JP6641100B2 - Sliding member and manufacturing method thereof - Google Patents

Sliding member and manufacturing method thereof Download PDF

Info

Publication number
JP6641100B2
JP6641100B2 JP2015090280A JP2015090280A JP6641100B2 JP 6641100 B2 JP6641100 B2 JP 6641100B2 JP 2015090280 A JP2015090280 A JP 2015090280A JP 2015090280 A JP2015090280 A JP 2015090280A JP 6641100 B2 JP6641100 B2 JP 6641100B2
Authority
JP
Japan
Prior art keywords
weight
sliding
parts
aggregate
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015090280A
Other languages
Japanese (ja)
Other versions
JP2016205567A (en
Inventor
素章 秋山
素章 秋山
荻田 泰久
泰久 荻田
淳 脊戸土井
淳 脊戸土井
藤村 拓司
拓司 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57489416&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6641100(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2015090280A priority Critical patent/JP6641100B2/en
Publication of JP2016205567A publication Critical patent/JP2016205567A/en
Application granted granted Critical
Publication of JP6641100B2 publication Critical patent/JP6641100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭素材料を用いた摺動部材およびその製造方法に関する。   The present invention relates to a sliding member using a carbon material and a method for manufacturing the same.

工業用ポンプ等のメカニカルシール、軸受け等の水中用途の機械用摺動部材は、例えば特許文献1に記載された炭素材料を使用して形成される。特許文献1には、天然黒鉛である土状黒鉛を用いた摺動用炭素材およびその製造方法が提案されている。   A mechanical sliding member for underwater use such as a mechanical seal such as an industrial pump and a bearing is formed using, for example, a carbon material described in Patent Document 1. Patent Literature 1 proposes a sliding carbon material using earth graphite, which is natural graphite, and a method for manufacturing the same.

一方、真空ポンプのベーン、コンプレッサのパッキン等の大気中用途の機械用摺動部材は、例えば特許文献2〜4に記載された炭素材料を使用して形成される。特許文献2には、コークス系人造黒鉛、油煙系人造黒鉛、タルクおよび天然黒鉛を用いた炭素質摺動材の製造方法が提案されている。また、特許文献3,4には、コークス系人造黒鉛、油煙系人造黒鉛およびタルクを用いた炭素質摺動材の製造方法が提案されている。   On the other hand, mechanical sliding members for atmospheric use, such as vanes of vacuum pumps and packings of compressors, are formed using, for example, carbon materials described in Patent Documents 2 to 4. Patent Document 2 proposes a method for producing a carbonaceous sliding material using coke-based artificial graphite, oil-smoke-based artificial graphite, talc, and natural graphite. Patent Documents 3 and 4 propose a method for producing a carbonaceous sliding material using coke-based artificial graphite, oil-smoke-based artificial graphite, and talc.

特開平11−180790号公報JP-A-11-180790 特開平6−145679号公報JP-A-6-145679 特開平7−11282号公報JP-A-7-112282 特開2000−72549号公報JP-A-2000-72549

天然黒鉛を用いた摺動部材は土状黒鉛の灰分を比較的多く含む。そのため、灰分の作用により被摺動部材に対する摺動部材の摺動性能が良好となる。しかしながら、天然黒鉛を用いた摺動部材では、灰分の含有量にばらつきが生じやすい。また、天然黒鉛が採取される鉱脈または山が異なると、灰分の成分が異なる可能性がある。その結果、摺動部材の摺動性能にばらつきが生じやすい。   A sliding member using natural graphite contains a relatively large amount of ash of earth graphite. Therefore, the sliding performance of the sliding member with respect to the sliding member is improved by the action of the ash. However, in a sliding member using natural graphite, the ash content tends to vary. In addition, if natural graphite is collected in different veins or mountains, ash components may be different. As a result, the sliding performance of the sliding member tends to vary.

人造黒鉛およびタルクを用いた炭素質摺動材では、灰分が比較的少ないため、一定の摺動性能が得られると考えられる。しかしながら、本発明者が行った試験の結果によると、人造黒鉛およびタルクを用いた炭素質摺動材では、液体中で高い耐摩耗性が得られないことが分かった。   It is considered that the carbonaceous sliding material using artificial graphite and talc has a relatively small amount of ash, so that a certain sliding performance can be obtained. However, according to the results of a test performed by the present inventors, it was found that a carbonaceous sliding material using artificial graphite and talc cannot achieve high wear resistance in a liquid.

本発明の目的は、摺動性能の均一性が確保されるとともに液体中または高湿度雰囲気中での耐摩耗性が向上された摺動部材およびその製造方法を提供することである。   An object of the present invention is to provide a sliding member that ensures uniformity of sliding performance and has improved wear resistance in a liquid or in a high humidity atmosphere, and a method of manufacturing the same.

本発明に係る摺動部材は、人造黒鉛のみを含む骨材と、添加剤としてのカオリンと、バインダとを含み、骨材および添加剤の総量100重量部に対して、人造黒鉛92.5〜95重量部を含むものである。 The sliding member according to the present invention includes an aggregate containing only artificial graphite, kaolin as an additive, and a binder, and the artificial graphite 92.5 to 100 parts by weight based on the total amount of the aggregate and the additive. It contains 95 parts by weight .

その摺動部材は、骨材として人造黒鉛を含むので、灰分の含有量が比較的少ない。そのため、灰分の含有量および成分のばらつきが小さい。それにより、摺動性能の均一性が確保される。また、骨材にカオリンが添加されることにより、液体中または高湿度雰囲気中での耐摩耗性が向上される。   Since the sliding member contains artificial graphite as an aggregate, the ash content is relatively small. Therefore, the ash content and the variation in the components are small. Thereby, uniformity of the sliding performance is ensured. Further, by adding kaolin to the aggregate, the wear resistance in a liquid or in a high humidity atmosphere is improved.

摺動部材は、骨材および添加剤の総量100重量部に対して、人造黒鉛92.5〜95重量部を含むので、摺動性能の均一性が十分に確保される Since the sliding member contains 92.5 to 95 parts by weight of the artificial graphite with respect to 100 parts by weight of the total amount of the aggregate and the additive, uniformity of the sliding performance is sufficiently ensured .

摺動部材は、骨材および添加剤の総量100重量部に対して、カオリン2〜20重量部を含んでもよい。この場合、液体中または高湿度雰囲気中での耐摩耗性がより向上される。摺動部材は、骨材および添加剤の総量100重量部に対して、カオリン2.5〜10重量部を含んでもよい。この場合、液体中または高湿度雰囲気中での耐摩耗性がさらに向上される。   The sliding member may include 2 to 20 parts by weight of kaolin based on 100 parts by weight of the aggregate and the additive. In this case, the wear resistance in a liquid or in a high humidity atmosphere is further improved. The sliding member may include 2.5 to 10 parts by weight of kaolin based on 100 parts by weight of the aggregate and the additive. In this case, the wear resistance in a liquid or in a high humidity atmosphere is further improved.

