JP2817123B2 - Method and apparatus for adjusting magnetic flux of induction motor - Google Patents

Method and apparatus for adjusting magnetic flux of induction motor

Info

Publication number
JP2817123B2
JP2817123B2 JP3332395A JP33239591A JP2817123B2 JP 2817123 B2 JP2817123 B2 JP 2817123B2 JP 3332395 A JP3332395 A JP 3332395A JP 33239591 A JP33239591 A JP 33239591A JP 2817123 B2 JP2817123 B2 JP 2817123B2
Authority
JP
Japan
Prior art keywords
output
magnetic flux
circuit
angular frequency
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3332395A
Other languages
Japanese (ja)
Other versions
JPH05168274A (en
Inventor
恵一 上園
洋二 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP3332395A priority Critical patent/JP2817123B2/en
Publication of JPH05168274A publication Critical patent/JPH05168274A/en
Application granted granted Critical
Publication of JP2817123B2 publication Critical patent/JP2817123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘導電動機、特に誘
導電動機の磁束調整方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor, and more particularly to a method and an apparatus for adjusting magnetic flux of an induction motor.

【0002】[0002]

【従来の技術】一般に誘導電動機の速度を、検出された
一次電圧と一次電流とから演算する場合、誘導電動機の
定常状態の特性方程式(1), (2)によって以下のように説
明できる。これらの式中の、一次電圧V1 ,一次電流I
1 ,二次電流I2 はすべてベクトルである。
2. Description of the Related Art In general, when the speed of an induction motor is calculated from a detected primary voltage and primary current, it can be explained as follows by characteristic equations (1) and (2) in a steady state of the induction motor. In these equations, the primary voltage V 1 and the primary current I
1 and the secondary current I 2 are all vectors.

【数1】 V1 = (R1 +jωL1)I1 +jωMI2 ……(1) V 1 = (R 1 + jωL 1 ) I 1 + jωMI 2 (1)

【数2】 0=jωs MI1 + (R2 +jωs 2)I2 ……(2) ここで、R1 :一次抵抗 R2 :二次抵抗 L1 :一次インダクタンス L2 :二次インダクタンス M :相互インダクタンス である。0 = jω s MI 1 + (R 2 + jω s L 2 ) I 2 (2) where R 1 : primary resistance R 2 : secondary resistance L 1 : primary inductance L 2 : secondary Inductance M: Mutual inductance.

【0003】一次電圧V1 、一次電流I1 、一次角周波
数ωが得られれば、(1) 式より二次電流I2 が決まり、
(2) 式よりすべり角周波数ωs が求められる。よって誘
導電動機の回転角周波数ωm は次式(3) によって求める
ことができる。
If the primary voltage V 1 , the primary current I 1 , and the primary angular frequency ω are obtained, the secondary current I 2 is determined from the equation (1),
The slip angular frequency ω s is obtained from equation (2). Therefore, the rotation angular frequency ω m of the induction motor can be obtained by the following equation (3).

【数3】 ωm =ω−ωs ……(3) [Number 3] ω m = ω-ω s ...... (3)

【0004】[0004]

【発明が解決しようとする課題】このように誘導電動機
に供給される一次電圧と一次電流とを検出して誘導電動
機の回転速度を検出するとき、一次角周波数ωがω=0
のとき(1) 式より二次電流I2 を求めることができな
くなり、(2) 式よりすべり角周波数ωs も求められず、
また(3) 式より回転角周波数ωm が求められないと言う
欠点がある。
When the rotation speed of the induction motor is detected by detecting the primary voltage and the primary current supplied to the induction motor, the primary angular frequency ω becomes ω = 0.
In this case, the secondary current I 2 cannot be obtained from the equation (1), and the slip angular frequency ω s cannot be obtained from the equation (2).
Further, there is a disadvantage that the rotational angular frequency ω m cannot be obtained from the equation (3).

【0005】[0005]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、 1)請求項1において、誘導電動機の回転角周波数(ω
m)とトルク(T)入力し、回転角周波数(ωm)とト
ルク(T)と磁束指令(φ2*)及び誘導電動機の二次
抵抗(R2)との関係が、T=ωm=0以外で、ωm+
TR2/φ2*2≠0を満足する磁束指令(φ2*)を
出力することを特徴とする誘導電動機の磁束調整方法で
ある。 2)請求項2において、トルク(T)と定数(K1)と
の積を出力する乗算器(21)と、トルク(T)と定数
(K2)との積を出力する乗算器(22)と、回転角周
波数(ωm)と乗算器(21)の出力との差を出力する
加減器(23)と、回転角周波数(ωm)と乗算器(2
2)の出力との差を出力する加減器(24)と、加減器
(23)の出力が0以上なら1、0未満なら0を出力す
るコンパレータ(25)と、加減器(24)の出力が0
以上なら1、0未満なら0を出力するコンパレータ(2
6)と、コンパレータ(25)の出力が1なら0、0な
ら1を出力する否定回路(27)と、コンパレータ(2
6)の出力が1なら0、0なら1を出力する否定回路
(28)と、コンパレータ(25)の出力と否定回路
(27)の出力との論理積を出力するAND回路(2
9)と、コンパレータ(26)の出力と否定回路(2
8)の出力との論理積を出力するAND回路(210)
と、AND回路(29)の出力とAND回路(210)
の出力との論理和を出力するOR回路(211)と、O
R回路(211)の出力により2値の二次磁束指令候補
値から1値を選択して出力する二次磁束選択スイッチと
から成る誘導電動機の磁束調整装置である。
Means for achieving the object are as follows: 1) In claim 1, the rotational angular frequency (ω) of the induction motor
m) and torque (T), and the relationship among the rotational angular frequency (ωm), torque (T), magnetic flux command (φ2 *), and secondary resistance (R2) of the induction motor is not T = ωm = 0. , Ωm +
A magnetic flux adjustment method for an induction motor, characterized by outputting a magnetic flux command (φ2 *) satisfying TR2 / φ2 * 2 ≠ 0. 2) The multiplier according to claim 2, wherein the multiplier outputs a product of the torque (T) and the constant (K1), and the multiplier (22) outputs a product of the torque (T) and the constant (K2). , An adder (23) for outputting a difference between the rotation angular frequency (ωm) and the output of the multiplier (21), and a rotation angular frequency (ωm) and a multiplier (2).
An adder (24) that outputs a difference from the output of 2), a comparator (25) that outputs 1 if the output of the adder (23) is 0 or more, and 0 if the output is less than 0, and an output of the adder (24) Is 0
A comparator that outputs 1 if it is greater than 0 and 0 if it is less than 0 (2
6), a negation circuit (27) that outputs 0 if the output of the comparator (25) is 1 and 1 if the output is 0, and a comparator (2
6) If the output of 1 is 1, 0 if it is 0, 1 if it is 0, and AND circuit (2) that outputs the logical product of the output of the comparator (25) and the output of the NOT circuit (27).
9), the output of the comparator (26) and the NOT circuit (2)
AND circuit (210) for outputting a logical product with the output of 8)
And the output of the AND circuit (29) and the AND circuit (210)
An OR circuit (211) that outputs the logical sum of the output of
A secondary magnetic flux selection switch for selecting and outputting one value from binary secondary magnetic flux command candidate values based on the output of the R circuit (211).

【0006】[0006]

【作用】すべり角周波数ωs とトルクTとの関係は、二
次システム側の磁束の大きさをφ2 、二次抵抗をR2
すると
[Function] The relationship between the slip angular frequency ω s and the torque T is as follows, where the magnitude of the magnetic flux on the secondary system side is φ 2 , and the secondary resistance is R 2.

【数4】 ωs ={R2 / (φ2)2 }T ……(4) の関係があり、φ2 を変えることにより、トルクTを変
えることなくすべり角周波数ωs を変えることができ
る。本発明はこの原理を利用したもので、前記磁束調整
手段により磁束φを調整し、すべり角周波数ωs を変化
させることにより、(3) 式で表される一次角周波数ωを
零としないことによって、前記問題点を解決するもので
ある。ただし、ここでは定常状態を仮定しているため、
回転角周波数ωm は直ちには変化しないものとしてい
る。もし回転角周波数ωm が外的要因で変化するときに
は、一次角周波数ωが零付近に留まることはなくなり、
本問題には該当しなくなる。
Ω s = {R 2 / (φ 2 ) 2 } T (4). By changing φ 2 , it is possible to change the slip angular frequency ω s without changing the torque T. it can. The present invention utilizes this principle, to adjust the magnetic flux φ by the magnetic flux adjusting means, by varying the slip angular frequency omega s, not to zero the primary angular frequency omega of the formula (3) This solves the above problem. However, since a steady state is assumed here,
Rotation angular frequency ω m is assumed to immediately does not change. If when the rotational angular frequency omega m varies with external factors are no longer able to primary angular frequency omega remains near zero,
This is no longer the case.

【0007】[0007]

【実施例】図1は本発明をPWMインバータで駆動され
る誘導電動機のベクトル制御に適用した一実施例であ
り、11はPWMインバータ制御部、12はPWMインバー
タ、13は誘導電動機、14は速度とトルクの演算部、15は
磁束調整部であり、PWMインバータ制御部11はトルク
指令T* 、二次磁束指令φ2 * 、誘導電動機の回転角周
波数ωm 、一次電流I1 を入力とし、PWMインバータ
12へ制御信号を出力する。速度とトルクの演算部14では
一次電圧V1 と一次電流I1 とを入力し、回転角周波数
ωm とトルクTを出力する。磁束調整部15では、回転角
周波数ωm とトルクT及び二次磁束指令候補値φ21 *
φ22 * を入力して、回転角周波数ωm とトルクTとに応
じて、二次磁束指令候補値φ21 * ,φ22 * のどちらか一
方を選択して二次磁束指令φ2 * を出力する。
FIG. 1 shows an embodiment in which the present invention is applied to vector control of an induction motor driven by a PWM inverter. Reference numeral 11 denotes a PWM inverter control unit, 12 denotes a PWM inverter, 13 denotes an induction motor, and 14 denotes a speed. And a torque calculation unit, 15 is a magnetic flux adjustment unit, and the PWM inverter control unit 11 receives the torque command T * , the secondary magnetic flux command φ 2 * , the rotation angle frequency ω m of the induction motor, and the primary current I 1 , PWM inverter
Output control signal to 12. The arithmetic unit 14 of the speed and torque inputs of the primary voltages V 1 and the primary current I 1, and outputs the rotational angular frequency omega m and the torque T. The magnetic flux adjusting unit 15, the rotational angular frequency omega m and the torque T and the secondary flux command candidate value phi 21 *,
Enter the phi 22 *, in accordance with the rotational angular frequency omega m and the torque T, the secondary flux command candidate value φ 21 *, φ 22 * of either the selected secondary magnetic flux command phi 2 * Output.

【0008】図2は図1の磁束調整部15を表している。
乗算器21, 22によってトルクTに定数K1 ,K2 を掛
け、それぞれ加減器23, 24によって ωm −K1 Tおよ
びωm −K2 T を出力する。コンパレータ25では 0
≦ωm −K1 T の時には1が、0>ωm −K1 T の
時には0が出力され、またコンパレータ26でも同様に
0≦ωm −K2 T の時には1が、0>ωm −K2
の時には0が出力される。否定回路27, 28でそれぞれコ
ンパレータ26, 25の出力が反転し、AND 回路29において
は K1 T≦ωm <K2 T の時には1が、その他の時
には0が出力される。同様にAND 回路210 においても
2 T≦ωm <K1 T の時には1が出力され、その他
の時には0が出力される。
FIG. 2 shows the magnetic flux adjusting section 15 of FIG.
Multipliers 21 and 22 multiply torque T by constants K 1 and K 2 , and adders 23 and 24 output ω m −K 1 T and ω m −K 2 T, respectively. 0 in comparator 25
When ≦ ω m −K 1 T, 1 is output, and when 0> ω m −K 1 T, 0 is output.
When 0 ≦ ω m −K 2 T, 1 is satisfied, and 0> ω m −K 2 T
In the case of, 0 is output. The outputs of the comparators 26 and 25 are inverted by the NOT circuits 27 and 28, respectively, and the AND circuit 29 outputs 1 when K 1 T ≦ ω m <K 2 T, and outputs 0 at other times. Similarly, in the AND circuit 210,
When K 2 T ≦ ω m <K 1 T, 1 is output, and at other times, 0 is output.

【0009】OR回路211 によって K1 T≦ωm <K2
T または K2 T≦ωm <K1 Tの時には1が出力さ
れ、その他の時には0が出力される。二次磁束選択スイ
ッチ212 によって、OR回路211 からの信号が1の時には
二次磁束指令候補値φ22 * を選択し、0の時には二次磁
束指令候補値φ21 * を選択して、二次磁束指令φ2 *
して出力する。
By the OR circuit 211, K 1 T ≦ ω m <K 2
When T or K 2 T ≦ ω m <K 1 T, 1 is output, and at other times, 0 is output. The secondary flux selection switch 212 selects the secondary flux command candidate value phi 22 * when the signal is 1 from the OR circuit 211, when the 0 selects the secondary flux command candidate value phi 21 *, secondary Output as magnetic flux command φ 2 * .

【0010】この様にして出力される二次磁束指令φ2
* は、図3のトルクT〜回転角周波数座標において、一
点鎖線と(0,0)を除く斜線部分では二次磁束指令候
補値φ22 * を選択し、その他の領域では二次磁束指令候
補値φ21 * を選択することになる。ここで直線n1 ,n
2 ,l,mは次式で表される。
The secondary magnetic flux command φ 2 thus output
* , In the torque T to rotation angular frequency coordinates of FIG. 3, a secondary magnetic flux command candidate value φ 22 * is selected in a hatched portion except a dashed line and (0, 0), and a secondary magnetic flux command candidate is selected in other regions. The value φ 21 * will be selected. Where the straight lines n 1 and n
2 , 1, and m are represented by the following equations.

【数5】 n1 : ωm =K1 T ……(5) N 1 : ω m = K 1 T (5)

【数6】 n2 : ωm =K2 T ……(6) N 2 : ω m = K 2 T (6)

【数7】 l : ωm =−{R2 /(φ21 * 2 }T ……(7) L: ω m = −7R 2 / (φ 21 * ) 2 {T (7)

【数8】 m : ωm =−{R2 /(φ22 * 2 }T ……(8) M: ω m = −ΔR 2 / (φ 22 * ) 2 ΔT (8)

【0011】前述の通りK1 ,K2 は定数であり、定数
1 ,K2 の条件は、図3のように直線n1 ,n2 で挟
まれる領域内に直線lを含み、直線mを含まなければよ
い。また、式(7), (8)で表される直線l及びmは磁束の
大きさがそれぞれφ21 * 及びφ22 * である時の、一次角
周波数ωが零となるトルクTと回転角周波数ωm との関
係を示すものであり、(3) 式に(4) 式のすべり角周波数
ωs と、ω=0を代入することによって求めることがで
きる。ちなみに、本実施例ではK1 ,K2 及びφ22 *
φ21 * に対して次のように定め、前記した条件を満たし
ている。
As described above, K 1 and K 2 are constants, and the conditions of the constants K 1 and K 2 include a straight line 1 in a region sandwiched between the straight lines n 1 and n 2 as shown in FIG. Should not be included. The straight lines l and m represented by the formulas (7) and (8) are the torque T and the rotation angle at which the primary angular frequency ω becomes zero when the magnitude of the magnetic flux is φ 21 * and φ 22 * , respectively. and shows the relationship between the frequency omega m, can be obtained by substituting (3) and the slip angular frequency omega s of (4) to the equation, ω = 0. Incidentally, in this embodiment, K 1 , K 2 and φ 22 * are determined with respect to φ 21 * as follows, and the above-mentioned conditions are satisfied.

