JP2003328057A - Sliding material of metal-impregnate carbon and manufacturing method therefor - Google Patents

Sliding material of metal-impregnate carbon and manufacturing method therefor

Info

Publication number
JP2003328057A
JP2003328057A JP2002143151A JP2002143151A JP2003328057A JP 2003328057 A JP2003328057 A JP 2003328057A JP 2002143151 A JP2002143151 A JP 2002143151A JP 2002143151 A JP2002143151 A JP 2002143151A JP 2003328057 A JP2003328057 A JP 2003328057A
Authority
JP
Japan
Prior art keywords
metal
weight
carbon
impregnated
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002143151A
Other languages
Japanese (ja)
Other versions
JP4150954B2 (en
Inventor
Koichi Ueda
浩一 上田
Kazumi Kokaji
和己 小鍜治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002143151A priority Critical patent/JP4150954B2/en
Publication of JP2003328057A publication Critical patent/JP2003328057A/en
Application granted granted Critical
Publication of JP4150954B2 publication Critical patent/JP4150954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding material of a metal-impregnated carbon superior in sliding characteristics and abrasion. <P>SOLUTION: The sliding material of the metal-impregnated carbon comprises a base carbon having the lattice constant Co=0.672 nm-0.685 nm, when measured by a lattice constant measuring method for graphite specified by Japan Society for the Promotion of Science, and a metal impregnated into the base carbon, which occupies 20-65 wt.% of the total and comprises, by weight ratio, 90-98 wt.% Zn and 2-10 wt.% Al. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、各種ポンプや圧縮
機などの軸受及びシール、真空ポンプのベーン等に使用
される金属含浸カーボン摺動材料に関する。 【0002】 【従来の技術】従来の金属含浸カーボン摺動材は、例え
ば(石川敏功、長沖通)著、近代編集社発行の「新炭素
工業」などに示されるように、人造黒鉛、天然黒鉛、カ
ーボンブラック、コークス等の骨材の一種以上と、ター
ルピッチ、コールタール等の結合剤の一種以上を適宜配
合し、これらを混練機に投入し、150〜300℃の温
度で混練する。次にこの混練物を室温まで冷却した後、
平均粒径10〜300μmに粉砕し、次いで50〜20
0MPaの圧力で成形、800〜3000℃の非酸化雰
囲気中で焼成または必要に応じて黒鉛化し、さらにこの
焼成品または黒鉛化品に鉛、銅などの金属を含浸する。
特に、鉛は低融点金属であり含浸作業が容易であるばか
りでなく、摩擦係数を下げ、摩耗量を減少させ、さらに