摺動部材は、骨材、添加剤およびバインダの総重量に対して2〜10重量%の灰分を含んでもよい。この場合、摺動性能の均一性が十分に確保される。摺動部材は、骨材、添加剤およびバインダの総重量に対して3〜7重量%の灰分を含むことが好ましい。この場合、摺動性能の均一性がより十分に確保される。摺動部材は、骨材、添加剤およびバインダの総重量に対して3〜6重量%の灰分を含むことがより好ましい。この場合、摺動性能の均一性がさらに十分に確保される。摺動部材は、骨材、添加剤およびバインダの総重量に対して3〜5.5重量%の灰分を含むことがさらに好ましい。この場合、摺動性能の均一性がさらに十分に確保される。   The sliding member may include 2 to 10% by weight of ash based on the total weight of the aggregate, additives and binder. In this case, uniformity of the sliding performance is sufficiently ensured. The sliding member preferably contains 3 to 7% by weight of ash with respect to the total weight of the aggregate, additives and binder. In this case, the uniformity of the sliding performance is more sufficiently ensured. More preferably, the sliding member contains 3 to 6% by weight of ash based on the total weight of the aggregate, additives and binder. In this case, the uniformity of the sliding performance is further sufficiently ensured. More preferably, the sliding member contains 3 to 5.5% by weight of ash based on the total weight of the aggregate, additives and binder. In this case, the uniformity of the sliding performance is further sufficiently ensured.

本発明に係る摺動部材の製造方法は、人造黒鉛のみを含む骨材と添加剤としてのカオリンとを混合することにより混合粉末を調製する工程と、調製された混合粉末とバインダとを混練することにより混合基材を作製する工程と、混合基材を粉砕する工程と、粉砕された混合基材を成形する工程と、成形された混合基材を焼成する工程とを含み、骨材および添加剤の総量100重量部に対して、人造黒鉛92.5〜95重量部を含むものである。 The method for manufacturing a sliding member according to the present invention includes a step of preparing a mixed powder by mixing an aggregate containing only artificial graphite and kaolin as an additive, and kneading the prepared mixed powder and a binder. Including a step of preparing a mixed base material, a step of pulverizing the mixed base material, a step of forming the pulverized mixed base material, and a step of firing the formed mixed base material, It contains 92.5 to 95 parts by weight of artificial graphite based on 100 parts by weight of the total amount of the agent.

その製造方法によれば、摺動部材は、骨材として人造黒鉛を含むので、灰分の含有量が比較的少ない。そのため、灰分の含有量および成分のばらつきが小さい。それにより、摺動性能の均一性が確保される。また、骨材にカオリンが添加されることにより、液体中または高湿度雰囲気中での耐摩耗性が向上される。   According to the manufacturing method, since the sliding member contains artificial graphite as an aggregate, the ash content is relatively small. Therefore, the ash content and the variation in the components are small. Thereby, uniformity of the sliding performance is ensured. Further, by adding kaolin to the aggregate, the wear resistance in a liquid or in a high humidity atmosphere is improved.

本発明によれば、摺動性能の均一性が確保されるとともに液体中または高湿度雰囲気中での耐摩耗性が向上された摺動部材が実現される。   ADVANTAGE OF THE INVENTION According to this invention, the uniformity of a sliding performance is ensured and the sliding member which the abrasion resistance in a liquid or high humidity atmosphere was improved is implement | achieved.

本発明の一実施の形態に係る液体用メカニカルシールの摺動部材を示す斜視図である。1 is a perspective view showing a sliding member of a liquid mechanical seal according to an embodiment of the present invention. 実施例1〜6および比較例1〜4についての水中での摺動試験の結果を示す図である。It is a figure which shows the result of the sliding test in water about Examples 1-6 and Comparative Examples 1-4. 実施例1〜6および比較例1〜4についての水中での摺動試験の結果を示す図である。It is a figure which shows the result of the sliding test in water about Examples 1-6 and Comparative Examples 1-4. 実施例1〜6および比較例1〜4についての大気中での摺動試験の結果を示す図である。It is a figure which shows the result of the sliding test in the atmosphere about Examples 1-6 and Comparative Examples 1-4.

(1)実施の形態に係る摺動部材およびその製造方法
以下、本発明の実施の形態に係る摺動部材およびその製造方法について説明する。本実施の形態に係る摺動部材は、例えば、液体用メカニカルシールの摺動部材または液体ポンプの軸受けとして用いることができる。また、本実施の形態に係る摺動部材は、例えば、大気中用のコンプレッサのパッキンまたは真空ポンプのベーンとしても用いることができる。
(1) Sliding Member According to Embodiment and Manufacturing Method Thereof Hereinafter, a sliding member according to an embodiment of the present invention and a manufacturing method thereof will be described. The sliding member according to the present embodiment can be used, for example, as a sliding member of a liquid mechanical seal or a bearing of a liquid pump. Further, the sliding member according to the present embodiment can be used as, for example, a packing of a compressor for the atmosphere or a vane of a vacuum pump.

以下、本実施の形態に係る摺動部材の製造方法について説明する。骨材として人造黒鉛粉末を用いる。この場合、灰分が1重量%未満で比較的安定した品質を有する人造黒鉛を用いることが好ましい。例えば、2.10〜2.26Mg/mの真比重を有する一種または複数種の人造黒鉛粉末を用いる。本実施の形態では、骨材が天然黒鉛を含まない。それにより、灰分の含有量および成分のばらつきによる摺動性能のばらつきが生じない。 Hereinafter, a method for manufacturing the sliding member according to the present embodiment will be described. Artificial graphite powder is used as the aggregate. In this case, it is preferable to use artificial graphite having an ash content of less than 1% by weight and having relatively stable quality. For example, one or more artificial graphite powders having a true specific gravity of 2.10 to 2.26 Mg / m 3 are used. In the present embodiment, the aggregate does not include natural graphite. Thereby, there is no variation in sliding performance due to variation in ash content and component.

次に、人造黒鉛粉末に添加剤(研削材)としてカオリンを添加し、これらを混合することにより混合粉末を調製する。カオリンとは、カオリナイト、パイロフィライト等の結晶性粘土鉱物をいう。人造黒鉛粉末に添加剤としてカオリンおよびタルクを添加してもよい。   Next, kaolin is added as an additive (grinding material) to the artificial graphite powder, and these are mixed to prepare a mixed powder. Kaolin refers to crystalline clay minerals such as kaolinite and pyrophyllite. Kaolin and talc may be added to the artificial graphite powder as additives.

混合粉末の総量100重量部に対して、人造黒鉛粉末の割合は、例えば80〜95重量部である。それにより、摺動性能の均一性が十分に確保される。また、混合粉末の総量100重量部に対して、人造黒鉛粉末の割合が90〜95重量部であることが好ましい。それにより、摺動性能の均一性がより十分に確保される。さらに、混合粉末の総量100重量部に対して、人造黒鉛粉末の割合が90〜93重量部であることがより好ましい。それにより、摺動性能の均一性がさらに十分に確保される。   The proportion of the artificial graphite powder is, for example, 80 to 95 parts by weight based on 100 parts by weight of the total amount of the mixed powder. Thereby, the uniformity of the sliding performance is sufficiently ensured. Further, the proportion of the artificial graphite powder is preferably 90 to 95 parts by weight based on 100 parts by weight of the total amount of the mixed powder. Thereby, the uniformity of the sliding performance is more sufficiently ensured. Further, the proportion of the artificial graphite powder is more preferably 90 to 93 parts by weight based on 100 parts by weight of the total amount of the mixed powder. Thereby, the uniformity of the sliding performance is further sufficiently ensured.

混合粉末の総量100重量部に対して、添加剤の割合は、例えば5〜20重量部である。混合粉末の総量100重量部に対して、添加剤の割合は、例えば5.5〜10重量部であることが好ましい。添加剤の割合は、例えば6〜8重量部であることがより好ましい。適切な灰分の含有量が得られる。   The ratio of the additive is, for example, 5 to 20 parts by weight based on 100 parts by weight of the total amount of the mixed powder. The ratio of the additive is preferably, for example, 5.5 to 10 parts by weight based on 100 parts by weight of the total amount of the mixed powder. The ratio of the additive is more preferably, for example, 6 to 8 parts by weight. A suitable ash content is obtained.