【数9】 K1 =−R2 /(φ21 * −α)22 =−R2 /(φ21 * +α)2 α=(φ21 * −φ22 * )/2 φ22 * =φ21 * /2K 1 = −R 2 / (φ 21 * −α) 2 K 2 = −R 2 / (φ 21 * + α) 2 α = (φ 21 * −φ 22 * ) / 2 φ 22 * = φ 21 * / 2

【0012】本実施例は基本的に二次磁束の大きさはφ
21 * で制御するのであるが、誘導電動機が直線l近辺
(図3で示す斜線部)で運転する時、つまり一次角周波
数ωが零に近い時は、二次磁束の大きさをφ21 * からφ
22 * に弱めることによって、トルクと回転角周波数とを
変えることなく一次角周波数を変化させることができ、
回転角周波数ωm の演算を可能にする。仮に式(7) を満
たす回転角周波数ωm とトルクTで運転する(図3の直
線lで運転する)ときφ2 * =φ21 * で制御すると、式
(4), (7), (3) より一次角周波数ωは零となる。同様
に、式(8) を満たす回転角周波数ωm とトルクTで運転
する(図3の直線mで運転する)ときφ2 * =φ22 *
制御すると、式(4), (8), (3) より一次角周波数ωは零
となる。つまり、本例のように回転角周波数ωm とトル
クTが式(7) を満たすときに、φ2 * =φ21 * ではなく
φ2 * =φ22 * で制御することにより、式(7) と式(8)
を同時に満たす点(ωm =T=0)以外の領域で、一次
角周波数ωが零とならないように運転することができ
る。
In this embodiment, the magnitude of the secondary magnetic flux is basically φ
21 but * than is controlled by induction when the motor is operated in the vicinity linear l (hatched portion shown in FIG. 3), that is, when the primary angular frequency ω is close to zero, the magnitude of the secondary flux phi 21 * From φ
By weakening to 22 * , the primary angular frequency can be changed without changing the torque and the rotational angular frequency,
Allows the calculation of the rotation angular frequency omega m. Supposing (driving in a straight line in FIG. 3 l) the rotational angular frequency omega m and operated in a torque T satisfying the equation (7) to control φ 2 * = φ 21 * when the formula
From (4), (7) and (3), the primary angular frequency ω is zero. Similarly, operated at a rotational angular frequency omega m and the torque T satisfying the formula (8) (operating at line m in FIG. 3) for controlling φ 2 * = φ 22 * when the formula (4), (8) (3), the primary angular frequency ω becomes zero. In other words, by controlling when the rotational angular frequency omega m and the torque T as in the present embodiment satisfies the formula (7), φ 2 * = φ 21 * instead φ 2 * = φ 22 * in the formula (7 ) And equation (8)
Can be operated so that the primary angular frequency ω does not become zero in a region other than the point (ω m = T = 0) that simultaneously satisfies the following conditions.

【0013】本実施例では二次磁束指令を2値から選択
したが、一次角周波数を零に近づけず、トルクと回転角
周波数に影響を与えない程度に磁束を調整する手段の一
例に過ぎない。
In the present embodiment, the secondary magnetic flux command is selected from binary values. However, this is merely an example of a means for adjusting the magnetic flux so that the primary angular frequency does not approach zero and does not affect the torque and the rotational angular frequency. .

【0014】[0014]

【発明の効果】以上述べてきたように、誘導電動機の一
次電圧と一次電流とから誘導電動機の回転角周波数を演
算する場合に、従来の技術では速度演算不可能な場合が
あったが、本発明によりそれを改善できる。
As described above, when the rotation angle frequency of the induction motor is calculated from the primary voltage and the primary current of the induction motor, the speed cannot be calculated by the conventional technique in some cases. The invention can improve it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のPWMインバータと誘導電
動機の制御回路のブロック線図である。
FIG. 1 is a block diagram of a control circuit for a PWM inverter and an induction motor according to an embodiment of the present invention.

【図2】本発明の一実施例の図1に含まれる磁束調整部
のブロック線図である。
FIG. 2 is a block diagram of a magnetic flux adjusting unit included in FIG. 1 according to one embodiment of the present invention.

【図3】本発明の一実施例の磁束調整部による、トルク
T〜誘導電動機の回転角周波数ωm 座標における二次磁
束選択の領域を表す図である。
By the magnetic flux adjusting portion of an embodiment of the present invention; FIG is a diagram representing the area of the secondary flux selection in rotational angular frequency omega m coordinates of the torque T~ induction motor.

【符号の説明】[Explanation of symbols]

11 PWMインバータ制御部 12 PWMインバータ 13 誘導電動機 14 速度とトルクの演算部 15 磁束調整部 21, 22 乗算器 23, 24 加減器 25, 26 コンパレータ 27, 28 否定回路 29, 210 AND 回路 211 OR回路 212 二次磁束選択スイッチ 11 PWM inverter control unit 12 PWM inverter 13 Induction motor 14 Speed and torque calculation unit 15 Magnetic flux adjustment unit 21, 22 Multiplier 23, 24 Adjuster 25, 26 Comparator 27, 28 Negation circuit 29, 210 AND circuit 211 OR circuit 212 Secondary magnetic flux selection switch

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘導電動機の回転角周波数(ωm)とトル
ク(T)と複数の磁束指令候補値(φ21*、φ22
*、…)を入力し、回転角周波数(ωm)とトルク
(T)と磁束指令(φ2*)及び誘導電動機の二次抵抗
(R2)との関係が、T=ωm=0以外で、ωm+TR
2/φ2*2≠0を満足する磁束指令(φ2*)を、複
数の磁束指令候補値(φ21*、φ22*、…)のうち
一つを選択して出力する磁束調整部(15)を設けたこ
とによって、達成されることを特徴とする誘導電動機の
磁束調整方法。
1. A rotation angle frequency (ωm), a torque (T) and a plurality of magnetic flux command candidate values (φ21 *, φ22) of an induction motor.
*, ...), and the relationship among the rotational angular frequency (ωm), the torque (T), the magnetic flux command (φ2 *), and the secondary resistance (R2) of the induction motor is ωm + TR except T = ωm = 0.
A magnetic flux adjusting unit (15) that outputs a magnetic flux command (φ2 *) satisfying 2 / φ2 * 2φ0 by selecting one of a plurality of magnetic flux command candidate values (φ21 *, φ22 *,...). A magnetic flux adjusting method for an induction motor, which is achieved by providing the magnetic flux.
【請求項2】トルク(T)と定数(K1)との積を出力
する乗算器(21)と、トルク(T)と定数(K2)と
の積を出力する乗算器(22)と、回転角周波数(ω
m)と乗算器(21)の出力との差を出力する加減器
(23)と、回転角周波数(ωm)と乗算器(22)の
出力との差を出力する加減器(24)と、加減器(2
3)の出力が0以上なら1、0未満なら0を出力するコ
ンパレータ(25)と、加減器(24)の出力が0以上
なら1、0未満なら0を出力するコンパレータ(26)
と、コンパレータ(25)の出力が1なら0、0なら1
を出力する否定回路(27)と、コンパレータ(26)
の出力が1なら0、0なら1を出力する否定回路(2
8)と、コンパレータ(25)の出力と否定回路(2
7)の出力との論理積を出力するAND回路(29)
と、コンパレータ(26)の出力と否定回路(28)の
出力との論理積を出力するAND回路(210)と、A
ND回路(29)の出力とAND回路(210)の出力
との論理和を出力するOR回路(211)と、OR回路
(211)の出力により2値の二次磁束指令候補値から
1値を選択して出力する二次磁束選択スイッチとから成
る誘導電動機の磁束調整装置。
2. A multiplier (21) for outputting a product of a torque (T) and a constant (K1); a multiplier (22) for outputting a product of the torque (T) and a constant (K2); Angular frequency (ω
m) and an output of the multiplier (21), and an adder (23) for outputting a difference between the rotational angular frequency (ωm) and an output of the multiplier (22). Adjuster (2
A comparator (25) that outputs 1 if the output of 3) is 0 or more and 0 if it is less than 0, and a comparator (26) that outputs 1 if the output of the adder / subtractor (24) is 0 or more and less than 0
And 0 if the output of the comparator (25) is 1 and 1 if the output is 0
And a comparator (26)
The negation circuit (2) outputs 0 if the output of
8), the output of the comparator (25) and the NOT circuit (2
AND circuit (29) for outputting a logical product with the output of 7)
An AND circuit (210) that outputs a logical product of the output of the comparator (26) and the output of the NOT circuit (28);
An OR circuit (211) that outputs the logical sum of the output of the ND circuit (29) and the output of the AND circuit (210), and one value from the binary secondary magnetic flux command candidate value based on the output of the OR circuit (211). A magnetic flux adjusting device for an induction motor, comprising a secondary magnetic flux selection switch for selecting and outputting.
JP3332395A 1991-12-17 1991-12-17 Method and apparatus for adjusting magnetic flux of induction motor Expired - Lifetime JP2817123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332395A JP2817123B2 (en) 1991-12-17 1991-12-17 Method and apparatus for adjusting magnetic flux of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332395A JP2817123B2 (en) 1991-12-17 1991-12-17 Method and apparatus for adjusting magnetic flux of induction motor

Publications (2)

Publication Number Publication Date
JPH05168274A JPH05168274A (en) 1993-07-02
JP2817123B2 true JP2817123B2 (en) 1998-10-27

Family

ID=18254495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332395A Expired - Lifetime JP2817123B2 (en) 1991-12-17 1991-12-17 Method and apparatus for adjusting magnetic flux of induction motor

Country Status (1)

Country Link
JP (1) JP2817123B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004294A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Electric Corporation Induction motor vector control device, induction motor vector control method, and induction motor drive control device
DE102013212054A1 (en) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Method and device for operating an asynchronous machine, asynchronous machine
JP6643062B2 (en) * 2015-12-01 2020-02-12 東洋電機製造株式会社 Electric car control device
CN109713970B (en) * 2018-12-21 2023-04-11 南京工程学院 Permanent magnet synchronous motor control method for electric vehicle based on predictive control

Also Published As

Publication number Publication date
JPH05168274A (en) 1993-07-02

Similar Documents

Publication Publication Date Title
US6134490A (en) Power steering device assisted by variable power
JP3152058B2 (en) Variable speed control device for induction motor
KR100444021B1 (en) Variable speed controller for induction motor
JP2817123B2 (en) Method and apparatus for adjusting magnetic flux of induction motor
JP2004072954A (en) Motor control device and method therefor
JP3054521B2 (en) Induction motor control device
JP3395814B2 (en) Drive device for permanent magnet type synchronous motor
KR101861023B1 (en) Torque controlling apparatus and method of induction motors based on model predictive control
JP3099681B2 (en) Variable speed control device for AC motor
JP3508971B2 (en) Induction motor torque control device
JP3687331B2 (en) Induction machine variable speed drive
JP3454409B2 (en) Induction motor control device
JP3160778B2 (en) Inverter-driven motor speed estimation method and device, and motor vector control device using the speed estimation method
JP3307122B2 (en) Induction motor control device
JP2615688B2 (en) Control method of induction motor
JPH11285299A (en) Vector controller of induction motor, and its vector control method
JP2002209399A (en) Method and apparatus for controlling sensorless induction machine
JP2935962B2 (en) Speed sensorless control inverter
JP2713857B2 (en) Sensorless inverter device with resistance fluctuation compensation
JP3227824B2 (en) Output voltage control method of voltage source inverter
JPH0254039B2 (en)
JP3666567B2 (en) Electric power steering control device
JPH1084686A (en) Switching method for servo controller
JP3421537B2 (en) Speed sensorless control device
JPH08196100A (en) Speed sensorless vector controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070821

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110821

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110821

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 14