耐焼付性を向上させるため、水中ポンプなどの軸受とし
て、鉛含浸カーボン摺動材が広く使用されている。鉛含
浸カーボン摺動材の場合、温度400〜500℃、減圧
真空度5torr以下の条件で鉛溶融槽に上記の焼成品
または黒鉛化品を浸漬した後、窒素やアルゴンガス等の
不活性ガスにより0.49〜0.98MPaまで加圧し
て、カーボン基材が有する気孔に鉛を含浸させる。この
後、鉛溶融槽から引き上げて冷却した後、大気圧に戻し
て含浸を完了し、鉛含浸カーボン摺動材としている。こ
の鉛含浸カーボン摺動材を機械加工して摺動材に供して
いる。 【0003】しかしながら、重金属である鉛は環境汚染
が心配され、廃棄品の市場からの回収が必要となるばか
りでなく、鉛そのものの使用を制限あるいは廃止するよ
うになってきている。 【0004】 【発明が解決しようとする課題】本発明は、鉛含浸カー
ボン摺動材と同等の摺動特性を有する、鉛を含まない金
属含浸カーボン摺動材を提供するものである。 【0005】 【課題を解決するための手段】本発明は、学振法による
黒鉛の格子定数測定法より求めた格子定数Co=0.6
72nm〜0.685nmのカーボン基材にZnが90
〜98重量%、Alが2〜10重量%の比率の金属を2
0〜65重量%含浸した金属含浸カーボン摺動材。 【0006】 【発明の実施の形態】本発明になる金属含浸カーボン軸
受材は、鉛に替わる含浸金属として、Znが90〜98
重量%、Alが2〜10重量%の比率の金属を使用す
る。格子定数Co=0.672nmよりも小さいカーボ
ン基材では軟らかく耐荷重性の低下、摩耗量の増大を引
き起こす。また格子定数Co=0.685nmより大き
いと十分な摩擦係数低減効果が得られず、耐摩耗性、摩
擦特性、なじみ性などが損なわれる。また、金属の含浸
量は20重量%〜65重量%が好ましく20重量%より
も少ないと、カーボン基材の気孔を金属によって埋める
ことが出来ず、機械的強度の低下、摺動特性の効果が十
分でなく摩耗量の増大を引き起こす。含浸率が65重量
%より多いとカーボン基材の潤滑効果が得られず、摩擦
係数が大きくなり摩耗量も増加する。 【0007】本発明になる金属含浸カーボン軸受材を製
造するための原料としては、平均粒径が20μm程度の
黒鉛粉、油煙等を骨材として使用し、結合剤としてター
ルピッチ、コールタール等が使用される。本発明になる
金属含浸カーボン摺動材は、前記各原料を用い、加熱混
練、粉砕、成形、焼成した後、金属含浸することにより
製造する事ができる。 【0008】加熱混練は、双腕型ニーダー等を用いて、
各原料を150℃〜300℃、より好ましくは180℃
〜270℃、さらに好ましくは200℃〜250℃の温
度で混練する。混練温度が高いと機械的強度が低下する
傾向があり、低いと混練時間が長くなる傾向がある。
尚、混練時間については、混練物の量、骨材、結合剤の
配合割合により変化するので、その都度適宜選定する必
要がある。 【0009】粉砕は、加熱混練で得られたものを、各種
粉砕機を用いて、平均粒径が20〜300μm程度、よ
り好ましくは20〜200μm、更に好ましくは20〜
100μmになるように粉砕することにより行われる。
但し、平均粒径は続く成形方法や、焼成または黒鉛化後
に得られるカーボン基材の特性を考慮し、適宜選択する
ことが可能である。 【0010】成形は、粉砕して得られた粉体を、ブロッ
ク状に金型プレス等の方法でふ形することにより行われ
る。 【0011】成形圧力は、50〜200MPaが好まし
く、60〜150MPaがより好ましく80〜130M
Paがさらに好ましい。成形圧が低いと機械的強度が低
下する傾向があり、高いと焼成中に揮発分の散逸が抑制
されて成形品に内部圧力が生じ、割れやすくなる傾向が
ある。 【0012】上記により得られた成形品を焼成する。焼
成は、窒素又はアルゴン等の不活性ガスを用いた非酸化
雰囲気下または成形品の周囲に炭素粉を詰めて還元雰囲
気下で焼成する方法が取られる。焼成時の最高到達温度
は800℃〜1000℃が好ましく、850〜1000
℃がより好ましく、900〜1000℃が更に好まし
い。焼成は温度が800℃よりも低い場合、炭素化が不
十分で十分な摺動特性を得られにくく、1000℃以上
の場合、焼成炉が劣化しやすくなる。焼成時間は原料の
配合割合や製品形状あるいは炉の能力などにより決めら
れるものであり、本発明においては特に制限されるもの
ではないが、生産性及び生産コストの点から出来るだけ
短時間で終了することが良い。具体的には5時間〜10
0時間が好ましく、10時間〜400時間がより好もし