混合粉末の総量100重量部に対して、カオリンの割合は、例えば2〜20重量部である。それにより、液体中または高湿度雰囲気中での耐摩耗性が十分に向上される。また、混合粉末の総量100重量部に対して、カオリンの割合が2.5〜10重量部であることが好ましい。それにより、液体中または高湿度雰囲気中での耐摩耗性がより向上される。さらに、混合粉末の総量100重量部に対して、カオリンの割合が2.5〜8重量部であることがより好ましい。それにより、液体中または高湿度雰囲気中での耐摩耗性がさらに向上される。   The ratio of kaolin is, for example, 2 to 20 parts by weight based on 100 parts by weight of the total amount of the mixed powder. Thereby, the wear resistance in a liquid or in a high humidity atmosphere is sufficiently improved. Further, the ratio of kaolin is preferably 2.5 to 10 parts by weight based on 100 parts by weight of the total amount of the mixed powder. Thereby, abrasion resistance in a liquid or a high humidity atmosphere is further improved. Further, the ratio of kaolin is more preferably 2.5 to 8 parts by weight based on 100 parts by weight of the total amount of the mixed powder. Thereby, the wear resistance in a liquid or in a high humidity atmosphere is further improved.

混合粉末とバインダとを例えば200〜220℃で混練することにより混合基材を得る。バインダとしては、ピッチ、タール、熱硬化性樹脂等を用いることができ、これらのうち複数を混合して用いてもよい。   The mixed base material is obtained by kneading the mixed powder and the binder at, for example, 200 to 220 ° C. As the binder, pitch, tar, thermosetting resin, or the like can be used, and a plurality of these may be mixed and used.

その後、混練により得られた混合基材を粉砕機にて粉砕する。この場合、混合基材全体のうち70〜80重量%の混合基材の粒径が例えば63μmより小さくなるように、粉砕機の回転数および粉砕時間等の粉砕条件を調整する。   Then, the mixed base material obtained by kneading is pulverized by a pulverizer. In this case, pulverization conditions such as the rotation speed of the pulverizer and the pulverization time are adjusted so that the particle size of 70 to 80% by weight of the mixed substrate in the whole mixed substrate becomes smaller than 63 μm, for example.

その後、粉砕された混合基材を例えば約120MPaの圧力で例えばCIP(Cold Isostatic Pressing;冷間静水等方加圧)法により成形した後、約1000℃で焼成することにより炭素基材を作製する。炭素基材により、例えば、コンプレッサのパッキンまたは真空ポンプのベーン等の摺動部材を作製することができる。   Thereafter, the pulverized mixed base material is formed at a pressure of, for example, about 120 MPa by, for example, CIP (Cold Isostatic Pressing), and then calcined at about 1000 ° C. to produce a carbon base material. . A sliding member such as a packing of a compressor or a vane of a vacuum pump can be manufactured using the carbon base material.

上記の焼成後の炭素基材に含浸処理を施すことにより炭素基材の気孔(微細な空隙)を封止する。含浸処理のための含浸材料としては、例えばフェノール樹脂またはフラン樹脂等の樹脂材料を用いることができる。含浸処理では、大気圧から所定圧力に減圧されたチャンバ内で炭素基材を含浸材料に浸漬させる。この状態で、チャンバ内に高圧の窒素またはアルゴン等の不活性ガスを供給する。それにより、炭素基材内の気孔に含浸材料が浸み込む。その後、炭素基材を含浸材料から引き上げた後に加工する。それにより、液体用メカニカルシールの摺動部材(例えば固定環)または液体ポンプの軸受け等の摺動部材を作製することができる。   The pores (fine voids) of the carbon base material are sealed by performing the impregnation treatment on the carbon base material after firing. As an impregnating material for the impregnation treatment, for example, a resin material such as a phenol resin or a furan resin can be used. In the impregnation process, the carbon substrate is immersed in the impregnation material in a chamber reduced in pressure from the atmospheric pressure to a predetermined pressure. In this state, a high-pressure inert gas such as nitrogen or argon is supplied into the chamber. Thereby, the impregnated material penetrates the pores in the carbon base material. Thereafter, the carbon substrate is processed after being pulled up from the impregnated material. Thereby, a sliding member (for example, a fixed ring) of the mechanical seal for liquid or a sliding member such as a bearing of the liquid pump can be manufactured.

図1は本発明の一実施の形態に係るメカニカルシールの摺動部材の斜視図である。メカニカルシールは、固定環および回転環を含む。固定環は、ケーシング内でケーシングの開口部に固定される。回転環は、ケーシング内で固定環に重なるように設けられる。回転環および固定環に回転軸が挿入される。回転軸は、ケーシングの外部に突出する。回転環は回転軸に固定される。また、回転環は、一または複数のスプリングにより固定環に向かう方向に付勢される。図1の摺動部材1は、メカニカルシールの固定環として用いられる。   FIG. 1 is a perspective view of a sliding member of a mechanical seal according to one embodiment of the present invention. The mechanical seal includes a stationary ring and a rotating ring. The fixed ring is fixed to the opening of the casing within the casing. The rotating ring is provided so as to overlap the fixed ring in the casing. The rotating shaft is inserted into the rotating ring and the fixed ring. The rotation shaft projects outside the casing. The rotating ring is fixed to the rotating shaft. Further, the rotating ring is urged in a direction toward the fixed ring by one or a plurality of springs. The sliding member 1 of FIG. 1 is used as a fixed ring of a mechanical seal.

骨材として人造黒鉛粉末を用いた場合には、骨材として天然黒鉛粉末を用いた場合に比べて、灰分の含有量および成分のばらつきが小さい。本実施の形態に係る摺動部材では、灰分の含有量は2〜10重量%である。それにより、摺動部材と相手部材(被摺動部材)との間での焼き付きの発生が十分に防止されるとともに摺動性能の均一性が十分に確保される。また、灰分の含有量は3〜7重量%であることが好ましい。それにより、焼き付きの発生がより十分に防止されるとともに摺動性能の均一性がより十分に確保される。さらに、灰分の含有量は3〜6重量%であることがさらに好ましい。それにより、焼き付きの発生がさらに十分に防止されるとともに摺動性能の均一性がさらに十分に確保される。さらに、灰分の含有量は3.5〜5.0重量%であることがさらに好ましい。それにより、焼き付きの発生がさらに十分に防止されるとともに摺動性能の均一性がさらに十分に確保される。   In the case where artificial graphite powder is used as the aggregate, the ash content and the variation in the components are smaller than in the case where natural graphite powder is used as the aggregate. In the sliding member according to the present embodiment, the ash content is 2 to 10% by weight. As a result, the occurrence of image sticking between the sliding member and the mating member (slidable member) is sufficiently prevented, and the uniformity of the sliding performance is sufficiently ensured. The ash content is preferably 3 to 7% by weight. As a result, the occurrence of image sticking is more sufficiently prevented, and the uniformity of the sliding performance is more sufficiently ensured. Further, the ash content is more preferably 3 to 6% by weight. Thereby, the occurrence of image sticking is more sufficiently prevented, and the uniformity of the sliding performance is more sufficiently ensured. Further, the ash content is more preferably 3.5 to 5.0% by weight. Thereby, the occurrence of image sticking is more sufficiently prevented, and the uniformity of the sliding performance is more sufficiently ensured.

