JP6642078B2 - Sample preparation method for powder X-ray diffraction analysis - Google Patents

Sample preparation method for powder X-ray diffraction analysis Download PDF

Info

Publication number
JP6642078B2
JP6642078B2 JP2016024302A JP2016024302A JP6642078B2 JP 6642078 B2 JP6642078 B2 JP 6642078B2 JP 2016024302 A JP2016024302 A JP 2016024302A JP 2016024302 A JP2016024302 A JP 2016024302A JP 6642078 B2 JP6642078 B2 JP 6642078B2
Authority
JP
Japan
Prior art keywords
powder
sample
embedding agent
ray diffraction
analyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016024302A
Other languages
Japanese (ja)
Other versions
JP2017142187A (en
Inventor
大河 塩谷
大河 塩谷
近藤 光
光 近藤
公二 中村
公二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016024302A priority Critical patent/JP6642078B2/en
Publication of JP2017142187A publication Critical patent/JP2017142187A/en
Application granted granted Critical
Publication of JP6642078B2 publication Critical patent/JP6642078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、粉末X線回折分析用の試料作成方法に関する。さらに詳しくは、配向性を有する粉末試料をX線回折分析する際の試料作成方法に関する。   The present invention relates to a method for preparing a sample for powder X-ray diffraction analysis. More specifically, the present invention relates to a method of preparing a powder sample having an orientation at the time of X-ray diffraction analysis.

粉末X線回折分析は試料の結晶性や結晶構造を分析する手法として広く知られている(例えば、特許文献1)。一般に、粉末X線回折分析の試料の調整は以下の手順で行われる。まず、試料を粉砕して適当な粒径の粉末試料を得る。つぎに、粉末試料を試料ホルダに充填する。試料ホルダはガラスや金属などの板材に凹部を形成したものである。試料ホルダの凹部に粉末試料を均一に充填する。この際、スライドガラス等を試料ホルダに擦り合わせることで、試料面を平坦にする。   Powder X-ray diffraction analysis is widely known as a technique for analyzing the crystallinity and crystal structure of a sample (for example, Patent Document 1). Generally, preparation of a sample for powder X-ray diffraction analysis is performed in the following procedure. First, a sample is pulverized to obtain a powder sample having an appropriate particle size. Next, the powder sample is filled in the sample holder. The sample holder is formed by forming a concave portion on a plate material such as glass or metal. The concave portion of the sample holder is uniformly filled with the powder sample. At this time, the sample surface is flattened by rubbing a slide glass or the like with the sample holder.

前記の方法で配向性を有する粉末試料を試料ホルダに充填すると、結晶子の向きが特定の方向に偏る。その結果、X線回折分析において、特定の回折X線だけが強く観測されてしまう。この現象は選択配向と称される。   When the powder sample having the orientation is filled in the sample holder by the above-described method, the direction of the crystallite is biased to a specific direction. As a result, in the X-ray diffraction analysis, only a specific diffracted X-ray is strongly observed. This phenomenon is called the preferred orientation.

粉末試料をキャピラリ(内径1.0mm程度のパイプ)に充填する方法であれば、選択配向を防止できる。しかし、この方法は粉末試料の充填にコツが必要である。また、キャピラリに充填できる試料の量は少量であるため、回折X線の強度が弱い。そのため、試料ホルダを用いた場合に比べて、X線回折分析に10倍程度の時間を要する。   A method of filling a powder sample into a capillary (a pipe having an inner diameter of about 1.0 mm) can prevent the preferred orientation. However, this method requires a trick for filling the powder sample. Further, since the amount of the sample that can be filled in the capillary is small, the intensity of the diffracted X-ray is weak. Therefore, the X-ray diffraction analysis requires about ten times as long as the case using the sample holder.

特開2015−31569号公報JP-A-2015-31569

本発明は上記事情に鑑み、配向性を有する粉末試料であっても選択配向が生じない粉末X線回折分析用の試料作成方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a sample preparation method for powder X-ray diffraction analysis in which a preferred orientation does not occur even in a powder sample having an orientation.