く、20時間〜350時間が更に好ましい。 【0013】目標とするカーボン基材を得るには、得ら
れた焼成品を更に1000℃以上の高温で黒鉛化しても
良い。この場合の最高温度は1200〜3000℃が好
ましく、1500〜3000℃がより好ましく、250
0〜3000℃が更に好ましい。 【0014】このようにして得られた焼成品又は黒鉛化
品を学振法による黒鉛の格子定数測定法より測定する。 【0015】金属含浸は、上記により得られた学振法に
よる黒鉛の格子定数測定法より求めた格子定数Co=
0.672nm〜0.685nmのカーボン基材を金属
含浸容器に入れ5torr以下に減圧減圧脱気後、Zn
が90〜98重量%、Alが2〜10重量%の比率の金
属からなる合金溶湯中に浸漬して窒素ガスにより0.4
9〜0.98MPaまで加圧することにより行われる。
このようにして得られた金属含浸カーボン材を機械加工
し、所望の形状の軸受、シール、ベーン等の製品形状に
することができる。 【0016】 【実施例】以下本発明の実施例を説明する。 (実施例1)骨材として、平均粒径が20μmの自家製
人造黒鉛粉55重量%に、結合剤としてタールピッチ
(川崎製鉄(株)製、商品名PKL)45重量%を配合
し、双腕型ニーダーを用いて温度250℃で5時間加熱
混練した。 【0017】この後上記の混練物を、平均粒径25μm
に粉砕した。この粉砕粉を寸法が150×250×50
mmの金型に入れ、成形圧力100MPaで成形した。
得られた成形品を、還元雰囲気下で1000℃まで40
0時間かけて昇温した後冷却した。 【0018】この焼成品を金属含浸容器に入れ、3to
rrに減圧脱気後、Znが96重量%、Alが4重量%
からなる合金の溶湯中に浸漬して窒素ガスにより0.9
8MPaまで加圧した。得られた金属含浸カーボン材の
物理特性,格子定数,含浸率及び摩耗試験の結果を表1
に示す。 【0019】 【表1】 【0020】(実施例2)骨材として、平均粒径が20
μmの自家製人造黒鉛粉40重量%に、天然黒鉛10重
量%(日本黒鉛(株)製、商品名CB150)並びに結
合剤としてタールピッチ(川崎製鉄(株)製、商品名P
KL)50重量%を配合し、双腕型ニーダーを用いて温
度250℃で5時間加熱混練した。この後上記の混練物
を、平均粒径25μmに粉砕した。この粉砕粉を寸法が
150×250×50mmの金型に入れ、成形圧力10
0MPaで成形した。得られた成形品を、還元雰囲気下
で1000℃まで400時間かけて昇温した後冷却し
た。 【0021】この焼成品を金属含浸容器に入れ、3to
rrに減圧脱気後、Znが96重量%、Alが4重量%
からなる合金の溶湯中に浸漬して窒素ガスにより0.9
8MPaまで加圧した。得られた金属含浸カーボン材の
物理特性,格子定数,含浸率及び摩耗試験の結果を表1
に示す。 【0022】(実施例3)骨材として、平均粒径が20
μmの自家製人造黒鉛粉7重量%に、平均粒径が20μ
mのピッチコークス53重量%並びに結合剤としてター
ルピッチ(川崎製鉄(株)製、商品名PKL)40重量
%を配合し、双腕型ニーダーを用いて温度250℃で5
時間加熱混練した。この後上記の混練物を、平均粒径2
5μmに粉砕した。この粉砕粉を寸法が150×250
×50mmの金型に入れ、成形圧力100MPaで成形
した。得られた成形品を、還元雰囲気下で1000℃ま
で400時間かけて昇温した後冷却した。得られた焼成
品の開気孔率を水中置換法により測定した結果、この焼
成品を金属含浸容器に入れ、3torrに減圧脱気後、
Znが96重量%、Alが4重量%からなる合金の溶湯
中に浸漬して窒素ガスにより0.98MPaまで加圧し
た。得られた金属含浸カーボン材の物理特性,格子定
数,含浸率及び摩耗試験の結果を表1に示す。 【0023】(実施例4)実施例1記載のカーボン基材
を用い、これを金属含浸容器に入れ、3torrに減圧
脱気後、Znが90重量%、Alが10重量%からなる
合金の溶湯中に浸漬して窒素ガスにより0.98MPa
まで加圧した。得られた金属含浸カーボン材の物理特
性,格子定数,含浸率及び摩耗試験の結果を表1に示
す。 【0024】(実施例5)実施例1記載のカーボン基材
を用い、これを金属含浸容器に入れ、3torrに減圧
脱気後、Znが98重量%、Alが2重量%からなる合
金の溶湯中に浸漬して窒素ガスにより0.98MPaま
で加圧した。得られた金属含浸カーボン材の物理特性,
格子定数,含浸率及び摩耗試験の結果を表1に示す。 【0025】(比較例1)実施例2で得られたカーボン
基材さらに3000℃で黒鉛化を行った。この黒鉛化品
を金属含浸容器に入れ、3torrに減圧脱気後、鉛溶