(2)実施の形態の効果
本実施の形態に係る摺動部材は、骨材として人造黒鉛を含むので、灰分の含有量が比較的少ない。そのため、灰分の含有量または成分のばらつきによる摺動性能のばらつきが抑制される。それにより、摺動性能の均一性が確保される。また、骨材が添加剤としてカオリンを含むので、液体中または高湿度雰囲気中での耐摩耗性が向上される。
(2) Effects of Embodiment Since the sliding member according to the present embodiment contains artificial graphite as an aggregate, the ash content is relatively small. Therefore, variations in sliding performance due to variations in ash content or components are suppressed. Thereby, uniformity of the sliding performance is ensured. Further, since the aggregate contains kaolin as an additive, the abrasion resistance in a liquid or in a high humidity atmosphere is improved.

(3)実施例および比較例
実施例および比較例では、2種類の人造黒鉛粉末を用いた。以下、2種類の人造黒鉛粉末を人造黒鉛粉末Aおよび人造黒鉛粉末Bと呼ぶ。また、実施例では、添加剤として3種類のカオリンを用いた。以下、3種類のカオリンをカオリンA、カオリンBおよびカオリンCと呼ぶ。
(3) Examples and Comparative Examples In Examples and Comparative Examples, two types of artificial graphite powders were used. Hereinafter, the two types of artificial graphite powder are referred to as artificial graphite powder A and artificial graphite powder B. In the examples, three kinds of kaolin were used as additives. Hereinafter, the three types of kaolin will be referred to as kaolin A, kaolin B and kaolin C.

(3−1)実施例1
真比重2.15の人造黒鉛粉末Aと真比重2.24の人造黒鉛粉末Bとを混合した。この場合、人造黒鉛粉末Aの割合を50重量部とし、人造黒鉛粉末Bの割合を42.5重量部とし、骨材として合計92.5重量部の黒鉛粉末を調製した。92.5重量部の黒鉛粉末に添加剤として7.5重量部のカオリンAを添加し、これらを混合することにより100重量部の混合粉末を調製した。100重量部の混合粉末と95重量部のバインダとを200〜220℃で混練することにより混合基材を得た。その後、得られた混合基材を粉砕機にて粉砕した。この場合、全体の混合基材のうち70〜80重量%の混合基材の粒径が63μmより小さくなるように、粉砕機の回転数および粉砕時間等の粉砕条件を調整した。
(3-1) Example 1
Artificial graphite powder A having a true specific gravity of 2.15 and artificial graphite powder B having a true specific gravity of 2.24 were mixed. In this case, the proportion of artificial graphite powder A was 50 parts by weight, the proportion of artificial graphite powder B was 42.5 parts by weight, and a total of 92.5 parts by weight of graphite powder was prepared as an aggregate. 7.5 parts by weight of kaolin A was added as an additive to 92.5 parts by weight of graphite powder, and these were mixed to prepare 100 parts by weight of a mixed powder. A mixed substrate was obtained by kneading 100 parts by weight of the mixed powder and 95 parts by weight of the binder at 200 to 220 ° C. Thereafter, the obtained mixed base material was pulverized by a pulverizer. In this case, the pulverizing conditions such as the number of revolutions of the pulverizer and the pulverizing time were adjusted so that the particle diameter of 70 to 80% by weight of the mixed substrate in the whole mixed substrate was smaller than 63 μm.

その後、CIP(Cold Isostatic Pressing;冷間静水等方加圧法)により、粉砕された混合基材を約120MPaの圧力で直径約80mmおよび長さ200mmの円柱形状に成形した後、約1000℃で焼成して炭素基材を作製した。   Thereafter, the crushed mixed base material is formed into a cylindrical shape having a diameter of about 80 mm and a length of 200 mm by CIP (Cold Isostatic Pressing) under a pressure of about 120 MPa, and then fired at about 1000 ° C. Thus, a carbon substrate was produced.

(3−2)実施例2
添加剤としてカオリンAおよびタルクを用い、カオリンAの割合を5重量部とし、タルクの割合を2.5重量部とした点を除いて、実施例1と同様の方法で炭素基材を作製した。
(3-2) Example 2
Using kaolin A and talc as additives, a carbon substrate was produced in the same manner as in Example 1 except that the ratio of kaolin A was 5 parts by weight and the ratio of talc was 2.5 parts by weight. .

(3−3)実施例3
カオリンAの割合を3.75重量部とし、タルクの割合を3.75重量部とした点を除いて、実施例2と同様の方法で炭素基材を作製した。
(3-3) Example 3
A carbon substrate was produced in the same manner as in Example 2, except that the ratio of kaolin A was 3.75 parts by weight and the ratio of talc was 3.75 parts by weight.

(3−4)実施例4
カオリンAの割合を2.5重量部とし、タルクの割合を5重量部とした点を除いて、実施例2と同様の方法で炭素基材を作製した。
(3-4) Example 4
A carbon substrate was produced in the same manner as in Example 2, except that the ratio of kaolin A was 2.5 parts by weight and the ratio of talc was 5 parts by weight.

(3−5)実施例5
人造黒鉛粉末Aの割合を50重量部とし、人造黒鉛粉末Bの割合を43重量部とした点、および添加剤としてカオリンAの代わりに7重量部のカオリンBを用いた点を除いて、実施例1と同様の方法で炭素基材を作製した。
(3-5) Example 5
Except that the ratio of artificial graphite powder A was 50 parts by weight, the ratio of artificial graphite powder B was 43 parts by weight, and that 7 parts by weight of kaolin B was used instead of kaolin A as an additive. A carbon substrate was produced in the same manner as in Example 1.

(3−6)実施例6
添加剤としてカオリンBの代わりにカオリンCを用いた点を除いて、実施例5と同様の方法で炭素基材を作製した。
(3-6) Example 6
A carbon substrate was prepared in the same manner as in Example 5, except that kaolin C was used instead of kaolin B as an additive.

(3−7)比較例1
骨材として人造黒鉛粉末Aおよび人造黒鉛粉末Bの代わりに100重量部の天然黒鉛粉末を用い、添加剤を用いず、バインダの割合を80重量部とした点を除いて、実施例1と同様の方法で炭素基材を作製した。天然黒鉛粉末は約10重量%の灰分を含む。
(3-7) Comparative example 1
Same as Example 1 except that 100 parts by weight of natural graphite powder was used instead of artificial graphite powder A and artificial graphite powder B as an aggregate, no additive was used, and the ratio of the binder was 80 parts by weight. A carbon substrate was produced by the method described above. Natural graphite powder contains about 10% by weight of ash.

(3−8)比較例2
骨材として人造黒鉛粉末Aおよび人造黒鉛粉末Bの代わりに、天然黒鉛粉末と真比重2.15の人造黒鉛粉末Aと含む混合黒鉛粉末を用い、添加剤を用いず、バインダの割合を94重量部とした点を除いて、実施例1と同様の方法で炭素基材を作製した。天然黒鉛粉末の割合を60重量部とし、人造黒鉛粉末の割合を40重量部とした。天然黒鉛粉末は約20重量%の灰分を含む。
(3-8) Comparative example 2
Instead of artificial graphite powder A and artificial graphite powder B as an aggregate, a mixed graphite powder containing natural graphite powder and artificial graphite powder A having a true specific gravity of 2.15 was used. A carbon substrate was produced in the same manner as in Example 1 except that the carbon substrate was used as a part. The ratio of the natural graphite powder was 60 parts by weight, and the ratio of the artificial graphite powder was 40 parts by weight. Natural graphite powder contains about 20% by weight of ash.

(3−9)比較例3
人造黒鉛粉末Aの割合を50重量部とし、人造黒鉛粉末Bの割合を50重量部とし、添加剤を用いない点を除いて、実施例1と同様の方法で炭素基材を作製した。
(3-9) Comparative example 3
A carbon substrate was produced in the same manner as in Example 1, except that the ratio of the artificial graphite powder A was 50 parts by weight, the ratio of the artificial graphite powder B was 50 parts by weight, and no additives were used.

(3−10)比較例4
添加剤としてカオリンAの代わりにタルクを用いた点を除いて、実施例2と同様の方法で炭素基材を作製した。
(3-10) Comparative example 4
A carbon substrate was produced in the same manner as in Example 2, except that talc was used instead of kaolin A as an additive.

表1には、実施例1〜6および比較例1〜4の混合基材の骨材、添加剤およびバインダの割合ならびに炭素基材中の灰分の含有量が示される。   Table 1 shows the ratio of the aggregate, the additive and the binder, and the ash content in the carbon base material of the mixed base materials of Examples 1 to 6 and Comparative Examples 1 to 4.

Figure 0006641100
Figure 0006641100

実施例1〜6および比較例4では、骨材が人造黒鉛のみを含むので、炭素基材中の灰分の含有量は3〜6重量%の範囲内であった。一方、比較例1,2では、骨材が天然黒鉛を含むので、炭素基材中の灰分の含有量が6.5以上と多くなっている。これに対して、比較例3では、骨材が人造黒鉛のみを含み、かつ添加剤が添加されていないので、炭素基材中の灰分の含有量が著しく少ない。   In Examples 1 to 6 and Comparative Example 4, since the aggregate contained only artificial graphite, the ash content in the carbon substrate was in the range of 3 to 6% by weight. On the other hand, in Comparative Examples 1 and 2, since the aggregate contains natural graphite, the ash content in the carbon substrate is as high as 6.5 or more. On the other hand, in Comparative Example 3, since the aggregate contained only artificial graphite and no additive was added, the ash content in the carbon substrate was significantly low.

表2には、実施例1〜6および比較例1〜4の炭素基材の基本特性として、かさ密度、硬さ、曲げ強さ、圧縮強さ、灰分の含有量および灰分ばらつきが示される。ここで、灰分ばらつきとは、同一の方法で作製された複数の炭素基材における灰分の含有量または成分のばらつきである。表2においては、“○”は灰分ばらつきが小さいことを意味し、“×”は灰分ばらつきが大きいことを意味する。   Table 2 shows bulk density, hardness, flexural strength, compressive strength, ash content, and ash variation as basic properties of the carbon base materials of Examples 1 to 6 and Comparative Examples 1 to 4. Here, the ash variation is a variation in ash content or component in a plurality of carbon base materials manufactured by the same method. In Table 2, “O” means that the ash variation is small, and “X” means that the ash variation is large.

Figure 0006641100
Figure 0006641100

表2に示されるように、実施例1〜6および比較例3,4では、灰分ばらつきが小さい。これに対して、比較例1,2においては、灰分ばらつきが大きい。   As shown in Table 2, in Examples 1 to 6 and Comparative Examples 3 and 4, ash variation was small. On the other hand, in Comparative Examples 1 and 2, ash variation is large.

実施例1〜6および比較例1〜4において、炭素基材のかさ密度、硬さ、曲げ強さおよび圧縮強さに大きな差異はない。   In Examples 1 to 6 and Comparative Examples 1 to 4, there is no significant difference in the bulk density, hardness, flexural strength and compressive strength of the carbon substrate.

(4)摺動試験
(4−1)水中での摺動試験
実施例1〜6および比較例1〜4の炭素基材にフェノール樹脂を用いて含浸処理を行うことにより炭素基材の気孔を封止した。含浸処理後の炭素基材を加工することにより摺動部材としてメカニカルシールの固定環(図1参照)を作製した。
(4) Sliding test (4-1) Sliding test in water The carbon base material of Examples 1 to 6 and Comparative Examples 1 to 4 was impregnated with a phenol resin to remove pores of the carbon base material. Sealed. By processing the carbon substrate after the impregnation process, a stationary ring of a mechanical seal (see FIG. 1) was produced as a sliding member.

表3には、実施例1〜6および比較例1〜4の摺動部材の特性として、かさ密度、硬さ、曲げ強さおよび圧縮強さが示される。   Table 3 shows the properties of the sliding members of Examples 1 to 6 and Comparative Examples 1 to 4, such as bulk density, hardness, bending strength and compressive strength.

Figure 0006641100
Figure 0006641100

表3に示されるように、実施例1〜6および比較例1〜4において、摺動部材のかさ密度、硬さ、曲げ強さおよび圧縮強さに大きな差異はない。   As shown in Table 3, there is no significant difference in the bulk density, hardness, flexural strength and compressive strength of the sliding members in Examples 1 to 6 and Comparative Examples 1 to 4.

相手部材(被摺動部材)としてメカニカルシールの回転環を用いた。次のようにメカニカルシール試験機を構成した。   A rotating ring of a mechanical seal was used as a mating member (slidable member). The mechanical seal tester was configured as follows.

ケーシングの開口部に重なるように固定環(摺動部材)および回転環(相手部材)を配置し、固定環および回転環に回転軸を挿入した。固定環をケーシングに固定し、回転環を回転軸に固定した。回転環を固定環に向かう方向にスプリングにより付勢した。ケーシング内には流体として水を収容した。固定環の摺動面の外径は49.5mmであり、内径は43.5mmである。流体の圧力を2MPaとし、流体の温度を35℃とした。フラッシング量は0.18m/hであった。回転軸を3600rpmの回転数および8.76m/sの周速度で回転させた。 A fixed ring (sliding member) and a rotating ring (partner member) were arranged so as to overlap the opening of the casing, and a rotating shaft was inserted into the fixed ring and the rotating ring. The stationary ring was fixed to the casing, and the rotating ring was fixed to the rotating shaft. The rotating ring was urged by a spring in the direction toward the fixed ring. Water was contained in the casing as a fluid. The outer diameter of the sliding surface of the stationary ring is 49.5 mm, and the inner diameter is 43.5 mm. The fluid pressure was 2 MPa and the fluid temperature was 35 ° C. The flushing amount was 0.18 m 3 / h. The rotating shaft was rotated at a rotation speed of 3600 rpm and a peripheral speed of 8.76 m / s.

100時間の試験後の固定環の摩耗量、回転環の摩耗量および流体漏れ量を測定した。固定環については、試験の前後の固定環の4箇所の高さ(軸方向の厚み)をダイヤルゲージにより測定し、試験の前後の固定環の4箇所の高さの差の平均値を摩耗量として算出した。また、回転環については、表面粗さ計により摺動面の形状を測定し、試験前の回転環の高さと2箇所の最深部の高さとの差の平均値を摩耗量として算出した。流体漏れ量については、ケーシングの外部に突出する回転軸を覆うようにビニール袋を取り付け、ケーシングから漏れ出る流体をビニール袋に捕集し、捕集された流体の体積を測定した。   After the test for 100 hours, the amount of wear of the stationary ring, the amount of wear of the rotating ring, and the amount of fluid leakage were measured. For the fixed ring, the height (axial thickness) of the four fixed rings before and after the test was measured with a dial gauge, and the average value of the difference in height between the four fixed rings before and after the test was determined as the amount of wear. It was calculated as For the rotating ring, the shape of the sliding surface was measured by a surface roughness meter, and the average value of the difference between the height of the rotating ring before the test and the height of the two deepest parts was calculated as the amount of wear. Regarding the amount of fluid leakage, a plastic bag was attached so as to cover the rotating shaft protruding outside the casing, the fluid leaking from the casing was collected in the plastic bag, and the volume of the collected fluid was measured.

図2および図3は実施例1〜6および比較例1〜4についての水中での摺動試験の結果を示す図である。図2の左の縦軸は摺動部材の(固定環)の摩耗量を表す。図2には、実施例1〜6および比較例1〜4の摺動部材の摩耗量が棒グラフで示される。図3の左の縦軸は相手部材(回転環)の摩耗量を表す。図3には、実施例1〜6および比較例1〜4の摺動部材を用いた場合の相手部材の摩耗量が棒グラフで示される。さらに、図2および図3の右の縦軸は流体漏れ量を表す。図2および図3には、実施例1〜6および比較例1〜4の摺動部材を用いた場合の流体漏れ量が四角印で示される。   2 and 3 are diagrams showing the results of sliding tests in Examples 1 to 6 and Comparative Examples 1 to 4 in water. The vertical axis on the left side of FIG. 2 represents the wear amount of the (fixed ring) of the sliding member. FIG. 2 is a bar graph showing the amounts of wear of the sliding members of Examples 1 to 6 and Comparative Examples 1 to 4. The left vertical axis in FIG. 3 represents the amount of wear of the mating member (rotary ring). FIG. 3 is a bar graph showing the amounts of wear of the mating members when the sliding members of Examples 1 to 6 and Comparative Examples 1 to 4 are used. Further, the right vertical axis in FIGS. 2 and 3 represents the fluid leakage amount. In FIGS. 2 and 3, the fluid leakage amounts when the sliding members of Examples 1 to 6 and Comparative Examples 1 to 4 are used are indicated by square marks.

また、表4に実施例1〜6および比較例1〜4の摺動部材の骨材および添加剤ならびに水中での摺動試験の結果を示す。   Table 4 shows the results of the sliding test of the sliding members of Examples 1 to 6 and Comparative Examples 1 to 4 in aggregate and additives and in water.

Figure 0006641100
Figure 0006641100

図2および表4に示されるように、比較例4の摺動部材の摩耗量が最も大きく、比較例1の摺動部材の摩耗量が最も小さい。実施例1〜6および比較例2,3の摺動部材の摩耗量は比較例4の摺動部材の摩耗量に比べて十分に小さい。特に、実施例1,3,4,6の摺動部材の摩耗量は、比較例1,2の摺動部材と同様に、十分に小さい。実施例3,4の摺動部材の摩耗量は50μm/100h以下となった。   As shown in FIG. 2 and Table 4, the sliding member of Comparative Example 4 has the largest amount of wear, and the sliding member of Comparative Example 1 has the smallest amount of wear. The wear amounts of the sliding members of Examples 1 to 6 and Comparative Examples 2 and 3 are sufficiently smaller than the wear amounts of the sliding members of Comparative Example 4. In particular, the amounts of wear of the sliding members of Examples 1, 3, 4, and 6 are sufficiently small as in the sliding members of Comparative Examples 1 and 2. The amount of wear of the sliding members of Examples 3 and 4 was 50 μm / 100h or less.

これらの結果から、添加剤がカオリンを含む場合には、添加剤がタルクのみを含む場合に比べて、水中での耐摩耗性が十分に向上することが分かる。   From these results, it can be seen that when the additive contains kaolin, the abrasion resistance in water is sufficiently improved as compared with the case where the additive contains only talc.

また、実施例1,2,4〜6では、流体漏れ量が50ml/100h以下となった。   Further, in Examples 1, 2, 4 to 6, the fluid leakage amount was 50 ml / 100h or less.

実施例2,6では、相手部材の摩耗量が5μm/100h以下となった。図3および表4に示されるように、実施例1〜6において、相手部材(回転環)の摩耗量は、摺動部材(固定環)の添加剤の含有量および種類により異なる。それにより、摺動部材の添加剤の含有量および種類を選択することにより、相手部材の摩耗量を向上させることができる。流体漏れ量は、摺動部材の摩耗量および相手部材の摩耗量により決まる。したがって、摺動部材の添加剤の含有量および種類を選択することにより、流体漏れ量をより低減することができる。   In Examples 2 and 6, the wear amount of the mating member was 5 μm / 100h or less. As shown in FIG. 3 and Table 4, in Examples 1 to 6, the amount of wear of the mating member (rotary ring) differs depending on the content and type of additive of the sliding member (fixed ring). Thus, by selecting the content and type of the additive of the sliding member, the wear amount of the mating member can be improved. The amount of fluid leakage is determined by the amount of wear of the sliding member and the amount of wear of the mating member. Therefore, by selecting the content and type of the additive of the sliding member, the amount of fluid leakage can be further reduced.

一方、比較例4においては、相手部材の摩耗量は少ないが、摺動部材の摩耗量および流体漏れ量は最も多い。   On the other hand, in Comparative Example 4, although the amount of wear of the mating member was small, the amount of wear of the sliding member and the amount of fluid leakage were the largest.

(4−2)大気中での摺動試験
実施例1〜6および比較例1〜4の炭素基材を12.5×20×32mmの略直方体形状に加工し、さらに20×5mmの摺動面を形成することにより、大気中での摺動試験用の試験片を作製した。
(4-2) Atmospheric Sliding Test The carbon base materials of Examples 1 to 6 and Comparative Examples 1 to 4 were processed into a substantially rectangular parallelepiped shape of 12.5 × 20 × 32 mm, and further subjected to sliding of 20 × 5 mm. By forming the surface, a test piece for a sliding test in the atmosphere was prepared.

相手部材(被摺動部材)としては、直径60mmで表面粗さRaが0.04μmのCrメッキリングを用いた。   As a mating member (slidable member), a Cr plating ring having a diameter of 60 mm and a surface roughness Ra of 0.04 μm was used.

実施例1〜6および比較例1,2,4については、試験片を相手部材に荷重1.0MPaで押し付け、荷重1.0MPaの状態で2時間摺動後の摩擦係数および試験片の摩耗量を測定した。摩耗量については、2時間摺動の測定結果を100時間摺動の摩耗量に換算した。比較例3については、試験片を相手部材に押し付け、荷重を0.2〜1.0MPaに増加させながら摩擦係数および試験片の摩耗量を測定した。   In Examples 1 to 6 and Comparative Examples 1, 2, and 4, the test piece was pressed against the mating member at a load of 1.0 MPa, and the friction coefficient and the wear amount of the test piece after sliding for 2 hours under a load of 1.0 MPa. Was measured. With respect to the amount of wear, the measurement result of sliding for 2 hours was converted to the amount of wear for sliding for 100 hours. In Comparative Example 3, the test piece was pressed against the mating member, and the friction coefficient and the wear amount of the test piece were measured while increasing the load to 0.2 to 1.0 MPa.

図4は実施例1〜6および比較例1〜4について大気中での摺動試験の結果を示す図である。図4の左の縦軸は試験片の摩耗量を表し、右の縦軸は摩擦係数を表す。実施例1〜6および比較例1,2,4の試験片の摩耗量が棒グラフで示され、実施例1〜6および比較例1,2,4の試験片を用いた場合の摩擦係数が四角印で示される。   FIG. 4 is a diagram showing the results of sliding tests in Examples 1 to 6 and Comparative Examples 1 to 4 in the atmosphere. The left vertical axis in FIG. 4 represents the amount of wear of the test piece, and the right vertical axis represents the friction coefficient. The amounts of wear of the test pieces of Examples 1 to 6 and Comparative Examples 1, 2, and 4 are shown by bar graphs, and the friction coefficients when the test pieces of Examples 1 to 6 and Comparative Examples 1, 2, and 4 were used were square Indicated by marks.

また、表5に実施例1〜6および比較例1〜4の試験片の骨材および添加剤なよびに大気中での摺動試験の結果を示す。   Table 5 shows the results of the sliding test of the test pieces of Examples 1 to 6 and Comparative Examples 1 to 4 in the aggregate and additives and in the atmosphere.

Figure 0006641100
Figure 0006641100

図4および表5に示されるように、実施例5および比較例4の試験片の摩耗量および摩擦係数は比較例1,2の試験片の摩耗量および摩擦係数よりも小さい。また、実施例1〜6および比較例1,2,4の試験片については、焼き付きが起生じることなく測定が終了した。一方、比較例3の試験片については、荷重が0.6MPaに達したときに焼き付きが生じた。これは、比較例3の試験片は灰分をほとんど含まないためであると考えられる。   As shown in FIG. 4 and Table 5, the wear amount and the coefficient of friction of the test pieces of Example 5 and Comparative Example 4 are smaller than those of the test pieces of Comparative Examples 1 and 2. In addition, the measurement was completed for the test pieces of Examples 1 to 6 and Comparative Examples 1, 2, and 4 without occurrence of image sticking. On the other hand, for the test piece of Comparative Example 3, seizure occurred when the load reached 0.6 MPa. This is considered to be because the test piece of Comparative Example 3 contained almost no ash.

実施例2,3,4においては、カオリンの配合比が大きいほど試験片の摩耗量および摩擦係数が大きくなった。   In Examples 2, 3, and 4, the larger the mixing ratio of kaolin, the larger the wear amount and the coefficient of friction of the test piece.

これらの結果から、骨材が人造黒鉛のみを含みかつ添加剤がカオリンを含む場合には、カオリンの種類および添加量を選択することにより、大気中での耐摩耗性を向上させることができることが分かる。また、骨材が人造黒鉛のみを含みかつ添加剤を含まない場合には、焼き付きが発生することが分かる。   From these results, when the aggregate contains only artificial graphite and the additive contains kaolin, it is possible to improve the abrasion resistance in the atmosphere by selecting the type and amount of kaolin. I understand. Further, it can be seen that seizure occurs when the aggregate contains only artificial graphite and no additives.

(5)総合評価
表6に実施例1〜6および比較例1〜4の骨材、添加剤および灰分とともに総合評価を示す。
(5) Comprehensive evaluation Table 6 shows the comprehensive evaluation along with the aggregates, additives and ash of Examples 1 to 6 and Comparative Examples 1 to 4.

Figure 0006641100
Figure 0006641100

表6の摺動性能の均一性の項目において、“○”は摺動性能のばらつきが小さいことを意味し、“×”は摺動性能のばらつきが大きいことを意味する。水中での耐摩耗性の項目において、“◎”は耐摩耗性が十分に高いことを意味し、“○”は耐摩耗性が高いことを意味し、“×”は耐摩耗性が低いことを意味する。大気中での耐摩耗性の項目において、“◎”は耐摩耗性が十分に高いことを意味し、“○”は耐摩耗性が高いことを意味する。“△”は耐摩耗性がやや低いことを意味し、“×”は焼き付きが発生することを意味する。   In the item of the uniformity of the sliding performance in Table 6, “O” means that the variation of the sliding performance is small, and “X” means that the variation of the sliding performance is large. In the abrasion resistance in water, “◎” means that the abrasion resistance is sufficiently high, “○” means that the abrasion resistance is high, and “×” means that the abrasion resistance is low. Means In the item of abrasion resistance in the atmosphere, “◎” means that the abrasion resistance is sufficiently high, and “○” means that the abrasion resistance is high. "△" means that abrasion resistance is slightly low, and "x" means that image sticking occurs.

表6の実施例1〜6および比較例3,4の総合評価より、骨材として人造黒鉛を用いることにより摺動性能の均一性が確保されることが分かる。また、添加剤としてカオリンを用いることにより、水中での耐摩耗性が向上しかつ大気中での焼き付きの発生が防止されることが分かる。さらに、カオリンの種類および添加量を調整することにより、大気中での耐摩耗性を向上させることが可能であることが分かる。
(6)参考形態
本参考形態に係る摺動部材は、骨材としての人造黒鉛と、添加剤としてのカオリンと、バインダとを含むものである。
その摺動部材は、骨材として人造黒鉛を含むので、灰分の含有量が比較的少ない。そのため、灰分の含有量および成分のばらつきが小さい。それにより、摺動性能の均一性が確保される。また、骨材にカオリンが添加されることにより、液体中または高湿度雰囲気中での耐摩耗性が向上される。
摺動部材は、骨材および添加剤の総量100重量部に対して、人造黒鉛80〜95重量部を含んでもよい。この場合、摺動性能の均一性が十分に確保される。摺動部材は、骨材および添加剤の総量100重量部に対して、人造黒鉛90〜95量部を含んでもよい。この場合、摺動性能の均一性がより十分に確保される。
摺動部材は、骨材および添加剤の総量100重量部に対して、カオリン2〜20重量部を含んでもよい。この場合、液体中または高湿度雰囲気中での耐摩耗性がより向上される。摺動部材は、骨材および添加剤の総量100重量部に対して、カオリン2.5〜10重量部を含んでもよい。この場合、液体中または高湿度雰囲気中での耐摩耗性がさらに向上される。
摺動部材は、骨材、添加剤およびバインダの総重量に対して2〜10重量%の灰分を含んでもよい。この場合、摺動性能の均一性が十分に確保される。摺動部材は、骨材、添加剤およびバインダの総重量に対して3〜7重量%の灰分を含むことが好ましい。この場合、摺動性能の均一性がより十分に確保される。摺動部材は、骨材、添加剤およびバインダの総重量に対して3〜6重量%の灰分を含むことがより好ましい。この場合、摺動性能の均一性がさらに十分に確保される。摺動部材は、骨材、添加剤およびバインダの総重量に対して3〜5.5重量%の灰分を含むことがさらに好ましい。この場合、摺動性能の均一性がさらに十分に確保される。
本参考形態に係る摺動部材の製造方法は、骨材としての人造黒鉛と添加剤としてのカオリンとを混合することにより混合粉末を調製する工程と、調製された混合粉末とバインダとを混練することにより混合基材を調製する工程と、調製された混合基材を成形する工程と、成形された混合基材を焼成する工程とを含むものである。
その製造方法によれば、摺動部材は、骨材として人造黒鉛を含むので、灰分の含有量が比較的少ない。そのため、灰分の含有量および成分のばらつきが小さい。それにより、摺動性能の均一性が確保される。また、骨材にカオリンが添加されることにより、液体中または高湿度雰囲気中での耐摩耗性が向上される。
From the comprehensive evaluation of Examples 1 to 6 and Comparative Examples 3 and 4 in Table 6, it can be seen that uniformity of sliding performance is secured by using artificial graphite as an aggregate. Also, it can be seen that the use of kaolin as an additive improves the abrasion resistance in water and prevents the occurrence of burn-in in the atmosphere. Further, it can be seen that the wear resistance in the atmosphere can be improved by adjusting the type and amount of kaolin.
(6) Reference form
The sliding member according to the present embodiment includes artificial graphite as an aggregate, kaolin as an additive, and a binder.
Since the sliding member contains artificial graphite as an aggregate, the ash content is relatively small. Therefore, the ash content and the variation in the components are small. Thereby, uniformity of the sliding performance is ensured. Further, by adding kaolin to the aggregate, the wear resistance in a liquid or in a high humidity atmosphere is improved.
The sliding member may include 80 to 95 parts by weight of the artificial graphite based on 100 parts by weight of the total amount of the aggregate and the additive. In this case, uniformity of the sliding performance is sufficiently ensured. The sliding member may include 90 to 95 parts by weight of artificial graphite based on 100 parts by weight of the total amount of the aggregate and the additive. In this case, the uniformity of the sliding performance is more sufficiently ensured.
The sliding member may include 2 to 20 parts by weight of kaolin based on 100 parts by weight of the aggregate and the additive. In this case, the wear resistance in a liquid or in a high humidity atmosphere is further improved. The sliding member may include 2.5 to 10 parts by weight of kaolin based on 100 parts by weight of the aggregate and the additive. In this case, the wear resistance in a liquid or in a high humidity atmosphere is further improved.
The sliding member may include 2 to 10% by weight of ash based on the total weight of the aggregate, additives and binder. In this case, uniformity of the sliding performance is sufficiently ensured. The sliding member preferably contains 3 to 7% by weight of ash with respect to the total weight of the aggregate, additives and binder. In this case, the uniformity of the sliding performance is more sufficiently ensured. More preferably, the sliding member contains 3 to 6% by weight of ash based on the total weight of the aggregate, additives and binder. In this case, the uniformity of the sliding performance is further sufficiently ensured. More preferably, the sliding member contains 3 to 5.5% by weight of ash based on the total weight of the aggregate, additives and binder. In this case, the uniformity of the sliding performance is further sufficiently ensured.
The method for manufacturing a sliding member according to the present embodiment includes a step of preparing a mixed powder by mixing artificial graphite as an aggregate and kaolin as an additive, and kneading the prepared mixed powder and a binder. The method includes a step of preparing a mixed base material thereby, a step of forming the prepared mixed base material, and a step of firing the formed mixed base material.
According to the manufacturing method, since the sliding member contains artificial graphite as an aggregate, the ash content is relatively small. Therefore, the ash content and the variation in the components are small. Thereby, uniformity of the sliding performance is ensured. Further, by adding kaolin to the aggregate, the wear resistance in a liquid or in a high humidity atmosphere is improved.

本発明は、種々の摺動部材に有効に利用することができる。   The present invention can be effectively used for various sliding members.

1 摺動部材   1 sliding member

Claims (5)

人造黒鉛のみを含む骨材と、添加剤としてのカオリンと、バインダとを含み、
前記骨材および前記添加剤の総量100重量部に対して、人造黒鉛92.5〜95重量部を含む、摺動部材。
Aggregate containing only artificial graphite, kaolin as an additive, and a binder,
A sliding member comprising 92.5 to 95 parts by weight of artificial graphite based on 100 parts by weight of the total amount of the aggregate and the additive.
前記骨材および前記添加剤の総量100重量部に対して、カオリン2〜20重量部を含む、請求項記載の摺動部材。 Wherein the total amount 100 parts by weight of the aggregate and the additives, including 2 to 20 parts by weight of kaolin, claim 1 sliding member according. 前記骨材、前記添加剤および前記バインダの総重量に対して2〜10重量%の灰分を含む、請求項1または2記載の摺動部材。 The aggregate, the additives and containing 2-10 wt% ash based on the total weight of the binder, according to claim 1 or 2 sliding member according. 前記骨材、前記添加剤および前記バインダの総重量に対して3〜7重量%の灰分を含む、請求項記載の摺動部材。 The sliding member according to claim 3 , comprising 3 to 7% by weight of ash based on the total weight of the aggregate, the additive, and the binder. 人造黒鉛のみを含む骨材と添加剤としてのカオリンとを混合することにより混合粉末を調製する工程と、
調製された混合粉末とバインダとを混練することにより混合基材を作製する工程と、
前記混合基材を粉砕する工程と、
粉砕された混合基材を成形する工程と、
成形された混合基材を焼成する工程とを含み、
前記骨材および前記添加剤の総量100重量部に対して、人造黒鉛92.5〜95重量部を含む、摺動部材の製造方法。
A step of preparing a mixed powder by mixing an aggregate containing only artificial graphite and kaolin as an additive,
A step of preparing a mixed base material by kneading the prepared mixed powder and a binder,
Grinding the mixed base material,
A step of molding the crushed mixed base material,
Firing the formed mixed base material,
A method for producing a sliding member, comprising 92.5 to 95 parts by weight of artificial graphite based on 100 parts by weight of the total amount of the aggregate and the additive.
JP2015090280A 2015-04-27 2015-04-27 Sliding member and manufacturing method thereof Active JP6641100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090280A JP6641100B2 (en) 2015-04-27 2015-04-27 Sliding member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090280A JP6641100B2 (en) 2015-04-27 2015-04-27 Sliding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016205567A JP2016205567A (en) 2016-12-08
JP6641100B2 true JP6641100B2 (en) 2020-02-05

Family

ID=57489416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090280A Active JP6641100B2 (en) 2015-04-27 2015-04-27 Sliding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6641100B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018622B2 (en) * 1978-01-30 1985-05-11 日立化成工業株式会社 Carbonaceous sliding material
JPS6051731A (en) * 1983-08-31 1985-03-23 Taiho Kogyo Co Ltd Sliding resin material
JPS6396316A (en) * 1986-10-09 1988-04-27 Taiho Kogyo Co Ltd Carbonaceous sliding material
JPS63199966A (en) * 1987-02-13 1988-08-18 Aisin Seiki Co Ltd Sliding material for mechanical seal
JP5858846B2 (en) * 2012-03-29 2016-02-10 大豊工業株式会社 Plain bearing

Also Published As

Publication number Publication date
JP2016205567A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5684977B2 (en) Cu-based sintered sliding member
US5538649A (en) Carbon composite mateiral for tribological applications
JP6641100B2 (en) Sliding member and manufacturing method thereof
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP6310906B2 (en) Carbon material for bearing and sliding member made of carbon material for bearing
JP6030465B2 (en) Sliding member and manufacturing method thereof
JP7149252B2 (en) Resin material for sliding member and sliding member
RU2689456C2 (en) Corrosion-resistant cemented carbide for operation with fluids
JP4031753B2 (en) Shaft seal device for pump
JP2004035993A (en) Metal-impregnated carbon sliding material
WO2016107843A1 (en) Light weight cemented carbide for flow erosion components
JP5424121B2 (en) Sliding material
JP2002106720A (en) Mechanical seal for hot water
JP2007016173A (en) Sealant
WO2022149330A1 (en) Slide bearing, slide bearing device, and pump
JP2005281446A (en) Tetrafluoroethylene resin composition and sliding member produced by using the same
JP7218382B2 (en) Sealing sliding member and sealing device
WO2022149329A1 (en) Sliding bearing, sliding bearing device, and pump
WO2014196898A1 (en) Iron-based powdered, wear and corrosion resistant material
JP2003328057A (en) Sliding material of metal-impregnate carbon and manufacturing method therefor
JPS6296367A (en) Silicon carbide base friction mechanism member
Smirnov et al. Study of the wear resistance of alloyed powder-based hybrid materials manufactured using “KARBUL” technology
JP3152872B2 (en) Sliding composite material
Janas et al. The effect of graphite precipitates in Ni3Al/C composite on tribological properties
JP5105460B2 (en) Method of manufacturing wear-resistant member and plastic mold using the wear-resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191227

R150 Certificate of patent or registration of utility model

Ref document number: 6641100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250