JP6645732B2 - Near-infrared absorbing alumina material, near-infrared absorbing alumina porcelain, and method of manufacturing near-infrared absorbing alumina porcelain - Google Patents
Near-infrared absorbing alumina material, near-infrared absorbing alumina porcelain, and method of manufacturing near-infrared absorbing alumina porcelain Download PDFInfo
- Publication number
- JP6645732B2 JP6645732B2 JP2014238925A JP2014238925A JP6645732B2 JP 6645732 B2 JP6645732 B2 JP 6645732B2 JP 2014238925 A JP2014238925 A JP 2014238925A JP 2014238925 A JP2014238925 A JP 2014238925A JP 6645732 B2 JP6645732 B2 JP 6645732B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- alumina
- infrared absorbing
- wavelength
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Optical Filters (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、近赤外線吸収アルミナ材料、近赤外線吸収アルミナ磁器および近赤外線吸収アルミナ磁器の製造方法に関する。
The present invention relates to a near-infrared absorbing alumina material , a near-infrared absorbing alumina porcelain, and a method for producing a near-infrared absorbing alumina porcelain .
近赤外線を吸収する材料としては、従来よりガラスや有機ポリマーなどの材料が知られており、これらは、近赤外線吸収フィルター、近赤外線分光装置、生体センサー、太陽光吸収材料、建築用装飾材料、家庭用装飾材料、YAGレーザーや半導体レーザーの吸収材料等に利用されている。 As a material that absorbs near-infrared rays, materials such as glass and organic polymers are conventionally known. These include near-infrared absorption filters, near-infrared spectrometers, biosensors, sunlight-absorbing materials, architectural decorative materials, It is used as a decorative material for home use, an absorption material for YAG lasers and semiconductor lasers, and the like.
一般的な近赤外線吸収ガラスとしては、リン酸ガラスにCuOを添加したものが知られている。また、特許文献1には、ソーダライムシリカガラスにFeOを添加したものが赤外線吸収ガラスとして開示されている。 As a general near-infrared absorbing glass, a glass obtained by adding CuO to phosphate glass is known. Patent Document 1 discloses a soda-lime silica glass to which FeO is added as an infrared absorbing glass.
また、無機材料としてはITO(酸化インジウム錫)、ATO(アンチモンドープ酸化錫)などが知られており、ガラスのコーティングやフィルムとして用いられている。 Further, ITO (indium tin oxide), ATO (antimony-doped tin oxide), and the like are known as inorganic materials, and are used as glass coatings and films.
しかしながら、有機ポリマーの赤外線吸収材料は、耐候性や耐熱性などの耐久性能にさらなる向上が求められていた。ガラスについても、リン酸ガラス系の材料は潮解性を有するため耐湿性に問題があり、ソーダライムシリカガラス系の材料はアルカリ成分を含んでいるため、長期間の使用または高温下での使用により、アルカリイオンが当該ガラスに接する周辺材料に拡散して周辺材料の劣化を引き起すという問題があった。また、ITOやATOは導電性を有するため、建材やガラスのコーティング等に用いると、携帯電話等の電波障害を誘発するという問題があった。 However, the infrared absorption material of an organic polymer has been required to further improve durability performance such as weather resistance and heat resistance. As for glass, phosphate glass-based materials have deliquescence and therefore have a problem with moisture resistance.Soda-lime silica glass-based materials contain alkali components, so if they are used for a long time or at high temperatures In addition, there has been a problem that alkali ions diffuse into a peripheral material in contact with the glass and cause deterioration of the peripheral material. In addition, since ITO and ATO have conductivity, when they are used for coating of building materials or glass, there is a problem that radio interference of mobile phones and the like is induced.
本発明は上記の課題に鑑みなされたもので、絶縁性のアルミナ材料に近赤外線吸収特性を付与することにより、耐候性や耐熱性に優れた近赤外線吸収アルミナ材料および近赤外線吸収アルミナ磁器を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a near-infrared absorbing alumina material and a near-infrared absorbing alumina porcelain excellent in weather resistance and heat resistance by imparting near-infrared absorbing properties to an insulating alumina material. The purpose is to do.
本発明の近赤外線吸収アルミナ材料は、Al2O3を99.5質量%以上、FeをFe2O3換算で100ppm以上3000ppm以下含有するとともに、FeOを含有しており、波長600nmの分光吸収率をA1、波長1900nmの分光吸収率をA2としたとき、前記A1が20%以下、かつ前記A2が30%以上であることを特徴とする。
The near-infrared absorbing alumina material of the present invention contains not less than 99.5% by mass of Al 2 O 3 and not less than 100 ppm and not more than 3000 ppm of Fe in terms of Fe 2 O 3 , and also contains FeO and has a spectral absorption at a wavelength of 600 nm. When the ratio is A1 and the spectral absorption at a wavelength of 1900 nm is A2, A1 is 20% or less and A2 is 30% or more.
また、本発明の近赤外線吸収アルミナ材料は、Al2O3を99.5質量%以上、FeをFe2O3換算で100ppm以上3000ppm以下含有するとともに、FeOを含有しており、波長600nmの分光透過率をT1、波長1900nmの分光透過率をT2としたとき、該T2が25%以下、かつ前記T1が前記T2以上であることを特徴とする。
The near-infrared absorbing alumina material of the present invention contains not less than 99.5% by mass of Al 2 O 3 and not more than 100 ppm and not more than 3000 ppm of Fe in terms of Fe 2 O 3 , and also contains FeO and has a wavelength of 600 nm. When the spectral transmittance is T1 and the spectral transmittance at a wavelength of 1900 nm is T2, T2 is 25% or less, and T1 is T2 or more.
本発明の近赤外線吸収アルミナ磁器は、アルミナ結晶粒子と粒界とを有し、気孔率が0.5%以下であって、Al2O3を99.5質量%以上、FeをFe2O3換算で100ppm以上3000ppm以下含有するとともに、FeOを含有しており、波長600nmの分光吸収率をA1、波長1900nmの分光吸収率をA2としたとき、前記A1が20%以下、かつ前記A2が30%以上であることを特徴とする。
The near-infrared absorbing alumina porcelain of the present invention has alumina crystal particles and grain boundaries, has a porosity of 0.5% or less, Al 2 O 3 of 99.5% by mass or more, and Fe of Fe 2 O. It contains not less than 100 ppm and not more than 3000 ppm in terms of 3 and also contains FeO. When the spectral absorbance at a wavelength of 600 nm is A1 and the spectral absorbance at a wavelength of 1900 nm is A2, A1 is 20% or less and A2 is 30% or more.