湯中に浸漬して窒素ガスにより0.98MPaまで加圧
した。得られた金属含浸カーボン材の物理特性,格子定
数,含浸率及び摩耗試験の結果を表1に示す。 【0026】(比較例2)比較例1で得られたカーボン
基材を用いて、これを金属含浸容器に入れ、3torr
に減圧脱気後、Znが89重量%、Alが11重量%か
らなる合金の溶湯中に浸漬して窒素ガスにより0.98
MPaまで加圧した。得られた金属含浸カーボン材の物
理特性,格子定数,含浸率及び摩耗試験の結果を表1に
示す。 【0027】(比較例3)骨材として、平均粒径が20
μmの自家製人造黒鉛粉3重量%に、平均粒径が20μ
mのピッチコークス57重量%並びに結合剤としてター
ルピッチ(川崎製鉄(株)製、商比較例1で得られたカ
ーボン基材を用いて、これを品名PKL)40重量%を
配合し、双腕型ニーダーを用いて温度250℃で5時間
加熱混練した。 【0028】この後上記の混練物を、平均粒径25μm
に粉砕した。この粉砕粉を寸法が150×250×50
mmの金型に入れ、成形圧力100MPaで成形した。
得られた成形品を、還元雰囲気下で1000℃まで40
0時間かけて昇温した後冷却した。実施例1記載のカー
ボン基材を用い、これを金属含浸容器に入れ、3tor
rに減圧脱気後、Znが99重量%、Alが1重量%か
らなる合金の溶湯中に浸漬して窒素ガスにより0.98
MPaまで加圧した。 【0029】得られた金属含浸カーボン材の物理特性,
格子定数,含浸率及び摩耗試験の結果を表1に示す。
尚、水中摩耗試験は、8×12×18mmの試験片(摺
動面12×18mm)を水中で回転する外径寸法φ85
mmの円板(材質SUS304)上で摺動させて行なっ
た。周速は10m/s、面圧は0.98MPaとして1
00時間試験を行ない、摩擦係数及び摩耗量を測定し
た。表2に示されるように、実施例1〜5は、比較例2
及び3に比べて摩擦係数が小さく、摩耗量も少なく、比
較例1の鉛含浸カーボン軸受と同等の摺動特性が確認さ
れた。 【0030】 【発明の効果】本発明によれば、請求項1記載の金属含
浸カーボン摺動材は鉛を含まず、鉛含浸カーボン摺動材
と同等の摺動特性を有しており、工業的に極めて好適で
ある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-impregnated carbon sliding material used for bearings and seals of various pumps and compressors, vanes of vacuum pumps, and the like. 2. Description of the Related Art Conventional metal-impregnated carbon sliding materials include, for example, artificial graphite, natural graphite, and the like, as shown in "New Carbon Industry" published by Toshinori Ishikawa and Todori Nagaoki. One or more aggregates such as graphite, carbon black, coke and the like and one or more binders such as tar pitch and coal tar are appropriately blended, and these are charged into a kneader and kneaded at a temperature of 150 to 300 ° C. Next, after cooling this kneaded material to room temperature,
Pulverized to an average particle size of 10 to 300 μm, then 50 to 20
It is molded at a pressure of 0 MPa, fired in a non-oxidizing atmosphere at 800 to 3000 ° C. or graphitized as necessary, and further impregnated with the fired or graphitized product with a metal such as lead or copper.
