22 2019-10-09 日揮触媒化成株式会社 Polishing abrasive dispersion containing silica composite fine particles
KR102268320B1 (en) * 2016-11-14 2021-06-22 니끼 쇼꾸바이 카세이 가부시키가이샤 Ceria-based composite fine particle dispersion, manufacturing method thereof, and abrasive abrasive dispersion comprising ceria-based composite fine particle dispersion
WO2018142516A1 (en) * 2017-02-01 2018-08-09 日立化成株式会社 Polishing fluid, polishing fluid set, and polishing method
US11649377B2 (en) * 2017-08-14 2023-05-16 Resonac Corporation Polishing liquid, polishing liquid set and polishing method
JP7034667B2 (en) * 2017-10-24 2022-03-14 山口精研工業株式会社 Abrasive composition for magnetic disk substrates
JP2018168063A (en) * 2018-07-12 2018-11-01 日揮触媒化成株式会社 Method for producing silica composite particle dispersion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200243A (en) * 2000-01-21 2001-07-24 Sumitomo Osaka Cement Co Ltd Abrasive material, production method thereof, and polishing method using asme
JP5403910B2 (en) * 2007-04-23 2014-01-29 花王株式会社 Polishing liquid composition
WO2010139603A1 (en) * 2009-06-05 2010-12-09 Basf Se RASPBERRY-TYPE METAL OXIDE NANOSTRUCTURES COATED WITH CeO2 NANOPARTICLES FOR CHEMICAL MECHANICAL PLANARIZATION (CMP)
EP2649144A4 (en) * 2010-12-10 2014-05-14 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates containing silicon oxide dielectric and polysilicon films
JP5979871B2 (en) * 2011-03-09 2016-08-31 花王株式会社 Manufacturing method of magnetic disk substrate
TWI573864B (en) * 2012-03-14 2017-03-11 卡博特微電子公司 Cmp compositions selective for oxide and nitride with high removal rate and low defectivity

Also Published As

Publication number Publication date
JP2015231029A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6352060B2 (en) Polishing liquid composition for polishing silicon oxide film
JP5110058B2 (en) CMP abrasive and polishing method
JP5655879B2 (en) CMP polishing agent and substrate polishing method
JP5176154B2 (en) CMP polishing agent and substrate polishing method
JP6510812B2 (en) Polishing particles for polishing silicon oxide film
JP6422325B2 (en) Polishing liquid composition for semiconductor substrate
JP3457144B2 (en) Polishing composition
JP5552475B2 (en) Cerium oxide production method, cerium oxide obtained therefrom and CMP slurry containing the same
TW201839077A (en) Self-stopping polishing composition and method for bulk oxide planarization
WO2018179787A1 (en) Polishing liquid, polishing liquid set, and polishing method
WO2018124017A1 (en) Cerium oxide abrasive grains
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP6563957B2 (en) Polishing liquid composition for polishing silicon oxide film
JP6811090B2 (en) Abrasive liquid composition for silicon oxide film
WO2018179062A1 (en) Polishing liquid, polishing liquid set, additive liquid, and polishing method
JP7044510B2 (en) Cerium oxide-containing composite abrasive
TW202104525A (en) Polishing liquid composition for silicon oxide film
JP6797665B2 (en) Abrasive liquid composition
JP4604727B2 (en) Additive for CMP abrasives
JP7252073B2 (en) Polishing liquid composition for silicon oxide film
JP4608925B2 (en) Additive for CMP abrasives
KR101874999B1 (en) A chemical-mechanical polishing slurry composition
JP2023038579A (en) Chemical mechanical polishing particles
JP2012054545A (en) Cmp liquid and method of manufacturing the same, as well as polishing method using cmp liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R151 Written notification of patent or utility model registration

Ref document number: 6352060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250