JP5983525B2 - Method for producing translucent metal oxide sintered body - Google Patents

Method for producing translucent metal oxide sintered body Download PDF

Info

Publication number
JP5983525B2
JP5983525B2 JP2013098402A JP2013098402A JP5983525B2 JP 5983525 B2 JP5983525 B2 JP 5983525B2 JP 2013098402 A JP2013098402 A JP 2013098402A JP 2013098402 A JP2013098402 A JP 2013098402A JP 5983525 B2 JP5983525 B2 JP 5983525B2
Authority
JP
Japan
Prior art keywords
sintered body
metal oxide
hip
oxygen
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013098402A
Other languages
Japanese (ja)
Other versions
JP2014218398A (en
Inventor
真憲 碇
真憲 碇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013098402A priority Critical patent/JP5983525B2/en
Publication of JP2014218398A publication Critical patent/JP2014218398A/en
Application granted granted Critical
Publication of JP5983525B2 publication Critical patent/JP5983525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可視域及び/又は赤外域において透光性を有する透光性金属酸化物焼結体の製造方法に関し、特にその光学用途として、固体レーザー用媒質、X線シンチレータ材、γ線シンチレータ材、磁気光学デバイス用材料、発光管、光屈折率窓材、光シャッター、光記録素子、透光性防弾材等に利用される透光性金属酸化物焼結体の製造方法に関する。 The present invention relates to the production how the light-transmitting metal oxide sintered body having a light-transmitting property in the visible range and / or infrared range, in particular its optical applications, solid-state laser for medium, X-rays scintillator material, gamma The present invention relates to a method for producing a translucent metal oxide sintered body used for a line scintillator material, a magneto-optical device material, an arc tube, a light refractive index window material, an optical shutter, an optical recording element, a translucent ballistic material, and the like.

一般的に、可視域及び/又は赤外域において十分に高い透光性を有する透光性金属酸化物焼結体を製造するためには、常圧焼結法や真空焼結法等の焼結緻密化工程を経て相対密度95質量%以上の緻密体を得るだけでは足りず、該緻密体をさらに熱間等方圧プレス(HIP(Hot Isostatic Press))処理工程により、一段と高い相対密度にまで緻密化させることが多い。1000℃以上、数十MPa以上の高温高圧で透光性の金属酸化物焼結体をHIP処理すると、該金属酸化物焼結体中の残留気泡が圧縮されてサイズが小さくなり得る点、粒内に固溶して消滅し得る点、焼結体の系外に揮散して消滅し得る点等が作用し、更なる高密度化が達成されるためである。ところが、HIP処理工程では、その加熱源及び断熱材としてカーボン(グラファイト)系の材料が使用されることが多く、このカーボン材はHIP処理中に一定濃度で蒸気化して浮遊し、金属酸化物焼結体中に浸炭して、該金属酸化物焼結体を黒化させる場合がある。また、該蒸気カーボンは金属酸化物焼結体から放出される微量の酸素と反応して一酸化炭素となってHIP炉内雰囲気を還元性に変え、これが元で金属酸化物焼結体が還元されて酸素欠陥を生じ、これにより該金属酸化物焼結体が暗灰色から黒色に変化してしまう場合もある。いくら緻密化が進んだとしても、透光性金属酸化物焼結体自体が黒色に変化した場合には、当然のことながら可視域及び/又は赤外域における透光性は著しく低下する。そのため、HIP処理工程を経た透光性金属酸化物焼結体は、更にその後工程でアニール等による再酸化処理が施される場合がある。   In general, in order to produce a translucent metal oxide sintered body having sufficiently high translucency in the visible region and / or the infrared region, sintering such as atmospheric pressure sintering or vacuum sintering is used. It is not sufficient to obtain a dense body having a relative density of 95% by mass or more through the densification step, and the dense body is further increased to a higher relative density by a hot isostatic pressing (HIP (Hot Isostatic Press)) treatment step. Often densified. When the transparent metal oxide sintered body at a high temperature and high pressure of 1000 ° C. or higher and several tens of MPa or higher is subjected to HIP treatment, the residual bubbles in the metal oxide sintered body may be compressed and the size may be reduced. This is because a point that can be dissolved and disappeared in the inside, a point that can be volatilized and disappeared outside the sintered body, and the like, thereby achieving further higher density. However, in the HIP process, a carbon (graphite) -based material is often used as a heating source and a heat insulating material. This carbon material is vaporized and floated at a constant concentration during the HIP process, and is heated by a metal oxide. In some cases, the metal oxide sintered body is blackened by carburizing into the sintered body. In addition, the vapor carbon reacts with a small amount of oxygen released from the metal oxide sintered body to form carbon monoxide, thereby changing the atmosphere in the HIP furnace to a reducing property, and the metal oxide sintered body is reduced based on this. As a result, oxygen defects are generated, and the metal oxide sintered body may change from dark gray to black. Regardless of the progress of densification, if the translucent metal oxide sintered body itself changes to black, the translucency in the visible region and / or the infrared region is significantly lowered. Therefore, the translucent metal oxide sintered body that has undergone the HIP treatment process may be further subjected to re-oxidation treatment by annealing or the like in the subsequent process.

例えば、特公平2−25864号公報(特許文献1)には、Y232モル%以上、TiO23〜20モル%以上、ランタン系希土類酸化物0.1〜3モル%及び残りZrO2からなる成形体を酸素含有雰囲気中で焼成し、HIP処理し、次いで酸化処理することを特徴とする、透光性・蛍光放射性ジルコニア焼結体の製造法が開示されており、これにより、黒色焼結体の色が抜け、理論値の99%以上の密度を有し、波長350〜7000nmの可視光域から赤外光域の光に対して高い透過性を示す焼結体を製造することができるとされている。 For example, JP-B-2-25864 (Patent Document 1) discloses that Y 2 O 3 is 2 mol% or more, TiO 2 is 3 to 20 mol% or more, lanthanum rare earth oxide is 0.1 to 3 mol%, and the remaining ZrO. A method for producing a light-transmitting / fluorescent-radiating zirconia sintered body, characterized in that a molded body made of 2 is fired in an oxygen-containing atmosphere, subjected to HIP treatment, and then oxidized, is disclosed. Produces a sintered body that loses the color of the black sintered body, has a density of 99% or more of the theoretical value, and exhibits high transparency with respect to light in the visible light region to infrared light region having a wavelength of 350 to 7000 nm. It is supposed to be possible.

また、特公平5−55465号公報(特許文献2)には、(純度が)少なくとも99.9%の酸化イットリウムを含む物体を製造する方法であって、少なくとも99.9%の酸化イットリウムを含む原料粉末を調整し、該酸化イットリウム粉末を圧縮して少なくとも99.9%の酸化イットリウムを含む物体を成形し、かかる圧縮された少なくとも99.9%の酸化イットリウムを含む物体を昇温下で焼結して気孔が閉鎖された状態の物体を調整し、物体を昇温下、昇圧下で、理論密度の実質的に100%の密度にするのに十分な時間加熱することによって、少なくとも99.9%の酸化イットリウムの気孔が閉鎖された状態の物体を高密度化し、物体を空気を含む雰囲気中で加熱することにより、理論密度の実質的に100%の密度を有する物体をアニーリングして、物体を酸化し、それによって物質の表面に化学量論的な組成を取り戻させる工程を含むことを特徴とする製法が開示されており、これにより最終緻密化(昇温下、昇圧下で、理論密度の実質的に100%の密度にするのに十分な時間加熱すること;HIP処理)の段階で、酸素を含まない雰囲気により材料が還元されることにより生じた、上記工程での黒っぽい物体が酸素を取り戻し、透明になるとされている。   Japanese Patent Publication No. 5-55465 (Patent Document 2) discloses a method for manufacturing an object containing at least 99.9% yttrium oxide (purity), which contains at least 99.9% yttrium oxide. The raw material powder is prepared, the yttrium oxide powder is compressed to form an object containing at least 99.9% yttrium oxide, and the compressed object containing at least 99.9% yttrium oxide is sintered at an elevated temperature. And adjusting the object with closed pores and heating the object at elevated temperature and pressure for a time sufficient to bring the density to substantially 100% of the theoretical density for at least 99. By densifying an object with 9% yttrium oxide pores closed and heating the object in an atmosphere containing air, it has a density of substantially 100% of the theoretical density. Disclosed is a manufacturing method characterized by the step of annealing an object to oxidize the object, thereby restoring the stoichiometric composition to the surface of the substance, whereby a final densification (at elevated temperature) is disclosed. At a step of heating for a time sufficient to bring the density to substantially 100% of the theoretical density under pressure; HIP treatment), resulting from the reduction of the material in an oxygen-free atmosphere, A dark object in the process is said to regain oxygen and become transparent.

更に、特開2010−241678号公報(特許文献3)には、光学セラミック物質の製造方法であって、500と900℃の間の温度で予備焼結する工程を含み、1400と1900℃の間の温度で上記予備焼結性形態を焼結する工程を含み、真空にて好ましくは1400と2000℃の間の温度で、かつ好ましくは10と198MPaの間の圧力で加圧する工程を含み、上記加圧焼結成形体を酸素を含む雰囲気中にて600と1600℃の間の温度でアニーリングする工程を含む光学セラミック物質の製造方法が開示されており、これによりアニーリングの前工程までで還元され得る元素が再酸化され、それによってそれらの元素が光学セラミック物質の望ましい光学特性を妨害しないことを保証するとされている。   Furthermore, JP 2010-241678 A (Patent Document 3) is a method for producing an optical ceramic material, which includes a step of pre-sintering at a temperature between 500 and 900 ° C., between 1400 and 1900 ° C. Sintering the pre-sinterable form at a temperature of, preferably pressurizing in vacuum, preferably at a temperature between 1400 and 2000 ° C., and preferably at a pressure between 10 and 198 MPa, Disclosed is a method for producing an optoceramic material including a step of annealing a pressure-sintered molded body at a temperature between 600 and 1600 ° C. in an oxygen-containing atmosphere, and can thereby be reduced up to the previous step of annealing. It is stated that the elements are reoxidized, thereby ensuring that they do not interfere with the desired optical properties of the optoceramic material.

しかしながら、上記先行技術の実施例にあるような単純な酸素雰囲気でのアニーリングでは、確かに還元されて黒っぽくなってしまった透光性金属酸化物焼結体は再酸化されて着色は消えるが、HIP処理工程によって一旦圧縮された気孔が加熱アニーリング工程で再び膨張して透光性を損なわせ、透光性金属酸化物焼結体の白濁化をまねくことが多い。   However, in the annealing in a simple oxygen atmosphere as in the above prior art examples, the translucent metal oxide sintered body that has been reduced and darkened is reoxidized and the color disappears. In many cases, the pores once compressed by the HIP treatment process are expanded again by the heating annealing process, thereby impairing the translucency and causing the translucent metal oxide sintered body to become clouded.

そこで更に、特許第4237707号公報(特許文献4)には、HIP処理後に、加圧含酸素雰囲気中でアニールされた、平均結晶子径が0.9〜9μm、測定波長1.06μmでの光損失係数が0.002cm-1以下、測定波長633nmでの透過波面歪みが0.05λcm-1以下の希土類ガーネット焼結体が開示されるに至った。本特許文献では、4.5MPa以上の圧力の含酸素雰囲気で、ホット・アイソスタティック・プレッシング以下の温度でアニールすること、及び上記アニールでの含酸素雰囲気の酸素分圧が900kPa以上であること、また雰囲気中の酸素濃度は少なくとも1vol%以上であること等が開示されており、これらによりHIP処理された焼結体が再酸化されて無色透明となり、測定波長1.06μmでの光損失係数が0.002cm-1以下、測定波長633nmでの透過波面歪みが0.05λcm-1以下の希土類ガーネット焼結体が得られるとされている。 Therefore, in Japanese Patent No. 4237707 (Patent Document 4), light having an average crystallite diameter of 0.9 to 9 μm and a measurement wavelength of 1.06 μm is annealed in a pressurized oxygen-containing atmosphere after the HIP treatment. A rare earth garnet sintered body having a loss factor of 0.002 cm −1 or less and a transmitted wavefront distortion at a measurement wavelength of 633 nm of 0.05 λcm −1 or less has been disclosed. In this patent document, annealing is performed at a temperature of not more than hot isostatic pressing in an oxygen-containing atmosphere at a pressure of 4.5 MPa or more, and the oxygen partial pressure of the oxygen-containing atmosphere in the annealing is 900 kPa or more. Further, it is disclosed that the oxygen concentration in the atmosphere is at least 1 vol% or more, and as a result, the sintered body subjected to HIP treatment is re-oxidized to become colorless and transparent, and has an optical loss coefficient at a measurement wavelength of 1.06 μm. 0.002 cm -1 or less, transmitted wavefront distortion at the measurement wavelength 633nm is a 0.05Ramudacm -1 or less of a rare earth garnet sintered body is obtained.

特公平2−25864号公報Japanese Patent Publication No. 25-25864 特公平5−55465号公報Japanese Patent Publication No. 5-55465 特開2010−241678号公報JP 2010-241678 A 特許第4237707号公報Japanese Patent No. 4237707

しかしながら、確かに特許文献4記載の方法によればHIP処理工程で圧縮された気孔が再膨張することもなく、焼結体は再酸化されて無色透明な透光性金属酸化物焼結体となり得るが、ここで開示されているアニーリング方法には幾つかの問題点が残る。即ちまず、一番の問題点はその酸素使用量の多さである。酸素濃度が少なくとも雰囲気の1vol%以上必要であるとした場合、加圧アニール炉の内容積に対する透光性金属酸化物焼結体の仕込み量にも依存するが、炉内に1vol%以上で充満する酸素の一部しか焼結体を再酸化させるのに費やされず、残りの酸素ガスが炉内に大量に滞留してしまう恐れがある。このことは、加圧アニール炉のヒーターや断熱材、支持部の材質がカーボン系であれ、モリブデン系であれ、タングステン系であれ、焼結体が再酸化させるのに消費されなかった余剰酸素はすべてこれらのアニール炉材と反応して消費されるということになる。つまり、酸素濃度が少なくとも雰囲気の1vol%以上というような過剰酸素雰囲気下では、加圧アニール炉を構成する炉材の寿命が短くなるという問題がある。また、特許文献4では一応加圧下でアニールすることにより、結晶子中に固溶しているガスの分離を防止し、気孔の発生を防止できるとされているが、含酸素雰囲気加圧アニール工程において、その前段におけるHIP処理工程において印加された雰囲気圧よりも低い圧力しか印加しなかった場合、結晶子中に完全に固溶してしまったガスの再分離は防止できたとしても結晶子中に固溶せず結晶子間で圧縮されて小さくなっただけの気孔については含酸素雰囲気加圧アニール工程において再び膨張するおそれがある。   However, according to the method described in Patent Document 4, the pores compressed in the HIP treatment process do not re-expand, and the sintered body is re-oxidized to become a colorless and transparent translucent metal oxide sintered body. However, some problems remain with the annealing method disclosed herein. That is, the first problem is the large amount of oxygen used. When the oxygen concentration is required to be at least 1 vol% of the atmosphere, the furnace is filled with 1 vol% or more, depending on the charged amount of the translucent metal oxide sintered body with respect to the internal volume of the pressure annealing furnace. Only a part of the oxygen to be consumed is spent reoxidizing the sintered body, and the remaining oxygen gas may remain in the furnace in a large amount. This means that the surplus oxygen that was not consumed to re-oxidize the sintered body, regardless of whether the material of the heater, heat insulating material, and support part of the pressure annealing furnace is carbon, molybdenum, or tungsten, All of this will be consumed by reacting with these annealing furnace materials. That is, there is a problem that the life of the furnace material constituting the pressure annealing furnace is shortened in an excess oxygen atmosphere where the oxygen concentration is at least 1 vol% or more of the atmosphere. In Patent Document 4, it is said that by annealing under pressure, separation of gas dissolved in the crystallite can be prevented and generation of pores can be prevented. In the case where only a pressure lower than the atmospheric pressure applied in the HIP treatment step in the preceding stage is applied, even if re-separation of the gas completely dissolved in the crystallite can be prevented, There is a possibility that pores which are not solid-dissolved in the crystal and are only compressed and reduced between crystallites will expand again in the oxygen-containing atmosphere pressure annealing step.

本発明は、上記事情に鑑みなされたもので、HIP処理後の再酸化工程における酸素濃度を最小限に絞り込み、さらにHIP処理により圧縮された微小気孔の再膨張を完全に防止する透光性金属酸化物焼結体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a translucent metal that minimizes the oxygen concentration in the re-oxidation step after the HIP treatment and further completely prevents the re-expansion of the micropores compressed by the HIP treatment. and to provide a manufacturing how of the oxide sintered body.

本発明は、上記目的を達成するため、下記の透光性金属酸化物焼結体の製造方法を提供する。
〔1〕 Mg、Y、Sc、ランタニド、Ti、Zr、Al、Ga、Si、Ge、Pb、Biからなる群から選択される1種又は2種以上の金属元素の酸化物粒子を用いて作製された金属酸化物を主成分とする焼結体について1400〜1900℃の熱処理温度で第1熱間等方圧プレス(第1HIP)処理を焼結体の緻密化処理として施し、該第1HIP処理により上記焼結体は灰色、暗灰色又は黒色に変色しており、次いで該第1HIP処理後の金属酸化物焼結体と加熱されて酸素又は空気を放出する酸素供給源とを外部の雰囲気ガスが流入可能な通気孔を有する半密閉の耐熱容器に入れ、該耐熱容器を酸素濃度1vol%未満の不活性ガス雰囲気中で1050〜1450℃であって上記第1HIP処理の熱処理温度よりも低くかつ上記金属酸化物焼結体が酸化する熱処理温度で第2熱間等方圧プレス(第2HIP)処理を施して上記灰色、暗灰色又は黒色に変色した焼結体を再酸化させて透光性の焼結体を得る透光性金属酸化物焼結体の製造方法。
〔2〕 上記焼結体は、 2 3 型希土類セスキオキサイド焼結体(Mは、Y、Sc及びランタニド系元素からなる群から選択される1種又は2種以上の希土類元素である。)であることを特徴とする〔1〕記載の透光性金属酸化物焼結体の製造方法。
〔3〕 上記金属酸化物の粒子を用いて所定形状にプレス成形した後に焼結し、次いで第1HIP処理及び第2HIP処理を施すことを特徴とする〔1〕又は〔2〕記載の透光性金属酸化物焼結体の製造方法。
〔4〕 上記酸素供給源は、加熱されることにより金属価数が減少して酸素を放出する金属酸化物からなることを特徴とする〔1〕〜〔3〕のいずれかに記載の透光性金属酸化物焼結体の製造方法。
〔5〕 上記酸素供給源は、酸素ガス又は空気を吸着させたセラミックス粉体又は多孔質セラミックス成形体であることを特徴とする〔1〕〜〔3〕のいずれかに記載の透光性金属酸化物焼結体の製造方法。
〔6〕上記酸素供給源は、Tb 4 7 粉末、Pr 6 11 粉末又はCeO 2 粉末のプレス成形体であることを特徴とする〔1〕〜〔3〕のいずれかに記載の透光性金属酸化物焼結体の製造方法。
〔7〕 上記第2HIP処理の印加圧力が上記第1HIP処理の印加圧力以上であることを特徴とする〔1〕〜〔6〕のいずれかに記載の透光性金属酸化物焼結体の製造方法。
〔8〕 上記耐熱容器がPt製であることを特徴とする〔1〕〜〔7〕のいずれかに記載の透光性金属酸化物焼結体の製造方法。
〔9〕 上記酸素供給源の投入量が該酸素供給源に含まれる全酸素量が第2HIP処理用の炉内容積分の印加圧力に相当する不活性ガス量に対して100ppm以上となる量であることを特徴とする〔1〕〜〔8〕のいずれかに記載の透光性金属酸化物焼結体の製造方法。
〔10〕 上記第2HIP処理における半密閉の耐熱容器内の酸素濃度が8vol%以上であることを特徴とする〔1〕〜〔9〕のいずれかに記載の透光性金属酸化物焼結体の製造方法。
The present invention, in order to achieve the above object, to provide a manufacturing how the light-transmitting metal oxide sintered body below.
[1] Fabricated using oxide particles of one or more metal elements selected from the group consisting of Mg, Y, Sc, lanthanide, Ti, Zr, Al, Ga, Si, Ge, Pb, and Bi. The sintered body mainly composed of the metal oxide is subjected to a first hot isostatic pressing (first HIP) treatment as a densification treatment of the sintered body at a heat treatment temperature of 1400 to 1900 ° C., and the first HIP treatment The sintered body is discolored to gray, dark gray or black, and then the metal oxide sintered body after the first HIP treatment and an oxygen supply source for releasing oxygen or air by heating are supplied to an external atmospheric gas. Is placed in a semi-sealed heat-resistant container having a vent hole capable of flowing in, and the heat-resistant container is 1050 to 1450 ° C. in an inert gas atmosphere having an oxygen concentration of less than 1 vol % and lower than the heat treatment temperature of the first HIP treatment, and Above metal The gray compound sintered body is subjected to a second hot isostatic pressing (first 2HIP) treated with heat treatment temperature for oxidation is reoxidized sintered body turned dark gray or black color translucent sintered The manufacturing method of the translucent metal oxide sintered compact which obtains a body.
[2] The sintered body is an M 2 O 3 type rare earth sesquioxide sintered body (M is one or more rare earth elements selected from the group consisting of Y, Sc and lanthanide elements). The method for producing a translucent metal oxide sintered body according to [1], wherein
[3] The translucency according to [1] or [2], wherein the metal oxide particles are press-molded into a predetermined shape and then sintered, and then subjected to a first HIP treatment and a second HIP treatment. A method for producing a metal oxide sintered body.
[4] The light transmitting material according to any one of [1] to [3], wherein the oxygen supply source is made of a metal oxide that releases oxygen by decreasing a metal valence when heated. For producing a conductive metal oxide sintered body.
[5] The translucent metal according to any one of [1] to [3], wherein the oxygen supply source is a ceramic powder or a porous ceramic formed body in which oxygen gas or air is adsorbed. Manufacturing method of oxide sinter.
[6] The light transmitting device according to any one of [1] to [3], wherein the oxygen supply source is a press-molded body of Tb 4 O 7 powder, Pr 6 O 11 powder, or CeO 2 powder. For producing a conductive metal oxide sintered body.
[7] Production of translucent metal oxide sintered body according to any one of [1] to [6], wherein the applied pressure of the second HIP treatment is equal to or higher than the applied pressure of the first HIP treatment. Method.
[8] The method for producing a translucent metal oxide sintered body according to any one of [1] to [7], wherein the heat-resistant container is made of Pt.
[9] The input amount of the oxygen supply source is such that the total oxygen amount contained in the oxygen supply source is 100 ppm or more with respect to the inert gas amount corresponding to the applied pressure of the furnace content integral for the second HIP process. The method for producing a translucent metal oxide sintered body according to any one of [1] to [8], wherein:
[10] The translucent metal oxide sintered body according to any one of [1] to [9], wherein the oxygen concentration in the semi-sealed heat-resistant container in the second HIP treatment is 8 vol% or more Manufacturing method.

本発明によれば、HIP処理用の炉材が必要以上に損耗することなく、焼結体に固溶した気孔の再偏析の防止はもとより、圧縮された気孔の再膨張も発生せず、HIP処理工程により還元されて暗灰色から黒色に変色した透光性金属酸化物焼結体を完全に無色透明の状態に戻して、可視域及び/又は赤外域における透光性が著しく向上した透光性金属酸化物焼結体を製造できる。   According to the present invention, the furnace material for HIP processing does not wear more than necessary, and it prevents re-segregation of pores dissolved in the sintered body, and also does not cause re-expansion of compressed pores. The translucent metal oxide sintered body that has been reduced by the treatment process and turned from dark gray to black is returned to a completely colorless and transparent state, and the translucency in the visible region and / or infrared region is remarkably improved. A conductive metal oxide sintered body can be produced.

本発明に係る透過性金属酸化物焼結体の製造方法における第2HIP処理を行うHIP装置の構成を示す概略図である。It is the schematic which shows the structure of the HIP apparatus which performs the 2nd HIP process in the manufacturing method of the permeable metal oxide sintered compact concerning this invention.

以下に、本発明に係る透過性金属酸化物焼結体の製造方法について説明する。
本発明に係る透光性金属酸化物焼結体の製造方法は、金属酸化物を主成分とする焼結体について1100〜2000℃の熱処理温度で第1熱間等方圧プレス(第1HIP)処理を施し、次いで該第1HIP処理後の金属酸化物焼結体と加熱されて酸素又は空気を放出する酸素供給源とを外部の雰囲気ガスが流入可能な通気孔を有する半密閉の耐熱容器に入れ、該耐熱容器を酸素濃度1vol%未満の不活性ガス雰囲気中で上記第1HIP処理の熱処理温度よりも低くかつ上記金属酸化物焼結体が酸化する熱処理温度で第2HIP処理を施して透光性の焼結体を得ることを特徴とする。その詳細は以下の通りである。
Below, the manufacturing method of the permeable metal oxide sintered compact concerning this invention is demonstrated.
The manufacturing method of the translucent metal oxide sintered body according to the present invention includes a first hot isostatic press (first HIP) at a heat treatment temperature of 1100 to 2000 ° C. for a sintered body containing a metal oxide as a main component. A semi-sealed heat-resistant container having a vent hole through which an external atmospheric gas can flow into the metal oxide sintered body after the first HIP treatment and an oxygen supply source that releases oxygen or air by heating. The heat-resistant container is subjected to a second HIP treatment in an inert gas atmosphere having an oxygen concentration of less than 1 vol.% And subjected to a second HIP treatment at a heat treatment temperature lower than the heat treatment temperature of the first HIP treatment and the metal oxide sintered body is oxidized. It is characterized by obtaining a sintered body having high characteristics. The details are as follows.

[製造工程]
本発明では、原料粉末(出発原料)として所定の金属酸化物の粒子等を用いて、所定形状にプレス成形した後に脱脂を行い、次いで焼結して、相対密度が95質量%以上に緻密化した焼結体を作製することが好ましい。その後、後述する第1熱間等方圧プレス処理(以下、第1HIP処理)を施す。またその後に焼結体の再酸化を目的とした第2HIP処理を施す。
[Manufacturing process]
In the present invention, using predetermined metal oxide particles as raw powder (starting raw material), press-molding into a predetermined shape, degreasing, and then sintering to densify the relative density to 95% by mass or more It is preferable to produce the sintered body. Then, the 1st hot isostatic pressing process (henceforth 1st HIP process) mentioned later is given. Thereafter, a second HIP treatment for the purpose of re-oxidizing the sintered body is performed.

(原料粉末)
本発明で用いる原料粉末としては、焼結体として透光性を示すあらゆる金属酸化物の粒子を好適に利用できる。即ち、焼結体として透光性を示す金属酸化物群から選択される1種又は2種以上の粒子を原料粉末として利用できる。例えば、YSZ(イットリア安定化ジルコニア)、スピネル(Al23−26質量%MgO)、PLZT(チタン酸ジルコン酸ランタン鉛)、アルミナ、YAG(Y3Al512)、LuAG(Lu3Al512)、TGG(Tb3Ga512)、TAG(Tb3Al512)各種セスキオキサイド、BGO(Bi4Ge312)、GAG(Gd3Al512)、Y2Zr27及びその他一般的に透光性を有することが確認又は予想されている金属酸化物を構成する各構成元素の酸化物粒子であり、例えばMg、Y、Sc、ランタニド、Ti、Zr、Al、Ga、Si、Ge、Pb、Biからなる群から選択される1種又は2種以上の金属元素の酸化物粒子であることが好ましい。
これらの金属酸化物の粒子を適正比率となるように秤量したものを原料粉末として好適に利用できる。
(Raw material powder)
As the raw material powder used in the present invention, any metal oxide particles exhibiting translucency as a sintered body can be suitably used. That is, one kind or two or more kinds of particles selected from the group of translucent metal oxides as the sintered body can be used as the raw material powder. For example, YSZ (yttria stabilized zirconia), spinel (Al 2 O 3 -26 mass% MgO), PLZT (lead lanthanum zirconate titanate), alumina, YAG (Y 3 Al 5 O 12 ), LuAG (Lu 3 Al 5 O 12 ), TGG (Tb 3 Ga 5 O 12 ), TAG (Tb 3 Al 5 O 12 ), various sesquioxides, BGO (Bi 4 Ge 3 O 12 ), GAG (Gd 3 Al 5 O 12 ), Y 2 Zr 2 O 7 and other oxide particles of constituent elements constituting metal oxides that are generally confirmed or expected to have translucency, such as Mg, Y, Sc, lanthanide, Ti, Zr It is preferably an oxide particle of one or more metal elements selected from the group consisting of Al, Ga, Si, Ge, Pb, and Bi.
What weighed these metal oxide particles to an appropriate ratio can be suitably used as a raw material powder.

また、M23型セスキオキサイド焼結体(Mは、Y、Sc及びランタニド系元素からなる群から選択される1種又は2種以上の希土類元素である。)を作製する場合には、Y、Sc及びランタニド系元素からなる群から選択される1種又は2種以上の希土類元素の酸化物粒子、特にY、Sc、Lu、Tb、Yb、Gd、Nd、Eu、Ho、Dy、Tm、Sm、Pr、Ce、Erの群から選択される1種又は2種以上の希土類元素の酸化物粒子とZr酸化物粒子とからなる粉末を用いるとよい。なお、ZrO2粉末の添加量は、1質量%以下(ただし、0質量%を含まない)が好ましく、0.5質量%以下が更に好ましい。ZrO2粉末を全く添加しないと、焼結工程での気泡合体が促進され、気泡成長を起こしてミクロンサイズの粗大な気泡となってしまい透光性を損なうおそれがある。ZrO2粉末を1質量%超添加すると、焼結工程で当該ZrO2の一部が第二相としてM23型セスキオキサイド焼結体中に偏析して透光性を損なうおそれがあるため好ましくない。 In the case of producing an M 2 O 3 type sesquioxide sintered body (M is one or more rare earth elements selected from the group consisting of Y, Sc and lanthanide elements) Oxide particles of one or more rare earth elements selected from the group consisting of Y, Sc and lanthanide elements, particularly Y, Sc, Lu, Tb, Yb, Gd, Nd, Eu, Ho, Dy, Tm , Sm, Pr, Ce, and Er selected from the group consisting of one or more rare earth element oxide particles and Zr oxide particles may be used. Note that the amount of ZrO 2 powder added is preferably 1% by mass or less (excluding 0% by mass), and more preferably 0.5% by mass or less. If no ZrO 2 powder is added, bubble coalescence in the sintering process is promoted and bubble growth occurs, resulting in coarse bubbles of micron size, which may impair translucency. If ZrO 2 powder is added in an amount of more than 1% by mass, a part of the ZrO 2 may be segregated in the M 2 O 3 type sesquioxide sintered body as the second phase in the sintering process and the light transmission property may be impaired. It is not preferable.

なお、上述した金属酸化物粒子の純度は99.9質量%以上が好ましい。また、それらの粒子形状については特に限定されず、例えば角状、球状、板状の粉末が好適に利用できる。また二次凝集している粉末であっても好適に利用できるし、スプレードライ処理等の造粒処理によって造粒された顆粒状粉末であっても好適に利用できる。更に、これらの原料粉末の作製工程については特に限定されず、共沈法、粉砕法、噴霧熱分解法、ゾルゲル法、アルコキシド加水分解法、その他あらゆる合成方法で作製された原料粉末が好適に利用できる。また、得られた原料粉末を適宜湿式ボールミル、ビーズミル、ジェットミルや乾式ジェットミル、ハンマーミル等によって処理してもよい。   The purity of the metal oxide particles described above is preferably 99.9% by mass or more. Further, the particle shape thereof is not particularly limited, and for example, square, spherical and plate-like powders can be suitably used. Moreover, it can use suitably even if it is the powder which carried out secondary aggregation, and it can use suitably also if it is the granular powder granulated by granulation processes, such as a spray-dry process. Furthermore, the production process of these raw material powders is not particularly limited, and raw material powders produced by coprecipitation method, pulverization method, spray pyrolysis method, sol-gel method, alkoxide hydrolysis method, and any other synthesis method are preferably used. it can. Further, the obtained raw material powder may be appropriately treated by a wet ball mill, a bead mill, a jet mill, a dry jet mill, a hammer mill or the like.

本発明では、使用する金属酸化物粒子の原料粉末の粒度分布(該粒子が凝集して二次粒子化している場合はこの二次粒子の粒度分布)において最小値側からの累積が2.5%の粒径(D2.5値)D2.5値が180nm以上2000nm以下であるものが好ましい。D2.5値が180nm未満であると、焼結工程で気泡が合体成長し、ミクロンサイズの粗大な気泡となってしまい透光性を損なうおそれがあり、D2.5値が2000nm超であると、成形時に発生する粒間空隙が粗大になりすぎ、また構成される粒子もすでに十分に大きいため粒子の表面自由エネルギーが小さくなってしまい、焼結がなかなか進まなくなり、緻密で透光性の焼結体を提供することが困難となる場合がある。
なお、粒径の測定方法は特に限定されるものではないが、例えば液体溶媒中に粉末原料を分散し、光散乱法あるいは光回折法により測定して得られる値を参照することが、粒度分布の評価までできるため好ましい。
In the present invention, the accumulation from the minimum value side in the particle size distribution of the raw material powder of the metal oxide particles to be used (the particle size distribution of the secondary particles when the particles are aggregated into secondary particles) is 2.5. % Particle diameter (D2.5 value) D2.5 value is preferably 180 nm or more and 2000 nm or less. If the D2.5 value is less than 180 nm, bubbles may coalesce and grow in the sintering process, resulting in coarse bubbles of micron size, which may impair the translucency, and the D2.5 value exceeds 2000 nm. In addition, the intergranular voids generated during molding become too coarse, and the composed particles are already large enough that the surface free energy of the particles becomes small, and the sintering does not progress easily. It may be difficult to provide a ligation.
The particle size measurement method is not particularly limited. For example, it is possible to refer to a value obtained by dispersing a powder raw material in a liquid solvent and measuring by a light scattering method or a light diffraction method. It is preferable because it can be evaluated up to

本発明で用いる原料粉末には、透光性金属酸化物を構成する金属酸化物群の他に適宜焼結抑制助剤を添加してもよい。特に高い透光性を得るために、各透光性金属酸化物に見合った焼結抑制助剤を添加することが好ましい。ただし、その純度は99.9質量%以上が好ましい。なお、焼結抑制助剤を添加しない場合には、使用する原料粉末についてその一次粒子の粒径がナノサイズであって焼結活性が極めて高いものを選定するとよい。こうした選択は適宜なされてよい。   In addition to the metal oxide group constituting the translucent metal oxide, a sintering inhibitor may be appropriately added to the raw material powder used in the present invention. In particular, in order to obtain a high translucency, it is preferable to add a sintering suppression aid corresponding to each translucent metal oxide. However, the purity is preferably 99.9% by mass or more. In addition, when a sintering inhibitor is not added, it is preferable to select a raw material powder that has a primary particle size of nano-size and extremely high sintering activity. Such a selection may be made as appropriate.

更に、製造工程での品質安定性や歩留り向上を目的として、各種の有機添加剤を添加することが好ましい。本発明においてはこれらについても特に限定されず、各種の分散剤、結合剤、潤滑剤、可塑剤等が好適に利用できる。   Furthermore, it is preferable to add various organic additives for the purpose of improving quality stability and yield in the manufacturing process. In the present invention, these are not particularly limited, and various dispersants, binders, lubricants, plasticizers, and the like can be suitably used.

また、本発明で用いる原料粉末には、目的とする光学用途に見合うように適宜光学機能賦活剤が添加される場合がある。例えば所望の波長にてレーザー発振させるために反転分布状態を作ることのできるレーザー物質、電離放射線を高感度に受光して蛍光するシンチレータ物質、LED光を吸収して異なる波長で蛍光する蛍光体、あるいは過飽和吸収機能を付与してパルスレーザー発振させるための過飽和吸収体として、NdやYbの酸化物、PrやCe、Tbの酸化物、Euの酸化物、Crその他の酸化物が様々に添加される場合がある。本発明においては、これらの賦活剤についても適宜加えることが可能である。その場合の純度は99.9質量%以上が好ましい。   In addition, an optical function activator may be appropriately added to the raw material powder used in the present invention so as to meet the target optical application. For example, a laser material that can create an inversion distribution state to cause laser oscillation at a desired wavelength, a scintillator material that receives and fluoresces ionizing radiation with high sensitivity, a phosphor that absorbs LED light and fluoresces at a different wavelength, Alternatively, as a saturable absorber for providing a saturable absorption function and causing pulse laser oscillation, various oxides of Nd and Yb, Pr, Ce, Tb, Eu, Cr and other oxides are added. There is a case. In the present invention, these activators can be added as appropriate. The purity in that case is preferably 99.9% by mass or more.

(プレス成形)
本発明の製造方法においては、通常のプレス成形工程を好適に利用できる。即ち、ごく一般的な、型に充填して一定方向から加圧するプレス工程や、変形可能な防水容器に密閉収納して静水圧で加圧するCIP(Cold Isostatic Press)工程が利用できる。なお、印加圧力は得られる成形体の相対密度を確認しながら適宜調整すればよく、特に制限されないが、例えば市販のCIP装置で対応可能な300MPa以下程度の圧力範囲で管理すると製造コストが抑えられてよい。あるいはまた、成形時に成形工程のみでなく一気に焼結まで実施してしまうホットプレス工程や放電プラズマ焼結工程、マイクロ波加熱工程なども好適に利用できる。
(Press molding)
In the production method of the present invention, a normal press molding process can be suitably used. That is, a very general pressing process in which a mold is filled and pressurized from a certain direction, or a CIP (Cold Isostatic Press) process in which it is sealed in a deformable waterproof container and pressurized with hydrostatic pressure can be used. The applied pressure may be appropriately adjusted while confirming the relative density of the obtained molded body, and is not particularly limited. For example, if the pressure is controlled within a pressure range of about 300 MPa or less that can be handled by a commercially available CIP device, the manufacturing cost can be suppressed. It's okay. Alternatively, not only a molding process but also a hot press process, a discharge plasma sintering process, a microwave heating process, and the like that can be performed all at once at the time of molding can be suitably used.

(脱脂)
本発明の製造方法においては、通常の脱脂工程を好適に利用できる。即ち、加熱炉による昇温脱脂工程を経ることが可能である。また、この時の雰囲気ガスの種類も特に制限はなく、空気、酸素、水素等が好適に利用できる。脱脂温度も特に制限はないが、もしも有機添加物が混合されている原料を用いる場合には、その有機成分が分解消去できる温度まで昇温することが好ましい。
(Degreasing)
In the production method of the present invention, a normal degreasing step can be suitably used. That is, it is possible to go through a temperature rising degreasing process by a heating furnace. Also, the type of atmospheric gas at this time is not particularly limited, and air, oxygen, hydrogen, and the like can be suitably used. The degreasing temperature is not particularly limited, but if a raw material mixed with an organic additive is used, it is preferable to raise the temperature to a temperature at which the organic component can be decomposed and eliminated.

(焼結)
本発明の製造方法においては、一般的な焼結工程を好適に利用できる。即ち、抵抗加熱方式、誘導加熱方式等の加熱焼結工程を好適に利用できる。この時の雰囲気は特に制限されないが、不活性ガス、酸素、水素、真空等が好適に利用できる。
(Sintering)
In the production method of the present invention, a general sintering process can be suitably used. That is, a heating and sintering process such as a resistance heating method or an induction heating method can be suitably used. The atmosphere at this time is not particularly limited, but an inert gas, oxygen, hydrogen, vacuum, or the like can be suitably used.

本発明の焼結工程における焼結温度は、選択される出発原料により適宜調整される。一般的には、選択された出発原料を用いて製造しようとする焼結体の融点よりも数十℃から100乃至200℃程度低温側の温度が好適に選択される。このとき、できるだけ高温にして相対密度が95質量%以上に緻密化されるようにすることが好ましい。また、選択される温度の近傍に立方晶以外の相に相変化する温度帯が存在する金属酸化物焼結体を製造しようとする際には、厳密にその温度以下となるように管理して焼結すると、非立方晶から立方晶への相転移が事実上発生しないことから材料中に光学歪やクラックなどが発生し難いというメリットが得られる。   The sintering temperature in the sintering step of the present invention is appropriately adjusted depending on the starting material selected. In general, a temperature on the low temperature side of about several tens of degrees Celsius to 100 to 200 degrees Celsius is preferably selected from the melting point of the sintered body to be manufactured using the selected starting material. At this time, it is preferable that the relative density is densified to 95% by mass or higher as high as possible. In addition, when trying to produce a metal oxide sintered body having a temperature zone in which a phase change to a phase other than a cubic crystal exists in the vicinity of the selected temperature, the temperature should be strictly controlled to be lower than that temperature. When sintered, a phase transition from a non-cubic crystal to a cubic crystal virtually does not occur, so that an advantage that optical distortion or cracks are hardly generated in the material can be obtained.

焼結保持時間は、選択される出発原料により適宜調整される。一般的には数時間程度で十分な場合が多いが、金属酸化物焼結体の相対密度が95質量%以上に緻密化される時間を確保するとよい。   The sintering holding time is appropriately adjusted depending on the starting material selected. In general, about several hours is sufficient in many cases, but it is preferable to secure time for densification of the relative density of the metal oxide sintered body to 95% by mass or more.

(熱間等方圧プレス(HIP))
本発明の製造方法においては、焼結工程を経た後に必ず熱間等方圧プレス(HIP(Hot Isostatic Press))処理工程を設けるものとする。HIP処理工程は、第1HIP処理と第2HIP処理からなる。
(Hot isostatic pressing (HIP))
In the production method of the present invention, a hot isostatic press (HIP) process is always provided after the sintering process. The HIP process includes a first HIP process and a second HIP process.

−第1HIP処理−
第1HIP処理は、透光性金属酸化物焼結体を得るために従来から行われているHIP処理である。即ち、本処理で用いるHIP装置としては一般的な装置構成のものでよく、HIP装置の高圧容器内に上記焼結工程までの処理が終了した焼結体を配置し、加圧ガス媒体により該焼結体全体を均等に加圧すると共に、高圧容器内に配置された電気抵抗加熱方式の加熱手段により所定の熱処理温度まで加熱してHIP処理を行うものである。
-First HIP process-
The first HIP process is a conventional HIP process for obtaining a translucent metal oxide sintered body. That is, the HIP apparatus used in this process may be of a general apparatus configuration, and a sintered body that has been processed up to the above-described sintering step is placed in a high-pressure vessel of the HIP apparatus, and the compressed gas medium is used to The entire sintered body is uniformly pressurized and heated to a predetermined heat treatment temperature by an electric resistance heating type heating means disposed in a high-pressure vessel to perform HIP treatment.

また、このときの加圧ガス媒体(雰囲気ガス)の種類としてはアルゴン等の不活性ガス、又はAr−O2が好適に利用でき、印加圧力は市販のHIP装置で処理できる196MPa以下であると簡便で好ましい。 Further, an inert gas such as argon as the kind of the pressurized gas medium (atmospheric gas) in this case, or Ar-O 2 can be suitably used, applied pressure is not more than 196MPa which can be treated with the commercial HIP apparatus Simple and preferred.

第1HIP処理の熱処理温度は、焼結体を構成する金属酸化物の種類及び/又は焼結状態により適宜設定すればよく、例えば1100〜2000℃、好ましくは1400〜1900℃の範囲で設定される。このとき、焼結工程の場合と同様に焼結体を構成する金属酸化物の融点以下及び/又は相転移点以下とすることが必須であり、熱処理温度が2000℃超では本発明で想定している金属酸化物焼結体を構成する金属酸化物の融点を超えるか相転移点を超えてしまい、適正なHIP処理を行うことが困難となる。また、熱処理温度が1100℃未満では焼結体の透光性改善効果が得られない。なお、熱処理温度の保持時間については特に制限されないが、焼結体を構成する金属酸化物として選択される材料によりその時間を適宜調整するとよい。   What is necessary is just to set the heat processing temperature of 1st HIP process suitably with the kind and / or sintering state of the metal oxide which comprise a sintered compact, for example, 1100-2000 degreeC, Preferably it sets in the range of 1400-1900 degreeC. . At this time, as in the case of the sintering step, it is essential that the temperature be below the melting point and / or below the phase transition point of the metal oxide constituting the sintered body. It exceeds the melting point of the metal oxide composing the metal oxide sintered body or exceeds the phase transition point, making it difficult to perform proper HIP treatment. Moreover, if the heat treatment temperature is less than 1100 ° C., the effect of improving the translucency of the sintered body cannot be obtained. In addition, although there is no restriction | limiting in particular about the holding time of heat processing temperature, It is good to adjust the time suitably with the material selected as a metal oxide which comprises a sintered compact.

また、第1HIP処理における加圧ガス媒体により加圧する圧力は、50〜300MPaが好ましく、100〜300MPaがより好ましい。圧力50MPa未満では透光性改善効果が得られない場合があり、300MPa超では圧力を増加させてもそれ以上の透光性改善が得られず、装置への負荷が過多となり装置を損傷するおそれがある。   Moreover, 50-300 MPa is preferable and the pressure pressurized with the pressurized gas medium in a 1st HIP process has more preferable 100-300 MPa. If the pressure is less than 50 MPa, the translucency improvement effect may not be obtained. If the pressure exceeds 300 MPa, no further improvement in translucency can be obtained even if the pressure is increased, and the load on the device may be excessive and damage the device. There is.

第1HIP処理において金属酸化物焼結体を外部の雰囲気ガスが流入可能な通気孔を有する耐熱容器に収納し、該耐熱容器をHIP炉内に配置してHIP処理を行ってもよい。この耐熱容器は、白金(Pt)、グラファイト、モリブデン(Mo)、イットリア(酸化イットリウム)、ジルコニア(酸化ジルコニウム)、タンタル(Ta)、タングステン(W)、イリジウム(Ir)等の耐熱材料からなるものである。この中で、Ptは化学的に非常に安定で高温でも金属酸化物焼結体と反応しないことから該焼結体を支持する容器の材料として好適な材料の一つであるが1500℃を超える高温では溶融するおそれがある。したがって、熱処理温度の下限が1100℃ではあるが1500℃を超えて非常に高温となることも多い第1HIP処理においては、耐熱容器用の材料として、Pt以外の耐熱材料、即ちグラファイト、モリブデン(Mo)、イットリア(酸化イットリウム)、ジルコニア(酸化ジルコニウム)、タンタル(Ta)、タングステン(W)、イリジウム(Ir)の中から選択することが好ましい。なお、第1HIP処理で使用されるヒーター材や断熱材の材料としてもMoやグラファイト等から選択される場合が多い。   In the first HIP process, the metal oxide sintered body may be stored in a heat-resistant container having a vent hole through which an external atmospheric gas can flow, and the heat-resistant container may be placed in a HIP furnace to perform the HIP process. This heat-resistant container is made of a heat-resistant material such as platinum (Pt), graphite, molybdenum (Mo), yttria (yttrium oxide), zirconia (zirconium oxide), tantalum (Ta), tungsten (W), iridium (Ir), etc. It is. Among them, Pt is one of suitable materials as a container material for supporting the sintered body because it is chemically very stable and does not react with the metal oxide sintered body even at high temperatures. There is a risk of melting at high temperatures. Therefore, in the first HIP process, the lower limit of the heat treatment temperature is 1100 ° C. but often exceeds 1500 ° C., and the heat treatment temperature is often very high. As a material for the heat resistant container, a heat resistant material other than Pt, that is, graphite, molybdenum (Mo ), Yttria (yttrium oxide), zirconia (zirconium oxide), tantalum (Ta), tungsten (W), and iridium (Ir). In many cases, the heater material and the heat insulating material used in the first HIP process are selected from Mo, graphite, and the like.

ところで、従来技術に関して上述したように、HIP装置ではその加熱源及び断熱材としてカーボン(グラファイト)系の材料が使用されており、HIP処理中に材料から蒸発するカーボンが原因で金属酸化物焼結体の透光性が低下する場合がある。また、上記耐熱容器を構成する材料としてグラファイトが選択された場合にも、第1HIP処理中に耐熱容器からグラファイトが蒸気化して蒸気カーボンとして一定濃度で浮遊し、金属酸化物焼結体に接触すると焼結体中に浸炭して該焼結体を黒化させる場合がある。あるいは、この蒸気カーボンが焼結体から放出される微量の酸素と反応して一酸化炭素となってHIP雰囲気を還元性に変え、その結果焼結体が還元されて酸素欠陥を生じ、該焼結体が暗灰色から黒色に変化してしまう場合もある。
本発明は、以下説明する第2HIP処理により、HIP処理用の炉材が必要以上に損耗することなく、これらの問題を解決し、透光性の金属酸化物焼結体を製造する方法を提供するものである。
By the way, as described above with respect to the prior art, the HIP apparatus uses a carbon (graphite) -based material as a heating source and a heat insulating material, and metal oxide sintering is caused by carbon evaporated from the material during the HIP process. The translucency of the body may decrease. In addition, when graphite is selected as the material constituting the heat-resistant container, the graphite vaporizes from the heat-resistant container during the first HIP treatment, floats at a constant concentration as vapor carbon, and comes into contact with the metal oxide sintered body. In some cases, the sintered body is carburized to blacken the sintered body. Alternatively, the vapor carbon reacts with a small amount of oxygen released from the sintered body to form carbon monoxide, and the HIP atmosphere is changed to be reducible. As a result, the sintered body is reduced to produce oxygen defects, and In some cases, the body may change from dark gray to black.
The present invention provides a method for producing a translucent metal oxide sintered body by solving the above-described problems without losing the furnace material for HIP processing more than necessary by the second HIP processing described below. To do.

−第2HIP処理(再HIP処理)−
第2HIP処理は、本発明の根幹を成す部分である。図1に示すHIP装置例に基づいて本処理を説明する。
図1に示すように、第2HIP処理で用いるHIP装置10は、外部の雰囲気ガスが流入可能な通気孔13aを有する半密閉の耐熱容器13に第1HIP処理後の金属酸化物焼結体1及び酸素供給源14を収納し、該耐熱容器13をカーボンヒータを加熱手段12としたHIP炉11内に配置し、HIP炉11内に加圧ガス媒体として酸素濃度1vol%未満の不活性ガスを導入して焼結体全体を加圧した状態で加熱手段12により加熱する構成である。
-Second HIP processing (re-HIP processing)-
The second HIP process is an essential part of the present invention. This processing will be described based on the HIP device example shown in FIG.
As shown in FIG. 1, the HIP apparatus 10 used in the second HIP process includes a metal oxide sintered body 1 after the first HIP process and a semi-sealed heat-resistant container 13 having a vent hole 13a through which an external atmospheric gas can flow. An oxygen supply source 14 is accommodated, the heat-resistant container 13 is placed in a HIP furnace 11 using a carbon heater as a heating means 12, and an inert gas having an oxygen concentration of less than 1 vol% is introduced into the HIP furnace 11 as a pressurized gas medium. Thus, the heating means 12 heats the entire sintered body under pressure.

ここで、酸素供給源14は、加熱されることにより高温で金属の価数が減少して酸素を放出する金属酸化物からなるものが好ましく、例えば酸化テルビウム(Tb47)、酸化セリウム(CeO2)又は酸化プラセオジム(Pr611)からなるものが第2HIP処理において熱処理温度まで昇温させた際に酸素を放出する状態変化が起こるため好適である。この場合の酸素供給源14の形態としては、加熱されることにより高温で金属価数が減少して酸素を放出する金属酸化物からなる粉体、成形体又は焼結体がよい。 Here, the oxygen supply source 14 is preferably made of a metal oxide that releases oxygen by reducing the valence of the metal at a high temperature when heated. For example, terbium oxide (Tb 4 O 7 ), cerium oxide ( A material made of CeO 2 ) or praseodymium oxide (Pr 6 O 11 ) is preferable because a state change that releases oxygen occurs when the temperature is raised to the heat treatment temperature in the second HIP treatment. As a form of the oxygen supply source 14 in this case, a powder, a molded body, or a sintered body made of a metal oxide that releases oxygen by reducing a metal valence at a high temperature when heated is preferable.

また、酸素供給源14は、酸素ガス又は空気を吸着させたセラミックス粉体又は多孔質セラミックス成形体であることが好ましい。ここで用いられるセラミックスとしては金属酸化物焼結体1を構成する金属酸化物であることが好ましく、酸化イットリウム(Y23)又は酸化アルミニウム(Al23)が特に好ましい。このような金属酸化物であれば上述した酸化テルビウム、酸化セリウム、酸化プラセオジムが金属酸化物焼結体1の汚染原因物質となって利用できない場合でも用いることができる。なお、ここで用いるセラミックスは第2HIP処理の熱処理温度のように高温となっても材料自体が酸素を放出するものではないため、このセラミックスを相対密度が60質量%以下であって粉体及び/又は多孔質成形体とした状態で利用することが好ましい。具体的には、当該多孔質成形体に存在するポーラスな空隙や粉体のような大きな表面積を有する表面上に酸素ガスや空気を吸着させておき、第2HIP処理の高温高圧下において酸素ガスや空気を脱離放出させるようにする。酸素ガスや空気の吸着は、上記粉体や多孔質成形体を室温(25℃)で高濃度酸素ガス雰囲気中に暴露したり、室温(25℃)で大気(例えば湿度50%程度)中に暴露するだけでよい。なお、上記粉体や多孔質成形体を室温(25℃)で純水中に浸漬して水分を吸着させて酸素供給源14としてもよく、その場合は水分に含まれる酸素分子が酸素供給源となると考えられる。 Moreover, it is preferable that the oxygen supply source 14 is a ceramic powder or a porous ceramic molded body in which oxygen gas or air is adsorbed. The ceramic used here is preferably a metal oxide constituting the metal oxide sintered body 1, and particularly preferably yttrium oxide (Y 2 O 3 ) or aluminum oxide (Al 2 O 3 ). Such a metal oxide can be used even when the above-described terbium oxide, cerium oxide, or praseodymium oxide cannot be used as a contamination-causing substance of the metal oxide sintered body 1. Note that the ceramic used here does not release oxygen even when the temperature is high, such as the heat treatment temperature of the second HIP treatment, so this ceramic has a relative density of 60% by mass or less, Or it is preferable to utilize in the state made into the porous molded object. Specifically, oxygen gas or air is adsorbed on a surface having a large surface area such as porous voids or powder existing in the porous molded body, and oxygen gas or Air is released and released. The adsorption of oxygen gas or air can be performed by exposing the powder or porous molded body to a high-concentration oxygen gas atmosphere at room temperature (25 ° C.) or in the atmosphere (for example, about 50% humidity) at room temperature (25 ° C.). Just expose. Note that the powder or porous molded body may be immersed in pure water at room temperature (25 ° C.) to adsorb moisture to form the oxygen supply source 14, in which case oxygen molecules contained in the moisture are oxygen supply sources. It is thought that it becomes.

なお、金属酸化物焼結体1と同時に仕込む酸素供給源14を構成する金属酸化物の種類は、製造しようとしている金属酸化物焼結体1を構成する金属酸化物の種類に合わせて、できる限り汚染の問題が生じない組合せを適宜選択することが好ましい。   In addition, the kind of metal oxide which comprises the oxygen supply source 14 charged simultaneously with the metal oxide sintered compact 1 can be made according to the kind of metal oxide which comprises the metal oxide sintered compact 1 to be manufactured. It is preferable to select as appropriate a combination that does not cause contamination problems.

酸素供給源14の投入量は、該酸素供給源14に含まれる全酸素量が第2HIP処理用のHIP炉11内容積分の印加圧力に相当する不活性ガス量に対して100ppm以上となる量であることが好ましい。ここでいう全酸素量とは、酸素供給源14が加熱により金属価数が減少して酸素を放出する金属酸化物からなる場合、該金属酸化物全量の金属価数が減少したときに放出される酸素量であり、酸素供給源14が酸素ガス又は空気を吸着させたセラミックス粉体又は多孔質セラミックス成形体である場合、吸着させた酸素ガス全量又は空気に含まれる酸素量である。なお、酸素供給源14が水分を吸着させたセラミックス粉体又は多孔質セラミックス成形体である場合の酸素供給源14に含まれる全酸素量は、水分全量に含まれる酸素量であるが、水分中では水素ガスが酸化を阻害する還元ガスとして作用するおそれがある。
これにより、放出された酸素のほとんどが耐熱容器13内に滞留するようになることから耐熱容器13内の酸素濃度は(実際の濃度測定は不能であるが)100ppmよりも一段と高い状態となり、後述する実施例に示すように、前工程である第1HIP処理によって暗灰色から黒色に変化してしまった金属酸化物焼結体を無色透明に戻せるほど再酸化が進むため好ましい。
The input amount of the oxygen supply source 14 is such that the total oxygen amount contained in the oxygen supply source 14 is 100 ppm or more with respect to the inert gas amount corresponding to the applied pressure of the HIP furnace 11 content integral for the second HIP process. Preferably there is. When the oxygen supply source 14 is composed of a metal oxide that releases oxygen by reducing the metal valence by heating, the total oxygen amount here is released when the metal valence of the total amount of the metal oxide decreases. In the case where the oxygen supply source 14 is a ceramic powder or porous ceramic molded body on which oxygen gas or air is adsorbed, the total amount of oxygen gas adsorbed or the amount of oxygen contained in the air. Note that the total oxygen amount contained in the oxygen supply source 14 in the case where the oxygen supply source 14 is a ceramic powder or a porous ceramic molded body in which moisture is adsorbed is the amount of oxygen contained in the total amount of moisture. Then, hydrogen gas may act as a reducing gas that inhibits oxidation.
As a result, most of the released oxygen stays in the heat-resistant container 13, so that the oxygen concentration in the heat-resistant container 13 becomes higher than 100 ppm (although actual concentration measurement is impossible), which will be described later. As shown in the examples, the reoxidation proceeds to the extent that the metal oxide sintered body that has been changed from dark gray to black by the first HIP treatment as the previous step can be made colorless and transparent.

耐熱容器13は、耐熱材料からなり、内部に金属酸化物焼結体1及び酸素供給源14が収納される蓋付きルツボであり、蓋又はルツボ本体の一部に容器内部から外部に貫通し、耐熱容器13を半密閉状態とする通気孔13aが設けられている。半密閉とは、通気孔13aの大きさ(開口面積)がHIP炉11内の雰囲気ガスが耐熱容器13内部に流入して内部の圧力が第2HIP処理としての印加圧力となる程度に大きく、耐熱容器13内部で酸素供給源14から放出された酸素ができるだけ外部に流出しない程度に小さいことを意味する。具体的には、例えばルツボ本体にガスの通り道となる小さな切りかき溝等を施した上で、ルツボ本体の上に蓋を被せるようにした構成とすると容器内部で局所的に酸素濃度を高めることが可能となり好ましい。なお、耐熱容器13内部では金属酸化物焼結体1の近傍に酸素供給源14を配置する態様であれば特に両者の配置に制約はない。   The heat-resistant container 13 is made of a heat-resistant material, and is a crucible with a lid in which the metal oxide sintered body 1 and the oxygen supply source 14 are housed, and penetrates from the inside of the container to the outside through a part of the lid or the crucible body. A vent hole 13a is provided to make the heat-resistant container 13 in a semi-sealed state. Semi-hermetic means that the size (opening area) of the vent hole 13a is so large that the atmospheric gas in the HIP furnace 11 flows into the heat-resistant vessel 13 and the internal pressure becomes the applied pressure as the second HIP process. It means that oxygen released from the oxygen supply source 14 inside the container 13 is as small as possible so as not to flow out to the outside. Specifically, for example, if the crucible body is provided with a small kerf that serves as a gas passage and a cover is placed on the crucible body, the oxygen concentration is locally increased inside the container. Is possible and preferable. In addition, as long as the oxygen supply source 14 is disposed in the vicinity of the metal oxide sintered body 1 inside the heat-resistant container 13, there is no particular limitation on the arrangement of both.

また、耐熱容器13は第2HIP処理の熱処理温度で自身が溶融しないなど金属酸化物焼結体1を支持する容器として問題のない材料からなるものとする。なお、この熱処理温度が1500℃未満の場合には、耐酸化性に優れ、化学的に非常に安定なPt製とすることが好ましい。   The heat-resistant container 13 is made of a material that does not cause a problem as a container that supports the metal oxide sintered body 1 such that the heat-resistant container 13 does not melt at the heat treatment temperature of the second HIP process. When the heat treatment temperature is less than 1500 ° C., it is preferable to use Pt which is excellent in oxidation resistance and chemically very stable.

第2HIP処理の熱処理温度は、上記第1HIP処理の熱処理温度よりも低くかつ金属酸化物焼結体1が酸化する熱処理温度である。金属酸化物焼結体1が酸化する熱処理温度とは、酸素供給源14から酸素又は空気が放出されるとともにこの酸素又は空気により金属酸化物焼結体1が酸化される程度に高温となる温度である。なお、この熱処理温度が金属酸化物焼結体1が酸化する温度未満では本処理で目的とする金属酸化物焼結体1の透光性の改善が図れず、第1HIP処理の熱処理温度以上では金属酸化物焼結体1における粒成長が促進され、該焼結体1の強度低下や光学的特性の劣化が生じる。このような熱処理温度は、例えば好ましくは1050〜1450℃である。この熱処理温度が1050℃未満では酸素供給源14からの酸素供給又は金属酸化物焼結体1の酸化が不十分となる場合があり、1450℃超では耐熱容器13の材料として本処理に好適なPtを使用できないおそれがある。   The heat treatment temperature of the second HIP treatment is lower than the heat treatment temperature of the first HIP treatment and is a heat treatment temperature at which the metal oxide sintered body 1 is oxidized. The heat treatment temperature at which the metal oxide sintered body 1 is oxidized refers to a temperature at which oxygen or air is released from the oxygen supply source 14 and becomes so high that the metal oxide sintered body 1 is oxidized by the oxygen or air. It is. Note that if the heat treatment temperature is lower than the temperature at which the metal oxide sintered body 1 is oxidized, the translucency of the target metal oxide sintered body 1 cannot be improved by this treatment, and if the heat treatment temperature is higher than the heat treatment temperature of the first HIP treatment. Grain growth in the metal oxide sintered body 1 is promoted, and the strength of the sintered body 1 is reduced and the optical characteristics are deteriorated. Such a heat treatment temperature is preferably 1050 to 1450 ° C., for example. If the heat treatment temperature is less than 1050 ° C., oxygen supply from the oxygen supply source 14 or oxidation of the metal oxide sintered body 1 may be insufficient, and if it exceeds 1450 ° C., it is suitable as the material of the heat-resistant container 13 for this treatment. Pt may not be used.

なお、本発明において第1HIP処理及び第2HIP処理に関していう熱処理温度はすべて金属酸化物焼結体の温度であるが、実際のHIP装置では金属酸化物焼結体1自体の測温が困難であるため、焼結体とほぼ同じ温度となる加熱手段(カーボンヒータ)12のHIP炉内部分の測温結果を金属酸化物焼結体1の温度とみなしてよい。   In the present invention, the heat treatment temperatures for the first HIP treatment and the second HIP treatment are all temperatures of the metal oxide sintered body, but it is difficult to measure the temperature of the metal oxide sintered body 1 itself in an actual HIP apparatus. For this reason, the temperature measurement result in the HIP furnace portion of the heating means (carbon heater) 12 that has substantially the same temperature as the sintered body may be regarded as the temperature of the metal oxide sintered body 1.

加圧ガス媒体の酸素濃度が1vol%未満であるため、HIP装置10の構成部材の酸化による消耗を抑制することができる。なお、酸素濃度1vol%未満の不活性ガスであれば、アルゴン(Ar)、窒素等の不活性ガス、又はAr−O2のいずれでもよく、この中でもArが炉材との反応性が最も不活性であるために最も好適に利用できる。 Since the oxygen concentration of the pressurized gas medium is less than 1 vol%, consumption due to oxidation of the constituent members of the HIP device 10 can be suppressed. As long as the inert gas has an oxygen concentration of less than 1 vol%, it may be any of argon (Ar), inert gas such as nitrogen, or Ar—O 2. Among them, Ar is the least reactive with the furnace material. Since it is active, it can be most suitably used.

また、第2HIP処理の印加圧力はHIP炉11内に導入する加圧ガス媒体の圧力であり、上記第1HIP処理の印加圧力以上であることが好ましい。これにより、金属酸化物焼結体を構成する結晶子中に固溶した気孔の再偏析の防止はもとより、結晶子間、例えば結晶子の三重点で圧縮されて存在する気孔の再膨張の発生が防止できるため好ましい。   The applied pressure in the second HIP process is the pressure of the pressurized gas medium introduced into the HIP furnace 11, and is preferably equal to or higher than the applied pressure in the first HIP process. This prevents re-segregation of pores dissolved in the crystallites constituting the metal oxide sintered body, and also causes re-expansion of pores that are compressed between crystallites, for example, at the triple point of the crystallites. Can be prevented.

以上のようにHIP装置10において、耐熱容器13の内部にHIP炉11内と同様に雰囲気ガスで圧力を印加すると共に該耐熱容器13の内部のガスをある程度閉じ込めることができるものとし、耐熱容器13の内部に金属酸化物焼結体1と共に酸素供給源14を配置したので、第2HIP処理の熱処理時に酸素供給源14から酸素又は空気が放出されて耐熱容器13内部の酸素濃度が上昇し、これにより前工程である第1HIP処理によって暗灰色から黒色に変化してしまった金属酸化物焼結体を再酸化して無色透明にすることができる。またこのとき、金属酸化物焼結体に所定の圧力が印加されているので焼結体中の気孔の再偏析や再膨張が抑制される。
更に、上記酸素放出は耐熱容器13内に限定され、特許文献4に開示されているHIP炉内全体の酸素濃度を1vol%以上にする従来の方法に比べて、HIP炉内の酸素濃度を極めて少なく抑えることができるため、該HIP炉を構成しているヒーター材や断熱材、支持材の酸化損耗を抑制することができる。
As described above, in the HIP apparatus 10, it is assumed that the pressure inside the heat-resistant container 13 can be applied with atmospheric gas as in the HIP furnace 11 and the gas inside the heat-resistant container 13 can be confined to some extent. Since the oxygen supply source 14 is disposed inside the metal oxide sintered body 1 together with the metal oxide sintered body 1, oxygen or air is released from the oxygen supply source 14 during the heat treatment of the second HIP process, and the oxygen concentration inside the heat-resistant container 13 increases. Thus, the metal oxide sintered body that has been changed from dark gray to black by the first HIP treatment as the previous step can be reoxidized to be colorless and transparent. At this time, since a predetermined pressure is applied to the metal oxide sintered body, re-segregation and re-expansion of pores in the sintered body are suppressed.
Furthermore, the oxygen release is limited to the inside of the heat-resistant vessel 13, and the oxygen concentration in the HIP furnace is extremely low compared to the conventional method disclosed in Patent Document 4 in which the oxygen concentration in the entire HIP furnace is 1 vol% or more. Since the amount can be suppressed to a small level, oxidation wear of the heater material, the heat insulating material, and the support material constituting the HIP furnace can be suppressed.

(光学研磨)
本発明の製造方法においては、第2HIP処理までの一連の工程を経た金属酸化物焼結体について、その光学的に利用する軸上にある両端面を光学研磨することが好ましい。このときの光学面精度はλ/8以下が好ましく、λ/10以下が特に好ましい。なお、光学研磨された面に適宜反射防止膜を成膜することで光学測定を精密に行うことができる。
(Optical polishing)
In the production method of the present invention, it is preferable to optically polish both end faces on the optically utilized axis of the metal oxide sintered body that has undergone a series of steps up to the second HIP treatment. The optical surface accuracy at this time is preferably λ / 8 or less, and particularly preferably λ / 10 or less. In addition, optical measurement can be accurately performed by appropriately forming an antireflection film on the optically polished surface.

以上の本発明の透光性金属酸化物焼結体の製造方法によれば、HIP装置の炉材が必要以上に損耗することなく、結晶子となる焼結体に固溶した気孔の再偏析の防止はもとより、圧縮された気孔の再膨張も発生せず、第1HIP処理により還元されて暗灰色から黒色に変色した焼結体を完全に無色透明の状態に戻し、可視域及び/又は赤外域における透光性が著しく向上した金属酸化物焼結体を提供することができる。
本発明の製造方法においては、得られた焼結体を目的とする光学用途に見合うように適宜アセンブリしてデバイス化してよい。
According to the above method for producing a translucent metal oxide sintered body of the present invention, the re-segregation of pores dissolved in the sintered body that becomes crystallites without damaging the furnace material of the HIP apparatus more than necessary. The sintered body reduced from the dark gray color to the black color by the first HIP treatment is returned to a completely colorless and transparent state without causing re-expansion of the compressed pores as well as preventing the visible region and / or red. A metal oxide sintered body with significantly improved translucency in the outer region can be provided.
In the production method of the present invention, the obtained sintered body may be appropriately assembled into a device so as to meet the intended optical application.

以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。なお、平均粒径は、レーザー光回折法による重量平均値である。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, an average particle diameter is a weight average value by a laser beam diffraction method.

[実施例1]
金属酸化物焼結体の原料粉末としてLu23粉末、賦活剤としてTb47粉末、Pr611粉末及びCeO2粉末を用いた例について説明する。
ここでは、信越化学工業(株)製Lu23粉末、Tb47粉末、Pr611粉末、CeO2粉末を入手した。純度はいずれも99.9質量%以上であった。これらの原料粉末及び賦活剤を表1に示す組み合わせ及び体積混合比で混合した3種類の焼結体サンプル用の粉末原料を用意し、それぞれに第一稀元素化学工業(株)製ZrO2粉末を0.5質量%添加した。
[Example 1]
An example using Lu 2 O 3 powder as a raw material powder of a metal oxide sintered body and Tb 4 O 7 powder, Pr 6 O 11 powder and CeO 2 powder as activators will be described.
Here was obtained from Shin-Etsu Chemical Co., Ltd. Lu 2 O 3 powder, Tb 4 O 7 powder, Pr 6 O 11 powder, a CeO 2 powder. All the purity was 99.9 mass% or more. Three kinds of powder raw materials for sintered body samples prepared by mixing these raw material powders and activators in the combinations and volume mixing ratios shown in Table 1 were prepared, and ZrO 2 powders manufactured by Daiichi Rare Element Chemical Co., Ltd. were used for each. Was added by 0.5 mass%.

Figure 0005983525
Figure 0005983525

更にそれぞれにつき有機分散剤と有機結合剤を加えた後、エタノール中でジルコニア製ボールミル分散・混合処理した。処理時間は24hであった。その後、スプレードライ処理を行って、いずれも平均粒径が20μmの顆粒原料を作製した。
次に、得られた粉末原料3種を直径10mmの金型に充填し、一軸プレス成形機で長さ20mmのロッド状に仮成形した後、198MPaの圧力で静水圧プレスしてCIP成形体を得た。続いて得られたCIP成形体をマッフル炉に入れ、大気中800℃で3時間熱処理して脱脂した。
次いで、得られた脱脂済み成形体を真空加熱炉に仕込み、100℃/hの昇温レートで1600〜1700℃まで昇温し、3時間保持してから、600℃/hの降温レートで冷却して焼結体サンプルを得た。この際、すべてのサンプルの焼結相対密度がほぼ同じ96%になるよう焼結温度や保持時間を調整した。
続いて、上記各焼結体について、加圧媒体としてArガスを用いて、グラファイト製のヒーター、断熱材及び支持材からなるHIP炉にて、熱処理温度1600〜1700℃、圧力98〜198MPaで保持時間3時間の第1HIP処理を行った。このときの得られた焼結体サンプルの外観は薄灰色から灰色を呈していた。
最後に、図1に示すように、上記第1HIP処理済みの焼結体サンプル(金属酸化物焼結体1)と表2に示す所定仕込み量の酸素供給源(酸素供給源14)とをPt製耐熱容器(耐熱容器13)に同時に仕込み、加圧媒体としてArガスを用いて、グラファイト製のヒーター(加熱手段12)、断熱材及び支持材からなる上記第1HIP処理で用いた装置と同じHIP炉11内にセットし、熱処理温度1400〜1450℃、印加圧力を上記第1HIP処理の印加圧力以上(印加圧力203MPa)に設定して、保持時間0.5時間の第2HIP処理(再HIP処理)を行った。いずれのサンプルも無色透明のものが得られた。なお、ここで用いた酸素供給源は、上記Tb47粉末、Pr611粉末、CeO2粉末をそれぞれプレス成形したものである。また、第2HIP処理時に金属酸化物全量が金属価数減少してこれらの酸素供給源から放出された酸素ガスからHIP炉内酸素濃度及び耐熱容器内酸素濃度を見積もり、表2に記載した。なお、HIP炉(φ400mm×480mmL)の内容積は60288cm3、耐熱容器容積は61cm3である。
また、比較用として酸素供給源を用いずにそれ以外は同じ条件で第2HIP処理を行った。
Further, an organic dispersant and an organic binder were added to each of them, and then a zirconia ball mill was dispersed and mixed in ethanol. The processing time was 24 hours. Thereafter, spray drying treatment was performed to produce granule raw materials each having an average particle size of 20 μm.
Next, the three powder raw materials thus obtained were filled into a 10 mm diameter mold, temporarily formed into a 20 mm long rod shape with a uniaxial press molding machine, and then hydrostatically pressed at a pressure of 198 MPa to obtain a CIP compact. Obtained. Subsequently, the obtained CIP compact was put into a muffle furnace, and degreased by heat treatment in the atmosphere at 800 ° C. for 3 hours.
Next, the obtained degreased molded body was charged into a vacuum heating furnace, heated to 1600-1700 ° C. at a temperature increase rate of 100 ° C./h, held for 3 hours, and then cooled at a temperature decrease rate of 600 ° C./h. Thus, a sintered body sample was obtained. At this time, the sintering temperature and holding time were adjusted so that the sintered relative densities of all the samples were substantially the same 96%.
Subsequently, each sintered body is held at a heat treatment temperature of 1600 to 1700 ° C. and a pressure of 98 to 198 MPa in an HIP furnace composed of a graphite heater, a heat insulating material, and a support material using Ar gas as a pressure medium. The first HIP treatment for 3 hours was performed. The appearance of the sintered body sample obtained at this time was light gray to gray.
Finally, as shown in FIG. 1, a sintered body sample (metal oxide sintered body 1) that has been subjected to the first HIP treatment and an oxygen supply source (oxygen supply source 14) having a predetermined charge amount shown in Table 2 are put into Pt. The same HIP as the apparatus used in the first HIP process comprising the graphite heater (heating means 12), the heat insulating material and the support material, charged simultaneously in the heat-resistant container (heat-resistant container 13) and using Ar gas as the pressure medium. Set in furnace 11, heat treatment temperature 1400-1450 ° C., set applied pressure to be equal to or higher than applied pressure of first HIP process (applied pressure 203 MPa), second HIP process (re-HIP process) for holding time 0.5 hour Went. All samples were colorless and transparent. The oxygen supply source used here is one obtained by press-molding the Tb 4 O 7 powder, Pr 6 O 11 powder, and CeO 2 powder. In addition, the total amount of metal oxides during the second HIP treatment decreased the metal valence, and the oxygen concentration in the HIP furnace and the oxygen concentration in the heat-resistant vessel were estimated from the oxygen gas released from these oxygen supply sources. Incidentally, the internal volume of the HIP furnace (φ400mm × 480mmL) is 60288Cm 3, heat-resistant container volume is 61cm 3.
For comparison, the second HIP treatment was performed under the same conditions without using an oxygen supply source.

こうして得られた焼結体サンプルを、長さ10mmになるように研削及び研磨処理し、次いでそれぞれのサンプルの光学両端面を光学面精度λ/8で最終光学研磨し、更に中心波長が1064nmとなるように設計された反射防止膜をコートして、波長1064nmにおけるそれぞれの透過率を測定し、焼結体単位長さ当りの可視域透過損失を換算して求めた。これらの結果も表2に併せて示す。   The sintered body samples thus obtained were ground and polished so as to have a length of 10 mm, and then optical end faces of each sample were finally optically polished with an optical surface accuracy of λ / 8, and the center wavelength was 1064 nm. The antireflection film designed so as to be coated was coated, each transmittance at a wavelength of 1064 nm was measured, and the visible region transmission loss per unit length of the sintered body was converted and obtained. These results are also shown in Table 2.

Figure 0005983525
Figure 0005983525

以上の結果より、金属酸化物焼結体中にテルビウム、プラセオジム、セリウムが含まれる系においては、それぞれの賦活剤と同一組成の成形体を酸素供給源として耐熱容器内にごく少量(1g未満)加えるだけで、出発原料の種類によらず全ての焼結体サンプルにおいて透過率が極めて高く、実質的に無色透明な金属酸化物焼結体が得られることが確認された(No.11〜13)。なお、賦活剤と同一組成の成形体を仕込んだだけであるため、焼結体サンプルの汚染の問題も生じない。一方、酸素供給源を耐熱容器内に仕込まずに第2HIP処理(再HIP処理)した例(No.14〜16)においては、すべて第1HIP処理で生じた灰色着色がそのまま残っており、真に無色透明な金属酸化物焼結体は得られなかった。   From the above results, in a system in which terbium, praseodymium and cerium are contained in the metal oxide sintered body, a very small amount (less than 1 g) is used in a heat-resistant container using a molded body having the same composition as each activator as an oxygen supply source. It was confirmed that the transmittance was extremely high in all sintered body samples regardless of the type of starting material, and a substantially colorless and transparent metal oxide sintered body was obtained (No. 11 to 13). ). In addition, since only the molded object of the same composition as an activator was prepared, the problem of the contamination of a sintered compact sample does not arise. On the other hand, in the examples (No. 14 to 16) in which the oxygen supply source was not charged in the heat-resistant container and second HIP processing (re-HIP processing) was performed, all the gray coloring generated in the first HIP processing remained as it is, A colorless and transparent metal oxide sintered body was not obtained.

[実施例2]
高温で金属価数が減少して酸素を放出することのない金属酸化物を酸素供給源の材料として用いて、第1HIP処理で生じた灰色着色を解消させることが可能か否かを確認した実施例について説明する。
ここでは、太平洋ランダム(株)製Al23粉末と信越化学工業(株)製Y23粉末を入手した。純度はいずれも99.9質量%以上であった。このうち、焼結体サンプル用原料として、Y23粉末につき第一稀元素化学工業(株)製ZrO2粉末0.5質量%を加え、さらに有機分散剤と有機結合剤を加えた後、エタノール中でジルコニア製ボールミル分散・混合処理した。処理時間は24hであった。その後、スプレードライ処理を行って、平均粒径が20μmの顆粒原料を作製した。
また、参考用の焼結体サンプル((TbY)23)用として、実施例1で用いた信越化学工業(株)製Tb47粉末を用意し、Y23粉末とTb47粉末を体積混合比1:1で混合後、第一稀元素化学工業(株)製ZrO2粉末0.5質量%を加え、さらに有機分散剤と有機結合剤を加えた後、エタノール中でジルコニア製ボールミル分散・混合処理した。処理時間は24hであった。その後、スプレードライ処理をおこなって、平均粒径が20μmの顆粒原料を作製した。
次に、得られた粉末原料を直径10mmの金型に充填し、一軸プレス成形機で長さ20mmのロッド状に仮成形した後、198MPaの圧力で静水圧プレスしてCIP成形体を得た。続いて得られたCIP成形体をマッフル炉に入れ、大気中800℃で3時間熱処理して脱脂した。
次いで、得られた脱脂済み成形体を真空加熱炉に仕込み、100℃/hの昇温レートで1600〜1700℃まで昇温し、3時間保持してから、600℃/hの降温レートで冷却して焼結体を得た。この際、サンプルの焼結相対密度がほぼ96%になるよう焼結温度や保持時間を調整した。
続いて、上記各焼結体について、更に加圧媒体としてArガスを用いて、グラファイト製のヒーター、断熱材及び支持材からなるHIP炉にて、温度1600〜1700℃、圧力98〜198MPaで保持時間3時間の第1HIP処理を行った。
最後に、図1に示すように、上記第1HIP処理済みの焼結体サンプルのうち、Y23の焼結体サンプルを数ロットに分割し、この分割した焼結体サンプル(金属酸化物焼結体1)と、表3に示すように金属酸化物種類及び仕込み量を変化させた酸素供給源(酸素供給源14)とをPt製耐熱容器(耐熱容器13)に同時に仕込み、加圧媒体としてArガスを用いて、グラファイト製のヒーター(加熱手段12)、断熱材及び支持材からなる上記第1HIP処理で用いた装置と同じHIP炉11内にセットし、熱処理温度1400〜1450℃、印加圧力を上記第1HIP処理の印加圧力以上(印加圧力203MPa)に設定して、保持時間0.5時間の第2HIP処理(再HIP処理)を行った。なお、ここで用いた酸素供給源は、成形体相対密度がいずれも55質量%前後となるように別途作製したAl23成形体とY23成形体とであり、具体的には一軸プレス成形機で仮成形した後、198MPaの圧力で静水圧プレスし、これにより得られたCIP成形体をマッフル炉に入れ、大気中800℃で3時間熱処理して脱脂した乾燥成形体を用いた。なお、本実施例における酸素供給源の正確な酸素放出量は不明であったため、焼結体サンプルの外観の着色度合いの変化から第2HIP処理効果を見積もった。
また、参考用として、第1HIP処理済みの焼結体サンプル((TbY)23)と、酸素供給源として実施例1と同じTb47成形体0.4gとを一緒にPt製耐熱容器に仕込み、上記Y23焼結体サンプルの場合と同じ条件で第2HIP処理を行った。更に、Tb47成形体を用いず、それ以外は同じ条件で第2HIP処理を行った。
[Example 2]
Implementation to confirm whether it is possible to eliminate the gray coloring caused by the first HIP treatment by using a metal oxide that does not release oxygen at a high temperature and does not release oxygen as a material for the oxygen supply source An example will be described.
Here, to obtain the Pacific Ocean random Co. Al 2 O 3 powder and Shin-Etsu Chemical Co., Ltd. Y 2 O 3 powder. All the purity was 99.9 mass% or more. Of these, after adding 0.5% by mass of ZrO 2 powder manufactured by Daiichi Elemental Chemical Co., Ltd. to the Y 2 O 3 powder as a raw material for the sintered body sample, and further adding an organic dispersant and an organic binder Then, zirconia ball mill was dispersed and mixed in ethanol. The processing time was 24 hours. Thereafter, spray drying treatment was performed to produce a granule raw material having an average particle diameter of 20 μm.
Further, for the sintered body samples for reference ((TBY) 2 O 3), prepared Tb 4 O 7 powder produced by Shin-Etsu Chemical Co., used in Example 1, Y 2 O 3 powder and Tb 4 After mixing the O 7 powder at a volume mixing ratio of 1: 1, 0.5% by mass of ZrO 2 powder manufactured by Daiichi Rare Element Chemical Co., Ltd. was added, and after further adding an organic dispersant and an organic binder, Then, a zirconia ball mill was dispersed and mixed. The processing time was 24 hours. Thereafter, spray drying treatment was performed to produce a granule raw material having an average particle diameter of 20 μm.
Next, the obtained powder raw material was filled in a mold having a diameter of 10 mm, temporarily formed into a rod shape having a length of 20 mm with a uniaxial press molding machine, and then hydrostatically pressed at a pressure of 198 MPa to obtain a CIP compact. . Subsequently, the obtained CIP compact was put into a muffle furnace, and degreased by heat treatment in the atmosphere at 800 ° C. for 3 hours.
Next, the obtained degreased molded body was charged into a vacuum heating furnace, heated to 1600-1700 ° C. at a temperature increase rate of 100 ° C./h, held for 3 hours, and then cooled at a temperature decrease rate of 600 ° C./h. As a result, a sintered body was obtained. At this time, the sintering temperature and holding time were adjusted so that the sintered relative density of the sample was approximately 96%.
Subsequently, each sintered body is further maintained at a temperature of 1600 to 1700 ° C. and a pressure of 98 to 198 MPa in an HIP furnace composed of a graphite heater, a heat insulating material and a support material, using Ar gas as a pressurizing medium. The first HIP treatment for 3 hours was performed.
Finally, as shown in FIG. 1, among the sintered samples that have been subjected to the first HIP treatment, the Y 2 O 3 sintered sample is divided into several lots, and the divided sintered sample (metal oxide) Sintered body 1) and an oxygen supply source (oxygen supply source 14) having different metal oxide types and amounts as shown in Table 3 were simultaneously charged into a Pt heat-resistant container (heat-resistant container 13) and pressurized. Using Ar gas as a medium, set in the same HIP furnace 11 as the apparatus used in the first HIP treatment consisting of a graphite heater (heating means 12), a heat insulating material and a support material, and a heat treatment temperature of 1400 to 1450 ° C., The applied pressure was set to be equal to or higher than the applied pressure of the first HIP process (applied pressure 203 MPa), and the second HIP process (re-HIP process) with a holding time of 0.5 hours was performed. The oxygen supply source used here is an Al 2 O 3 molded body and a Y 2 O 3 molded body separately prepared so that the relative density of the molded body is about 55% by mass, specifically, After temporary molding with a uniaxial press molding machine, hydrostatic pressing was performed at a pressure of 198 MPa, and the resulting CIP compact was placed in a muffle furnace and heat-treated at 800 ° C. for 3 hours in the atmosphere for 3 hours to remove the fat. It was. In addition, since the exact oxygen discharge | release amount of the oxygen supply source in a present Example was unknown, the 2nd HIP process effect was estimated from the change of the coloring degree of the external appearance of a sintered compact sample.
For reference, a Pt heat-resistant sample sample (TbY) 2 O 3 having been subjected to the first HIP treatment and 0.4 g of the same Tb 4 O 7 compact as in Example 1 were used as an oxygen supply source. The container was charged and the second HIP treatment was performed under the same conditions as in the case of the Y 2 O 3 sintered body sample. Further, without using the Tb 4 O 7 moldings, otherwise subjected to the 2HIP treatment under the same conditions.

こうして得られた焼結体サンプルを、長さ10mmになるように研削及び研磨処理し、次いでそれぞれのサンプルの光学両端面を光学面精度λ/8で最終光学研磨し、更に中心波長が1064nmとなるように設計された反射防止膜をコートして、波長1064nmにおけるそれぞれの透過率を測定し、焼結体単位長さ当りの可視域透過損失を換算して求めた。これらの結果も表3に併せて示す。   The sintered body samples thus obtained were ground and polished so as to have a length of 10 mm, and then optical end faces of each sample were finally optically polished with an optical surface accuracy of λ / 8, and the center wavelength was 1064 nm. The antireflection film designed so as to be coated was coated, each transmittance at a wavelength of 1064 nm was measured, and the visible region transmission loss per unit length of the sintered body was converted and obtained. These results are also shown in Table 3.

Figure 0005983525
Figure 0005983525

以上の結果より、高温で金属価数が減少して酸素を放出することのない金属酸化物、具体的には酸化アルミニウム(Al23)、酸化イットリウム(Y23)を用いた場合でも、その耐熱容器中への仕込み量が高温で金属価数が減少して酸素を放出する酸化テルビウム(Tb47)の仕込み量よりも概略1桁程度多い量であれば、第1HIP処理で灰色に着色してしまった各種金属酸化物焼結体サンプルが実質的に無色透明で透過率が極めて高い金属酸化物焼結体に変化することが確認された。一方、酸素供給源の仕込み量がAl23成形体で1.2g(No.24)、Y23成形体で2.5g(No.29)であった焼結体サンプルにおいては、透光性の改善は見られるもののわずかな薄灰色が残っていた。参考のために行った(TbY)23焼結体サンプルの結果(No.31、32)から考察するに、おそらく第2HIP処理中にこれらの酸素供給源から放出された酸素ガスのHIP炉内濃度が100ppmよりも低かったためと考えられる。 From the above results, when a metal oxide that does not release oxygen due to a decrease in metal valence at high temperatures, specifically, aluminum oxide (Al 2 O 3 ) or yttrium oxide (Y 2 O 3 ) is used. However, if the amount charged into the heat-resistant container is higher by about one digit than the amount of terbium oxide (Tb 4 O 7 ) that releases oxygen by reducing the metal valence at high temperature, the first HIP treatment It was confirmed that the various metal oxide sintered body samples colored in gray changed to metal oxide sintered bodies which were substantially colorless and transparent and had extremely high transmittance. On the other hand, 1.2 g charge of the oxygen supply source in Al 2 O 3 formed body (No.24), the sintered body samples were 2.5 g (No.29) in Y 2 O 3 formed body, Although there was an improvement in translucency, a slight light gray color remained. Considering from the results (No. 31, 32) of the (TbY) 2 O 3 sintered body sample taken for reference, the HIP furnace of oxygen gas possibly released from these oxygen sources during the second HIP process This is probably because the internal concentration was lower than 100 ppm.

なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。   Although the present invention has been described with the embodiments shown in the drawings, the present invention is not limited to the embodiments shown in the drawings, and other embodiments, additions, modifications, deletions, etc. As long as the effects of the present invention are exhibited in any aspect, the present invention is included in the scope of the present invention.

1 金属酸化物焼結体
10 HIP装置
11 HIP炉
12 加熱手段
13 耐熱容器
13a 通気孔
14 酸素供給源
DESCRIPTION OF SYMBOLS 1 Metal oxide sintered body 10 HIP apparatus 11 HIP furnace 12 Heating means 13 Heat-resistant container 13a Vent hole 14 Oxygen supply source

Claims (10)

Mg、Y、Sc、ランタニド、Ti、Zr、Al、Ga、Si、Ge、Pb、Biからなる群から選択される1種又は2種以上の金属元素の酸化物粒子を用いて作製された金属酸化物を主成分とする焼結体について1400〜1900℃の熱処理温度で第1熱間等方圧プレス(第1HIP)処理を焼結体の緻密化処理として施し、該第1HIP処理により上記焼結体は灰色、暗灰色又は黒色に変色しており、次いで該第1HIP処理後の金属酸化物焼結体と加熱されて酸素又は空気を放出する酸素供給源とを外部の雰囲気ガスが流入可能な通気孔を有する半密閉の耐熱容器に入れ、該耐熱容器を酸素濃度1vol%未満の不活性ガス雰囲気中で1050〜1450℃であって上記第1HIP処理の熱処理温度よりも低くかつ上記金属酸化物焼結体が酸化する熱処理温度で第2熱間等方圧プレス(第2HIP)処理を施して上記灰色、暗灰色又は黒色に変色した焼結体を再酸化させて透光性の焼結体を得る透光性金属酸化物焼結体の製造方法。 Metal produced using oxide particles of one or more metal elements selected from the group consisting of Mg, Y, Sc, lanthanide, Ti, Zr, Al, Ga, Si, Ge, Pb, Bi A sintered body containing an oxide as a main component is subjected to a first hot isostatic pressing (first HIP) treatment at a heat treatment temperature of 1400 to 1900 ° C. as a densification treatment of the sintered body . The aggregate is discolored in gray, dark gray or black, and then external atmospheric gas can flow into the metal oxide sintered body after the first HIP treatment and an oxygen supply source that is heated to release oxygen or air Put in a semi-sealed heat-resistant container having a vent hole, and the heat-resistant container is 1050 to 1450 ° C. in an inert gas atmosphere having an oxygen concentration of less than 1 vol % and lower than the heat treatment temperature of the first HIP treatment and the metal oxidation Pottery A translucent sintered body is obtained by re-oxidizing the sintered body which has been subjected to the second hot isostatic pressing (second HIP) treatment at the heat treatment temperature at which the aggregate is oxidized to change the color to gray, dark gray or black. The manufacturing method of the translucent metal oxide sintered compact obtained. 上記焼結体は、 2 3 型希土類セスキオキサイド焼結体(Mは、Y、Sc及びランタニド系元素からなる群から選択される1種又は2種以上の希土類元素である。)であることを特徴とする請求項1記載の透光性金属酸化物焼結体の製造方法。 The sintered body is an M 2 O 3 type rare earth sesquioxide sintered body (M is one or more rare earth elements selected from the group consisting of Y, Sc and lanthanide elements). The method for producing a translucent metal oxide sintered body according to claim 1. 上記金属酸化物の粒子を用いて所定形状にプレス成形した後に焼結し、次いで第1HIP処理及び第2HIP処理を施すことを特徴とする請求項1又は2記載の透光性金属酸化物焼結体の製造方法。 3. The translucent metal oxide sintered product according to claim 1, wherein the metal oxide particles are sintered after being pressed into a predetermined shape and then subjected to a first HIP treatment and a second HIP treatment. Body manufacturing method. 上記酸素供給源は、加熱されることにより金属価数が減少して酸素を放出する金属酸化物からなることを特徴とする請求項1〜3のいずれか1項記載の透光性金属酸化物焼結体の製造方法。   The translucent metal oxide according to any one of claims 1 to 3, wherein the oxygen supply source is made of a metal oxide that releases oxygen when heated by being reduced in metal valence. A method for producing a sintered body. 上記酸素供給源は、酸素ガス又は空気を吸着させたセラミックス粉体又は多孔質セラミックス成形体であることを特徴とする請求項1〜3のいずれか1項記載の透光性金属酸化物焼結体の製造方法。   The translucent metal oxide sintered body according to any one of claims 1 to 3, wherein the oxygen supply source is a ceramic powder or a porous ceramic formed body in which oxygen gas or air is adsorbed. Body manufacturing method. 上記酸素供給源は、TbThe oxygen supply source is Tb 4Four O 77 粉末、PrPowder, Pr 66 O 1111 粉末又はCeOPowder or CeO 22 粉末のプレス成形体であることを特徴とする請求項1〜3のいずれか1項記載の透光性金属酸化物焼結体の製造方法。The method for producing a translucent metal oxide sintered body according to any one of claims 1 to 3, which is a powder press-molded body. 上記第2HIP処理の印加圧力が上記第1HIP処理の印加圧力以上であることを特徴とする請求項1〜6のいずれか1項記載の透光性金属酸化物焼結体の製造方法。   The method for producing a translucent metal oxide sintered body according to any one of claims 1 to 6, wherein an applied pressure of the second HIP treatment is equal to or higher than an applied pressure of the first HIP treatment. 上記耐熱容器がPt製であることを特徴とする請求項1〜7のいずれか1項記載の透光性金属酸化物焼結体の製造方法。   The said heat-resistant container is a product made from Pt, The manufacturing method of the translucent metal oxide sintered compact of any one of Claims 1-7 characterized by the above-mentioned. 上記酸素供給源の投入量が該酸素供給源に含まれる全酸素量が第2HIP処理用の炉内容積分の印加圧力に相当する不活性ガス量に対して100ppm以上となる量であることを特徴とする請求項1〜8のいずれか1項記載の透光性金属酸化物焼結体の製造方法。   The input amount of the oxygen supply source is an amount such that the total oxygen amount contained in the oxygen supply source is 100 ppm or more with respect to the inert gas amount corresponding to the applied pressure of the furnace content integral for the second HIP process. The manufacturing method of the translucent metal oxide sintered compact of any one of Claims 1-8. 上記第2HIP処理における半密閉の耐熱容器内の酸素濃度が8vol%以上であることを特徴とする請求項1〜9のいずれか1項記載の透光性金属酸化物焼結体の製造方法。The method for producing a translucent metal oxide sintered body according to any one of claims 1 to 9, wherein the oxygen concentration in the semi-sealed heat-resistant container in the second HIP treatment is 8 vol% or more.
JP2013098402A 2013-05-08 2013-05-08 Method for producing translucent metal oxide sintered body Active JP5983525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098402A JP5983525B2 (en) 2013-05-08 2013-05-08 Method for producing translucent metal oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098402A JP5983525B2 (en) 2013-05-08 2013-05-08 Method for producing translucent metal oxide sintered body

Publications (2)

Publication Number Publication Date
JP2014218398A JP2014218398A (en) 2014-11-20
JP5983525B2 true JP5983525B2 (en) 2016-08-31

Family

ID=51937227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098402A Active JP5983525B2 (en) 2013-05-08 2013-05-08 Method for producing translucent metal oxide sintered body

Country Status (1)

Country Link
JP (1) JP5983525B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924502B1 (en) * 2017-06-13 2018-12-04 (주)씨이케이 Manufacturing method of porous ceramic using a hip
JP7149618B2 (en) * 2020-03-27 2022-10-07 大学共同利用機関法人自然科学研究機構 Saturable absorbers and laser oscillators

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106574A (en) * 1980-12-19 1982-07-02 Kobe Steel Ltd Method of sintering silicon nitride
JP2551431B2 (en) * 1987-06-05 1996-11-06 株式会社トーキン Method for manufacturing high density piezoelectric ceramics
JPH0818872B2 (en) * 1989-02-02 1996-02-28 住友特殊金属株式会社 Manufacturing method of transparent high density porcelain
JP3000685B2 (en) * 1990-12-28 2000-01-17 住友電気工業株式会社 Translucent yttria sintered body and method for producing the same
JP5125065B2 (en) * 2006-02-17 2013-01-23 東ソー株式会社 Transparent zirconia sintered body
JP4910750B2 (en) * 2007-02-14 2012-04-04 東ソー株式会社 Translucent alumina sintered body and method for producing the same
CN102803180A (en) * 2009-06-04 2012-11-28 东曹株式会社 High-strength transparent zirconia sintered body, process for production thereof, and use thereof

Also Published As

Publication number Publication date
JP2014218398A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
Wang et al. Transparent ceramics: Processing, materials and applications
US3640887A (en) Transparent zirconia- hafnia- and thoria-rare earth ceramics
Lee et al. Solid‐state reactive sintering of transparent polycrystalline Nd: YAG ceramics
JP6015780B2 (en) Method for producing translucent metal oxide sintered body
JP5708050B2 (en) Red translucent zirconia sintered body and method for producing the same
JP2010529940A (en) Sintered product with cubic structure
EP2716616B1 (en) Method for Manufacturing a Transparent Sesquioxide Sintered Body
Chen et al. Fabrication, microstructure, and properties of 8 mol% yttria-stabilized zirconia (8YSZ) transparent ceramics
Zhang et al. High‐entropy transparent ceramics: review of potential candidates and recently studied cases
Liu et al. Influence of non-stoichiometry on solid-state reactive sintering of YAG transparent ceramics
Ivanov et al. Highly transparent ytterbium doped yttrium lanthanum oxide ceramics
WO2016084721A1 (en) Method for producing transparent alumina sintered body
US7022262B2 (en) Yttrium aluminum garnet powders and processing
JP5000934B2 (en) Translucent rare earth gallium garnet sintered body, manufacturing method thereof and optical device
JP6589723B2 (en) Fluorescent material and method for producing the same
JP5983525B2 (en) Method for producing translucent metal oxide sintered body
JP5750142B2 (en) Method for producing modified aluminum nitride sintered body
JP5999037B2 (en) Method for producing translucent metal oxide sintered body
JP6672833B2 (en) Colored zirconia sintered body and method for producing the same
Mouzon et al. Synthesis and optical properties of Yb0. 6Y1. 4O3 transparent ceramics
JP2015140277A (en) Method for producing oxide ceramic having water repellency
JP7472995B2 (en) Paramagnetic garnet-type transparent ceramics, magneto-optical device, and method for manufacturing paramagnetic garnet-type transparent ceramics
WO2022054594A1 (en) Paramagnetic garnet-type transparent ceramic, magneto-optical device, and production method for paramagnetic garnet-type transparent ceramic
JP7293821B2 (en) Calcined body
JP2010254523A (en) Method for producing spinel-based ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5983525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150