In particular, lead is a low-melting-point metal and is not only easy to impregnate, it also reduces the coefficient of friction, reduces wear, and improves seizure resistance. Moving material is widely used. In the case of a lead-impregnated carbon sliding material, the above-mentioned calcined product or graphitized product is immersed in a lead melting tank under the conditions of a temperature of 400 to 500 ° C. and a reduced pressure of 5 torr or less, and then is inerted with an inert gas such as nitrogen or argon gas. Pressure is applied to 0.49 to 0.98 MPa to impregnate the pores of the carbon substrate with lead. Thereafter, after being pulled up from the lead melting tank and cooled, the pressure is returned to the atmospheric pressure to complete the impregnation, thereby obtaining a lead-impregnated carbon sliding material. This lead-impregnated carbon sliding material is machined and provided as a sliding material. [0003] However, lead, which is a heavy metal, is concerned about environmental pollution, so that not only must waste be recovered from the market, but the use of lead itself has been restricted or abolished. [0004] The present invention provides a lead-free metal-impregnated carbon sliding material having sliding characteristics equivalent to those of a lead-impregnated carbon sliding material. According to the present invention, a lattice constant Co = 0.6 obtained by a method of measuring the lattice constant of graphite by the Gakushin method.
90 nm Zn on a carbon substrate of 72 nm to 0.685 nm
To 98% by weight of Al and 2 to 10% by weight of Al
A metal-impregnated carbon sliding material impregnated with 0 to 65% by weight. DETAILED DESCRIPTION OF THE INVENTION The metal-impregnated carbon bearing material according to the present invention contains 90 to 98 Zn as an impregnating metal instead of lead.
A metal having a ratio of 2 to 10% by weight of Al is used. A carbon substrate having a lattice constant smaller than Co = 0.672 nm is soft and causes a decrease in load resistance and an increase in abrasion loss. On the other hand, if the lattice constant Co is larger than 0.685 nm, a sufficient effect of reducing the friction coefficient cannot be obtained, and wear resistance, friction characteristics, conformability and the like are impaired. Further, the metal impregnation amount is preferably 20% by weight to 65% by weight, and if it is less than 20% by weight, the pores of the carbon base material cannot be filled with the metal, so that the mechanical strength is reduced and the effect of the sliding properties is reduced. Not enough, causing increased wear. If the impregnation ratio is more than 65% by weight, the lubricating effect of the carbon base material cannot be obtained, the friction coefficient increases, and the wear amount increases. As raw materials for producing the metal-impregnated carbon bearing material according to the present invention, graphite powder, oil smoke, etc. having an average particle size of about 20 μm are used as aggregates, and tar pitch, coal tar and the like are used as binders. used. The metal-impregnated carbon sliding material according to the present invention can be manufactured by heating and kneading, pulverizing, molding, and firing the above raw materials, followed by metal impregnation. Heat kneading is performed using a double-arm kneader or the like.
Each raw material is 150 ° C to 300 ° C, more preferably 180 ° C
To 270 ° C, more preferably 200 to 250 ° C. When the kneading temperature is high, the mechanical strength tends to decrease, and when it is low, the kneading time tends to increase.
The kneading time varies depending on the amount of the kneaded material, the mixing ratio of the aggregate and the binder, and therefore it is necessary to appropriately select the kneading time each time. In the pulverization, the powder obtained by heating and kneading is mixed with various pulverizers to have an average particle size of about 20 to 300 μm, more preferably 20 to 200 μm, and still more preferably 20 to 200 μm.
This is performed by pulverizing to a size of 100 μm.
However, the average particle size can be appropriately selected in consideration of the subsequent molding method and the characteristics of the carbon substrate obtained after firing or graphitization. The molding is carried out by shaping the powder obtained by the pulverization into a block shape by a method such as a die press. The molding pressure is preferably from 50 to 200 MPa, more preferably from 60 to 150 MPa, and more preferably from 80 to 130 MPa.
Pa is more preferred. If the molding pressure is low, the mechanical strength tends to decrease, and if the molding pressure is high, the dissipation of volatile components during firing is suppressed, and an internal pressure is generated in the molded product, which tends to cause cracking. The molded article obtained as described above is fired. The firing is carried out in a non-oxidizing atmosphere using an inert gas such as nitrogen or argon or in a reducing atmosphere by packing carbon powder around a molded article. The maximum temperature during firing is preferably 800 ° C to 1000 ° C, and 850 to 1000 ° C.
C. is more preferable, and 900 to 1000 C. is even more preferable. When the firing is performed at a temperature lower than 800 ° C., carbonization is insufficient and sufficient sliding characteristics cannot be obtained. When the firing is performed at a temperature of 1000 ° C. or higher, the firing furnace tends to deteriorate. The firing time is determined by the mixing ratio of the raw materials, the product shape, the capacity of the furnace, and the like, and is not particularly limited in the present invention, but is completed in as short a time as possible from the viewpoint of productivity and production cost. Good. Specifically, 5 hours to 10 hours
0 hours is preferable, 10 hours to 400 hours is more preferable, and 20 hours to 350 hours is further preferable. In order to obtain a target carbon substrate, the obtained fired product may be further graphitized at a high temperature of 1000 ° C. or higher. The maximum temperature in this case is preferably from 1200 to 3000 ° C, more preferably from 1500 to 3000 ° C,
0-3000 degreeC is more preferable. The calcined or graphitized product thus obtained is measured by a method of measuring the lattice constant of graphite by the Gakushin method. The metal impregnation is carried out by using the lattice constant Co =
A carbon substrate of 0.672 nm to 0.685 nm is placed in a metal impregnated container, degassed under reduced pressure to 5 torr or less, and then Zn
Is immersed in a molten alloy consisting of a metal having a ratio of 90 to 98% by weight and Al having a ratio of 2 to 10% by weight and
It is performed by pressurizing to 9 to 0.98 MPa.
The thus obtained metal-impregnated carbon material can be machined into a product shape such as a bearing, a seal, or a vane having a desired shape. Embodiments of the present invention will be described below. (Example 1) 45% by weight of tar pitch (trade name: PKL, manufactured by Kawasaki Steel Co., Ltd.) was mixed with 55% by weight of homemade artificial graphite powder having an average particle size of 20 μm as an aggregate, and The mixture was heated and kneaded at 250 ° C. for 5 hours using a mold kneader. Thereafter, the above-mentioned kneaded material is added to an average particle size of 25 μm.
Crushed. The size of this ground powder is 150 × 250 × 50
mm and a molding pressure of 100 MPa.
The obtained molded article is cooled to 1000 ° C.
The temperature was raised over 0 hours and then cooled. The fired product is placed in a metal impregnation vessel and 3 to
After degassing under reduced pressure to rr, Zn was 96% by weight and Al was 4% by weight.
Immersed in a molten alloy consisting of
The pressure was increased to 8 MPa. Table 1 shows the physical properties, lattice constant, impregnation rate, and wear test results of the obtained metal-impregnated carbon material.
Shown in [Table 1] (Example 2) As an aggregate, the average particle diameter was 20.
μm homemade artificial graphite powder 40% by weight, natural graphite 10% by weight (trade name: CB150, manufactured by Nippon Graphite Co., Ltd.) and tar pitch (produced by Kawasaki Steel Corporation, trade name: P
KL), and kneaded by heating at 250 ° C. for 5 hours using a double-arm kneader. Thereafter, the above kneaded material was pulverized to an average particle size of 25 μm. This pulverized powder is placed in a mold having a size of 150 × 250 × 50 mm, and a molding pressure of 10 mm.
Molded at 0 MPa. The obtained molded product was heated to 1000 ° C. over 400 hours in a reducing atmosphere and then cooled. The fired product is placed in a metal impregnation vessel and 3 to
After degassing under reduced pressure to rr, Zn was 96% by weight and Al was 4% by weight.
Immersed in a molten alloy consisting of
The pressure was increased to 8 MPa. Table 1 shows the physical properties, lattice constant, impregnation rate, and wear test results of the obtained metal-impregnated carbon material.
Shown in (Example 3) As an aggregate, the average particle diameter was 20.