また、本発明の近赤外線吸収アルミナ磁器は、アルミナ結晶粒子と粒界とを有し、気孔率が0.5%以下であって、Al2O3を99.5質量%以上、FeをFe2O3換算で100ppm以上3000ppm以下含有するとともに、FeOを含有しており、波長600nmの分光透過率をT1、波長1900nmの分光透過率をT2としたとき、該T2が25%以下、かつ前記T1が前記T2以上であることを特徴とする。
また、本発明の近赤外線吸収アルミナ磁器の製造方法は、下記(I)および(II)を備える焼成条件で、Al 2 O 3 を99.5質量%以上、FeをFe 2 O 3 換算で100ppm以上3000ppm以下含有する混合粉末を焼成し、アルミナ結晶粒子と粒界とを有し、気孔率が0.5%以下であるアルミナ磁器とすることを特徴とする。
(I)焼成温度:1600〜1800℃
(II)焼成雰囲気:真空中
The near-infrared absorbing alumina porcelain of the present invention has alumina crystal particles and grain boundaries, has a porosity of 0.5% or less, Al2O3 of 99.5% by mass or more, and Fe of 100 ppm in terms of Fe2O3. When the spectral transmittance at a wavelength of 600 nm is T1 and the spectral transmittance at a wavelength of 1900 nm is T2, the T2 is 25% or less, and the T1 is T2 or more. There is a feature.
Further, the method for producing a near-infrared absorbing alumina porcelain of the present invention is such that Al 2 O 3 is at least 99.5% by mass and Fe is 100 ppm in terms of Fe 2 O 3 under firing conditions including the following (I) and (II). The mixed powder containing 3,000 ppm or less is calcined to obtain alumina porcelain having alumina crystal particles and grain boundaries and having a porosity of 0.5% or less.
(I) firing temperature: 1600 to 1800 ° C
(II) Firing atmosphere: in vacuum
本発明によれば、耐候性や耐熱性に優れた近赤外線吸収アルミナ材料および近赤外線吸収アルミナ磁器を提供することができる。 According to the present invention, a near-infrared absorbing alumina material and a near-infrared absorbing alumina porcelain excellent in weather resistance and heat resistance can be provided.
本発明の近赤外線吸収アルミナ材料について、その実施形態の一例を説明する。本実施形態の近赤外線吸収アルミナ材料(以下、単にアルミナ材料という場合もある)は、Al2O3を99.5質量%以上、FeをFe2O3換算で100ppm以上3000ppm以下含有する。 An embodiment of the near-infrared absorbing alumina material of the present invention will be described. The near-infrared absorbing alumina material of the present embodiment (hereinafter sometimes simply referred to as alumina material) contains 99.5% by mass or more of Al 2 O 3 and 100 ppm or more and 3000 ppm or less of Fe in terms of Fe 2 O 3 .
ここで、材料中に含まれるFeがFeOとして存在することにより、近赤外線を吸収することができる。近赤外線とは、700〜2500nmの波長を有する赤外線である。Feは、Fe2O3として存在する場合、可視光領域に吸収を示し近赤外線領域では吸収を示さないが、FeOとして存在する場合には、近赤外線領域で吸収を示し可視光領域では吸収を示さない。したがって、FeOを含むアルミナは近赤外線の吸収能を備えるものとなる。 Here, near infrared rays can be absorbed by the presence of Fe contained in the material as FeO. The near infrared ray is an infrared ray having a wavelength of 700 to 2500 nm. When Fe exists as Fe 2 O 3 , it absorbs in the visible light region and does not show absorption in the near infrared region, but when it exists as FeO, it absorbs in the near infrared region and absorbs in the visible light region. Not shown. Therefore, the alumina containing FeO has near infrared absorption ability.
本実施形態の近赤外線吸収アルミナ材料では、波長600nmの分光吸収率をA1、波長1900nmの分光吸収率をA2としたとき、A1が20%以下、かつA2が30%以上である。このような近赤外線吸収特性を有することにより、本実施形態の近赤外線吸収アルミナ材料は、耐候性や耐熱性が必要とされる太陽電池用材料や建築用材料、ガラスのコーティング材等の近赤外線吸収材料として好適に用いることができる。 In the near-infrared absorbing alumina material of the present embodiment, when the spectral absorption at a wavelength of 600 nm is A1 and the spectral absorption at a wavelength of 1900 nm is A2, A1 is 20% or less and A2 is 30% or more. By having such near-infrared absorption properties, the near-infrared absorbing alumina material of the present embodiment can be used as a near-infrared ray material such as a solar cell material or a building material, a glass coating material, etc., which require weather resistance and heat resistance. It can be suitably used as an absorbing material.
例えば、太陽電池はパネル温度の上昇によって夏期の出力が低くなることがよく知られている。例えば、80℃における太陽電池の出力は、25℃における出力に対して95%まで低下する。また、多結晶シリコンを用いた太陽電池は、1300nmまでの波長の太陽光を電気エネルギーに変換できるが、これより長い近赤外線以上の太陽光は電気エネルギーに変換されず熱エネルギーとして吸収され、パネル温度の上昇の原因となる。そのため1300nmまでの波長の太陽光は透過するが、それ以上の波長の太陽光を効率良く吸収する本実施形態の近赤外線吸収アルミナ材料は、パネル温度の上昇を抑制する太陽電池のカバー材料として好適に用いることができる。 For example, it is well known that the output of a solar cell in summer decreases with an increase in panel temperature. For example, the output of a solar cell at 80 ° C. drops to 95% of the output at 25 ° C. In addition, a solar cell using polycrystalline silicon can convert sunlight having a wavelength of up to 1300 nm into electric energy, but sunlight longer than the near-infrared ray is not converted into electric energy but is absorbed as heat energy. May cause temperature rise. Therefore, the near-infrared absorbing alumina material of the present embodiment, which transmits sunlight having a wavelength of up to 1300 nm but efficiently absorbs sunlight having a wavelength longer than that, is suitable as a cover material for a solar cell that suppresses an increase in panel temperature. Can be used.
本実施形態の近赤外線吸収アルミナ材料は、600nmの波長を有する可視光の分光透過率をT1とし、1900nmの波長を有する近赤外線の分光透過率をT2としたとき、T2が25%以下、かつT1がT2以上である。 In the near-infrared absorbing alumina material of the present embodiment, when the spectral transmittance of visible light having a wavelength of 600 nm is T1 and the spectral transmittance of near-infrared light having a wavelength of 1900 nm is T2, T2 is 25% or less, and T1 is equal to or greater than T2.
近赤外線を用いたレーザーのうち、波長が1400nm以上のレーザーはアイセーフレーザーと呼ばれ、網膜まで到達せず目に損傷を与えにくいため、医療分野を始めレーザーを応用したレーダーや測距器、交通監視システム、携帯端末用の超高速データ通信等、特に社会生活に密接したレーザー応用分野において注目されている。このようなレーザーとしては、たとえばYAGレーザーや半導体レーザーが挙げられる。しかし、この波長領域であっても、最大許容露光量を越えた照射を受けると眼球に熱的損傷を受ける可能性がある。本実施形態の近赤外線吸収アルミナ材料は、このアイセーフレーザーの波長域における赤外線吸収能に優れ、当該波長域の分光透過率が低いため、アイセーフレーザーの吸収材料として、たとえばシール材や保護眼鏡のコーティング等に好適に用いることができる。 Among lasers using near-infrared light, lasers with a wavelength of 1400 nm or more are called eye-safe lasers, which do not reach the retina and do not easily damage the eyes. Attention has been paid to monitoring systems, ultra-high-speed data communication for mobile terminals, and the like, particularly in laser application fields closely related to social life. Examples of such a laser include a YAG laser and a semiconductor laser. However, even in this wavelength region, the eyeball may be thermally damaged if the irradiation exceeds the maximum allowable exposure. The near-infrared absorbing alumina material of the present embodiment has excellent infrared absorbing ability in the wavelength range of the eye-safe laser and low spectral transmittance in the wavelength range. And the like.
本実施形態の近赤外線吸収アルミナ材料は、更に、A1が20%以下、かつA2が30%以上であるとともに、T2が25%以下、かつT1がT2以上であることが好ましい。 In the near-infrared absorbing alumina material of the present embodiment, it is preferable that A1 is 20% or less, A2 is 30% or more, T2 is 25% or less, and T1 is T2 or more.
なお、1900nmの波長を有する近赤外線の分光吸収率A2を30%以上、および分光透過率T2を25%以下とすることは、Feの含有量をFe2O3換算で100ppm以上とすることにより実現できる。 The spectral absorption A2 of the near infrared ray having a wavelength of 1900 nm is set to 30% or more and the spectral transmittance T2 is set to 25% or less by setting the Fe content to 100 ppm or more in terms of Fe 2 O 3. realizable.
また、近赤外線吸収アルミナ材料中にAl2O3を99.5質量%以上含み、Feの含有量をFe2O3換算で3000ppm以下とすることにより、高純度アルミナが本来持っている優れた熱特性、耐候性、耐湿性を維持したまま近赤外線の吸収能を付与することができる。なお、可視光領域の分光透過率を高く維持するという点から、Feの含有量はFe2O3換算で500ppm以下とすることが好ましい。 Further, by including Al 2 O 3 in the near-infrared absorbing alumina material in an amount of 99.5% by mass or more and by setting the Fe content to 3000 ppm or less in terms of Fe 2 O 3 , high-purity alumina originally has excellent properties. Near-infrared absorptivity can be imparted while maintaining thermal properties, weather resistance and moisture resistance. From the viewpoint of maintaining a high spectral transmittance in the visible light region, the Fe content is preferably 500 ppm or less in terms of Fe 2 O 3 .
このように、含まれるFeが可視光領域の吸収を示さず、さらにアルミナ結晶自体に可視光領域に吸収を持つ他の成分を含まない、Al2O3を99.5質量%以上含有する高純度のアルミナ材料であることから、本実施形態においては、可視光領域の分光透過率を高く維持することができ、特にガラスのコーティング材や装飾材料として好適に用いることができる。 Thus, Fe contained showed no absorption in the visible region, further no other component having an absorption in the visible light region to the alumina crystal itself, high containing Al 2 O 3 99.5 wt% Since the alumina material is a pure alumina material, in the present embodiment, the spectral transmittance in the visible light region can be kept high, and it can be suitably used particularly as a glass coating material or decorative material.
本実施形態においては、さらに600nmの波長を有する可視光の分光透過率T1が、25%以上であることが好ましい。これにより可視光の透過性が確保でき、ガラス等のコーティング材としてもさらに好適に用いることができる。可視光の透過率を高めるには、アルミナ材料に含まれる不純物を低減する、アルミナの結晶子サイズを大きくするなどの手法を用いればよい。 In the present embodiment, it is preferable that the spectral transmittance T1 of visible light having a wavelength of 600 nm is 25% or more. Thereby, the transmittance of visible light can be ensured, and it can be more suitably used as a coating material such as glass. In order to increase the transmittance of visible light, a method of reducing impurities contained in the alumina material or increasing the crystallite size of alumina may be used.
本実施形態における近赤外線吸収アルミナ材料の形状は、粒子状(粉末)および膜状のいずれであってもよい。粒子状の場合、アルミナ結晶粒子の表面にFeO粒子やFeO被膜を有するもの、複数のアルミナ結晶粒子が結合・凝集しその粒界にFeOが存在するものなどが使用できる。膜状の場合も、多結晶膜や多結晶体の粒界にFeOが存在するものが好適に用いられる。特に粒子状の近赤外線吸収アルミナ材料は、溶剤に分散させてコーティング材や遮熱塗料などに用いることもできる。なお、遮熱塗料に用いる場合、粒子の内部に空洞を有する中空粒子として用いることで、さらに遮熱性を高めることができる。このような遮熱塗料に用いる場合の近赤外線吸収アルミナ材料の平均粒径は、分散性、塗布性の面から1〜100μmとすることが好ましい。 The shape of the near-infrared absorbing alumina material in the present embodiment may be any of a particle (powder) and a film. In the case of particles, those having FeO particles or a FeO coating on the surface of alumina crystal particles, those having a plurality of alumina crystal particles bonded and aggregated and FeO present at the grain boundaries can be used. Also in the case of a film, a film in which FeO is present at a grain boundary of a polycrystalline film or a polycrystalline body is preferably used. In particular, the particulate near-infrared absorbing alumina material can be dispersed in a solvent and used for a coating material, a thermal barrier paint, and the like. When used as a heat-shielding paint, the heat-shielding properties can be further enhanced by using the particles as hollow particles having cavities inside the particles. The average particle size of the near-infrared absorbing alumina material when used in such a thermal barrier paint is preferably 1 to 100 μm from the viewpoint of dispersibility and applicability.
本実施形態の近赤外線吸収アルミナ材料は、実質的にAl、Fe、Oを構成元素としてなることが望ましい。これにより最低限の構成元素により、近赤外線吸収アルミナ材料を得ることができる。ここで実質的にAl、Fe、Oを構成元素としてなるとは、原料にAl、Fe、O以外は積極的に添加しないという意味であるが、不可避不純物としてSi、
Mg、Ca、Na、Cr、Ni、Mn、CuおよびCを酸化物換算した合計量で、全量中0.2質量%以下含有することがある。
It is desirable that the near-infrared absorbing alumina material of the present embodiment substantially contains Al, Fe, and O as constituent elements. Thereby, a near-infrared absorbing alumina material can be obtained with the minimum number of constituent elements. Here, the phrase "contains substantially Al, Fe, and O as constituent elements" means that elements other than Al, Fe, and O are not actively added to the raw material.
Mg, Ca, Na, Cr, Ni, Mn, Cu and C may be contained in an amount of 0.2% by mass or less in the total amount in terms of oxide.
近赤外線吸収アルミナ材料の構成元素や不純物の種類および含有量は、たとえば高周波誘導結合プラズマ(ICP)発光分光などの元素分析により確認すればよい。近赤外線吸収アルミナ材料に含まれるFeがFeOとして存在するか、Fe2O3として存在するかについては、上述のようにFe2O3は800nm以下の波長の範囲で吸収を示し、FeOは1300〜2500nmの波長の範囲で吸収を示すことから、可視光および近赤外線の分光透過率を測定することにより判断できる。また、X線吸収微細構造(XAFS)を確認することにより判別することもできる。 The types and contents of constituent elements and impurities of the near-infrared absorbing alumina material may be confirmed by elemental analysis such as high frequency inductively coupled plasma (ICP) emission spectroscopy. Regarding whether Fe contained in the near-infrared absorbing alumina material exists as FeO or Fe 2 O 3, as described above, Fe 2 O 3 shows absorption in a wavelength range of 800 nm or less, and FeO shows 1300 Since absorption is shown in the wavelength range of 22500 nm, it can be determined by measuring the spectral transmittance of visible light and near-infrared light. Further, the determination can be made by confirming the X-ray absorption fine structure (XAFS).
このような近赤外線吸収アルミナ材料は、以下のようにして作製すればよい。原料粉末として、例えば、原料粒径0.1〜0.8μmの高純度Al2O3粉末とFe2O3粉末とを所定量秤量し、高純度アルミナボールを用いて湿式混合を行う。 Such a near-infrared absorbing alumina material may be manufactured as follows. As raw material powders, for example, a high-purity Al 2 O 3 powder having a raw material particle size of 0.1 to 0.8 μm and a Fe 2 O 3 powder are weighed in predetermined amounts, and wet-mixed using high-purity alumina balls.
得られた混合物を乾燥・造粒し、真空中または還元雰囲気中にて1500℃以上で熱処理することにより、Fe2O3が還元され、FeOを含み近赤外線吸収能を有する、すなわち波長1900nmの分光吸収率A2が30%以上、かつ波長600nmの分光吸収率A1が20%以下である近赤外線吸収アルミナ粉末が得られる。なお、得られたアルミナ粉末をさらに粉砕して粒度調整を行ってもよい。 The resulting mixture is dried, granulated, and heat-treated at 1500 ° C. or higher in a vacuum or reducing atmosphere to reduce Fe 2 O 3 and contain FeO and have a near-infrared absorbing ability, that is, a wavelength of 1900 nm. A near-infrared absorbing alumina powder having a spectral absorption coefficient A2 of 30% or more and a spectral absorption coefficient A1 at a wavelength of 600 nm of 20% or less is obtained. The obtained alumina powder may be further pulverized to adjust the particle size.
また、中空粒子を得るには、熱処理によりFeOを含むアルミナとなる炭酸塩、酢酸塩等の素原料、または熱処理により得られたFeOを含むアルミナ粉末をスラリー化して、樹脂等のボールを芯材としたアルミナ被覆粒子を作製し、芯材が消失する条件で熱処理を行った後、真空中または還元雰囲気中にて1500℃以上でさらに熱処理すればよい。その際、熱処理温度を調整することにより、多孔性の殻を有する中空粒子、緻密な殻を有する中空粒子のいずれも作製することができる。中空粒子のサイズや殻の厚さは、芯材のサイズ、素原料やアルミナ粒子の粒径、スラリーの濃度や粘度等を適宜調整することにより所望のサイズや殻の厚さを有するものが得られる。 Further, in order to obtain hollow particles, a raw material such as carbonate or acetate which becomes alumina containing FeO by heat treatment, or alumina powder containing FeO obtained by heat treatment is slurried, and a ball such as resin is used as a core material. After the heat treatment is performed under the condition that the core material disappears, the heat treatment may be further performed at 1500 ° C. or more in a vacuum or a reducing atmosphere. At that time, by adjusting the heat treatment temperature, both hollow particles having a porous shell and hollow particles having a dense shell can be produced. The size of the hollow particles and the thickness of the shell can be adjusted to appropriately adjust the size of the core material, the particle size of the raw material and the alumina particles, the concentration and the viscosity of the slurry, and the like, to obtain the desired size and the thickness of the shell. Can be
本発明の近赤外線吸収アルミナ磁器について、その実施形態の一例を説明する。本実施形態の近赤外線吸収アルミナ磁器(以下、単にアルミナ磁器という場合もある)は、アルミナ結晶粒子と粒界とを有し、気孔率が0.5%以下であって、Al2O3を99.5質量%以上、FeをFe2O3換算で100ppm以上3000ppm以下含有するアルミナ磁器である。 An example of the embodiment of the near-infrared absorbing alumina porcelain of the present invention will be described. The near-infrared absorbing alumina porcelain of the present embodiment (hereinafter sometimes simply referred to as alumina porcelain) has alumina crystal grains and grain boundaries, has a porosity of 0.5% or less, and contains Al 2 O 3 . It is an alumina porcelain containing 99.5% by mass or more and 100 ppm or more and 3000 ppm or less of Fe in terms of Fe 2 O 3 .
本実施形態においては、前述した近赤外線吸収アルミナ材料と同様に、磁器中に含まれるFeがFeOとして存在することにより、近赤外線を吸収することができる。 In the present embodiment, as in the case of the above-described near-infrared absorbing alumina material, the presence of Fe contained in the porcelain as FeO allows absorption of near-infrared rays.
本実施形態の近赤外線吸収アルミナ磁器では、1900nmの波長を有する近赤外線の分光吸収率A2が30%以上、かつ600nmの波長を有する可視光の分光吸収率A1が20%以下である。このような赤外線吸収特性により、本実施形態の近赤外線吸収アルミナ磁器は、耐候性や耐熱性が必要とされる太陽電池用材料や建築用材料等の近赤外線吸収材料として好適に用いることができる。 In the near-infrared absorbing alumina porcelain of this embodiment, the near-infrared spectral absorptance A2 having a wavelength of 1900 nm is 30% or more, and the spectral absorptance A1 of visible light having a wavelength of 600 nm is 20% or less. Due to such infrared absorption characteristics, the near-infrared absorbing alumina porcelain of the present embodiment can be suitably used as a near-infrared absorbing material such as a solar cell material or a building material requiring weather resistance and heat resistance. .
また、1900nmの波長を有する近赤外線の分光透過率T2が25%以下、かつ600nmの波長を有する可視光の分光透過率T1がT2以上であることにより、アイセーフレーザーの波長域における赤外線吸収能に優れるため、アイセーフレーザーの吸収材料、たとえばシール材として特に好適に用いることができる。 In addition, since the spectral transmittance T2 of near-infrared light having a wavelength of 1900 nm is 25% or less and the spectral transmittance T1 of visible light having a wavelength of 600 nm is T2 or more, the infrared absorbing ability in the wavelength range of the eye-safe laser is reduced. Since it is excellent, it can be particularly suitably used as an eye-safe laser absorbing material, for example, a sealing material.
本実施形態の近赤外線吸収アルミナ磁器は、更に、A1が20%以下、かつA2が30%以上であるとともに、T2が25%以下、かつT1がT2以上であることが好ましい。 In the near-infrared absorbing alumina porcelain of this embodiment, it is preferable that A1 is 20% or less, A2 is 30% or more, T2 is 25% or less, and T1 is T2 or more.