第1発明の粉末X線回折分析用の試料作成方法は、配向性を有する分析対象粉末と樹脂である包埋剤とを混合し、該包埋剤を硬化させて固形物を得、前記固形物を粉砕して処理後粉末試料を得ることを特徴とする。
第2発明の粉末X線回折分析用の試料作成方法は、第1発明において、前記包埋剤はエポキシ樹脂であることを特徴とする。
第3発明の粉末X線回折分析用の試料作成方法は、配向性を有する分析対象粉末と包埋剤とを混合し、該包埋剤を硬化させて固形物を得、前記固形物を粉砕して処理後粉末試料を得る方法であって、前記分析対象粉末と前記包埋剤との混合比率は、見掛体積において、前記分析対象粉末1に対して前記包埋剤0.5〜2であることを特徴とする。
第4発明の粉末X線回折分析用の試料作成方法は、配向性を有する分析対象粉末と包埋剤とを混合し、該包埋剤を硬化させて固形物を得、前記固形物を粉砕して処理後粉末試料を得る方法であって、前記処理後粉末試料の粒径は前記分析対象粉末の粒径以上であることを特徴とする。
The method for preparing a sample for powder X-ray diffraction analysis of the first invention comprises mixing a powder to be analyzed having an orientation and an embedding agent which is a resin, and curing the embedding agent to obtain a solid. The method is characterized in that the material is pulverized to obtain a powder sample after the treatment.
A sample preparation method for powder X-ray diffraction analysis according to a second invention is characterized in that, in the first invention, the embedding agent is an epoxy resin.
The sample preparation method for powder X-ray diffraction analysis according to the third invention comprises mixing an analysis target powder having an orientation and an embedding agent, curing the embedding agent to obtain a solid, and pulverizing the solid. A method for obtaining a powder sample after treatment, wherein the mixing ratio of the powder to be analyzed and the embedding agent is such that the embedding agent is 0.5 to 2 with respect to the powder to be analyzed 1 in an apparent volume. It is characterized by being.
A sample preparation method for powder X-ray diffraction analysis according to a fourth aspect of the present invention comprises mixing a powder to be analyzed having an orientation and an embedding agent, curing the embedding agent to obtain a solid, and pulverizing the solid. And obtaining a powder sample after the treatment, wherein a particle size of the powder sample after the treatment is equal to or larger than a particle size of the powder to be analyzed.

第1発明によれば、処理後粉末試料を試料ホルダに充填しても選択配向が生じない。また、包埋剤が樹脂であるので、固形物の作成が容易である。
第2発明によれば、包埋剤がエポキシ樹脂であるので、硬化が容易である。
第3発明によれば、分析対象粉末1に対して包埋剤を0.5以上とすることで、分析対象粉末を包埋剤中に十分に分散できる。分析対象粉末1に対して包埋剤を2以下とすることで、X線回折分析において包埋剤により生じるバックグラウンドを抑えることができる。
第4発明によれば、処理後粉末試料の粒径が分析対象粉末の粒径以上であるので、分析対象粉末が包埋剤でコーティングされた状態を維持できる。
According to the first invention, even if the powder sample after processing is filled in the sample holder, the selective orientation does not occur. Further, since the embedding agent is a resin, it is easy to prepare a solid.
According to the second invention, since the embedding agent is an epoxy resin, curing is easy.
According to the third aspect , by setting the embedding agent to 0.5 or more with respect to the analysis target powder 1, the analysis target powder can be sufficiently dispersed in the embedding agent. By setting the embedding agent to 2 or less with respect to the powder 1 to be analyzed, the background caused by the embedding agent in the X-ray diffraction analysis can be suppressed.
According to the fourth aspect, since the particle size of the powder sample after the treatment is equal to or larger than the particle size of the analysis target powder, the state in which the analysis target powder is coated with the embedding agent can be maintained.

本発明の一実施形態に係る試料作成方法の工程図である。It is a flowchart of the sample preparation method concerning one embodiment of the present invention. 実施例1におけるX線回折パターンである。3 is an X-ray diffraction pattern in Example 1. 比較例1におけるX線回折パターンである。7 is an X-ray diffraction pattern in Comparative Example 1.