7% by weight of home-made artificial graphite powder with a mean particle size of 20 μm
m of pitch coke and 40% by weight of tar pitch (PKL manufactured by Kawasaki Steel Co., Ltd.) as a binder were mixed at a temperature of 250 ° C. using a double-arm kneader.
The mixture was heated and kneaded for hours. Thereafter, the above-mentioned kneaded material is mixed with an average particle size of 2
It was pulverized to 5 μm. This crushed powder has dimensions of 150 × 250
It was placed in a mold of × 50 mm and molded at a molding pressure of 100 MPa. The obtained molded product was heated to 1000 ° C. over 400 hours in a reducing atmosphere and then cooled. As a result of measuring the open porosity of the obtained calcined product by an underwater substitution method, the calcined product was placed in a metal-impregnated container, and degassed under reduced pressure at 3 torr.
It was immersed in a molten alloy of 96 wt% Zn and 4 wt% Al and pressurized to 0.98 MPa with nitrogen gas. Table 1 shows the physical properties, lattice constant, impregnation rate, and wear test results of the obtained metal-impregnated carbon material. (Embodiment 4) The carbon substrate described in Embodiment 1 was placed in a metal-impregnated container, degassed under reduced pressure at 3 torr, and then a molten alloy of 90 wt% Zn and 10 wt% Al was obtained. 0.98MPa by immersion in nitrogen gas
Pressurized. Table 1 shows the physical properties, lattice constant, impregnation rate, and wear test results of the obtained metal-impregnated carbon material. (Example 5) The carbon substrate described in Example 1 was put into a metal-impregnated vessel, and after degassing under reduced pressure at 3 torr, a molten alloy of 98% by weight of Zn and 2% by weight of Al It was immersed in the solution and pressurized to 0.98 MPa with nitrogen gas. Physical properties of the obtained metal-impregnated carbon material,
Table 1 shows the lattice constant, the impregnation ratio, and the results of the wear test. Comparative Example 1 The carbon substrate obtained in Example 2 was further graphitized at 3000 ° C. The graphitized product was placed in a metal impregnation vessel, degassed under reduced pressure at 3 torr, immersed in a molten lead metal, and pressurized to 0.98 MPa with nitrogen gas. Table 1 shows the physical properties, lattice constant, impregnation rate, and wear test results of the obtained metal-impregnated carbon material. (Comparative Example 2) The carbon substrate obtained in Comparative Example 1 was put into a metal-impregnated container,
After degassing under reduced pressure, the alloy was immersed in a molten alloy containing 89% by weight of Zn and 11% by weight of Al and 0.98% by nitrogen gas.
Pressurized to MPa. Table 1 shows the physical properties, lattice constant, impregnation rate, and wear test results of the obtained metal-impregnated carbon material. Comparative Example 3 As an aggregate, the average particle size was 20.
3% by weight of home-made artificial graphite powder with a mean particle size of 20 μm
and 50% by weight of a pitch coke having a weight of 50 m and a pitch of 40% by weight of tar pitch (a carbon base material obtained from Kawasaki Steel Co., Ltd., quotient comparison example 1 and trade name PKL) as a binder. The mixture was heated and kneaded at 250 ° C. for 5 hours using a mold kneader. Thereafter, the above-mentioned kneaded material was added to an average particle size of 25 μm.
Crushed. The size of this ground powder is 150 × 250 × 50
mm and a molding pressure of 100 MPa.
The obtained molded article is cooled to 1000 ° C.
The temperature was raised over 0 hours and then cooled. The carbon substrate described in Example 1 was used, placed in a metal-impregnated container, and 3 torr.
r, immersed in a molten alloy containing 99% by weight of Zn and 1% by weight of Al, and 0.98% by nitrogen gas.
Pressurized to MPa. Physical properties of the obtained metal-impregnated carbon material,
Table 1 shows the lattice constant, the impregnation ratio, and the results of the wear test.
The underwater abrasion test was performed by rotating an 8 × 12 × 18 mm test piece (sliding surface 12 × 18 mm) in water with an outer diameter φ85.
It was performed by sliding on a circular disk (material: SUS304) of mm. The peripheral speed is 10 m / s, and the surface pressure is 0.98 MPa.
A 00 hour test was performed to measure the coefficient of friction and the amount of wear. As shown in Table 2, Examples 1 to 5 correspond to Comparative Example 2
Comparative Examples 1 and 3 had a smaller coefficient of friction and less wear, and the same sliding characteristics as the lead-impregnated carbon bearing of Comparative Example 1 were confirmed. According to the present invention, the metal-impregnated carbon sliding material according to the first aspect does not contain lead and has sliding characteristics equivalent to those of the lead-impregnated carbon sliding material. It is very suitable in terms of quality.

Claims (1)

【特許請求の範囲】 【請求項1】 学振法による黒鉛の格子定数測定法より
求めた格子定数Co=0.672nm〜0.685nm
のカーボン基材にZnが90〜98重量%、Alが2〜
10重量%の比率の金属を20〜65重量%含浸した金
属含浸カーボン摺動材。
Claims: 1. A lattice constant Co = 0.672 nm to 0.685 nm obtained by a method of measuring the lattice constant of graphite by the Gakushin method.
90 to 98% by weight of Zn and 2 to 2% of Al
A metal-impregnated carbon sliding material impregnated with 20 to 65% by weight of a metal at a ratio of 10% by weight.
JP2002143151A 2002-05-17 2002-05-17 Metal-impregnated carbon sliding material and manufacturing method thereof Expired - Fee Related JP4150954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143151A JP4150954B2 (en) 2002-05-17 2002-05-17 Metal-impregnated carbon sliding material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143151A JP4150954B2 (en) 2002-05-17 2002-05-17 Metal-impregnated carbon sliding material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003328057A true JP2003328057A (en) 2003-11-19
JP4150954B2 JP4150954B2 (en) 2008-09-17

Family

ID=29703246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143151A Expired - Fee Related JP4150954B2 (en) 2002-05-17 2002-05-17 Metal-impregnated carbon sliding material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4150954B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187288A (en) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd Metal-impregnated carbon sliding material
JP2007162111A (en) * 2005-12-16 2007-06-28 Hitachi Chem Co Ltd Sliding material made from metal-impregnated carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187288A (en) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd Metal-impregnated carbon sliding material
JP2007162111A (en) * 2005-12-16 2007-06-28 Hitachi Chem Co Ltd Sliding material made from metal-impregnated carbon

Also Published As

Publication number Publication date
JP4150954B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
US3956568A (en) Carbon-metal composite material
CN110832049B (en) Sintered friction material and method for producing sintered friction material
JP4214451B2 (en) Metal-impregnated carbon sliding material
JP4150954B2 (en) Metal-impregnated carbon sliding material and manufacturing method thereof
WO2020090725A1 (en) Sintered friction material and method for producing sintered friction material
CN114907656B (en) Antistatic polytetrafluoroethylene sealing material and preparation method thereof
JP2005187288A (en) Metal-impregnated carbon sliding material
JP2008069045A (en) Magnesia-carbon brick
CN112996878B (en) Sintered friction material and method for producing sintered friction material
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
JP2004076109A (en) Metal-impregnated carbon sliding material
JP2007162111A (en) Sliding material made from metal-impregnated carbon
CN111826568A (en) Preparation method of WC-6 Co-graphite self-lubricating hard alloy
CN111269021B (en) Copper-iron-carbon composite sliding plate and preparation method and application thereof
JP2003322153A (en) Metal-impregnated carbon bearing material
CN112028656A (en) Preparation method of fiber reinforced graphite composite material
JP2008249129A (en) Carbon sliding material
CN110042317B (en) High-wear-resistance Fe-Cu-based powder metallurgy composite material and preparation method thereof
CN116904824A (en) Antiwear WC-Co hard alloy and preparation method thereof
JP7216842B2 (en) Method for producing Cu-Ni-Al based sintered alloy
JP2517675B2 (en) Sintered copper alloy for high load sliding
JP2001254741A (en) Carbon bearing material
JP2019182675A (en) Sliding material and sliding member
JPH06145679A (en) Production of carbonaceous sliding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees