JP6645002B2 - Doping method of paramagnetic radical - Google Patents

Doping method of paramagnetic radical Download PDF

Info

Publication number
JP6645002B2
JP6645002B2 JP2014088418A JP2014088418A JP6645002B2 JP 6645002 B2 JP6645002 B2 JP 6645002B2 JP 2014088418 A JP2014088418 A JP 2014088418A JP 2014088418 A JP2014088418 A JP 2014088418A JP 6645002 B2 JP6645002 B2 JP 6645002B2
Authority
JP
Japan
Prior art keywords
radical
paramagnetic
polymer material
concentration
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014088418A
Other languages
Japanese (ja)
Other versions
JP2015206732A (en
Inventor
友美 増井
友美 増井
洋平 能田
洋平 能田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014088418A priority Critical patent/JP6645002B2/en
Publication of JP2015206732A publication Critical patent/JP2015206732A/en
Application granted granted Critical
Publication of JP6645002B2 publication Critical patent/JP6645002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、動的核スピン偏極法に用いる試料を調製する際に、試料へ常磁性ラジカルをドープする方法に関する。 The present invention relates to a method of doping a sample with a paramagnetic radical when preparing a sample for use in dynamic nuclear spin polarization.

動的核スピン偏極法に用いる試料においては、核スピン偏極度の向上のため、試料内への常磁性ラジカルのドープが行われている。該物質をドープする手法としては、蒸気浸透法などの方法が取られている。蒸気浸透法では、一般に三方コック付のガラス容器に常磁性ラジカルとゴムとを共存させることにより浸透させる方法が用いられている。これは、揮発した常磁性ラジカルが高分子材料内の流動相へと、自発的に吸収されることを利用している。 In a sample used for the dynamic nuclear spin polarization method, a paramagnetic radical is doped into the sample in order to improve the nuclear spin polarization. As a method of doping the substance, a method such as a vapor infiltration method is employed. In the vapor infiltration method, a method is generally used in which a paramagnetic radical and rubber are allowed to coexist in a glass container equipped with a three-way cock so that the paramagnetic radical and rubber coexist. This utilizes the fact that volatilized paramagnetic radicals are spontaneously absorbed into a fluid phase in a polymer material.

高分子材料への常磁性ラジカルのドープは、通常、密閉容器中で行われる。ガラス容器内に高分子材料を設置して常磁性ラジカルをドープする場合、ガラス容器を密閉するために使用するグリースが該ラジカルを吸収することにより、高分子材料中のラジカル濃度が仕込み濃度以下になり濃度バラツキが生じ、これにより目的濃度からの誤差が大きくなるという問題がある。 Doping of a polymer material with a paramagnetic radical is usually performed in a closed container. When a polymer material is placed in a glass container to dope paramagnetic radicals, the grease used to seal the glass container absorbs the radicals, so that the radical concentration in the polymer material falls below the charged concentration. There is a problem in that density variations occur, which causes an error from the target density to increase.

本発明は、前記課題を解決し、常磁性ラジカルを高分子化合物に均一にドープさせる際の高分子化合物中のラジカル濃度のバラツキを抑えて常磁性ラジカルをドープすることができる常磁性ラジカルのドープ方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and suppresses the dispersion of the radical concentration in the polymer compound when uniformly doping the paramagnetic radical into the polymer compound. It aims to provide a method.

本発明は、高分子材料に常磁性ラジカルをドープする方法であって、密閉型の金属容器内で前記高分子材料に常磁性ラジカルをドープすることを特徴とする常磁性ラジカルのドープ方法に関する。 The present invention relates to a method for doping a polymer material with a paramagnetic radical, wherein the polymer material is doped with a paramagnetic radical in a closed metal container.

上記方法は、前記高分子材料に常磁性ラジカルを脱酸素条件下でドープし、前記高分子材料中のラジカル化合物濃度を15.5〜55mMとする方法であることが好ましい。 The above method is preferably a method in which a paramagnetic radical is doped into the polymer material under a deoxygenating condition so that the concentration of the radical compound in the polymer material is 15.5 to 55 mM.

本発明の方法を用いることで、ガラス容器を用いた場合のグリースによる常磁性ラジカルの吸収を防ぐことができ、その吸収による濃度減少から生じる濃度ばらつきを低減することができる。 By using the method of the present invention, it is possible to prevent the absorption of paramagnetic radicals by grease when a glass container is used, and it is possible to reduce the concentration variation caused by the concentration decrease due to the absorption.

本発明の常磁性ラジカルのドープ方法は、密閉型の金属容器内で高分子材料に常磁性ラジカルをドープする方法である。
なお、ここでいう密閉には、容器外側との気体の出入りが完全に遮断された完全密閉のものに加え、常磁性ラジカルのドープが効率的に進行するよう、容器内のラジカルの大部分が外に漏れ出さない程度に容器外側との気体の出入りが阻害された、実質的な密閉状態のものも含まれる。
The paramagnetic radical doping method of the present invention is a method of doping a polymer material with a paramagnetic radical in a closed metal container.
In addition, most of the radicals in the container are sealed in this case, in addition to the completely sealed one in which the inflow and outflow of gas from the outside of the container are completely shut off, and the doping of paramagnetic radicals proceeds efficiently. Also included are those in a substantially hermetically sealed state in which gas flow into and out of the container is inhibited to the extent that they do not leak out.

上記金属容器の材質は特に制限されず、ステンレス、アルミニウム等のいずれのものも用いることができる。これらの中でも、ステンレスが好ましい。 The material of the metal container is not particularly limited, and any material such as stainless steel and aluminum can be used. Among these, stainless steel is preferable.

本発明の常磁性ラジカルのドープ方法において、高分子材料に常磁性ラジカルをドープする方法は、高分子材料中へ常磁性ラジカルがドープされる限り特に制限されないが、高分子材料に常磁性ラジカルを蒸気浸透させる方法が好ましい。蒸気浸透させる場合、高分子材料と常磁性ラジカル化合物とを脱酸素条件下で共存させた状態で静置する方法を好適に用いることができる。この場合、静置する温度や時間は、試料や常磁性ラジカル化合物の種類等に応じて適宜設定すればよいが、静置する温度は25〜60℃が好ましく、静置する時間は12〜180時間が好ましい。 In the doping method of the paramagnetic radical of the present invention, the method of doping the polymer material with the paramagnetic radical is not particularly limited as long as the paramagnetic radical is doped into the polymer material. The method of vapor infiltration is preferred. In the case of vapor permeation, a method in which a polymer material and a paramagnetic radical compound are allowed to stand in a state where they coexist under deoxygenation conditions can be suitably used. In this case, the standing temperature and time may be appropriately set according to the type of the sample and the paramagnetic radical compound, but the standing temperature is preferably 25 to 60 ° C, and the standing time is 12 to 180. Time is preferred.

上記常磁性ラジカル化合物としては特に限定されず、2,2,6,6−テトラメチルピペリジン 1−オキシル (TEMPO)、4−オキソ−2,2,6,6−テトラメチルピぺリジン N−オキシル(TEMPONE)、1−オキシル−2,2,6,6−テトラメチル−4−ヒドロキシピぺリジン(TEMPOL)、 などが挙げられる。中でも2,2,6,6−テトラメチルピペリジン 1−オキシル (TEMPO)が好ましい。 The paramagnetic radical compound is not particularly limited, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 4-oxo-2,2,6,6-tetramethylpiperidine N-oxyl (TEMPONE) ), 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and the like. Among them, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) is preferred.

本発明の常磁性ラジカルのドープ方法を用いる高分子材料としては、ゴム、樹脂などが挙げられる。また高分子材料は、ゴムや樹脂に適宜配合剤を添加したゴム組成物や樹脂組成物であってもよい。
ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ブチルゴム(IIR)、クロロプレンゴム(CR)、エチレン−プロピレン−ジエンゴム(EPDM)、アクリロニトリル−ブタジエンゴム(NBR)などの従来公知のジエン系ゴムなどが挙げられる。
Examples of the polymer material using the method for doping a paramagnetic radical of the present invention include rubber and resin. Further, the polymer material may be a rubber composition or a resin composition in which a compounding agent is appropriately added to rubber or resin.
Examples of rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), butyl rubber (IIR), chloroprene rubber (CR), ethylene-propylene-diene rubber (EPDM), acrylonitrile And conventionally known diene rubbers such as butadiene rubber (NBR).

上記樹脂としては、ポリエチレン、ポリスチレンなどが挙げられる。 Examples of the resin include polyethylene and polystyrene.

本発明の常磁性ラジカルのドープ方法を行った高分子材料は、該高分子材料中のラジカル化合物濃度が15.5〜55mMであることが好ましい。このようなラジカル化合物濃度であると、常磁性ラジカルのドープが充分に行われているといえる。ラジカル化合物濃度は、より好ましくは、20〜50mMであり、更に好ましくは、25〜45mMである。
高分子材料中のラジカル化合物濃度は、ESRにより測定することができる。
In the polymer material subjected to the paramagnetic radical doping method of the present invention, the concentration of the radical compound in the polymer material is preferably 15.5 to 55 mM. With such a radical compound concentration, it can be said that doping of the paramagnetic radical is sufficiently performed. The radical compound concentration is more preferably 20 to 50 mM, still more preferably 25 to 45 mM.
The concentration of the radical compound in the polymer material can be measured by ESR.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these.

(高分子材料調製)
1.高分子複合材料配合
SBR(日本ゼオン社製 SBR NS116R)100部
シリカ(エボニック社製 Ultrasil VN3)56.8部
ステアリン酸(日本油脂(株)製のステアリン酸)3部
酸化亜鉛(三井金属鉱業(株)製の亜鉛華1号)2部
シランカップリング剤(デグッサ社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド))4.5部
硫黄(鶴見化学(株)製の粉末硫黄)2部
加硫促進剤(大内新興化学工業(株)製のノクセラーNS(化学名:N−tert−ブチル−2−ベンゾチアジルスルフェンアミド))1部
加硫促進剤(大内新興化学工業(株)製のノクセラーD(化学名:1,3−ジフェニルグアニジン))1部
を用いた。
2.高分子複合材料の製造
配合内容にしたがい、1.7リットルの密閉型バンバリーミキサーで、硫黄、加硫促進剤を除く配合成分を温度が150℃に達するまで3〜5分間混練りし、ベース練りゴムを得た。つぎに、ベース練りゴムと硫黄および加硫促進剤をオープンロールで混練りし、得られた混練物を加硫して高分子複合材料を得た。
(Preparation of polymer material)
1. Polymer composite material blended SBR (SBR NS116R manufactured by Zeon Corporation) 100 parts Silica (Ultrasil VN3 manufactured by Evonik) 56.8 parts Stearic acid (stearic acid manufactured by NOF Corporation) 3 parts Zinc oxide (Mitsui Metal Mining Co., Ltd.) 2 parts silane coupling agent (Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa) 4.5 parts sulfur (powder sulfur manufactured by Tsurumi Chemical Co., Ltd.) ) 2 parts vulcanization accelerator (Noxeller NS (chemical name: N-tert-butyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinko Chemical Co., Ltd.) 1 part vulcanization accelerator (Ouchi Shinko One part of Noxeller D (chemical name: 1,3-diphenylguanidine) manufactured by Chemical Industry Co., Ltd. was used.
2. According to the content of the production of the polymer composite material, the components except sulfur and the vulcanization accelerator are kneaded in a 1.7-liter closed Banbury mixer for 3 to 5 minutes until the temperature reaches 150 ° C., and the base kneading is performed. I got the rubber. Next, the base kneaded rubber, sulfur and the vulcanization accelerator were kneaded with an open roll, and the obtained kneaded product was vulcanized to obtain a polymer composite material.

(試料の作製)
実施例
高分子複合材料を、厚さ1mmにスライス後、15mm×15mmに切り出した。切り出した高分子複合材料を密閉型のステンレス鋳鋼(SCS13A)製の金属容器に入れ、脱酸素条件下で常磁性のラジカル化合物(東京化成(株)製のTEMPO(化学名:2,2,6,6−Tetramethylpiperidine 1−Oxyl Free Radical))と共存させ40℃で1週間静置してTEMPOを高分子複合材料に蒸気浸透させた。金属容器の密閉には、ねじ込み継手のキャップとプラグ(FLOBAL株式会社製)を組み合わせて用いた。キャップ及びプラグは、それぞれテーパーメネジ及びオネジ(1’’1/4インチ)加工がされている。試料を設置のうえで、オネジ側にシールテープを巻き付け、充分なトルクで締めつけた。
(Preparation of sample)
Example The polymer composite material was sliced to a thickness of 1 mm and then cut out to 15 mm × 15 mm. The cut polymer composite material is placed in a closed metal container made of stainless steel cast steel (SCS13A), and a paramagnetic radical compound (TEMPO (Chemical name: 2,2,6, Tokyo Chemical Co., Ltd.) under deoxygenation conditions) , 6-Tetramethylpiperidine 1-Oxyl Free Radical)) and allowed to stand at 40 ° C. for 1 week to allow TEMPO to vapor-permeate the polymer composite material. To seal the metal container, a combination of a cap and a plug (manufactured by FLOBAL) of a threaded joint was used. The cap and the plug have a tapered female screw and a male screw (1 ″ 1 / inch), respectively. After placing the sample, a seal tape was wrapped around the male screw side and tightened with a sufficient torque.

比較例
密閉型の金属容器の代わりに三方コック付のガラス器具を用いた以外は実施例と同様にして高分子複合材料に蒸気浸透させた。ガラス容器は、通常の使用時と同様にグリースを使用して密閉状態とした。
Comparative Example Vapor infiltration into a polymer composite material was carried out in the same manner as in Example except that a glass appliance with a three-way cock was used instead of a closed metal container. The glass container was sealed using grease as in normal use.

(試料中のラジカル濃度定量)
ラジカルをドープした高分子材料を1mm×2mm×5mmで切り出した試料に含まれるラジカル濃度をESRにより定量した。ESR測定はBRUKER社製ELEXSYS E500を用いた。標準物質としてマンガンを同時に測定することで強度補正を行い、ラジカル量の定量を行った。結果を表1に示した。
(Quantitative determination of radical concentration in sample)
The radical concentration contained in a sample obtained by cutting a polymer material doped with radicals into 1 mm × 2 mm × 5 mm was quantified by ESR. For ESR measurement, an ELEXSYS E500 manufactured by BRUKER was used. The intensity was corrected by simultaneously measuring manganese as a standard substance, and the amount of radicals was quantified. The results are shown in Table 1.

(ラジカル濃度のバラツキ評価)
実施例および比較例の方法で試料調製したゴム試料、各10個のラジカル濃度を定量しその平均濃度と濃度のバラツキ(標準偏差)を求めた。結果を表1に示した。
実施例の方法では、比較例の方法と比較して濃度バラツキが小さく、精度良く目的濃度の試料が作成できることが確かめられた。
(Evaluation of variation in radical concentration)
The radical concentration of each of 10 rubber samples prepared by the methods of Examples and Comparative Examples was quantified, and the average concentration and the dispersion (standard deviation) were determined. The results are shown in Table 1.
In the method of the example, it was confirmed that the variation in the concentration was small as compared with the method of the comparative example, and it was possible to accurately prepare a sample having the target concentration.

Figure 0006645002
Figure 0006645002

Claims (2)

高分子材料に常磁性ラジカルをドープする方法であって、密閉型の金属容器で前記高分子材料に常磁性ラジカルをドープし、密閉にグリースを使用しないことを特徴とする常磁性ラジカルのドープ方法。 A method of doping a polymer material with a paramagnetic radical, wherein the polymer material is doped with a paramagnetic radical in a closed metal container , and grease is not used for sealing. Method. 前記高分子材料に常磁性ラジカルを脱酸素条件下でドープし、前記高分子材料中のラジカル化合物濃度を15.5〜55mMとすることを特徴とする請求項1に記載の常磁性ラジカルのドープ方法。 The doping of a paramagnetic radical according to claim 1, wherein the polymer material is doped with a paramagnetic radical under deoxygenation conditions, and the concentration of the radical compound in the polymer material is set to 15.5 to 55 mM. Method.
JP2014088418A 2014-04-22 2014-04-22 Doping method of paramagnetic radical Active JP6645002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088418A JP6645002B2 (en) 2014-04-22 2014-04-22 Doping method of paramagnetic radical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088418A JP6645002B2 (en) 2014-04-22 2014-04-22 Doping method of paramagnetic radical

Publications (2)

Publication Number Publication Date
JP2015206732A JP2015206732A (en) 2015-11-19
JP6645002B2 true JP6645002B2 (en) 2020-02-12

Family

ID=54603614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088418A Active JP6645002B2 (en) 2014-04-22 2014-04-22 Doping method of paramagnetic radical

Country Status (1)

Country Link
JP (1) JP6645002B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002628A (en) * 1998-06-15 2000-01-07 Sumika Chemical Analysis Service Ltd Metallic container for analysis
DE102008033886B4 (en) * 2008-07-18 2012-03-08 Bruker Biospin Ag Apparatus for carrying out DNP-NMR measurements with compensation arrangement

Also Published As

Publication number Publication date
JP2015206732A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP5737324B2 (en) Rubber composition for tire
WO2014142316A8 (en) Method for manufacturing rubber composition, rubber composition, vulcanized rubber, and tire
JP6870482B2 (en) Manufacturing method of rubber composition for tires
JP2016514746A (en) Method for crosslinking EPM and EPDM
CN106124669A (en) The authentication method of sulfenamide type accelerators in rubber
US9481784B2 (en) Rubber composition for anti-vibration rubber
JP6645002B2 (en) Doping method of paramagnetic radical
EP3348425B1 (en) Pneumatic tire and crosslinked rubber composition
JP2016098296A (en) Unvulcanized rubber composition for inner liner and pneumatic tire
JP2007186644A (en) Rubber composition for tire tread
JP5485841B2 (en) Rubber composition for tire and pneumatic tire
JP6598434B2 (en) Storage method of paramagnetic radical doped polymer material
JP6278847B2 (en) Method for producing rubber composition, rubber composition, cushion rubber and retreaded tire
CN108570170A (en) Rubber composition for tire and pneumatic tire
JP2014080535A (en) Coupling agent for rubber-carbon black and rubber composition for tire
JP5527164B2 (en) Rubber composition for tire and tire
JP2010285516A (en) Rubber composition for sidewall and pneumatic tire
JP6473031B2 (en) Evaluation method of silica
JP2009256439A (en) Rubber composition
WO2018139165A1 (en) Tire
JP2016113474A (en) Rubber composition and pneumatic tire using the same
JP6430707B2 (en) Method for producing rubber composition
JP6844192B2 (en) Method for measuring the reaction amount of a silane coupling agent
JP2015206731A (en) Doping method of paramagnetic radical
JP5733348B2 (en) Rubber composition for tire sidewall and pneumatic tire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6645002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250