つぎに、本発明の実施形態を図面に基づき説明する。
図1に示すように、本発明の一実施形態に係る粉末X線回折分析用の試料作成方法は、X線回折分析の対象である分析対象粉末に処理を施して処理後粉末試料を得る方法である。前記処理は、混合工程10、硬化工程20、粉砕工程30からなる。以下、順に説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a method for preparing a sample for powder X-ray diffraction analysis according to one embodiment of the present invention is a method for obtaining a powder sample after processing by treating a powder to be analyzed which is an object of X-ray diffraction analysis. It is. The processing includes a mixing step 10, a curing step 20, and a pulverizing step 30. Hereinafter, description will be made in order.

(分析対象粉末)
分析対象粉末は配向性を有する粉末である。配向性を有する粉末としては板状や針状の粒子が挙げられる。このような粉末として、二硫化モリブデン、グラファイト、雲母、酸化チタン(IV)などが知られている。
(Powder to be analyzed)
The analysis target powder is a powder having an orientation. Examples of the powder having the orientation include plate-like and needle-like particles. As such powders, molybdenum disulfide, graphite, mica, titanium (IV) oxide and the like are known.

分析対象粉末は予め粉砕などの処理により適当な粒径に整えられている。分析対象粉末の粒径は特に限定されないが、100μm程度とすれば後述の混合工程10において包埋剤と混合しやすいので好ましい。   The powder to be analyzed has been previously adjusted to an appropriate particle size by a treatment such as pulverization. The particle size of the powder to be analyzed is not particularly limited, but is preferably about 100 μm because it is easy to mix with the embedding agent in the mixing step 10 described later.

(混合工程10)
混合工程10では分析対象粉末と包埋剤とを混合し、混合物を得る。包埋剤中に分析対象粉末が分散した状態とする。
(Mixing step 10)
In the mixing step 10, the powder to be analyzed and the embedding agent are mixed to obtain a mixture. The analysis target powder is dispersed in the embedding medium.

包埋剤は分析対象粉末が溶解することがなく、硬化後には粉砕することが可能な硬度を有していれば特に限定されない。X線回折パターンへの影響を抑えるため、包埋剤はアモルファスが好ましい。包埋剤として、樹脂、ガラス、金属などを用いることができる。包埋剤として樹脂を用いれば、後述の固形物の作成が容易であるので好ましい。樹脂としては何らかの処理により硬化可能な樹脂が用いられる。このような樹脂として熱硬化性樹脂、熱可塑性樹脂が挙げられる。また、液体または粉末の樹脂を用いれば、分析対象粉末との混合が容易である。特に、顕微鏡観察用の包埋樹脂が好ましい。包埋樹脂として、エポキシ樹脂、アクリル樹脂、ベークライト(フェノール樹脂)などが知られている。   The embedding agent is not particularly limited as long as it does not dissolve the powder to be analyzed and has a hardness that can be crushed after curing. The embedding agent is preferably amorphous in order to suppress the influence on the X-ray diffraction pattern. As the embedding agent, resin, glass, metal, or the like can be used. It is preferable to use a resin as the embedding agent, since it is easy to prepare a solid described below. As the resin, a resin curable by some processing is used. Examples of such a resin include a thermosetting resin and a thermoplastic resin. In addition, if a liquid or powder resin is used, mixing with a powder to be analyzed is easy. In particular, an embedding resin for microscopic observation is preferable. As an embedding resin, epoxy resin, acrylic resin, bakelite (phenol resin) and the like are known.

(硬化工程20)
硬化工程20では包埋剤を硬化させて固形物を得る。包埋剤中に分析対象粉末が分散した状態のまま硬化できればよく、硬化方法は特に限定がない。例えば、混合工程10で得られた混合物を型に充填し、硬化させる。混合物を充填する型は、得られた固形物の粉砕に障害とならない形状や寸法であればよい。
(Curing step 20)
In the curing step 20, the embedding agent is cured to obtain a solid. It is only necessary to be able to cure in a state where the powder to be analyzed is dispersed in the embedding agent, and the curing method is not particularly limited. For example, the mixture obtained in the mixing step 10 is filled in a mold and cured. The mold for filling the mixture may have any shape or size that does not hinder the pulverization of the obtained solid.

包埋剤としてエポキシ樹脂を用いた場合、所定時間放置するだけで硬化する。このように、包埋剤としてエポキシ樹脂を用いれば、硬化が容易である。   When an epoxy resin is used as an embedding agent, it is cured only by leaving it for a predetermined time. As described above, if the epoxy resin is used as the embedding agent, curing is easy.

包埋剤としてアクリル樹脂を用いた場合には、硬化剤を添加することで硬化する。包埋剤としてベークライトを用いた場合には、混合物を加圧加熱成形機にセットして、所定の硬化処理をする。   When an acrylic resin is used as the embedding agent, it is cured by adding a curing agent. When bakelite is used as the embedding agent, the mixture is set in a press and heat molding machine and subjected to a predetermined curing treatment.

(粉砕工程30)
粉砕工程30では固形物を粉砕して処理後粉末試料を得る。粉砕方法は特に限定されないが、例えば、ハンマーにより粗粉砕した後、乳鉢で微粉砕すればよい。
(Pulverizing step 30)
In the pulverizing step 30, the solid is pulverized to obtain a powder sample after the treatment. The pulverizing method is not particularly limited, and for example, after coarse pulverization with a hammer, fine pulverization in a mortar may be used.

以上の処理で得られた処理後粉末試料を試料ホルダに充填する。具体的には、試料ホルダの凹部に処理後粉末試料を盛り上げ、スライドガラス等を試料ホルダに擦り合わせることで、余分な試料を除去し、試料面を平坦にする。   The powder sample after processing obtained by the above processing is filled in a sample holder. Specifically, the powder sample after processing is raised in the concave portion of the sample holder, and an excess sample is removed by rubbing a slide glass or the like with the sample holder, thereby flattening the sample surface.

以上の手順で処理後粉末試料を試料ホルダに充填しても選択配向が生じない。そのため、X線回折分析において、特定の回折X線だけが強く観測されることがなく、精度の高い分析が可能となる。   Even if the powder sample is filled in the sample holder after the treatment according to the above procedure, the selective orientation does not occur. Therefore, in X-ray diffraction analysis, only a specific diffracted X-ray is not strongly observed, and highly accurate analysis is possible.

処理後粉末試料を用いると選択配向が生じない理由は以下のとおりと考えられる。
処理後粉末試料は分析対象粉末の表面が包埋剤でコーティングされたものである。処理後粉末試料は球形に近い形状であるか、分析対象粉末の結晶子の向きとは無関係の形状である。そのため、処理後粉末試料を試料ホルダに充填しても、分析対象粉末の結晶子がランダムな方向を向き、選択配向が生じない。
It is considered that the reason why the selective orientation does not occur when the powder sample after the treatment is used is as follows.
The powder sample after the treatment is obtained by coating the surface of the powder to be analyzed with an embedding agent. The powder sample after the treatment has a shape close to a spherical shape or a shape unrelated to the orientation of crystallites of the powder to be analyzed. Therefore, even if the powder sample after processing is filled in the sample holder, the crystallites of the powder to be analyzed are oriented in random directions, and no selective orientation occurs.

前記混合工程10において、分析対象粉末と包埋剤との混合比率は、見掛体積において、分析対象粉末1に対して包埋剤0.5〜2とすることが好ましい。分析対象粉末に対して包埋剤が少ないと、包埋剤中に分析対象粉末が十分に分散できない恐れがある。そうすると、分析対象粉末のコーティングが不十分になる可能性がある。分析対象粉末1に対して包埋剤を0.5以上とすることで、分析対象粉末を包埋剤中に十分に分散できる。その結果、分析対象粉末を十分にコーティングできる。   In the mixing step 10, the mixing ratio between the powder to be analyzed and the embedding agent is preferably 0.5 to 2 in the apparent volume with respect to the powder 1 to be analyzed. If the amount of the embedding agent is small relative to the analysis target powder, the analysis target powder may not be sufficiently dispersed in the embedding agent. Then, the coating of the powder to be analyzed may be insufficient. By setting the embedding agent to 0.5 or more with respect to the analysis target powder 1, the analysis target powder can be sufficiently dispersed in the embedding agent. As a result, the powder to be analyzed can be sufficiently coated.

また、包埋剤が多すぎると、X線回折分析において包埋剤により生じるバックグラウンドが大きくなり、相対的に分析対象粉末の回折X線の強度が弱くなる。分析対象粉末1に対して包埋剤を2以下とすることで、X線回折分析において包埋剤により生じるバックグラウンドを抑えることができる。その結果、精度の高い分析が可能となる。   On the other hand, if the amount of the embedding agent is too large, the background caused by the embedding agent in the X-ray diffraction analysis becomes large, and the intensity of the diffracted X-ray of the powder to be analyzed becomes relatively weak. By setting the embedding agent to 2 or less for the powder 1 to be analyzed, the background caused by the embedding agent in the X-ray diffraction analysis can be suppressed. As a result, highly accurate analysis becomes possible.

前記粉砕工程30において、処理後粉末試料の粒径は分析対象粉末の粒径以上とすることが好ましい。処理後粉末試料を分析対象粉末の粒径未満まで粉砕すると、包埋剤でコーティングされていない分析対象粉末が生成され、選択配向が生じる。処理後粉末試料の粒径を分析対象粉末の粒径以上とすれば、分析対象粉末が包埋剤でコーティングされた状態を維持できる。   In the pulverizing step 30, the particle size of the powder sample after the treatment is preferably equal to or larger than the particle size of the powder to be analyzed. Grinding the processed powder sample to less than the particle size of the analyte powder produces an analyte powder that is not coated with an embedding agent, resulting in preferential orientation. When the particle size of the powder sample after the treatment is equal to or larger than the particle size of the analysis target powder, the state in which the analysis target powder is coated with the embedding agent can be maintained.

処理後粉末試料の粒径は試料ホルダの凹部の深さに対して十分に小さい方が好ましい。例えば、処理後粉末試料の粒径の上限を試料ホルダの凹部の深さの5分の1とすることが好ましい。   It is preferable that the particle size of the powder sample after the treatment is sufficiently smaller than the depth of the concave portion of the sample holder. For example, it is preferable that the upper limit of the particle size of the processed powder sample is set to one fifth of the depth of the concave portion of the sample holder.

つぎに、実施例を説明する。
(実施例1)
分析対象粉末として二化モリブデン粉末を用いた。分析対象粉末の粒径は篩下100μmであり、重量は0.5gである。包埋剤として液体のエポキシ樹脂(丸本ストルアス株式会社製、エポフィックス)を用いた。
Next, examples will be described.
(Example 1)
Using two vulcanization molybdenum powder as analyzed powder. The particle size of the powder to be analyzed is 100 μm under the sieve and the weight is 0.5 g. A liquid epoxy resin (Epofix, manufactured by Marumoto Struers Co., Ltd.) was used as an embedding agent.

分析対象粉末とエポキシ樹脂とを内径25mm、高さ20mmの円筒形の鋼製筒に入れ、ガラス棒で60秒撹拌した。ここで、分析対象粉末とエポキシ樹脂との混合比率を、見掛体積において1:1とした。空気中に4分間放置して、直径25mm、高さ10mmの円筒形の固形物を得た。得られた固形物をハンマーで数mmの粒度まで粉砕した。つぎに、得られた粉末をメノウ乳鉢で100μm篩下となるまで粉砕して、処理後粉末試料を得た。   The powder to be analyzed and the epoxy resin were placed in a cylindrical steel cylinder having an inner diameter of 25 mm and a height of 20 mm, and stirred with a glass rod for 60 seconds. Here, the mixing ratio between the powder to be analyzed and the epoxy resin was set to 1: 1 in apparent volume. It was left in the air for 4 minutes to obtain a cylindrical solid having a diameter of 25 mm and a height of 10 mm. The obtained solid was ground with a hammer to a particle size of several mm. Next, the obtained powder was pulverized in an agate mortar until it was sifted under a 100 μm sieve to obtain a powder sample after the treatment.

処理後粉末試料をガラス製試料ホルダの凹部に充填した。この際、スライドガラスを試料ホルダに擦り合わせることで、試料面を平坦にした。試料ホルダとして、直径25mm、深さ0.5mmの凹部を有するものを用いた。X線回折分析装置として、PANalyticl社製 型式:X’Pert PRO(Cu−Kα線 45kV 40mA)を用いて、X線回折分析を行った。   After the treatment, the powder sample was filled in the concave portion of the glass sample holder. At this time, the sample surface was flattened by rubbing the slide glass against the sample holder. A sample holder having a concave portion with a diameter of 25 mm and a depth of 0.5 mm was used. X-ray diffraction analysis was performed using an X-Pert PRO (Cu-Kα ray 45 kV 40 mA) manufactured by PANalyticl as an X-ray diffraction analyzer.

図2にX線回折分析により得られたX線回折パターンを示す。図2の横軸は入射角(2θ)、縦軸は回折強度である。図2中の縦線は予想されるピーク位置、強度を示す。図2から分かるように、X線回折パターンは予想されるピーク位置、強度と良く一致した。   FIG. 2 shows an X-ray diffraction pattern obtained by X-ray diffraction analysis. The horizontal axis in FIG. 2 is the incident angle (2θ), and the vertical axis is the diffraction intensity. The vertical line in FIG. 2 indicates the expected peak position and intensity. As can be seen from FIG. 2, the X-ray diffraction pattern agreed well with the expected peak position and intensity.

(比較例1)
粉末試料として二化モリブデン粉末を用いた。粉末試料の粒径は篩下100μmであり、重量は0.5gである。粉末試料をガラス製試料ホルダの凹部に充填した。この際、スライドガラスを試料ホルダに擦り合わせることで、試料面を平坦にした。試料ホルダとして、直径25mm、深さ0.5mmの凹部を有するものを用いた。X線回折分析装置として、PANalyticl社製 型式:X’Pert PRO(Cu−Kα線 45kV 40mA)を用いて、X線回折分析を行った。
(Comparative Example 1)
Using two vulcanization molybdenum powder as a powder sample. The particle size of the powder sample is 100 μm under the sieve and the weight is 0.5 g. The powder sample was filled in the concave portion of the glass sample holder. At this time, the sample surface was flattened by rubbing the slide glass against the sample holder. A sample holder having a concave portion with a diameter of 25 mm and a depth of 0.5 mm was used. X-ray diffraction analysis was performed using an X-Pert PRO (Cu-Kα ray 45 kV, 40 mA) manufactured by PANalyticl as an X-ray diffraction analyzer.

図3にX線回折分析により得られたX線回折パターンを示す。図3の横軸は入射角(2θ)、縦軸は回折強度である。図3中の縦線は予想されるピーク位置、強度を示す。図3から分かるように、X線回折パターンは比較的小さい角度領域では予想されるピーク位置と合致したが、比較的大きい角度領域では予想されるピーク位置とほとんど合致しなかった。   FIG. 3 shows an X-ray diffraction pattern obtained by X-ray diffraction analysis. The horizontal axis in FIG. 3 is the incident angle (2θ), and the vertical axis is the diffraction intensity. The vertical line in FIG. 3 indicates the expected peak position and intensity. As can be seen from FIG. 3, the X-ray diffraction pattern matched the expected peak position in the relatively small angle region, but hardly matched the expected peak position in the relatively large angle region.

以上より、実施例1では選択配向を防止でき、精度よく分析できることが確認された。   From the above, it was confirmed that in Example 1, selective orientation could be prevented and analysis could be performed with high accuracy.

10 混合工程
20 硬化工程
30 粉砕工程
10 mixing process 20 curing process 30 crushing process

Claims (4)

配向性を有する分析対象粉末と樹脂である包埋剤とを混合し、該包埋剤を硬化させて固形物を得、
前記固形物を粉砕して処理後粉末試料を得る
ことを特徴とする粉末X線回折分析用の試料作成方法。
Mixing the embedding agent which is a powder to be analyzed having an orientation and a resin, and curing the embedding agent to obtain a solid,
A method for preparing a sample for powder X-ray diffraction analysis, characterized in that a powder sample is obtained by pulverizing the solid substance and treating the solid substance.
前記包埋剤はエポキシ樹脂である
ことを特徴とする請求項1記載の粉末X線回折分析用の試料作成方法。
The method for preparing a sample for powder X-ray diffraction analysis according to claim 1, wherein the embedding agent is an epoxy resin.
配向性を有する分析対象粉末と包埋剤とを混合し、該包埋剤を硬化させて固形物を得、
前記固形物を粉砕して処理後粉末試料を得る方法であって、
前記分析対象粉末と前記包埋剤との混合比率は、見掛体積において、前記分析対象粉末1に対して前記包埋剤0.5〜2である
ことを特徴とする粉末X線回折分析用の試料作成方法。
Mixing the analysis target powder having an orientation and the embedding agent, curing the embedding agent to obtain a solid,
A method of obtaining a powder sample after treatment by crushing the solid material,
The mixing ratio of the analyte powder and wherein the embedding agent, the apparent volume to that flour powder X-ray diffraction, characterized in that to the analyte powder 1 is the embedding agent 0.5-2 Sample preparation method for analysis.
配向性を有する分析対象粉末と包埋剤とを混合し、該包埋剤を硬化させて固形物を得、
前記固形物を粉砕して処理後粉末試料を得る方法であって、
前記処理後粉末試料の粒径は前記分析対象粉末の粒径以上である
ことを特徴とする粉末X線回折分析用の試料作成方法。
Mixing the analysis target powder having an orientation and the embedding agent, curing the embedding agent to obtain a solid,
A method of obtaining a powder sample after treatment by crushing the solid material,
Sample preparation method for powder powder X-ray diffraction analysis you wherein the particle size of the processed powder sample is the grain diameter or more of the analyzed powder.
JP2016024302A 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis Active JP6642078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024302A JP6642078B2 (en) 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024302A JP6642078B2 (en) 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis

Publications (2)

Publication Number Publication Date
JP2017142187A JP2017142187A (en) 2017-08-17
JP6642078B2 true JP6642078B2 (en) 2020-02-05

Family

ID=59627300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024302A Active JP6642078B2 (en) 2016-02-12 2016-02-12 Sample preparation method for powder X-ray diffraction analysis

Country Status (1)

Country Link
JP (1) JP6642078B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110870000A (en) 2017-07-21 2020-03-06 Agc株式会社 Front panel for display device
CN111551574A (en) * 2020-03-17 2020-08-18 宸鸿科技(厦门)有限公司 Powder cross-section sample preparation method and sample preparation device for electron microscope observation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201616A (en) * 1992-12-28 1994-07-22 Fujitsu Ltd Method for testing borosilicate glass
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP4689652B2 (en) * 2002-11-22 2011-05-25 昭和電工株式会社 Method for evaluating metal structure of RTB-based magnet alloy
JP5705022B2 (en) * 2011-05-17 2015-04-22 太平洋セメント株式会社 Method for evaluating coal ash and method for producing cement or concrete

Also Published As

Publication number Publication date
JP2017142187A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US10605709B2 (en) Mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium
CN112166004B (en) Metal powder for 3D printer, molded object, and method for manufacturing molded object
JP6642078B2 (en) Sample preparation method for powder X-ray diffraction analysis
Wei et al. Effect of carbon addition on microstructure and properties of WC–Co cemented carbides
JP6760019B2 (en) Sample preparation method for X-ray fluorescence analysis
KR20140139867A (en) Radiation shielding meterial including tungsten or boron nano-particles and preparation method thereof
EP3643429A1 (en) Tungsten alloy product and method of preparation and use for a tungsten alloy product
WO2019015708A1 (en) Building material granulate, method for producing a building material granulate on the basis of mineral grains and use of same
JP6583158B2 (en) Sample preparation method for fluorescent X-ray analysis
JP2018044829A (en) Method for preparing particulate/resin-embedded sample for use in surface analysis, method for analyzing sample, and method for evaluating sample preparation condition
JP6036295B2 (en) Pretreatment method of sintering raw materials
WO2020194671A1 (en) Cement composition for plastering and mortar for plastering
Patil et al. Effect of graphite exfoliation through multipass friction stir processing on microstructure and mechanical properties of aluminium 7075‐silicon carbide‐graphite composites
JP6674142B2 (en) Inspection method of fine aggregate containing copper slag
JP2019056682A (en) Analysis sample preparation method, auger electron spectroscopy measurement method, and analysis sample
JP7345277B2 (en) Evaluation method of analytical sample embedding resin and manufacturing method of analytical sample embedding resin
JP2018190777A (en) Magnetic material film and method for manufacturing the same
JP2019212735A (en) Magnetic film and manufacturing method therefor
WO2020230542A1 (en) Tungsten carbide powder
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP2018127794A (en) Ground improvement method using steel slag and ground construction method using steel slag
CN1548949A (en) Quantitative method for elements contained in sample with active metal
JP7354783B2 (en) Method for manufacturing ceramic spherical bodies
JP7357181B1 (en) Boron nitride particles and heat dissipation sheet
JP7357180B1 (en) Boron nitride particles and heat dissipation sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6642078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150