なお、1900nmの波長を有する近赤外線の分光吸収率A2を30%以上、および分光透過率T2を25%以下とすることは、Feの含有量をFe2O3換算で100ppm以上とすることにより実現できる。 The spectral absorption A2 of near-infrared light having a wavelength of 1900 nm is set to 30% or more and the spectral transmittance T2 is set to 25% or less by setting the Fe content to 100 ppm or more in terms of Fe 2 O 3. realizable.
また、近赤外線吸収アルミナ磁器中にAl2O3を99.5質量%以上含み、Feの含有量をFe2O3換算で3000ppm以下とすることにより、高純度アルミナが本来持っている優れた熱特性、耐候性、耐湿性を維持したまま近赤外線の吸収能を付与することができる。なお、可視光領域の分光透過率を高く維持するという点から、Feの含有量はFe2O3換算で500ppm以下とすることが好ましい。 In addition, the near-infrared absorbing alumina porcelain contains 99.5% by mass or more of Al 2 O 3 and the content of Fe is 3000 ppm or less in terms of Fe 2 O 3 , so that high-purity alumina originally has excellent properties. Near-infrared absorptivity can be imparted while maintaining thermal properties, weather resistance and moisture resistance. From the viewpoint of maintaining a high spectral transmittance in the visible light region, the Fe content is preferably 500 ppm or less in terms of Fe 2 O 3 .
このように、含まれるFeが可視光領域の吸収を示さず、さらにアルミナ磁器自体に可視光領域に吸収を持つ他の成分を含まない、Al2O3を99.5質量%以上含有する高純度のアルミナ磁器であることから、本実施形態においては、可視光領域の分光透過率を高く維持することができ、特に近赤外線吸収フィルターや建築用装飾材料、家庭用装飾材料として好適に用いることができる。 Thus, Fe contained showed no absorption in the visible region, further no other component having an absorption in the visible light region to the alumina porcelain itself, high containing Al 2 O 3 99.5 wt% Since the alumina porcelain is of high purity, in the present embodiment, it is possible to maintain a high spectral transmittance in the visible light region, and particularly suitable for use as a near-infrared absorbing filter, a building decoration material, and a household decoration material. Can be.
また、気孔率を0.5%以下とすることにより、気孔とアルミナ磁器を構成するアルミナ結晶粒子との屈折率の差に起因する光の散乱の影響(反射)が低減され、可視光領域の分光透過率の低下を抑制することができる。同様な理由から、アルミナ磁器の気孔径は小さいことが好ましく、特に平均気孔径が3μm以下であることが好ましい。また、気孔による光散乱の影響をさらに抑制するため、さらに平均気孔径を2μm以下、気孔率を0.4%以下とすることが好ましい。 Further, by setting the porosity to 0.5% or less, the influence (reflection) of light scattering caused by the difference in refractive index between the pores and the alumina crystal particles constituting the alumina porcelain is reduced, and the porosity in the visible light region is reduced. A decrease in spectral transmittance can be suppressed. For the same reason, the pore size of the alumina porcelain is preferably small, and particularly preferably the average pore size is 3 μm or less. Further, in order to further suppress the influence of light scattering due to pores, it is preferable that the average pore diameter be 2 μm or less and the porosity be 0.4% or less.
本実施形態の近赤外線吸収アルミナ磁器を構成するアルミナ結晶粒子の平均粒子径は、10μm以下であることが好ましい。アルミナ結晶粒子の平均粒子径が10μmを超えると機械的強度が低下する。高い機械的強度を維持するという点から、アルミナ結晶粒子の平均粒子径は、1〜5μmとすることがより好ましい。 The average particle diameter of the alumina crystal particles constituting the near-infrared absorbing alumina porcelain of the present embodiment is preferably 10 μm or less. When the average particle size of the alumina crystal particles exceeds 10 μm, the mechanical strength decreases. In terms of maintaining high mechanical strength, the average particle size of the alumina crystal particles is more preferably 1 to 5 μm.
平均気孔径、気孔率、およびアルミナ結晶粒子の平均粒子径は、たとえばアルミナ磁器の断面を鏡面研磨し、必要に応じサーマルエッチングやケミカルエッチングを施した後、光学顕微鏡や走査型電子顕微鏡(SEM)によりアルミナ磁器の断面写真を撮影し、画像解析により算出すればよい。 The average pore diameter, the porosity, and the average particle diameter of the alumina crystal particles can be determined by, for example, mirror-polishing the cross section of alumina porcelain and subjecting it to thermal etching or chemical etching as necessary, and then using an optical microscope or a scanning electron microscope (SEM). A photograph of the cross section of the alumina porcelain may be taken by using the above, and the calculation may be performed by image analysis.
本実施形態においては、さらに600nmの波長を有する可視光の分光透過率T1が、25%以上であることが好ましい。これにより可視光の透過性が確保でき、特に建築用装飾材料や家庭用装飾材料として好適に用いることができる。また、可視光透過性が高いことから、アイセーフレーザー用保護眼鏡のレンズとしての使用も可能となる。 In the present embodiment, it is preferable that the spectral transmittance T1 of visible light having a wavelength of 600 nm is 25% or more. As a result, the transmittance of visible light can be ensured, and particularly, it can be suitably used as an architectural decorative material or a household decorative material. In addition, since it has high visible light transmittance, it can be used as a lens for eye-safe laser protective glasses.
このように可視光の透過率を高めるには、アルミナ磁器に含まれる不純物を低減する、アルミナの結晶子サイズを大きくするなどの手法を用いればよい。 In order to increase the transmittance of visible light in this manner, a method of reducing impurities contained in alumina porcelain or increasing the crystallite size of alumina may be used.
また、本実施形態においては、アルミナ磁器中にMgをMgO換算で300ppm以上含むことが好ましい。Mgはアルミナ磁器を焼成する際に焼結助剤として機能するとともに、アルミナ結晶粒子の粒成長抑制効果を有しており、MgをMgO換算で300ppm以上含むことにより、気孔率が小さく緻密で、アルミナ結晶粒子の平均粒径が小さいアルミナ磁器とすることができる。なお、MgがMgO換算で300ppmより少ない場合には焼結性が低下して気孔径や気孔率が増大したり、磁器強度が低下しやすくなる傾向があ
る。
In the present embodiment, it is preferable that the alumina porcelain contains 300 ppm or more of Mg in terms of MgO. Mg functions as a sintering aid when firing alumina porcelain, and has an effect of suppressing the growth of alumina crystal particles.By containing Mg in an amount of 300 ppm or more in terms of MgO, the porosity is small and dense. Alumina porcelain having a small average diameter of alumina crystal particles can be obtained. If Mg is less than 300 ppm in terms of MgO, the sinterability tends to decrease, the pore diameter and porosity increase, and the porcelain strength tends to decrease.
本実施形態の近赤外線吸収アルミナ磁器は、実質的にAl、Mg、Fe、Oを構成元素としてなることが望ましい。これにより最低限の構成元素により、近赤外線吸収アルミナ磁器を得ることができる。ここで実質的にAl、Mg、Fe、Oを構成元素としてなるとは、原料にAl、Mg、Fe、O以外は積極的に添加しないという意味であるが、不可避不純物としてSi、Ca、Na、Cr、Ni、Mn、Cu、Cを酸化物換算した合計量で、全量中0.2質量%以下含有することがある。 It is desirable that the near-infrared absorbing alumina porcelain of the present embodiment substantially contains Al, Mg, Fe, and O as constituent elements. This makes it possible to obtain near-infrared absorbing alumina porcelain with the minimum number of constituent elements. Here, the phrase “substantially containing Al, Mg, Fe, and O as constituent elements” means that materials other than Al, Mg, Fe, and O are not actively added, but Si, Ca, Na, The total amount of Cr, Ni, Mn, Cu, and C in terms of oxides may be 0.2% by mass or less of the total amount.
このような近赤外線吸収アルミナ磁器は、以下のようにして作製すればよい。原料粉末として、例えば、原料粒径0.1〜0.8μmのAl2O3粉末、Fe2O3粉末およびMgO粉末を所定の割合で秤量し、高純度アルミナボールを用いて湿式混合を行う。得られたスラリーに適量のバインダを加えて所望の形状に成形し、この成形体を大気雰囲気中で600〜1000℃で仮焼成を行う。成形方法はシート成形、金型プレス成形等、所望の形状に応じて周知の成形方法を適用すればよい。 Such a near-infrared absorbing alumina porcelain may be manufactured as follows. As the raw material powder, for example, Al 2 O 3 powder, Fe 2 O 3 powder, and MgO powder having a raw material particle size of 0.1 to 0.8 μm are weighed at a predetermined ratio, and wet-mixed using a high-purity alumina ball. . An appropriate amount of a binder is added to the obtained slurry to form a desired shape, and the formed body is calcined at 600 to 1000 ° C. in an air atmosphere. As a forming method, a well-known forming method such as sheet forming or die press forming may be applied according to a desired shape.
その後、真空中または還元雰囲気中にて1600〜1800℃で焼成することにより、Fe2O3が還元され、FeOを含み近赤外線吸収能を有する、すなわち波長1900nmの波長を有する近赤外線の分光吸収率A2が30%以上、かつ600nmの波長を有する可視光の分光吸収率A1が20%以下である近赤外線吸収アルミナ磁器が得られる。 Thereafter, by sintering at 1600 to 1800 ° C. in a vacuum or a reducing atmosphere, Fe 2 O 3 is reduced and contains FeO and has near-infrared absorbing ability, that is, near-infrared spectral absorption having a wavelength of 1900 nm. A near-infrared absorbing alumina porcelain having a ratio A2 of 30% or more and a spectral absorption ratio A1 of visible light having a wavelength of 600 nm of 20% or less is obtained.
なお、Al、Fe、Mgの金属元素を含有する原料粉末としては、酸化物以外にも炭酸塩、酢酸塩等の無機化合物等、焼成により酸化物として形成されるものであれば、いずれの粉末を用いても良い。 In addition, as the raw material powder containing a metal element of Al, Fe, and Mg, in addition to oxides, inorganic powders such as carbonates and acetates can be used as long as they can be formed as oxides by firing. May be used.
また、真空中または還元雰囲気中で焼成した後、さらに緻密化させるため、たとえば圧力100〜200MPa、温度1300〜1650℃の条件で熱間等方圧加圧プレス(HIP)を行ってもよい。 After firing in a vacuum or a reducing atmosphere, hot isostatic pressing (HIP) may be performed under conditions of, for example, a pressure of 100 to 200 MPa and a temperature of 1300 to 1650 ° C. in order to further densify.
以上のようにして得られるアルミナ磁器は、上述のような近赤外線吸収能を有すると同時に、抗折強度(JIS R 1601−2008、3点曲げ強さ)が380MPa以上、熱伝導率が30W/mK以上、という機械的、熱的に優れた特性を有するものとすることが可能となる。すなわち、抗折強度が高いことから、建築材料等の構造材料として耐久性の高いものとなり、熱伝導率が高いことから、熱を効率良く放出することができ、耐熱性に優れたものとなる。 The alumina porcelain obtained as described above has near-infrared absorbing ability as described above, and has a flexural strength (JIS R 1601-2008, three-point bending strength) of 380 MPa or more and a thermal conductivity of 30 W / It is possible to have a mechanically and thermally excellent characteristic of mK or more. That is, since the bending strength is high, the material becomes highly durable as a structural material such as a building material, and since the heat conductivity is high, heat can be efficiently released and the heat resistance is excellent. .
図1に、本実施形態の近赤外線吸収アルミナ磁器(A)と、Feを含まないアルミナ磁器(B)およびFeを含むものの大気雰囲気中で焼成を行ったアルミナ磁器(C)の分光吸収率曲線を示す。本実施形態の近赤外線吸収アルミナ磁器(A)は、近赤外線領域で大きな吸収を示すのに対し、Feを含まないアルミナ磁器(B)とFeを含むが大気雰囲気焼成を行ったアルミナ磁器(C)では近赤外線領域では吸収を示さないことがわかる。 FIG. 1 shows the spectral absorption curves of the near-infrared absorbing alumina porcelain (A) of the present embodiment, the alumina porcelain not containing Fe (B), and the alumina porcelain (C) containing Fe but fired in the air atmosphere. Is shown. The near-infrared absorbing alumina porcelain (A) of the present embodiment shows large absorption in the near-infrared region, whereas the alumina porcelain (B) containing no Fe and the alumina porcelain (C ) Indicates that no absorption is shown in the near infrared region.
図2に、本実施形態の近赤外線吸収アルミナ磁器(A)と、Feを含まないアルミナ磁器(B)およびFeを含むものの大気雰囲気中で焼成を行ったアルミナ磁器(C)の分光透過率曲線を示す。本実施形態の近赤外線吸収アルミナ磁器(A)は、可視光領域全域で安定した分光透過率を示すとともに、近赤外線領域で大きな透過率の低下を示すのに対し、Feを含まないアルミナ磁器(B)は近赤外線領域でも高い透過率を示し、Feを含むが大気雰囲気焼成を行ったアルミナ磁器(C)は近赤外線領域で低い透過率を示すが可視光領域において近赤外領域以上に低い透過率を示すことがわかる。 FIG. 2 shows the spectral transmittance curves of the near-infrared absorbing alumina porcelain (A) of the present embodiment, the alumina porcelain containing no Fe (B), and the alumina porcelain containing Fe but fired in the air atmosphere (C). Is shown. The near-infrared absorbing alumina porcelain (A) of the present embodiment shows a stable spectral transmittance in the entire visible light region and shows a large decrease in transmittance in the near-infrared region, whereas the alumina porcelain without Fe ( B) shows a high transmittance even in the near-infrared region, and the alumina porcelain (C) containing Fe but baked in the air atmosphere shows a low transmittance in the near-infrared region but is lower than the near-infrared region in the visible light region. It can be seen that it shows transmittance.
以下、本発明の近赤外線吸収アルミナ磁器について、実施例に基き詳細に説明する。 Hereinafter, near-infrared absorbing alumina porcelain of the present invention will be described in detail based on examples.
平均粒径が0.5μmの99.99%Al2O3粉末に対して、Fe2O3粉末、MgO粉末を所定量添加し、高純度アルミナボールを使用したミルで24時間混合した後、バインダを追加投入して1時間二次混合を行った。得られた混合粉末を、乾燥・造粒した後、1ton/cm2の圧力で金型成形により成形体を作製した。 Predetermined amounts of Fe 2 O 3 powder and MgO powder were added to 99.99% Al 2 O 3 powder having an average particle size of 0.5 μm, and mixed for 24 hours in a mill using high-purity alumina balls. Secondary mixing was performed for 1 hour with additional addition of a binder. After the obtained mixed powder was dried and granulated, a molded product was produced by die molding under a pressure of 1 ton / cm 2 .
作製した成形体を脱バインダ処理した後、表1に記載した雰囲気、温度にて焼成し、種々のアルミナ磁器を作製した。 After the produced compact was subjected to binder removal treatment, it was fired in the atmosphere and temperature described in Table 1 to produce various alumina porcelains.
得られたアルミナ磁器について誘導結合プラズマ(ICP)発光分光により元素分析を行い、アルミナ磁器中のFeおよびMgの含有量を、Fe2O3およびMgO換算値として算出した。結果を表1に示す。なお、得られたアルミナ磁器のAl2O3含有量は、いずれも99.5質量%以上であった。 Elemental analysis was performed on the obtained alumina porcelain by inductively coupled plasma (ICP) emission spectroscopy, and the contents of Fe and Mg in the alumina porcelain were calculated as Fe 2 O 3 and MgO converted values. Table 1 shows the results. The content of Al 2 O 3 in the obtained alumina porcelain was 99.5% by mass or more.
得られたアルミナ磁器の分光吸収率、分光透過率の評価は、以下のようにして行った。アルミナ磁器を20mm×20mm、厚さ2mmの大きさに加工し、20mm×20mmの面を両面とも鏡面研磨し、評価用サンプルとした。分光透過率、分光反射率の測定は、紫外可視近赤外分光光度計(日本分光製 V−670)を用いて、波長範囲が200〜2000nm、照射径が4mm×8mmの条件で全透過率を測定した。分光吸収率は下記の計算式により算出した。
<計算式> 分光吸収率(%)=100−分光透過率(%)−分光反射率(%)
波長600nmにおける分光吸収率(A1)、分光透過率(T1)と1900nmにおける分光吸収率(A2)、分光透過率(T2)を表2に示す。
Evaluation of the spectral absorption and spectral transmittance of the obtained alumina porcelain was performed as follows. The alumina porcelain was processed into a size of 20 mm × 20 mm and a thickness of 2 mm, and both surfaces of 20 mm × 20 mm were mirror-polished to obtain a sample for evaluation. The spectral transmittance and the spectral reflectance were measured using an ultraviolet-visible-near-infrared spectrophotometer (V-670, manufactured by JASCO Corporation) under the conditions that the wavelength range was 200 to 2000 nm and the irradiation diameter was 4 mm × 8 mm. Was measured. The spectral absorption was calculated by the following formula.
<Calculation formula> Spectral absorption (%) = 100−Spectral transmittance (%) − Spectral reflectance (%)
Table 2 shows the spectral absorption (A1) and spectral transmittance (T1) at a wavelength of 600 nm and the spectral absorption (A2) and spectral transmittance (T2) at 1900 nm.
アルミナ磁器の組織評価には、上記の評価用サンプルをサーマルエッチングしたものを用いた。サーマルエッチング後の鏡面部分の光学顕微鏡画像(倍率100倍)を用いて、気孔の分布状態を画像解析装置(三谷商事製 Win ROOF)により解析し、平均気孔径および気孔率を数値化した。アルミナ結晶粒子の平均粒子径は、倍率200倍の光学顕微鏡画像を用いて同様に数値化した。平均気孔径、気孔率、およびアルミナ結晶粒子の平均粒子径を表2に示す。 For the evaluation of the structure of the alumina porcelain, the above-described sample for evaluation was subjected to thermal etching. Using an optical microscope image (100 times magnification) of the mirror portion after the thermal etching, the distribution of pores was analyzed by an image analyzer (Win ROOF, manufactured by Mitani Corporation), and the average pore diameter and porosity were quantified. The average particle diameter of the alumina crystal particles was similarly quantified using an optical microscope image at a magnification of 200 times. Table 2 shows the average pore diameter, the porosity, and the average particle diameter of the alumina crystal particles.
抗折強度としては、アルミナ磁器を4mm×3mm×40mmの試験片に加工し、室温において3点曲げ強度の測定を行った(JIS R 1601−2008に準拠)。測定結果を表2に示す。 As the bending strength, alumina porcelain was processed into a test piece of 4 mm × 3 mm × 40 mm, and the three-point bending strength was measured at room temperature (based on JIS R 1601-2008). Table 2 shows the measurement results.
熱伝導率は、アルミナ磁器を直径10mm、厚さ2mmの試験片に加工し、レーザーフラッシュ法(真空理工製 TC−7000)により測定した(JIS R 1611−1997に準拠)。測定結果を表2に示す。 The thermal conductivity was obtained by processing alumina porcelain into a test piece having a diameter of 10 mm and a thickness of 2 mm and measuring it by a laser flash method (TC-7000 manufactured by Vacuum Riko) (based on JIS R 1611-1997). Table 2 shows the measurement results.
なお、ソーダライムガラスについてもアルミナ磁器と同様な評価を行った。結果を表1、表2に示す。 Note that the same evaluation was performed on soda lime glass as on alumina porcelain. The results are shown in Tables 1 and 2.
以上の結果から、Al2O3を99.5質量%以上、FeをFe2O3換算で100ppm以上3000ppm以下含有する試料No.1〜8は、波長1900nmでの分光吸収率A2が30%以上、分光透過率T2が25%以下、かつ波長600nmでの分光吸収率A1が20%以下、分光透過率T1がT2以上であった。これらの試料はまた、3点曲げによる抗折強度が290MPa以上、熱伝導率が30W/mK以上と、機械的、熱的に優れた特性を有する耐久性の高い材料であることがわかる。 From the above results, Sample No. containing 99.5% by mass or more of Al 2 O 3 and 100 ppm or more and 3000 ppm or less of Fe in terms of Fe 2 O 3 . In Nos. 1 to 8, the spectral absorbance A2 at a wavelength of 1900 nm is 30% or more, the spectral transmittance T2 is 25% or less, the spectral absorbance A1 at a wavelength of 600 nm is 20% or less, and the spectral transmittance T1 is T2 or more. Was. These samples also show that the bending strength by three-point bending is 290 MPa or more and the thermal conductivity is 30 W / mK or more, and that these materials are excellent in mechanical and thermal properties and have high durability.
一方、Feを含有しない、またはFeがFe2O3換算で100ppmより少ない試料No.9、10は波長1900nmの分光吸収率が30%以下で、分光透過率T2が25%を超え、十分な近赤外線の吸収効果を発揮できなかった。また、大気焼成を行った試料No.11は、FeをFe2O3換算で100ppm以上含有するが、分光吸収率A2が12%と低く、波長600nmでの分光透過率T1が波長1900nmの分光透過率T2よりも小さいものとなった。なお、図1に示す分光透過率曲線は、(A)が試料No.1、(B)が試料No.9、(C)が試料No.11の測定結果である。 On the other hand, Sample No. containing no Fe or containing less than 100 ppm of Fe in terms of Fe 2 O 3 . In Nos. 9 and 10, the spectral absorption at a wavelength of 1900 nm was 30% or less, and the spectral transmittance T2 exceeded 25%, and a sufficient near-infrared absorption effect could not be exhibited. In addition, the sample No. 11 contains 100 ppm or more of Fe in terms of Fe 2 O 3 , but has a low spectral absorption A2 of 12% and a spectral transmittance T1 at a wavelength of 600 nm smaller than a spectral transmittance T2 at a wavelength of 1900 nm. . In addition, the spectral transmittance curve shown in FIG. 1 and (B) are sample Nos. 9, (C) is the sample No. 11 shows the measurement results.
なお、試料No.12はソーダライムガラスであり、波長1900nmでの分光吸収率A2が2%と低く、分光透過率T2が25%よりも大きく、またアルミナ材料に比べて機械的特性および熱特性に劣るものであることがわかる。 The sample No. Reference numeral 12 denotes soda-lime glass, which has a spectral absorption A2 at a wavelength of 1900 nm as low as 2%, a spectral transmittance T2 of greater than 25%, and is inferior in mechanical properties and thermal properties as compared with alumina materials. You can see that.
(A):本実施形態の近赤外線吸収アルミナ磁器
(B):Feを含まないアルミナ磁器
(C):大気雰囲気中で焼成したFeを含むアルミナ磁器
(A): Near-infrared absorbing alumina porcelain of this embodiment (B): Fe-free alumina porcelain (C): Fe-containing alumina porcelain fired in air
Claims (11)
赤外線吸収アルミナ磁器。 The near-infrared absorbing alumina porcelain according to any one of claims 5 to 7, wherein the average pore diameter is 3 µm or less.
(I)焼成温度:1600〜1800℃
(II)焼成雰囲気:真空中 Under the firing conditions including the following (I) and (II), a mixed powder containing 99.5% by mass or more of Al 2 O 3 and 100 ppm or more and 3000 ppm or less of Fe in terms of Fe 2 O 3 is fired to obtain alumina crystal particles. A method for producing near-infrared-absorbing alumina porcelain having grain boundaries and having a porosity of 0.5% or less.
(I) firing temperature: 1600 to 1800 ° C
(II) Firing atmosphere: in vacuum
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014238925A JP6645732B2 (en) | 2013-11-28 | 2014-11-26 | Near-infrared absorbing alumina material, near-infrared absorbing alumina porcelain, and method of manufacturing near-infrared absorbing alumina porcelain |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013246248 | 2013-11-28 | ||
JP2013246248 | 2013-11-28 | ||
JP2014238925A JP6645732B2 (en) | 2013-11-28 | 2014-11-26 | Near-infrared absorbing alumina material, near-infrared absorbing alumina porcelain, and method of manufacturing near-infrared absorbing alumina porcelain |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015127809A JP2015127809A (en) | 2015-07-09 |
JP6645732B2 true JP6645732B2 (en) | 2020-02-14 |
Family
ID=53837810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014238925A Active JP6645732B2 (en) | 2013-11-28 | 2014-11-26 | Near-infrared absorbing alumina material, near-infrared absorbing alumina porcelain, and method of manufacturing near-infrared absorbing alumina porcelain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6645732B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239154A (en) * | 1987-03-26 | 1988-10-05 | 東陶機器株式会社 | Colored light-permeable polycrystal ceramics product and manufacture |
JPH10139532A (en) * | 1996-11-06 | 1998-05-26 | Toshiba Ceramics Co Ltd | Alumina ceramics for low temperature process and its production |
JPH11312729A (en) * | 1998-04-28 | 1999-11-09 | Kyocera Corp | Electrostatic chuck |
JP2003012342A (en) * | 2001-06-29 | 2003-01-15 | Nippon Sheet Glass Co Ltd | Green glass absorbing uv and ir rays |
JP4910750B2 (en) * | 2007-02-14 | 2012-04-04 | 東ソー株式会社 | Translucent alumina sintered body and method for producing the same |
-
2014
- 2014-11-26 JP JP2014238925A patent/JP6645732B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015127809A (en) | 2015-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5597268B2 (en) | Transparent heat shielding material and method for producing the same | |
EP2944620A1 (en) | Silica glass member for wavelength conversion, and production method therefor | |
KR101506083B1 (en) | Heat-insulating material | |
EP2733117A2 (en) | Inorganic particle scattering film having a good light-extraction performance | |
JP6179731B2 (en) | Optical element using spinel optoceramics and manufacturing method | |
CN110467453B (en) | Method for producing ceramic molded body for sintering and method for producing ceramic sintered body | |
JP2008037668A (en) | Laminated glass for window | |
KR101019498B1 (en) | Insulation Film contained Tungsten Bronze Compound and Method of Manufacturing The Same | |
EP2679562B1 (en) | Cordierite sintered body and member for semiconductor device composed of cordierite sintered body | |
JP6047226B2 (en) | Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter | |
KR101602486B1 (en) | Fabricating method of light shielding structure | |
CN112105756A (en) | Composite tungsten oxide film, method for producing same, film-forming substrate and article having same | |
US20140364299A1 (en) | Transparent Polycrystalline Ceramic Material | |
JP2016132609A (en) | Oxide sintered body, sputtering target and oxide thin film | |
JP2011153065A (en) | Colored spinel optoceramic | |
JP6645732B2 (en) | Near-infrared absorbing alumina material, near-infrared absorbing alumina porcelain, and method of manufacturing near-infrared absorbing alumina porcelain | |
JP2018022042A (en) | Infrared filter, Zn-Sn containing oxide film and Zn-Sn containing oxide sputtering target | |
WO2008042470A2 (en) | Methods of forming aluminum oxynitride-comprising bodies including methods of forming a sheet of transparent armor | |
JP5983525B2 (en) | Method for producing translucent metal oxide sintered body | |
Liu et al. | Highly transparent cerium‐doped yttria ceramics for full‐band UV‐shielding window applications | |
JP2008174432A (en) | Translucent ceramic, its manufacturing method, and optical member | |
JP2005022941A (en) | Infrared shielding glass and method of manufacturing the same | |
JPWO2018198968A1 (en) | Glass-ceramic composite for chemical strengthening, glass-ceramic composite with chemical strengthening and method for producing the same | |
JP6449685B2 (en) | Translucent alumina porcelain and LED lighting | |
KR20140103097A (en) | Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150305 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6645732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |