JP6643762B2 - Non-contact thickness measurement method for steel structures in liquids - Google Patents

Non-contact thickness measurement method for steel structures in liquids Download PDF

Info

Publication number
JP6643762B2
JP6643762B2 JP2015197845A JP2015197845A JP6643762B2 JP 6643762 B2 JP6643762 B2 JP 6643762B2 JP 2015197845 A JP2015197845 A JP 2015197845A JP 2015197845 A JP2015197845 A JP 2015197845A JP 6643762 B2 JP6643762 B2 JP 6643762B2
Authority
JP
Japan
Prior art keywords
steel structure
ultrasonic transducer
submerged
submerged steel
thickness measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015197845A
Other languages
Japanese (ja)
Other versions
JP2017072412A (en
Inventor
一洋 白井
一洋 白井
丈嗣 平林
丈嗣 平林
さゆり 松本
さゆり 松本
敏成 田中
敏成 田中
藤田 勇
勇 藤田
宗生 吉江
宗生 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2015197845A priority Critical patent/JP6643762B2/en
Publication of JP2017072412A publication Critical patent/JP2017072412A/en
Application granted granted Critical
Publication of JP6643762B2 publication Critical patent/JP6643762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液中鋼構造物の非接触型厚み測定方法に係り、例えば、海中等の液中に設置された被測定対象物である液中鋼構造物の表面に付着物が存在していたとしても、この付着物を除去することなく適切に液中鋼構造物の厚みを測定することのできる液中鋼構造物の非接触型厚み測定方法に関するものである。   The present invention relates to a non-contact type thickness measurement method for a submerged steel structure, for example, in which a substance is present on a surface of a submerged steel structure which is an object to be measured installed in a liquid such as the sea. The present invention relates to a non-contact type thickness measurement method of a submerged steel structure capable of appropriately measuring the thickness of the submerged steel structure without removing the attached matter.

桟橋や岸壁の鋼管杭や鋼矢板は、厳しい環境条件によりサビ等で減肉が進行するため、耐用年数の間にその機能を発揮することができるように維持管理がなされている。このような維持管理計画を立てるために鋼管杭や鋼矢板の肉厚測定が定期的に実施されている。   Steel pipe piles and steel sheet piles on piers and quays undergo rust and other factors to reduce wall thickness under severe environmental conditions, and are maintained so that their functions can be exhibited during their useful lives. In order to make such a maintenance plan, the wall thickness of steel pipe piles and steel sheet piles is regularly measured.

例えば、現在行われている鋼管杭や鋼矢板の肉厚測定の方法は、まず潜水士が海中に潜水し、ケレン棒等を用いて鋼管杭表面に付着した貝、フジツボ、海藻等の付着海生物を人力で除去・回収し、エアサンダーを用いて鋼管杭の測定表面を磨いた後に、超音波厚み計を使用し、研磨した測定表面に超音波厚み計のプローブ(送受波器)を密着させて超音波を送波し、鋼板背面からの反射波の伝達時間を測定し、肉厚を算出するという方法が採られている。   For example, the method of measuring the wall thickness of steel pipe piles and steel sheet piles currently being carried out is as follows. After removing and collecting living organisms manually and polishing the measurement surface of the steel pipe pile using an air sander, use an ultrasonic thickness gauge and attach the ultrasonic thickness gauge probe (transmitter / receiver) to the polished measurement surface Then, an ultrasonic wave is transmitted, the transmission time of the reflected wave from the back surface of the steel plate is measured, and the thickness is calculated.

しかしながら、上述した従来の厚み測定方法は、潜水士の人力による作業であり、特に付着海生物の除去作業に長時間を要するため、高い作業コストを必要とするものであった。また、厚み測定のために鋼管杭の測定表面から除去された付着海生物は、回収した後に産業廃棄物として処理しなければならないので、廃棄物処理のためのコストも要するものであった。   However, the above-mentioned conventional thickness measurement method is a manual operation of a diver, and particularly requires a long operation time for removing attached sea creatures, which requires a high operation cost. Further, the attached sea creatures removed from the measurement surface of the steel pipe pile for the thickness measurement must be collected and treated as industrial waste, which requires a cost for waste treatment.

さらに、上述した従来の厚み測定方法は、その手法上、鋼管杭の一部のみの厚み測定しかできないので、鋼管杭の全長に亘る連続的な厚み測定は実質的に不可能であり、測定値の信頼性向上を図る上では限界があった。   Furthermore, since the conventional thickness measurement method described above can only measure the thickness of a part of the steel pipe pile due to its method, continuous thickness measurement over the entire length of the steel pipe pile is substantially impossible, and the measured value There was a limit in improving the reliability of

そこで、本発明者等は、液中鋼構造物に付着した付着物を除去することなく、液中鋼構造物に対する連続的な厚み測定を実現することが可能な、低コストで信頼性の高い液中鋼構造物の非接触型厚み測定方法を提案している。   Therefore, the present inventors have realized a low-cost and highly reliable method capable of realizing a continuous thickness measurement for a submerged steel structure without removing the attached substance attached to the submerged steel structure. A non-contact thickness measurement method for submerged steel structures is proposed.

特開2008−286610号公報JP 2008-286610 A

特許文献1に記載された液中鋼構造物の非接触型厚み測定方法は、超音波送受波器を被測定対象物である液中鋼構造物に対して非接触の状態で離間配置させる配置工程と、前記超音波送受波器から前記液中鋼構造物に対して超音波を放射する放射工程と、前記液中鋼構造物から反射される反射波を前記超音波送受波器により受波する受波工程と、前記受波工程で受波した反射波を相関処理することによって、前記液中鋼構造物の表面からの表面反射波と前記液中鋼構造物の裏面からの裏面反射波とを抽出する相関処理工程と、前記表面反射波と前記裏面反射波との前記超音波送受波器に対する到達時間の差を求めることによって、前記液中鋼構造物の厚みを算出する算出工程と、を含む処理を実行する。   The non-contact type thickness measurement method of a submerged steel structure described in Patent Literature 1 is an arrangement in which an ultrasonic transducer is spaced apart from a submerged steel structure to be measured in a non-contact state. A step of radiating an ultrasonic wave from the ultrasonic transducer to the submerged steel structure, and receiving a reflected wave reflected from the submerged steel structure by the ultrasonic transducer. The wave receiving step and the reflected wave received in the wave receiving step are correlated to obtain a surface reflected wave from the surface of the submerged steel structure and a back surface reflected wave from the back surface of the submerged steel structure. A correlation processing step of extracting the, and a calculation step of calculating the thickness of the submerged steel structure by calculating a difference in arrival time of the front surface reflected wave and the back surface reflected wave with respect to the ultrasonic transducer. Is performed.

このような液中鋼構造物の非接触型厚み測定方法によれば、液中鋼構造物の表面に付着した付着物を除去することなく厚み測定を行うことができるので、従来技術に比べて作業時間の短縮を図ることができ、作業コストを削減することができる。また、本発明では、付着物を除去する必要がないので産業廃棄物が発生せず、廃棄物処理コストを削減できるとともに環境にも負荷を与えることがない。   According to such a non-contact type thickness measurement method for a submerged steel structure, the thickness can be measured without removing the adhered substance attached to the surface of the submerged steel structure. The working time can be reduced, and the working cost can be reduced. Further, according to the present invention, since there is no need to remove the attached matter, no industrial waste is generated, the waste treatment cost can be reduced, and no burden is imposed on the environment.

また、上述した方法の他、表面反射波と裏面反射波との超音波送受波器に対する到達時間の差を求める以外に、液中鋼構造物における多重反射波の時間間隔を測定することによっても肉厚を算出することができることが知られている。   In addition to the method described above, in addition to obtaining the difference in arrival time of the front reflected wave and the back reflected wave with respect to the ultrasonic transducer, by measuring the time interval of multiple reflected waves in the submerged steel structure. It is known that the thickness can be calculated.

しかしながら、従来の液中鋼構造物の非接触型厚み測定方法は、付着物が多い場合、反射波がすぐに減衰せずに残響が長く続く結果、該残響が多重反射波と重なり、振幅が多重反射波と同じ若しくは大きい場合、多重反射波の検出をすることができず、肉厚の算出をすることができないまたは、測定精度が著しく低下するという問題があった。   However, the conventional non-contact type thickness measurement method of a submerged steel structure, when there is a large amount of deposits, the reflected wave does not immediately attenuate and the reverberation continues for a long time. When it is equal to or larger than the multiple reflection wave, there is a problem that the multiple reflection wave cannot be detected, the thickness cannot be calculated, or the measurement accuracy is significantly reduced.

また、従来の方法では、より強い反射波を得るために超音波送受波器の音圧レベルのピーク値が液中鋼構造物に当るように測定距離を設定していたが、この方法によると、付着物にも強い超音波が当たることとなり、得られた測定結果が液中鋼構造物および付着物の両方からの反射波および多重反射波が足し合わされたものとなり、これを解析する際に専門的な知見を持たずに多重反射の位置を容易に求めることができないという問題があった。   In addition, in the conventional method, the measurement distance was set so that the peak value of the sound pressure level of the ultrasonic transducer hits the submerged steel structure in order to obtain a stronger reflected wave, but according to this method, In addition, strong ultrasonic waves will also be applied to the attached matter, and the obtained measurement result will be the sum of reflected waves and multiple reflected waves from both the submerged steel structure and the attached matter, and when analyzing this, There has been a problem that the position of multiple reflection cannot be easily obtained without having specialized knowledge.

そこで、本発明は、上記問題に鑑みてなされたものであり、液中鋼構造物に付着した付着物が多い場合であっても、専門的な知見を必要とせずに液中鋼構造物の肉厚測定を行うことができる液中鋼構造物の非接触型厚み測定方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and even when there are many deposits attached to the submerged steel structure, it is not necessary to have specialized knowledge to perform the submerged steel structure. It is an object of the present invention to provide a non-contact type thickness measurement method of a steel structure in liquid capable of performing thickness measurement.

超音波送受波器を被測定対象物である液中鋼構造物に対して非接触の状態で離間配置させる配置工程と、前記超音波送受波器から前記液中鋼構造物に対して超音波を放射する放射工程と、前記液中鋼構造物から反射される反射波を前記超音波送受波器により受波する受波工程と、前記受波工程で受波した反射波を相関処理することによって、前記液中鋼構造物に付着した付着物および前記液中鋼構造物の表面からの表面反射波及び多重反射波とを抽出する相関処理工程と、前記多重反射波の時間間隔を測定することによって、前記液中鋼構造物の厚みを算出する算出工程と、を含む処理を実行する非接触型厚み測定方法であって、前記配置工程は、前記液中鋼構造物の表面と前記超音波送受波器との距離を前記超音波送受波器の焦点距離よりも小さく設定し、前記超音波送受波器は、円盤型で表面を円弧状に形成し、該円弧の中心点近傍に超音波が集中する焦点集束型音源を備えることを特徴とする。 An arranging step of disposing the ultrasonic transducer in a non-contact state with respect to the submerged steel structure as an object to be measured, and an ultrasonic wave from the ultrasonic transducer to the submerged steel structure. And a receiving step of receiving a reflected wave reflected from the submerged steel structure by the ultrasonic transducer, and performing a correlation process on the reflected wave received in the receiving step. A correlation processing step of extracting a deposit attached to the submerged steel structure and a surface reflected wave and a multiple reflected wave from the surface of the submerged steel structure, and measuring a time interval between the multiple reflected waves. A calculation step of calculating the thickness of the submerged steel structure, and a non-contact type thickness measurement method for performing a process including: The distance from the ultrasonic transducer to the focal length of the ultrasonic transducer Small set, the ultrasonic transducer is a surface in the disc-type formed in a circular arc shape, in the vicinity the center point of the arc ultrasonic waves, wherein Rukoto includes a focus converging type sound source to concentrate.

また、本発明に係る液中鋼構造物の非接触型厚み測定方法において、前記配置工程は、前記超音波送受波器の中心軸上の音圧分布の第1回目のゼロ点の位置が前記液中鋼構造物の表面付近に来るように前記超音波送受波器と前記液中鋼構造物の表面の距離を決定すると好適である。   Further, in the non-contact type thickness measuring method for a submerged steel structure according to the present invention, the arranging step may be such that a position of a first zero point of a sound pressure distribution on a central axis of the ultrasonic transducer is the above-mentioned. It is preferable to determine the distance between the ultrasonic transducer and the surface of the submerged steel structure so as to be near the surface of the submerged steel structure.

また、本発明に係る液中鋼構造物の非接触型厚み測定方法において、前記算出工程は、第2から第4回目の多重反射のパルスの位置から時間間隔を測定すると好適である。   In the non-contact thickness measuring method for a steel structure in liquid according to the present invention, it is preferable that in the calculating step, a time interval is measured from the positions of the second to fourth multiple reflection pulses.

上記発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた発明となり得る。   The above summary of the present invention does not enumerate all the necessary features of the present invention, and a sub-combination of these features may also be an invention.

本発明に係る液中鋼構造物の非接触型厚み測定方法は、付着物及び液中鋼構造物共に弱い超音波が当たるが、液中鋼構造物の表面と裏面の間で反射を繰り返す多重反射波は、液中鋼構造物内部を進むことになり、液中鋼構造物内で焦点を結ぶため、大きな反射波を得ることができる。これにより、付着物からの反射波が小さくなり、液中鋼構造物からの多重反射が大きくなることによる相乗効果によって、付着物の量が多い場合であっても非接触で液中鋼構造物の肉厚を測定することができる。また、付着物からの反射波が小さく、多重反射が大きくなることで、測定結果においては多重反射の判別が容易となり、専門的な知見を有していない場合であっても、容易に肉厚の算出を行うことができる。   In the non-contact thickness measurement method for a submerged steel structure according to the present invention, weak ultrasonic waves are applied to both the attached matter and the submerged steel structure, but the reflection is repeated between the front surface and the back surface of the submerged steel structure. The reflected wave travels inside the submerged steel structure and is focused inside the submerged steel structure, so that a large reflected wave can be obtained. As a result, the reflected wave from the attached substance is reduced, and the multiple reflection from the submerged steel structure is increased, so that even when the amount of the attached substance is large, the submerged steel structure is not contacted. Can be measured. In addition, since the reflected wave from the attached matter is small and the multiple reflection is large, it is easy to determine the multiple reflection in the measurement result, and even if there is no expert knowledge, the thickness can be easily increased. Can be calculated.

反射波の模式図Schematic diagram of reflected wave 反射波の解析波形Analysis waveform of reflected wave 多重反射の説明図Illustration of multiple reflection 送受波器から送波される超音波の水平面上の音圧分布を示す図Diagram showing sound pressure distribution on the horizontal plane of ultrasonic waves transmitted from the transducer 送受波器から送波される超音波の中心軸上の音圧分布を示すグラフGraph showing sound pressure distribution on the central axis of ultrasonic waves transmitted from a transducer 音圧分布と測定位置を示す図Diagram showing sound pressure distribution and measurement position 実験装置の概要を示す図Diagram showing the outline of the experimental equipment 付着物からの反射波の電圧波形Voltage waveform of reflected wave from attached matter 付着物からの反射波と送受波器の距離を示すグラフA graph showing the distance between the reflected wave from the deposit and the transducer 鋼板からの反射波の電圧波形Voltage waveform of reflected wave from steel plate 鋼板からの反射波と送受波器の距離を示すグラフGraph showing the distance between the reflected wave from the steel plate and the transducer 付着物が付着した鋼板からの反射波を示す解析結果Analysis results showing reflected waves from a steel sheet with attached matter 付着物が付着した鋼板からの反射波を示す解析結果Analysis results showing reflected waves from a steel sheet with attached matter 送受波器から鋼板までの距離と肉厚測定値の関係を示すグラフGraph showing the relationship between the distance from the transducer to the steel plate and the measured thickness

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, a preferred embodiment for carrying out the present invention will be described with reference to the drawings. It should be noted that the following embodiments do not limit the invention according to each claim, and not all combinations of the features described in the embodiments are necessarily essential for solving the invention. .

[非接触型肉厚測定の原理]
図1に示すように、貝などの生物が付着物40として付着した鋼板10などの液中鋼構造物に超音波を伝搬させると、反射波は、図2に示すように付着物からの反射波、鋼板の表面からの反射波および多重反射波の順で受波器に到達する。多重反射波は、鋼板内で往復している音波であるため、付着物からの反射波および鋼板表面からの反射波が消えた後も暫くの時間継続して計測される。この多重反射波の時間間隔が鋼板内を往復する超音波の時間間隔となるので、これに予め求められている鋼板内の音速を掛けて2で割ることにより鋼板の板厚を測定することができる。
[Principle of non-contact thickness measurement]
As shown in FIG. 1, when an ultrasonic wave is propagated through a submerged steel structure such as a steel plate 10 to which an organism such as a shell has adhered as the deposit 40, a reflected wave is reflected from the deposit as shown in FIG. The wave arrives at the receiver in the order of the wave, the reflected wave from the surface of the steel sheet, and the multiple reflected wave. Since the multiple reflected wave is a sound wave that reciprocates in the steel plate, it is continuously measured for a while after the reflected wave from the attached matter and the reflected wave from the steel plate surface disappear. Since the time interval of the multiple reflected waves is the time interval of the ultrasonic waves reciprocating in the steel sheet, the thickness of the steel sheet can be measured by multiplying the obtained sound velocity in the steel sheet and dividing by 2. it can.

しかし、水中に置いた鋼板からの多重反射は、表面反射と比較して非常に微弱であり、さらに、付着物を透過するとき、超音波が減衰し鋼板に到達するエネルギーも減衰する。本実施形態に係る液中鋼構造物の非接触式肉厚測定方法では、このような微弱な多重反射波を検出する送受波器の形状や用いる信号処理などについて後述する技術開発を行った。   However, multiple reflections from a steel plate placed in water are very weak as compared with surface reflections, and furthermore, when transmitted through an attached matter, ultrasonic waves are attenuated and the energy reaching the steel plate is also attenuated. In the non-contact thickness measuring method for a submerged steel structure according to the present embodiment, the following technical development was performed on the shape of the transducer for detecting such a weak multiple reflected wave, the signal processing to be used, and the like.

[多重反射について]
多重反射は水中に鋼板を置いて、超音波を伝搬させた場合のように、異なる媒質中を超音波が伝搬する際に境界面の反射と透過の割合により発生する。ここで、海水の音響インピーダンスZ1を、Z1=1.48×106(Pa・s/m)、鋼板の音響インピーダンスZ2を、Z2=46.4×106(Pa・s/m)とし、海水中に鋼板を置いた場合、海水中から鋼板に超音波が伝搬する場合と、鋼板から海水中に超音波が伝搬する場合の反射率、透過率は以下の通りとなる。
[About multiple reflection]
Multiple reflection is caused by the ratio of reflection and transmission of a boundary surface when ultrasonic waves propagate in different media, as in the case where a steel sheet is placed in water and ultrasonic waves are propagated. Here, the acoustic impedance Z1 of seawater is Z1 = 1.48 × 10 6 (Pa · s / m), the acoustic impedance Z2 of the steel plate is Z2 = 46.4 × 10 6 (Pa · s / m), When a steel plate is placed in seawater, the reflectance and the transmittance when the ultrasonic wave propagates from the seawater to the steel plate and when the ultrasonic wave propagates from the steel plate into the seawater are as follows.


表1からわかるように、海水中から鋼板に伝搬する音の強さの透過率(TI)は0.12であり、12%の音のエネルギーが鋼板に伝わることを表している。図3に示すように、鋼板10に伝わった超音波は進行し鋼板10の背面の海水との境界面11に到達し、境界面11で反射と透過が起こる。鋼板10から海水に伝わる音の強さの反射率(RI)は0.88であり、超音波が鋼板から海水中に伝搬するときに入射波の88%の音のエネルギーが鋼板10内に反射され戻ることとなる。このため、鋼板10に入射した超音波は、鋼板10の両端で海水中に12%程度エネルギーを放射し、鋼板10内を往復伝搬しながら減衰することとなる。図3に示すように、超音波が鋼板10の両端で反射を繰り返し往復する現象を多重反射と呼び、入射音圧を1とすると、以下の表2の関係が得られる。表2において、1回目および2回目の背面反射の音圧の数値がマイナスとなっているのは、位相が反転していることを示している。   As can be seen from Table 1, the transmittance (TI) of the sound intensity transmitted from the seawater to the steel plate is 0.12, indicating that 12% of the sound energy is transmitted to the steel plate. As shown in FIG. 3, the ultrasonic wave transmitted to the steel plate 10 advances and reaches a boundary surface 11 between the back surface of the steel plate 10 and seawater, where reflection and transmission occur at the boundary surface 11. The reflectivity (RI) of the sound intensity transmitted from the steel plate 10 to the seawater is 0.88, and when ultrasonic waves propagate from the steel plate into the seawater, 88% of the sound energy of the incident wave is reflected into the steel plate 10. Will be returned. Therefore, the ultrasonic waves incident on the steel plate 10 radiate about 12% of the energy into the seawater at both ends of the steel plate 10 and are attenuated while reciprocating within the steel plate 10. As shown in FIG. 3, a phenomenon in which ultrasonic waves repeatedly reflect and reciprocate at both ends of the steel plate 10 is called multiple reflection, and when the incident sound pressure is set to 1, the relationship shown in Table 2 below is obtained. In Table 2, the negative values of the sound pressure of the first and second back reflections indicate that the phases are inverted.

表2から明らかなように、1回目と2回目の背面反射波R1およびR2はほぼ同じ音圧で検出することが可能となる。ここでは、伝搬減衰等の減衰量を考慮していないので、実際に測定できる音圧はさらに小さくなるが、この1回目と2回目の背面反射波R1およびR2の時間間隔を測定することにより、鋼板10内を往復する超音波の伝搬時間を知ることができるので、この伝搬時間から鋼板10の肉厚を算出する。   As is clear from Table 2, the first and second back reflection waves R1 and R2 can be detected with substantially the same sound pressure. Here, since the amount of attenuation such as propagation attenuation is not taken into account, the actually measurable sound pressure is further reduced. However, by measuring the time interval between the first and second back reflected waves R1 and R2, Since the propagation time of the ultrasonic wave reciprocating in the steel plate 10 can be known, the thickness of the steel plate 10 is calculated from the propagation time.

[送受波器の設計および配置]
非接触で対象物の肉厚を測定するには、上述したような微弱な多重反射を捉えることが重要となるので、パワーの大きな音波を測定対象物に放射し、反射波を効率よく受波することができる大口径の焦点集束型送受波器を用いると好適である。
[Design and arrangement of transducers]
In order to measure the thickness of an object in a non-contact manner, it is important to capture weak multiple reflections as described above. Therefore, high-power sound waves are emitted to the object to be measured, and reflected waves are efficiently received. It is preferable to use a large-diameter focal-focusing type transducer capable of performing the above operation.

焦点集束型送受波器は、円盤型で表面を円弧状に形成し、円弧の中心点付近に超音波が集中する焦点集束型音源を備えており、諸元は、中心周波数700kHz、直径100mm、曲率半径300mmとすると好適である。この送受波器の中心軸を含む水平面上の音圧分布を図4に、中心軸上の音圧分布を図5に示す。   The focus-focusing type transducer has a disk-shaped surface and is formed in an arc shape, and includes a focus-focusing type sound source in which ultrasonic waves are concentrated near the center point of the arc. The specifications are a center frequency of 700 kHz, a diameter of 100 mm, Preferably, the radius of curvature is 300 mm. FIG. 4 shows a sound pressure distribution on a horizontal plane including the central axis of the transducer, and FIG. 5 shows a sound pressure distribution on the central axis.

図4は、音圧分布の最大値を1として5段階で音圧を濃淡表示したものである。超音波は、送受波器の中心軸を軸として、送受波器から200〜500mm位の間で円筒形に強く分布していることがわかる。   FIG. 4 is a graph in which the maximum value of the sound pressure distribution is set to 1 and the sound pressure is displayed in five gradations. It can be seen that the ultrasonic waves are strongly distributed cylindrically about 200 to 500 mm from the transducer with the central axis of the transducer being the axis.

また、図5に示すように、約200mmの位置に音圧分布の第1回目のゼロ点の位置が表れており、従来は、図6に示すように、測定対象物である鋼板により強い音圧が当たるように音圧分布の最大となる送受波器の焦点付近に鋼板が存在するように送受波器の位置を設定していたが、この位置では、付着物にも強い音圧が当たることとなり、付着物からの反射波の残響が鋼板内を往復伝搬する多重反射波と重なってしまい、多重反射波の検出ができなくなるという問題を有していた。   In addition, as shown in FIG. 5, the position of the first zero point of the sound pressure distribution appears at a position of about 200 mm. Conventionally, as shown in FIG. The position of the transducer was set so that the steel plate existed near the focal point of the transducer where the sound pressure distribution had the maximum so that the pressure was applied, but at this position, strong sound pressure was applied to the attached matter As a result, the reverberation of the reflected wave from the deposits overlaps with the multiple reflected waves that reciprocate in the steel sheet, and there is a problem that the multiple reflected waves cannot be detected.

これに対し、本実施形態に係る液中鋼構造物の非接触型厚み測定方法によれば、図6に示すように、送受波器の位置を鋼板に近づけることにより、送受波器の位置を送受波器の焦点距離よりも小さく設定することで鋼板にだけ強い音を当てて、付着物には弱い音を当てることができる。この結果、付着物からの反射波の強さが鋼板内を往復伝搬する多重反射波より弱くなり、良好な計測が可能となる。   On the other hand, according to the non-contact thickness measuring method for a submerged steel structure according to the present embodiment, as shown in FIG. 6, the position of the transducer is brought closer to the steel plate, so that the position of the transducer is changed. By setting the focal length smaller than the focal length of the transducer, a strong sound can be applied only to the steel sheet and a weak sound can be applied to the attached matter. As a result, the intensity of the reflected wave from the deposit becomes weaker than the multiple reflected waves that reciprocate propagate in the steel plate, and good measurement is possible.

なお、送受波器と鋼板の距離は、鋼板の位置が送受波器の中心軸上の音圧分布の第1回目のゼロ点の位置付近に鋼板の表面が来るように設定すると好適である。また、送受波器における送波パワーを大きくするために、レーダーに使われている符号変調方式によるパルス圧縮技術を導入し、レンジサイドローブが小さくなるバーカ符号を用いると好適である。超音波送受波器からバーカ符号を送波する場合は、超音波信号を搬送波としてバーカ符号の変化に応じた変調を施した電気信号を超音波送受波器に送ることで、バーカ符号を超音波として伝搬させることができる。このバーカ符号を用いることでレンジサイドローブが小さくなり、受波信号の識別が容易となる。   The distance between the transducer and the steel plate is preferably set such that the surface of the steel plate comes near the position of the first zero point of the sound pressure distribution on the central axis of the transducer. Further, in order to increase the transmission power in the transmitter / receiver, it is preferable to introduce a pulse compression technique based on a code modulation scheme used for radar and use a Barker code in which the range side lobe is reduced. When transmitting a Barker code from an ultrasonic transmitter / receiver, the Barker code is transmitted to the ultrasonic transmitter / receiver using an ultrasonic signal as a carrier wave and an electric signal modulated according to a change in the Barker code, thereby transmitting the Barker code to the ultrasonic wave. Can be propagated as By using this Barker code, the range side lobe is reduced, and the received signal can be easily identified.

[測定方法]
本実施形態に係る液中鋼構造物の非接触型厚み測定方法は、例えば発信器、パワーアンプ、超音波送受波器、AD変換機、制御解析用計算機を備える装置によって実施可能である。具体的には、超音波送受波器を被測定対象物である鋼板などの液中鋼構造物に対して非接触の状態で離間配置させ(配置工程)、超音波送受波器から液中鋼構造物に対して超音波を放射し(放射工程)、液中鋼構造物から反射される反射波を超音波送受波器により受波し(受波工程)、受波した反射波を相関処理することによって液中鋼構造物に付着した付着物および液中鋼構造物の表面からの表面反射波および多重反射波とを抽出し(相関処理工程)、多重反射波の時間間隔を測定することによって液中鋼構造物の厚みを算出する(算出工程)。なお、配置工程では、液中鋼構造物の表面と超音波送受波器との距離を超音波送受波器の焦点距離よりも小さく設定している。
[Measuring method]
The non-contact thickness measurement method for a submerged steel structure according to the present embodiment can be implemented by, for example, an apparatus including a transmitter, a power amplifier, an ultrasonic transducer, an AD converter, and a control analysis computer. Specifically, the ultrasonic transducer is separated from the submerged steel structure such as a steel plate to be measured in a non-contact state with the submerged steel structure (arrangement step). Ultrasonic waves are emitted to the structure (radiation process), the reflected wave reflected from the submerged steel structure is received by the ultrasonic transducer (wave receiving process), and the received reflected wave is correlated. Extracting the deposits adhering to the submerged steel structure and the surface reflected wave and the multiple reflected wave from the surface of the submerged steel structure (correlation processing step), and measuring the time interval between the multiple reflected waves. To calculate the thickness of the submerged steel structure (calculation step). In the disposing step, the distance between the surface of the submerged steel structure and the ultrasonic transducer is set smaller than the focal length of the ultrasonic transducer.

[測定結果]
次に、上述した液中鋼構造物の非接触型厚み測定方法を用いた鋼板の測定実験の測定結果について説明を行う。
[Measurement result]
Next, a measurement result of a steel plate measurement experiment using the above-described non-contact thickness measurement method for a submerged steel structure will be described.

図7に示すように、本測定では測定対象物である鋼板10と、鋼板10に超音波を放射して反射波や多重反射波を受波する超音波送受波器20と、この超音波送受波器20と鋼板10の間の距離を可変にする直動装置30を用いた。   As shown in FIG. 7, in this measurement, a steel plate 10 which is an object to be measured, an ultrasonic transducer 20 which radiates an ultrasonic wave to the steel plate 10 to receive a reflected wave or a multiple reflected wave, A linear motion device 30 for varying the distance between the wave device 20 and the steel plate 10 was used.

まず、鋼板10の代わりにムラサキガイの貝殻を袋詰めにしたものを付着物40とし、該付着物40のみに超音波を放射して測定を行った。   First, a mussel shell packed in a bag in place of the steel plate 10 was used as the attached matter 40, and measurement was performed by radiating ultrasonic waves only to the attached matter 40.

超音波送受波器20の位置を直動装置30を用いて移動させ、超音波送受波器20と付着物40との間の距離を変更して図8に示す▲1▼と▲2▼の間の電圧値の最大振幅を測定した。なお、▲1▼は付着物40の背面(鋼板10の表面に相当)からの反射波が超音波送受波器20に到達するまでの時間を示し、▲2▼は鋼板10が存在すると仮定して、4回目の多重反射波のパルスの最後尾が測定される時間を示す。   The position of the ultrasonic transducer 20 is moved by using the linear motion device 30, and the distance between the ultrasonic transducer 20 and the attached matter 40 is changed so that the positions of (1) and (2) shown in FIG. The maximum amplitude of the voltage value between them was measured. It should be noted that (1) indicates the time required for the reflected wave from the back surface of the deposit 40 (corresponding to the surface of the steel plate 10) to reach the ultrasonic transducer 20, and (2) assumes that the steel plate 10 is present. Indicates the time at which the tail of the pulse of the fourth multiple reflection wave is measured.

図9に示すように、付着物40から反射波電圧の▲1▼と▲2▼の間の最大振幅と送受波器からの距離の関係から、距離が近づくに従い、付着物40からの反射波が小さくなることが確認できる。   As shown in FIG. 9, the relationship between the maximum amplitude of the reflected wave voltage from (1) and (2) of the reflected wave voltage from the attached matter 40 and the distance from the transmitter / receiver indicates that the reflected wave from the attached matter 40 decreases as the distance decreases. Can be confirmed to be smaller.

次に、図7に示すように、鋼板10(肉厚18.45mm)のみを用いて上述した付着物からの反射波測定と同様の測定を行った。   Next, as shown in FIG. 7, the same measurement as the above-described measurement of the reflected wave from the attached matter was performed using only the steel plate 10 (18.45 mm in thickness).

図10は、超音波送受波器20と鋼板10の間の距離を304mmと設定した場合の鋼板10からの反射波形を示す。この反射波形では、▲1▼と▲2▼の間に表面反射波が、▲3▼と▲4▼の間に2回目〜4回目の多重反射波が存在している。図11に示すように、超音波送受波器から鋼板までの距離に対する表面反射波と多重反射波の最大振幅電圧の変化は、表面反射波は、図5に示した音圧分布と同様に焦点付近で振幅が最大となり、超音波送受波器と鋼板の距離が近づくほど、表面反射波の振幅は小さくなっているが、多重反射波は逆に距離が近くなるほど振幅が大きくなっている。この理由は超音波送受波器に焦点集束型音源を使用しているため、多重反射を繰り返すことによって鋼板内を超音波が前進し、焦点距離に達することで多重反射が大きくなるからであると考えられる。   FIG. 10 shows a reflection waveform from the steel plate 10 when the distance between the ultrasonic transducer 20 and the steel plate 10 is set to 304 mm. In this reflected waveform, a surface reflected wave exists between (1) and (2), and a second to fourth multiple reflected waves exist between (3) and (4). As shown in FIG. 11, the change in the maximum amplitude voltage of the surface reflected wave and the multiple reflected wave with respect to the distance from the ultrasonic transducer to the steel plate indicates that the surface reflected wave has the same focus as the sound pressure distribution shown in FIG. The amplitude is maximized in the vicinity, and the amplitude of the surface reflected wave decreases as the distance between the ultrasonic transducer and the steel plate decreases, but the amplitude of the multiple reflected wave increases as the distance decreases. The reason for this is that, since the ultrasonic transducer uses a focussed sound source, the ultrasonic waves advance in the steel sheet by repeating multiple reflections, and the multiple reflections increase when the focal length is reached. Conceivable.

次に、図7に示した鋼板10にムラサキガイの貝殻を袋詰めした付着物40を貼り付けて鋼板10に付着物40が付着している状態での測定を行った。   Next, the attached matter 40 in which the shell of mussels was packaged was attached to the steel sheet 10 shown in FIG. 7, and the measurement was performed in a state where the attached matter 40 was attached to the steel sheet 10.

図12は、超音波送受波器から鋼板までの距離を309mmと設定した場合の反射波の解析波形である。この距離309mmは、図5に示した超音波送受波器の中心からの距離において音圧レベルがピーク値となる位置に鋼板が存在することを示している。ここで、▲1▼は鋼板からの表面反射波が検出される位置、▲1▼と▲2▼の間は多重反射波が検出される位置であるが、付着物からの残響の影響によって表面反射波及び多重反射波共にこのグラフからは読み取ることができない。   FIG. 12 is an analysis waveform of a reflected wave when the distance from the ultrasonic transducer to the steel plate is set to 309 mm. This distance of 309 mm indicates that the steel plate exists at a position where the sound pressure level has a peak value at the distance from the center of the ultrasonic transducer shown in FIG. Here, (1) is the position where the surface reflected wave from the steel plate is detected, and between (1) and (2) is the position where the multiple reflected wave is detected, but the surface is affected by the reverberation from the attached matter. Neither reflected waves nor multiple reflected waves can be read from this graph.

これに対し、図13は、超音波送受波器から鋼板までの距離を199mmと設定した場合の反射波の解析波形である。この距離199mmは、図5に示した超音波送受波器の中心からの距離において音圧レベルが第1回目のゼロ点として表れる位置に鋼板が存在することを示している。図13から明らかなように、解析波形において▲1▼の時間に表面反射波を読み取ることができ、▲1▼と▲2▼の間に多重反射波を読み取ることができる。なお、多重反射波は▲1▼と▲2▼の間のパルス位置で確認することができるが、1回目の多重反射波は、表面反射波と重なる場合もあるため、2回目から4回目の多重反射のパルス位置から時間間隔を算出すると好適である。   On the other hand, FIG. 13 shows an analysis waveform of a reflected wave when the distance from the ultrasonic transducer to the steel plate is set to 199 mm. This distance of 199 mm indicates that the steel plate exists at a position where the sound pressure level appears as the first zero point at the distance from the center of the ultrasonic transducer shown in FIG. As is clear from FIG. 13, the surface reflected wave can be read at the time of (1) in the analysis waveform, and the multiple reflected wave can be read between (1) and (2). Note that the multiple reflected wave can be confirmed at the pulse position between (1) and (2), but the first multiple reflected wave may overlap with the surface reflected wave, so the second to fourth times It is preferable to calculate the time interval from the pulse position of the multiple reflection.

なお、図14は、超音波送受波器から鋼板までの距離に対する肉厚測定値の測定結果を示している。図14から明らかなように、鋼板単独で測定した場合と付着物が存在する場合の肉厚測定結果は、距離が219mm以下の範囲でほぼ同程度となっており、この測定距離においては付着物の有無に係わらず肉厚測定が可能であることを示している。   FIG. 14 shows a measurement result of a wall thickness measurement value with respect to a distance from the ultrasonic transducer to the steel plate. As is clear from FIG. 14, the thickness measurement results obtained when the steel sheet alone was measured and when there was an attached matter were almost the same when the distance was 219 mm or less. This indicates that the wall thickness measurement can be performed regardless of the presence or absence of.

このように、本実施形態に係る液中鋼構造物の非接触型肉厚測定方法によれば、付着物からの反射波が小さく、多重反射が大きくなることで、測定結果においては多重反射の判別が容易となり、専門的な知見を有していない場合であっても、容易に肉厚の算出を行うことができる。   As described above, according to the non-contact thickness measurement method for a submerged steel structure according to the present embodiment, the reflected wave from the attached matter is small and the multiple reflection is large, so that the measurement result shows that The discrimination is facilitated, and the thickness can be easily calculated even when there is no special knowledge.

なお、以上説明した液中鋼構造物の非接触型肉厚測定方法は、例えば、多重反射の位置からこれらの時間間隔を自動で計算するプログラムを作成することで、超音波の特性に対する知識のない測定者であっても容易かつ正確に鋼板などの液中鋼構造物の肉厚測定を行うことができるように構成しても構わない。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   The non-contact thickness measurement method for a steel structure in liquid described above is based on, for example, creating a program that automatically calculates these time intervals from the positions of multiple reflections to obtain knowledge on the characteristics of ultrasonic waves. It may be configured such that even a measurer who does not have an easy and accurate thickness measurement of a submerged steel structure such as a steel plate. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

10 鋼板, 11 境界面, 20 超音波送受波器, 30 直動装置, 40 付着物。   Reference Signs List 10 steel plate, 11 boundary surface, 20 ultrasonic transducer, 30 linear motion device, 40 deposits.

Claims (3)

超音波送受波器を被測定対象物である液中鋼構造物に対して非接触の状態で離間配置させる配置工程と、
前記超音波送受波器から前記液中鋼構造物に対して超音波を放射する放射工程と、
前記液中鋼構造物から反射される反射波を前記超音波送受波器により受波する受波工程と、
前記受波工程で受波した反射波を相関処理することによって、前記液中鋼構造物に付着した付着物および前記液中鋼構造物の表面からの表面反射波及び多重反射波とを抽出する相関処理工程と、
前記多重反射波の時間間隔を測定することによって、前記液中鋼構造物の厚みを算出する算出工程と、
を含む処理を実行する非接触型厚み測定方法であって、
前記配置工程は、前記液中鋼構造物の表面と前記超音波送受波器との距離を前記超音波送受波器の焦点距離よりも小さく設定し、
前記超音波送受波器は、円盤型で表面を円弧状に形成し、該円弧の中心点近傍に超音波が集中する焦点集束型音源を備えることを特徴とする液中鋼構造物の非接触型厚み測定方法。
An arrangement step of disposing the ultrasonic transducer in a non-contact state with respect to a submerged steel structure that is an object to be measured,
A radiation step of radiating ultrasonic waves from the ultrasonic transducer to the submerged steel structure,
A wave receiving step of receiving a reflected wave reflected from the submerged steel structure by the ultrasonic transducer;
Correlation processing is performed on the reflected waves received in the wave receiving step to extract the attachments attached to the submerged steel structure and the surface reflected waves and multiple reflected waves from the surface of the submerged steel structure. A correlation processing step;
By measuring the time interval of the multiple reflected waves, a calculating step of calculating the thickness of the submerged steel structure,
A non-contact thickness measurement method for performing a process including:
The arranging step, the distance between the surface of the submerged steel structure and the ultrasonic transducer is set smaller than the focal length of the ultrasonic transducer ,
The ultrasonic transducer is a surface in the disc-type formed in a circular arc shape, the non-submerged steel structures near the center point of the arc ultrasonic waves, wherein Rukoto includes a focus converging type sound source to be concentrated Contact type thickness measurement method.
請求項に記載の液中鋼構造物の非接触型厚み測定方法において、
前記配置工程は、前記超音波送受波器の中心軸上の音圧分布の第1回目のゼロ点の位置が前記液中鋼構造物の表面付近に来るように前記超音波送受波器と前記液中鋼構造物の表面の距離を決定することを特徴とする液中鋼構造物の非接触型厚み測定方法。
The non-contact thickness measurement method for a submerged steel structure according to claim 1 ,
The ultrasonic transducer and the ultrasonic transducer so that the first zero point of the sound pressure distribution on the central axis of the ultrasonic transducer is located near the surface of the submerged steel structure. A non-contact type thickness measurement method for a submerged steel structure, comprising determining a distance of a surface of the submerged steel structure.
請求項1又は2に記載の液中鋼構造物の非接触型厚み測定方法において、
前記算出工程は、第2から第4回目の多重反射のパルスの位置から時間間隔を測定することを特徴とする液中鋼構造物の非接触型厚み測定方法。
A non-contact thickness measurement method for a submerged steel structure according to claim 1 or 2 ,
The said calculation process measures the time interval from the position of the pulse of the 2nd-4th multiple reflection, The non-contact type thickness measurement method of a submerged steel structure characterized by the above-mentioned.
JP2015197845A 2015-10-05 2015-10-05 Non-contact thickness measurement method for steel structures in liquids Active JP6643762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197845A JP6643762B2 (en) 2015-10-05 2015-10-05 Non-contact thickness measurement method for steel structures in liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197845A JP6643762B2 (en) 2015-10-05 2015-10-05 Non-contact thickness measurement method for steel structures in liquids

Publications (2)

Publication Number Publication Date
JP2017072412A JP2017072412A (en) 2017-04-13
JP6643762B2 true JP6643762B2 (en) 2020-02-12

Family

ID=58537266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197845A Active JP6643762B2 (en) 2015-10-05 2015-10-05 Non-contact thickness measurement method for steel structures in liquids

Country Status (1)

Country Link
JP (1) JP6643762B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003489A1 (en) 2018-06-29 2020-01-02 三菱電機株式会社 Air conditioner
JP7216941B2 (en) * 2019-08-19 2023-02-02 金川 典代 Exploring device and method using broadband sound waves

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215908A (en) * 1985-02-20 1986-09-25 Shimadzu Corp Piping inspecting instrument
JPH0526655A (en) * 1991-07-19 1993-02-02 Hitachi Constr Mach Co Ltd Film thickness measuring method and device
US5974885A (en) * 1997-01-06 1999-11-02 Concurrent Technologies Corporation Method and apparatus for measuring silver sheath thickness during drawing of high temperature superconducting wire
JP2008286610A (en) * 2007-05-16 2008-11-27 Port & Airport Research Institute Noncontact-type thickness measuring method and device of in-liquid steel structure

Also Published As

Publication number Publication date
JP2017072412A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
EP2857834B1 (en) Ultrasonic pipe measurement apparatus
US9717471B2 (en) Method and apparatus for multiple-wave doppler velocity meter
Ma et al. The reflection of guided waves from simple dents in pipes
CN110726774B (en) Measuring method and measuring device for ultrasonic attenuation system
JP6643762B2 (en) Non-contact thickness measurement method for steel structures in liquids
CN107132279A (en) A kind of component damage Surface SP Tomography localization method based on array ultrasonic surface wave
CN108680234A (en) A kind of water-depth measurement method of quarice layer medium
JP2008014868A (en) Method for measuring attached material, and apparatus for measuring the attached material
JP2007064904A (en) Thickness measuring method by ultrasonic wave, and instrument therefor
JP2006276032A5 (en)
JP2011141236A (en) Thickness calculation method of attenuation material, and device therefor
RU2673871C1 (en) Method of measuring sound surface reflection coefficient
RU2390796C1 (en) Echo sounder
JP4144699B2 (en) Probe and material evaluation test method using the same
CN109983334B (en) Method for quantitative determination of concentration or particle size of components of a heterogeneous material mixture, device and use of the device
JP5301913B2 (en) Ultrasonic wall thickness calculation method and apparatus
KR101826917B1 (en) Multi-channel ultrasonic diagnostic method for long distance piping
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2007309794A (en) Apparatus and method for measuring plate thickness
CN109085238B (en) Method for identifying welding seam and hoop reflection signals in torsional mode guided wave pipeline detection
CN108369214A (en) The method of ultrasound examination object
JP6761780B2 (en) Defect evaluation method
RU2587536C1 (en) Method of measuring attenuation coefficient of ultrasound
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
JP2008286610A (en) Noncontact-type thickness measuring method and device of in-liquid steel structure

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20151030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6643762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250