JP6643062B2 - Electric car control device - Google Patents

Electric car control device Download PDF

Info

Publication number
JP6643062B2
JP6643062B2 JP2015234983A JP2015234983A JP6643062B2 JP 6643062 B2 JP6643062 B2 JP 6643062B2 JP 2015234983 A JP2015234983 A JP 2015234983A JP 2015234983 A JP2015234983 A JP 2015234983A JP 6643062 B2 JP6643062 B2 JP 6643062B2
Authority
JP
Japan
Prior art keywords
command
frequency
magnetic flux
torque
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015234983A
Other languages
Japanese (ja)
Other versions
JP2017103903A (en
Inventor
高木 正志
正志 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2015234983A priority Critical patent/JP6643062B2/en
Publication of JP2017103903A publication Critical patent/JP2017103903A/en
Application granted granted Critical
Publication of JP6643062B2 publication Critical patent/JP6643062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、電気車を駆動する電動機を制御する電気車制御装置に関する。   The present invention relates to an electric vehicle control device that controls an electric motor that drives an electric vehicle.

電気車(車両)を駆動する電動機を制御する電気車制御装置の一例として、演算により電動機の回転速度を求めて、電動機のトルク制御を行う電気車制御装置が特許文献1に開示されている。このような電気車制御装置によれば、速度センサを用いずに、トルク指令Tqrに従って電動機を制御することができる。電動機のトルクが車両の車輪軸に伝えられることにより、車両を加減速させることができる。   As an example of an electric vehicle control device that controls an electric motor that drives an electric vehicle (vehicle), Patent Document 1 discloses an electric vehicle control device that determines the rotational speed of the electric motor by calculation and controls the torque of the electric motor. According to such an electric vehicle control device, the electric motor can be controlled according to the torque command Tqr without using the speed sensor. By transmitting the torque of the electric motor to the wheel shaft of the vehicle, the vehicle can be accelerated or decelerated.

図6は、上述したような、演算により電動機の回転速度を求めて電動機の制御を行う電気車制御装置の構成例を示す図である。   FIG. 6 is a diagram illustrating a configuration example of an electric vehicle control device that controls the electric motor by calculating the rotational speed of the electric motor by calculation as described above.

図6に示す電気車制御装置10は、電力変換器11と、電流検出器12と、速度演算部13と、すべり周波数指令生成部14aと、加算器15と、電流指令生成部16aと、トルク制御部17aとを備える。   The electric vehicle control device 10 shown in FIG. 6 includes a power converter 11, a current detector 12, a speed calculator 13, a slip frequency command generator 14a, an adder 15, a current command generator 16a, a torque And a control unit 17a.

トルク指令Tqrと磁束指令Ifrとが、すべり周波数指令生成部14aおよび電流指令生成部16aに入力される。   The torque command Tqr and the magnetic flux command Ifr are input to the slip frequency command generator 14a and the current command generator 16a.

電力変換器11は、トルク制御部17aから出力された、電動機1への出力電圧を指示する電圧指令V*を増幅し、増幅した電圧指令V*に応じた電圧vを電動機1に印加する。 Power converter 11 is outputted from the torque control section 17a, amplifies instructs the voltage command V * to output voltages to the motor 1 applies a voltage v corresponding to the voltage command V * obtained by amplifying the motor 1.

電流検出器12は、電動機1に流れる電流iを検出し、検出結果を速度演算部13およびトルク制御部17aに出力する。   The current detector 12 detects a current i flowing through the electric motor 1 and outputs a detection result to the speed calculation unit 13 and the torque control unit 17a.

速度演算部13は、トルク制御部17aから出力された電圧指令V*と電流検出器12により検出された電流iとに基づき、以下の式(1)〜(5)を用いて、電動機1の回転速度(演算速度ωmc)を演算する。 Based on the voltage command V * output from the torque controller 17a and the current i detected by the current detector 12, the speed calculator 13 calculates the speed of the electric motor 1 using the following equations (1) to (5). The rotation speed (calculation speed ωmc) is calculated.

Figure 0006643062
Figure 0006643062

ここで、R1,R2はそれぞれ電動機1の一次抵抗、二次抵抗であり、L1,L2はそれぞれ電動機1の一次自己インダクタンス、二次自己インダクタンスである。また、FAおよびFBは、式(1)で求められる誘導機磁束φのa軸成分およびb軸成分である。なお、電圧指令V*の代わりに、電動機1に印加する電圧vを用いてもよい。 Here, R1 and R2 are the primary resistance and the secondary resistance of the motor 1, respectively, and L1 and L2 are the primary self-inductance and the secondary self-inductance of the motor 1, respectively. FA and FB are the a-axis component and the b-axis component of the magnetic flux φ of the induction machine determined by Expression (1). Note that a voltage v applied to the electric motor 1 may be used instead of the voltage command V * .

速度演算部13は、演算した演算速度ωmcを加算器15に出力する。   The speed calculation unit 13 outputs the calculated calculation speed ωmc to the adder 15.

すべり周波数指令生成部14aは、トルク指令Tqrと磁束指令Ifrとに基づき、以下の式(6)を用いてすべり周波数指令ωsrを生成し、加算器15に出力する。   The slip frequency command generator 14a generates a slip frequency command ωsr using the following equation (6) based on the torque command Tqr and the magnetic flux command Ifr, and outputs the slip frequency command ωsr to the adder 15.

Figure 0006643062
Figure 0006643062

加算器15は、速度演算部13から出力された演算速度ωmcとすべり周波数指令生成部14aから出力されたすべり周波数指令ωsrとを加算して、電動機1に印加する電圧の周波数を指示する周波数指令ωiを生成し、トルク制御部17aに出力する。   The adder 15 adds the calculation speed ωmc output from the speed calculation unit 13 and the slip frequency command ωsr output from the slip frequency command generation unit 14a, and specifies a frequency command that indicates the frequency of the voltage applied to the electric motor 1. ωi is generated and output to the torque control unit 17a.

電流指令生成部16aは、トルク指令Tqrと磁束指令Ifrとに基づき、以下の式(7)および式(8)を用いて、電動機1の磁束を磁束指令Ifrに従って制御するために電動機1に流す電流を指示する磁束分電流指令Id、および、電動機1のトルクをトルク指令Tqrに従って制御するために電動機1に流す電流を指示するトルク分電流指令Iqを生成し、トルク制御部17aに出力する。   Based on the torque command Tqr and the magnetic flux command Ifr, the current command generating unit 16a uses the following equations (7) and (8) to flow the magnetic flux of the motor 1 to the motor 1 to control the magnetic flux according to the magnetic flux command Ifr. A magnetic flux component current command Id for instructing a current and a torque component current command Iq for instructing a current flowing through the motor 1 for controlling the torque of the motor 1 in accordance with the torque command Tqr are generated and output to the torque control unit 17a.

Figure 0006643062
Figure 0006643062

トルク制御部17aは、電流指令生成部16aから出力された磁束分電流指令Idおよびトルク分電流指令Iqと、電流検出器12により検出された電流iと、加算器15から出力された周波数指令ωiとに基づき電圧指令V*を生成し、電力変換器11および速度演算部13に出力する。 The torque control unit 17a includes a magnetic flux component current command Id and a torque component current command Iq output from the current command generation unit 16a, a current i detected by the current detector 12, and a frequency command ωi output from the adder 15. , And generates a voltage command V *, and outputs it to the power converter 11 and the speed calculator 13.

特開平11−69895号公報JP-A-11-69895

図6に示す電気車制御装置10においては、電動機1の温度変動により一次抵抗R1が変動すると、式(1)を用いて求められる誘導機磁束φの誤差が生じ、その結果、演算速度ωmcにも誤差が生じる。特に、低速走行時には、誘導機磁束φや演算速度ωmcに大きな誤差が生じやすい。演算速度ωmcに誤差が生じると、電動機1のトルクをトルク指令Tqrに従って制御することができなくなる。その結果、車両を想定通りに加減速させることができず、車両の低速走行時(停止時を含む)に、所望の進行方向に対して車両が逆方向に移動してしまうことがある。   In the electric vehicle control device 10 shown in FIG. 6, when the primary resistance R1 fluctuates due to the temperature fluctuation of the electric motor 1, an error occurs in the induction motor magnetic flux φ obtained by using the equation (1). Errors also occur. In particular, when the vehicle is running at low speed, large errors are likely to occur in the induction machine magnetic flux φ and the calculation speed ωmc. If an error occurs in the calculation speed ωmc, it becomes impossible to control the torque of the electric motor 1 in accordance with the torque command Tqr. As a result, the vehicle cannot be accelerated or decelerated as expected, and the vehicle may move in a direction opposite to a desired traveling direction when the vehicle is traveling at a low speed (including when the vehicle is stopped).

なお、電動機1の正転時には周波数指令ωiを正値で下限制限し、電動機1の逆転時には、周波数指令ωiを負値で上限制限した制限周波数指令ωiLを用いて電圧指令V*を生成することも考えられる。制限周波数指令ωiLを用いて電圧指令V*を生成することで、演算速度ωmcに誤差が生じても、電動機1の回転方向指令と逆方向のトルクを電動機1に出力させる電圧指令V*が生成されることが無くなるため、所望の進行方向に対して車両が逆方向に移動することを抑制することができる。 When the motor 1 is rotating forward, the frequency command ωi is limited to a lower limit by a positive value, and when the motor 1 is rotating backward, a voltage command V * is generated using a limited frequency command ωiL in which the frequency command ωi is limited to an upper limit by a negative value. Is also conceivable. By generating the voltage command V * using the limited frequency command ωiL, even if an error occurs in the calculation speed ωmc, the voltage command V * that causes the motor 1 to output a torque in a direction opposite to the rotation direction command of the motor 1 is generated. Since it is not performed, it is possible to suppress the vehicle from moving in the opposite direction to the desired traveling direction.

しかしながら、周波数指令ωiの周波数制限を行った場合、電動機1を停止または極低速から起動した際、制限周波数指令ωiL分のすべりが電動機1に発生する。電動機1に発生したすべりがすべり周波数指令ωsrより大きいと、電動機1のトルクがトルク指令Tqrより低下してしまう。   However, when the frequency of the frequency command ωi is limited, when the motor 1 is stopped or started from an extremely low speed, a slip corresponding to the limited frequency command ωiL occurs in the motor 1. If the slip generated in the electric motor 1 is larger than the slip frequency command ωsr, the torque of the electric motor 1 will be lower than the torque command Tqr.

電動機1のトルクがトルク指令Tqrより低下すると、登り勾配で電動機1を駆動した際に、電動機1のトルクによる電気車の推進力が登り勾配による重力に負け、電気車が後退してしまうことがある。   When the torque of the electric motor 1 is lower than the torque command Tqr, when the electric motor 1 is driven on the uphill gradient, the propulsive force of the electric vehicle due to the torque of the electric motor 1 loses the gravity caused by the upward gradient, and the electric vehicle may retreat. is there.

本発明の目的は、上述した課題を解決し、登り勾配での起動時にも、電気車の後退を防ぐことができる電気車制御装置を提供することにある。   An object of the present invention is to solve the above-described problems and to provide an electric vehicle control device that can prevent the electric vehicle from moving backward even when the electric vehicle is started uphill.

上記課題を解決するため、本発明に係る電気車制御装置は、電気車を駆動する電動機を制御する電気車制御装置であって、前記電動機に流れる電流を検出する電流検出器と、前記電流検出器により検出された電流と前記電動機への出力電圧を指示する電圧指令とに基づき前記電動機の回転速度を演算する速度演算部と、前記電動機のすべり周波数指令を生成するすべり周波数指令生成部と、前記速度演算部により演算された回転速度と前記すべり周波数指令生成部により生成されたすべり周波数指令とを加算した周波数指令を生成する加算器と、前記電動機の回転方向に応じて、前記加算器により生成された周波数指令を周波数制限した制限周波数指令を生成する周波数制限部と、磁束指令を減衰させた減衰磁束指令を生成する磁束指令減衰部と、トルク指令と前記磁束指令減衰部により生成された減衰磁束指令とに基づき、磁束分電流指令およびトルク分電流指令を生成する電流指令生成部と、前記電流検出器により検出された電流と、前記周波数制限部により生成された制限周波数指令と、前記電流指令生成部により生成された磁束分電流指令およびトルク分電流指令とに基づき、前記電圧指令を生成するトルク制御部と、を備え、前記磁束指令減衰部は、前記制限周波数指令と前記トルク指令とに基づき、前記減衰磁束指令を生成する。 In order to solve the above problems, an electric vehicle control device according to the present invention is an electric vehicle control device that controls an electric motor that drives an electric vehicle, comprising: a current detector that detects a current flowing through the electric motor; A speed calculation unit that calculates a rotation speed of the motor based on a current detected by a motor and a voltage command that indicates an output voltage to the motor, a slip frequency command generation unit that generates a slip frequency command of the motor, An adder that generates a frequency command obtained by adding the rotation speed calculated by the speed calculation unit and the slip frequency command generated by the slip frequency command generation unit, and the adder according to the rotation direction of the electric motor. A frequency limiter that generates a limited frequency command by frequency-limiting the generated frequency command, and a magnetic flux command attenuation that generates an attenuated magnetic flux command that attenuates the magnetic flux command Based on a torque command and an attenuated magnetic flux command generated by the magnetic flux command attenuating unit, a current command generating unit that generates a magnetic flux component current command and a torque component current command, and a current detected by the current detector, A limiting frequency command generated by the frequency limiting unit, and a torque control unit that generates the voltage command based on a magnetic flux component current command and a torque component current command generated by the current command generating unit , flux command damping unit, based on said torque command and the limiting frequency command, that generates said attenuating magnetic flux command.

また、本発明に係る電気車制御装置において、前記周波数制限部は、前記電動機の正転時には、前記周波数指令に示される周波数が正の第1の閾値以下である場合に、前記周波数指令を正値で下限制限し、前記電動機の逆転時には、前記周波数指令に示される周波数が負の第2の閾値以上である場合に、前記周波数指令を負値で上限制限して前記制限周波数指令を生成し、前記磁束指令減衰部は、前記周波数制限部により前記周波数指令が周波数制限されている場合には、前記磁束指令を減衰させて前記減衰磁束指令を生成し、前記周波数指令が周波数制限されていない場合には、前記磁束指令を前記減衰磁束指令とすることが望ましい。   Further, in the electric vehicle control device according to the present invention, the frequency limiter may correct the frequency command when the frequency indicated by the frequency command is equal to or less than a first positive threshold value when the electric motor rotates forward. When the frequency indicated by the frequency command is greater than or equal to a negative second threshold, the upper limit of the frequency command is limited to a negative value to generate the limited frequency command when the motor rotates in the reverse direction. The magnetic flux command attenuating section, when the frequency command is frequency-limited by the frequency limiting section, generates the attenuated magnetic flux command by attenuating the magnetic flux command, and the frequency command is not frequency-limited. In this case, it is desirable that the magnetic flux command be the damping magnetic flux command.

また、本発明に係る電気車制御装置において、前記減衰磁束指令をIfrDとし、前記電動機の二次抵抗をR2とし、前記トルク指令をTqrとし、前記制限周波数指令をωiLとすると、前記磁束指令減衰部は、以下の式
IfrD=√(R2*Tqr/ωiL)
に基づき、前記減衰磁束指令を生成することが望ましい。
In the electric vehicle control device according to the present invention, when the damping magnetic flux command is IfrD, the secondary resistance of the electric motor is R2, the torque command is Tqr, and the limiting frequency command is ωiL, the magnetic flux command damping is performed. The part is the following formula
IfrD = √ (R2 * Tqr / ωiL)
It is desirable to generate the damping magnetic flux command based on the following .

本発明に係る電気車制御装置によれば、登り勾配での起動時にも、電気車の後退を防ぐことができる。   ADVANTAGE OF THE INVENTION According to the electric vehicle control apparatus which concerns on this invention, even at the time of starting on an ascending slope, retreat of an electric vehicle can be prevented.

本発明の第1の実施形態に係る電気車制御装置の構成例を示す図である。It is a figure showing the example of composition of the electric car control device concerning a 1st embodiment of the present invention. 図1に示す周波数制限部の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a frequency limiting unit illustrated in FIG. 1. 本発明の第2の実施形態に係る電気車制御装置の構成例を示す図である。It is a figure showing the example of composition of the electric car control device concerning a 2nd embodiment of the present invention. 図3に示す周波数制限部の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of a frequency limiting unit illustrated in FIG. 3. 本発明の第3の実施形態に係る電気車制御装置の構成例を示す図である。It is a figure showing the example of composition of the electric car control device concerning a 3rd embodiment of the present invention. 従来例に係る電気車制御装置の構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of an electric vehicle control device according to a conventional example.

以下、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る電気車制御装置100の構成例を示す図である。図1において、図6と同様の構成については同じ符号を付し、説明を省略する。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration example of an electric vehicle control device 100 according to the first embodiment of the present invention. 1, the same components as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.

図1に示す電気車制御装置100は、図6に示す電気車制御装置10と比較して、周波数制限部110および磁束指令減衰部120を追加した点と、すべり周波数指令生成部14a、電流指令生成部16a、トルク制御部17aをそれぞれ、すべり周波数指令生成部14、電流指令生成部16、トルク制御部17に変更した点とが異なる。   The electric vehicle control device 100 shown in FIG. 1 differs from the electric vehicle control device 10 shown in FIG. 6 in that a frequency limiter 110 and a magnetic flux command attenuator 120 are added, a slip frequency command generator 14a, a current command The difference is that the generator 16a and the torque controller 17a are changed to a slip frequency command generator 14, a current command generator 16 and a torque controller 17, respectively.

トルク指令Tqrは、すべり周波数指令生成部14および電流指令生成部16に入力される。また、磁束指令Ifrは、磁束指令減衰部120に入力される。   The torque command Tqr is input to the slip frequency command generator 14 and the current command generator 16. Further, the magnetic flux command Ifr is input to the magnetic flux command attenuator 120.

周波数制限部110は、電動機1の回転方向に応じて、加算器15から出力された周波数指令ωiを周波数制限した制限周波数指令ωiLを生成し、トルク制御部17に出力する。   The frequency limiting unit 110 generates a limited frequency command ωiL obtained by frequency-limiting the frequency command ωi output from the adder 15 according to the rotation direction of the electric motor 1, and outputs the limited frequency command ωiL to the torque control unit 17.

図2は、周波数制限部110の構成例を示す図である。   FIG. 2 is a diagram illustrating a configuration example of the frequency limiting unit 110.

図2に示す周波数制限部110は、下限制限部111と、上限制限部112と、切替器113とを備える。   The frequency limiting unit 110 illustrated in FIG. 2 includes a lower limit limiting unit 111, an upper limit limiting unit 112, and a switch 113.

周波数指令ωiは、下限制限部111および上限制限部112に入力される。   Frequency command ωi is input to lower limit limiting section 111 and upper limit limiting section 112.

下限制限部111は、周波数指令ωiに示される周波数が所定の周波数ωi1(>0)以下である場合には、正値aを制限周波数ωiL_Fとして切替器113に出力し、周波数指令ωiに示される周波数が所定の周波数ωi1より大きい場合には、周波数指令ωiに示される周波数を制限周波数ωiL_Fとして切替器113出力する。すなわち、下限制限部111は、周波数指令ωiを正値aで下限制限して、制限周波数ωiL_Fとして切替器113に出力する。なお、周波数ωi1は、電動機1の正転時に車両が低速走行(停止を含む)するような値である。   When the frequency indicated by the frequency command ωi is equal to or lower than the predetermined frequency ωi1 (> 0), the lower limit limiting unit 111 outputs the positive value a to the switch 113 as the limited frequency ωiL_F, and is indicated by the frequency command ωi. If the frequency is higher than the predetermined frequency ωi1, the switch 113 outputs the frequency indicated by the frequency command ωi as the limited frequency ωiL_F. That is, the lower limit limiting unit 111 limits the lower limit of the frequency command ωi by the positive value a and outputs the frequency command ωi to the switch 113 as the limited frequency ωiL_F. The frequency ωi1 is a value that causes the vehicle to run at low speed (including stopping) when the electric motor 1 rotates forward.

上限制限部112は、周波数指令ωiに示される周波数が所定の周波数ωi2(<0)より小さい場合には、周波数指令ωiに示される周波数を制限周波数ωiL_Rとして切替器113に出力し、周波数指令ωiに示される周波数が所定の周波数ωi2以上である場合には、負値bを制限周波数ωiL_Rとして切替器113に出力する。すなわち、上限制限部112は、周波数指令ωiを負値bで上限制限して、制限周波数ωiL_Rとして切替器113に出力する。なお、周波数ωi2は、電動機1の逆転時に車両が低速走行(停止を含む)するような値である。   When the frequency indicated by the frequency command ωi is smaller than the predetermined frequency ωi2 (<0), the upper limit limiting unit 112 outputs the frequency indicated by the frequency command ωi to the switch 113 as the limited frequency ωiL_R, and outputs the frequency command ωi Is higher than the predetermined frequency ωi2, the negative value b is output to the switch 113 as the limited frequency ωiL_R. That is, upper limiter 112 limits upper limit of frequency command ωi by negative value b, and outputs the same to switch 113 as limited frequency ωiL_R. The frequency ωi2 is a value that causes the vehicle to run at low speed (including stopping) when the electric motor 1 rotates in the reverse direction.

切替器113は、電動機1の回転方向を示す回転方向指令FRが入力され、入力された回転方向指令FRに基づき、電動機1の正転時には、下限制限部111から出力された制限周波数ωiL_Fを制限周波数指令ωiLとして出力し、電動機1の逆転時には、上限制限部112から出力された制限周波数ωiL_Rを制限周波数指令ωiLとしてトルク制御部17に出力する。なお、切替器113は、加速/減速指令とトルク指令Tqrの符号とを用いて切替を行ってもよい。   The switch 113 receives the rotation direction command FR indicating the rotation direction of the motor 1, and limits the limit frequency ωiL_F output from the lower limit limit unit 111 when the motor 1 rotates forward based on the input rotation direction command FR. It outputs as the frequency command ωiL, and when the motor 1 rotates in the reverse direction, outputs the limited frequency ωiL_R output from the upper limit limiting unit 112 to the torque control unit 17 as the limited frequency command ωiL. The switch 113 may perform switching using the acceleration / deceleration command and the sign of the torque command Tqr.

したがって、周波数制限部110は、電動機1の正転時には、周波数指令ωiに示される周波数が正の周波数ωi1(第1の閾値)以上の場合に、周波数指令ωiを正値aで下限制限し、電動機1の逆転時には、周波数指令ωiに示される周波数が負の周波数ωi2以下の場合に、周波数指令ωiを負値bで上限制限した制限周波数指令ωiLを生成し、トルク制御部17に出力する。   Therefore, when the frequency indicated by the frequency command ωi is equal to or higher than the positive frequency ωi1 (first threshold) during the forward rotation of the electric motor 1, the frequency limiter 110 limits the frequency command ωi to a lower limit with a positive value a, When the motor 1 rotates in the reverse direction, when the frequency indicated by the frequency command ωi is equal to or lower than the negative frequency ωi2, the motor control unit 1 generates a limited frequency command ωiL in which the upper limit of the frequency command ωi is limited by a negative value b, and outputs it to the torque control unit 17.

図1を再び参照すると、磁束指令減衰部120は、磁束指令Ifrを減衰させた(磁束指令Ifrに示される磁束よりも小さい磁束を示す)減衰磁束指令IfrDを生成し、すべり周波数指令生成部14および電流指令生成部16に出力する。   Referring again to FIG. 1, the magnetic flux command attenuator 120 generates an attenuated magnetic flux command IfrD (indicating a magnetic flux smaller than the magnetic flux indicated by the magnetic flux command Ifr) that attenuates the magnetic flux command Ifr, and generates the slip frequency command generator 14. And the current command generation unit 16.

すべり周波数指令生成部14は、トルク指令Tqrと磁束指令減衰部120から出力された減衰磁束指令IfrDとに基づき、以下の式(9)を用いて、すべり周波数指令ωsrを生成し、加算器15に出力する。   The slip frequency command generator 14 generates a slip frequency command ωsr using the following equation (9) based on the torque command Tqr and the damped magnetic flux command IfrD output from the magnetic flux command attenuator 120, and generates an adder 15 Output to

Figure 0006643062
Figure 0006643062

電流指令生成部16は、トルク指令Tqrと磁束指令減衰部120から出力された減衰磁束指令IfrDとに基づき、以下の式(10)および式(11)を用いて磁束分電流指令Idおよびトルク分電流指令Iqを生成する。   Based on the torque command Tqr and the attenuated magnetic flux command IfrD output from the magnetic flux command attenuating unit 120, the current command generating unit 16 uses the following equations (10) and (11) to calculate the magnetic flux component current command Id and the torque component A current command Iq is generated.

Figure 0006643062
Figure 0006643062

上述したように、減衰磁束指令IfrDは磁束指令Ifrを減衰させたものである。したがって、減衰磁束指令IfrDに基づいて生成されるトルク分電流指令Iqは、磁束指令Ifrに基づいて生成されるトルク分電流指令Iq(図6)よりも大きい。   As described above, the damped magnetic flux command IfrD is obtained by attenuating the magnetic flux command Ifr. Therefore, torque current command Iq generated based on damping magnetic flux command IfrD is larger than torque current command Iq (FIG. 6) generated based on magnetic flux command Ifr.

トルク制御部17は、電流指令生成部16から出力された磁束分電流指令Idおよびトルク分電流指令Iqと、電流検出器12により検出された電流iと、周波数制限部110から出力された制限周波数指令ωiLとに基づき電圧指令V*を生成し、電力変換器11および速度演算部13に出力する。 The torque control unit 17 includes a magnetic flux component current command Id and a torque component current command Iq output from the current command generation unit 16, a current i detected by the current detector 12, and a limiting frequency output from the frequency limiting unit 110. A voltage command V * is generated based on the command ωiL, and is output to the power converter 11 and the speed calculator 13.

上述したように、電動機1の正転時には、制限周波数指令ωiLに示される周波数は、正値a以上、すなわち、常に正値である。また、電動機1の逆転時には、制限周波数指令ωiLに示される周波数は、負値b以下、すなわち、常に負値となる。したがって、電動機1の回転方向が回転方向指令FRに示される方向と反対方向となることがない。そのため、演算速度ωmcに誤差が生じたとしても、回転方向指令FRと逆方向のトルクを電動機1に出力させる電圧指令V*が生成されることが無くなるので、所望の進行方向に対して車両が逆方向に移動することを抑制することができる。 As described above, when the motor 1 is rotating forward, the frequency indicated by the limit frequency command ωiL is equal to or higher than the positive value a, that is, is always a positive value. Also, when the motor 1 rotates in the reverse direction, the frequency indicated by the limit frequency command ωiL is equal to or less than the negative value b, that is, always a negative value. Therefore, the rotation direction of the electric motor 1 does not become opposite to the direction indicated by the rotation direction command FR. Therefore, even if an error occurs in the calculation speed ωmc, the voltage command V * for causing the electric motor 1 to output the torque in the reverse direction to the rotation direction command FR is not generated, and the vehicle moves in the desired traveling direction. Moving in the opposite direction can be suppressed.

また、本実施形態においては、減衰磁束指令IfrDに基づいて生成されるトルク分電流指令Iqを生成し、そのトルク分電流指令Iqを用いて電圧指令V*を生成する。そのため、磁束指令Ifrをそのまま用いるよりも、電動機1に流れる電流は大きくなり、電動機1のトルクが増加する。したがって、周波数制限部110に起因するトルクの低下を緩和し、登り勾配での起動時にも、電気車の後退を防ぐことができる。 In the present embodiment, a torque current command Iq generated based on the damping magnetic flux command IfrD is generated, and a voltage command V * is generated using the torque current command Iq. Therefore, the current flowing through the electric motor 1 becomes larger than when the magnetic flux command Ifr is used as it is, and the torque of the electric motor 1 increases. Therefore, it is possible to mitigate a decrease in torque caused by the frequency limiter 110 and prevent the electric vehicle from moving backward even when the electric vehicle is started on an uphill slope.

このように本実施形態によれば、電気車制御装置100は、電動機1に流れる電流iを検出する電流検出器12と、検出された電流iと電圧指令V*とに基づき電動機1の演算速度ωmcを演算する速度演算部13と、すべり周波数指令ωsrを生成するすべり周波数指令生成部14と、演算速度ωmcと周波数指令ωsrとを加算した周波数指令ωiを生成する加算器15と、電動機1の回転方向に応じて、周波数指令ωiを周波数制限した制限周波数指令ωiLを生成する周波数制限部110と、磁束指令Ifrを減衰させた減衰磁束指令IfrDを生成する磁束指令減衰部120と、トルク指令Tqrと減衰磁束指令IfrDとに基づき、磁束分電流指令Idおよびトルク分電流指令Iqを生成する電流指令生成部16と、検出された電流iと、制限周波数指令ωiLと、磁束分電流指令Idおよびトルク分電流指令Iqとに基づき、電圧指令V*を生成するトルク制御部17と、を備える。 As described above, according to the present embodiment, the electric vehicle control device 100 calculates the current speed of the electric motor 1 based on the current detector 12 that detects the current i flowing through the electric motor 1 and the detected current i and the voltage command V *. a speed calculator 13 for calculating ωmc, a slip frequency command generator 14 for generating a slip frequency command ωsr, an adder 15 for generating a frequency command ωi obtained by adding the calculated speed ωmc and the frequency command ωsr, A frequency limiting unit 110 that generates a limited frequency command ωiL that limits the frequency command ωi according to the rotation direction, a magnetic flux command attenuating unit 120 that generates an attenuated magnetic flux command IfrD that attenuates the magnetic flux command Ifr, and a torque command Tqr A current command generating unit 16 that generates a magnetic flux component current command Id and a torque component current command Iq based on the damping magnetic flux command IfrD and the detected current i And a torque control unit 17 that generates a voltage command V * based on the limit frequency command ωiL, the magnetic flux component current command Id, and the torque component current command Iq.

磁束指令Ifrを減衰させた減衰磁束指令IfrDに基づきトルク分電流指令Iqを生成し、そのトルク分電流指令Iqを用いて電圧指令V*を生成することで、磁束指令Ifrをそのまま用いるよりも、電動機1に流れる電流は大きくなり、電動機1のトルクが増加する。したがって、周波数制限部110に起因するトルクの低下を緩和し、登り勾配での起動時にも、電気車の後退を防ぐことができる。 By generating a torque component current command Iq based on the attenuated magnetic flux command IfrD obtained by attenuating the magnetic flux command Ifr, and generating the voltage command V * using the torque component current command Iq, the magnetic flux command Ifr can be used as it is. The current flowing through the motor 1 increases, and the torque of the motor 1 increases. Therefore, it is possible to mitigate a decrease in torque caused by the frequency limiting unit 110 and prevent the electric vehicle from moving backward even when the electric vehicle is started on an uphill slope.

(第2の実施形態)
図3は、本発明の第2の実施形態に係る電気車制御装置100Aの構成例を示す図である。図3において、図1と同様の構成については同じ符号を付し、説明を省略する。
(Second embodiment)
FIG. 3 is a diagram illustrating a configuration example of an electric vehicle control device 100A according to a second embodiment of the present invention. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

図3に示す電気車制御装置100Aは、図1に示す電気車制御装置100と比較して、周波数制限部110、磁束指令減衰部120をそれぞれ、周波数制限部110A、磁束指令減衰部120Aに変更した点が異なる。   The electric vehicle control device 100A shown in FIG. 3 is different from the electric vehicle control device 100 shown in FIG. 1 in that the frequency limiting unit 110 and the magnetic flux command attenuating unit 120 are changed to a frequency limiting unit 110A and a magnetic flux command attenuating unit 120A, respectively. Is different.

周波数制限部110Aは、周波数指令ωiの周波数制限(上限制限または下限制限)が行われているか否かを示す信号LmtStを磁束指令減衰部120Aに出力する。以下では、周波数制限部110Aは、周波数指令ωiの周波数制限が行われている状態(ωiL≠ωi)では、信号LmtSt=ONとし、周波数指令ωiの周波数制限が行われていない状態(ωiL=ωi)では、信号LmtSt=OFFとする。   Frequency limiter 110A outputs signal LmtSt indicating whether or not frequency limitation (upper limit or lower limit) of frequency command ωi is performed to magnetic flux command attenuator 120A. In the following, the frequency limiter 110A sets the signal LmtSt = ON when the frequency command ωi is frequency-limited (ωiL ≠ ωi), and does not perform the frequency command ωi frequency limit (ωiL = ωi). ), The signal LmtSt = OFF.

図4は、周波数制限部110Aの構成例を示す図である。図4において、図2と同様の構成については同じ符号を付し、説明を省略する。   FIG. 4 is a diagram illustrating a configuration example of the frequency limiting unit 110A. 4, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.

図4に示す周波数制限部110Aは、図2に示す周波数制限部110と比較して、比較器114を追加した点が異なる。   The frequency limiter 110A shown in FIG. 4 differs from the frequency limiter 110 shown in FIG. 2 in that a comparator 114 is added.

比較器114は、周波数指令ωiと制限周波数指令ωiLとが入力され、入力された周波数指令ωiと制限周波数指令ωiLとを比較する。そして、比較器114は、周波数指令ωiと制限周波数指令ωiLとが一致する場合には、周波数指令ωiの周波数制限が行われていない状態であると判定し、信号LmtSt=OFFとする。また、比較器114は、周波数指令ωiと制限周波数指令ωiLとが一致しない場合には、周波数指令ωiの周波数制限が行われている状態であると判定し、信号LmtSt=ONとする。   The comparator 114 receives the frequency command ωi and the limit frequency command ωiL, and compares the input frequency command ωi with the limit frequency command ωiL. When the frequency command ωi matches the limited frequency command ωiL, the comparator 114 determines that the frequency command ωi has not been subjected to the frequency limitation, and sets the signal LmtSt = OFF. When the frequency command ωi does not match the limited frequency command ωiL, the comparator 114 determines that the frequency command ωi is in the frequency limit state, and sets the signal LmtSt = ON.

図3を再び参照すると、磁束指令減衰部120Aは、信号LmtSt=ONである場合には、磁束指令Ifrを減衰させて減衰磁束指令IfrDを生成して出力する。一方、磁束指令減衰部120Aは、信号LmtSt=OFFである場合には、磁束指令Ifrをそのまま減衰磁束指令IfrDとして出力する。   Referring again to FIG. 3, when the signal LmtSt = ON, the magnetic flux command attenuating unit 120A attenuates the magnetic flux command Ifr to generate and output an attenuated magnetic flux command IfrD. On the other hand, when the signal LmtSt = OFF, the magnetic flux command attenuating unit 120A outputs the magnetic flux command Ifr as it is as the damped magnetic flux command IfrD.

このように本実施形態によれば、電気車制御装置100Aは、周波数制限部110Aにより周波数指令ωiの周波数制限が行われている場合には、磁束指令Ifrを減衰させて減衰磁束指令IfrDを生成し、周波数制限部110Aにより周波数指令ωiの周波数制限が行われていない場合には、磁束指令Ifrを減衰磁束指令IfrDとする磁束指令減衰部120Aを備える。   As described above, according to the present embodiment, when the frequency limit of the frequency command ωi is performed by the frequency limiter 110A, the electric vehicle control device 100A attenuates the magnetic flux command Ifr to generate the damped magnetic flux command IfrD. However, when the frequency limitation of the frequency command ωi is not performed by the frequency limiting unit 110A, a magnetic flux command attenuation unit 120A that sets the magnetic flux command Ifr to the attenuation magnetic flux command IfrD is provided.

そのため、電動機1が加速して周波数指令ωiの制限が不要となると、減衰磁束指令IfrDが磁束指令Ifrと等しくなるので、トルク指令Tqrに従って電動機1のトルクを制御することができる。   Therefore, when the motor 1 accelerates and the restriction of the frequency command ωi becomes unnecessary, the damping magnetic flux command IfrD becomes equal to the magnetic flux command Ifr, and thus the torque of the motor 1 can be controlled according to the torque command Tqr.

(第3の実施形態)
図5は、本発明の第3の実施形態に係る電気車制御装置100Bの構成例を示す図である。図5において、図3と同様の構成については同じ符号を付し、説明を省略する。
(Third embodiment)
FIG. 5 is a diagram illustrating a configuration example of an electric vehicle control device 100B according to a third embodiment of the present invention. 5, the same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.

図5に示す電気車制御装置100Bは、図3に示す電気車制御装置100Aと比較して、周波数制限部110A、磁束指令減衰部120Aをそれぞれ、周波数制限部110B、磁束指令減衰部120Bに変更した点が異なる。   The electric vehicle control device 100B shown in FIG. 5 is different from the electric vehicle control device 100A shown in FIG. 3 in that the frequency limiting unit 110A and the magnetic flux command attenuating unit 120A are changed to a frequency limiting unit 110B and a magnetic flux command attenuating unit 120B, respectively. Is different.

周波数制限部110Bは、信号LmtStに加えて、制限周波数指令ωiLを磁束指令減衰部120Bに出力する。   The frequency limiting unit 110B outputs the limited frequency command ωiL to the magnetic flux command attenuating unit 120B in addition to the signal LmtSt.

磁束指令減衰部120Bは、トルク指令Tqrが入力され、入力されたトルク指令Tqrと周波数制限部110Bから出力された制限周波数指令ωiLとに基づき、以下の式(12)を用いて、減衰磁束量IfrD0を演算する。   The magnetic flux command attenuating unit 120B receives the torque command Tqr, and based on the input torque command Tqr and the limited frequency command ωiL output from the frequency limiting unit 110B, uses the following equation (12) to attenuate the amount of attenuated magnetic flux. Calculate IfrD0.

Figure 0006643062
Figure 0006643062

磁束指令減衰部120Bは、信号LmtSt=ONである場合には、演算した減衰磁束量IfrD0を減衰磁束指令IfrDとして電流指令生成部16に出力する。一方、磁束指令減衰部120Bは、信号LmtSt=OFFである場合には、磁束指令Ifrをそのまま減衰磁束指令IfrDとする。   When the signal LmtSt = ON, the magnetic flux command attenuator 120B outputs the calculated attenuation magnetic flux amount IfrD0 to the current command generator 16 as an attenuation magnetic flux command IfrD. On the other hand, when the signal LmtSt = OFF, the magnetic flux command attenuating unit 120B sets the magnetic flux command Ifr as it is as the damped magnetic flux command IfrD.

このように本実施形態によれば、電気車制御装置100Bは、制限周波数指令ωiLとトルク指令Tqrとに基づき、減衰磁束指令IfrDを生成する磁束指令減衰部120Bを備える。   As described above, according to the present embodiment, the electric vehicle control device 100B includes the magnetic flux command damping unit 120B that generates the damping magnetic flux command IfrD based on the limit frequency command ωiL and the torque command Tqr.

そのため、すべり周波数指令ωsrを電動機1の実すべりに合わせ、トルク指令Tqrに近いトルクが出力されるような、磁束分電流指令Idおよびトルク分電流指令Iqを生成することができる。   Therefore, the magnetic flux component current command Id and the torque component current command Iq can be generated such that the slip frequency command ωsr is matched with the actual slip of the electric motor 1 and a torque close to the torque command Tqr is output.

なお、第1の実施形態において、磁束指令減衰部120が、式(12)を用いて減衰磁束量IfrD0を求め、求めた減衰磁束量IfrD0を減衰磁束指令IfrDとして電流指令生成部16に出力してもよい。   In the first embodiment, the magnetic flux command attenuator 120 calculates the amount of damped magnetic flux IfrD0 by using the equation (12), and outputs the obtained amount of damped magnetic flux IfrD0 to the current command generator 16 as the damped magnetic flux command IfrD. You may.

本発明を図面および実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。したがって、これらの変形または修正は本発明の範囲に含まれることに留意されたい。例えば、各ブロックなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数のブロックを1つに組み合わせたり、或いは分割したりすることが可能である。   Although the present invention has been described with reference to the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. Therefore, it should be noted that these variations or modifications are included in the scope of the present invention. For example, functions included in each block and the like can be rearranged so as not to be logically inconsistent, and a plurality of blocks can be combined into one or divided.

1 電動機
11 電力変換器
12 電流検出器
13 速度演算部
14 すべり周波数指令生成部
15 加算器
16 電流指令生成部
17 トルク制御部
100,100A,110B 電気車制御装置
110,110A,110B 周波数制限部
111 下限制限部
112 上限制限部
113 切替器
114 比較器
120,120A,120B 磁束指令減衰部
Reference Signs List 1 motor 11 power converter 12 current detector 13 speed calculation unit 14 slip frequency command generation unit 15 adder 16 current command generation unit 17 torque control unit 100, 100A, 110B electric vehicle control device 110, 110A, 110B frequency limit unit 111 Lower limiter 112 Upper limiter 113 Switch 114 Comparator 120, 120A, 120B Magnetic flux command attenuator

Claims (3)

電気車を駆動する電動機を制御する電気車制御装置であって、
前記電動機に流れる電流を検出する電流検出器と、
前記電流検出器により検出された電流と前記電動機への出力電圧を指示する電圧指令とに基づき前記電動機の回転速度を演算する速度演算部と、
前記電動機のすべり周波数指令を生成するすべり周波数指令生成部と、
前記速度演算部により演算された回転速度と前記すべり周波数指令生成部により生成されたすべり周波数指令とを加算した周波数指令を生成する加算器と、
前記電動機の回転方向に応じて、前記加算器により生成された周波数指令を周波数制限した制限周波数指令を生成する周波数制限部と、
磁束指令を減衰させた減衰磁束指令を生成する磁束指令減衰部と、
トルク指令と前記磁束指令減衰部により生成された減衰磁束指令とに基づき、磁束分電流指令およびトルク分電流指令を生成する電流指令生成部と、
前記電流検出器により検出された電流と、前記周波数制限部により生成された制限周波数指令と、前記電流指令生成部により生成された磁束分電流指令およびトルク分電流指令とに基づき、前記電圧指令を生成するトルク制御部と、
を備え
前記磁束指令減衰部は、前記制限周波数指令と前記トルク指令とに基づき、前記減衰磁束指令を生成することを特徴とする電気車制御装置。
An electric vehicle control device that controls an electric motor that drives an electric vehicle,
A current detector for detecting a current flowing through the motor,
A speed calculation unit that calculates the rotation speed of the motor based on the current detected by the current detector and a voltage command that indicates an output voltage to the motor;
A slip frequency command generation unit that generates a slip frequency command of the motor,
An adder that generates a frequency command obtained by adding the rotation speed calculated by the speed calculation unit and the slip frequency command generated by the slip frequency command generation unit;
According to the rotation direction of the electric motor, a frequency limiting unit that generates a limited frequency command frequency-limited the frequency command generated by the adder,
A magnetic flux command attenuating unit that generates an attenuated magnetic flux command by attenuating the magnetic flux command;
A current command generating unit that generates a magnetic flux component current command and a torque component current command based on a torque command and an attenuated magnetic flux command generated by the magnetic flux command attenuating unit;
Based on the current detected by the current detector, the limited frequency command generated by the frequency limiter, and the magnetic flux component current command and the torque component current command generated by the current command generator, the voltage command A torque control unit to generate;
Equipped with a,
The magnetic flux command damping unit, based on said limit frequency command and said torque command, the damping flux electric vehicle control device according to claim that you generate command.
請求項1に記載の電気車制御装置において、
前記周波数制限部は、前記電動機の正転時には、前記周波数指令に示される周波数が正の第1の閾値以下である場合に、前記周波数指令を正値で下限制限し、前記電動機の逆転時には、前記周波数指令に示される周波数が負の第2の閾値以上である場合に、前記周波数指令を負値で上限制限して前記制限周波数指令を生成し、
前記磁束指令減衰部は、前記周波数制限部により前記周波数指令が周波数制限されている場合には、前記磁束指令を減衰させて前記減衰磁束指令を生成し、前記周波数指令が周波数制限されていない場合には、前記磁束指令を前記減衰磁束指令とすることを特徴とする電気車制御装置。
The electric vehicle control device according to claim 1,
The frequency limiting unit, when the motor is rotating forward, when the frequency indicated by the frequency command is equal to or less than a positive first threshold, the frequency command is limited to a lower limit with a positive value, and when the motor is rotating in reverse, When the frequency indicated by the frequency command is equal to or greater than a negative second threshold, the frequency command is generated by limiting the upper limit of the frequency command to a negative value to generate the limited frequency command,
The magnetic flux command attenuator generates the attenuated magnetic flux command by attenuating the magnetic flux command when the frequency command is frequency-limited by the frequency limiter, and the frequency command is not frequency-limited. , Wherein the magnetic flux command is the damped magnetic flux command.
請求項1または2に記載の電気車制御装置において、  The electric vehicle control device according to claim 1 or 2,
前記減衰磁束指令をIfrDとし、前記電動機の二次抵抗をR2とし、前記トルク指令をTqrとし、前記制限周波数指令をωiLとすると、前記磁束指令減衰部は、以下の式  Assuming that the damping magnetic flux command is IfrD, the secondary resistance of the electric motor is R2, the torque command is Tqr, and the limiting frequency command is ωiL, the magnetic flux command attenuating unit is represented by the following equation:
IfrD=√(R2*Tqr/ωiL)  IfrD = √ (R2 * Tqr / ωiL)
に基づき、前記減衰磁束指令を生成することを特徴とする電気車制御装置。  An electric vehicle control device that generates the damping magnetic flux command based on the following.
JP2015234983A 2015-12-01 2015-12-01 Electric car control device Expired - Fee Related JP6643062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015234983A JP6643062B2 (en) 2015-12-01 2015-12-01 Electric car control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234983A JP6643062B2 (en) 2015-12-01 2015-12-01 Electric car control device

Publications (2)

Publication Number Publication Date
JP2017103903A JP2017103903A (en) 2017-06-08
JP6643062B2 true JP6643062B2 (en) 2020-02-12

Family

ID=59017322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234983A Expired - Fee Related JP6643062B2 (en) 2015-12-01 2015-12-01 Electric car control device

Country Status (1)

Country Link
JP (1) JP6643062B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817123B2 (en) * 1991-12-17 1998-10-27 東洋電機製造株式会社 Method and apparatus for adjusting magnetic flux of induction motor
JP3745633B2 (en) * 2001-03-13 2006-02-15 東芝三菱電機産業システム株式会社 Electric motor control device
JP4059725B2 (en) * 2002-07-30 2008-03-12 東洋電機製造株式会社 Electric vehicle control device
JP4238646B2 (en) * 2003-06-16 2009-03-18 株式会社安川電機 Speed sensorless vector controller for induction motor
WO2008004294A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Electric Corporation Induction motor vector control device, induction motor vector control method, and induction motor drive control device
JP2009273270A (en) * 2008-05-08 2009-11-19 Toyo Electric Mfg Co Ltd Induction-machine control device
JP5298367B2 (en) * 2008-07-09 2013-09-25 富士電機株式会社 Induction motor control device
JP5392532B2 (en) * 2008-10-01 2014-01-22 富士電機株式会社 Induction motor control device

Also Published As

Publication number Publication date
JP2017103903A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
KR101165554B1 (en) Controller for electric vehicle
KR101083858B1 (en) Controller for electric vehicle
US9287808B2 (en) Motor controller and construction machine provided therewith
JPWO2017017816A1 (en) Electric vehicle control device and electric vehicle control method
TW201436449A (en) Motor control apparatus
JP6589554B2 (en) Control method and control apparatus for electric vehicle
KR101190360B1 (en) Device for stopping induction motor
JP2017060312A (en) Inverter control device
JP5724207B2 (en) Control device for electric motor in electric vehicle
JP6643062B2 (en) Electric car control device
JP2011114907A (en) Method and apparatus for controlling electric motor
JP5219103B2 (en) Travel control device
JP4876950B2 (en) Variable speed control device for motor
JP6703916B2 (en) Electric vehicle control device
JP6539538B2 (en) Electric car control device
TWI691159B (en) Motor control apparatus
JP2018093693A (en) Motor control method and motor control system
JP6730057B2 (en) Electric vehicle control device
JP6390394B2 (en) Elevator control device
JP4999474B2 (en) Induction machine controller
JP5642306B2 (en) Electric vehicle drive system, inverter control device, and control method
JP2006170116A (en) Prime mover torque control device
JP2013102613A (en) Electric vehicle control device
JP6226565B2 (en) Motor control device and construction machine having the same
JP2017103907A (en) Motor control device and motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6643062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees