JP6641025B2 - 基板処理装置、半導体装置の製造方法および電極固定ユニット - Google Patents

基板処理装置、半導体装置の製造方法および電極固定ユニット Download PDF

Info

Publication number
JP6641025B2
JP6641025B2 JP2018540538A JP2018540538A JP6641025B2 JP 6641025 B2 JP6641025 B2 JP 6641025B2 JP 2018540538 A JP2018540538 A JP 2018540538A JP 2018540538 A JP2018540538 A JP 2018540538A JP 6641025 B2 JP6641025 B2 JP 6641025B2
Authority
JP
Japan
Prior art keywords
electrode
gas
fixing unit
reaction tube
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018540538A
Other languages
English (en)
Other versions
JPWO2018055700A1 (ja
Inventor
竹田剛
西野達弥
八幡橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Publication of JPWO2018055700A1 publication Critical patent/JPWO2018055700A1/ja
Application granted granted Critical
Publication of JP6641025B2 publication Critical patent/JP6641025B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、基板処理装置、半導体装置の製造方法および電極固定ユニットに関する。
半導体装置(デバイス)の製造工程の一工程として、基板処理装置の処理室内に基板を搬入し、処理室内に原料ガスと反応ガスとを供給して基板上に絶縁膜や半導体膜、導体膜等の各種膜を形成したり、各種膜を除去する基板処理が行われることがある。
微細パターンが形成される量産デバイスにおいては、不純物の拡散を抑制したり、有機材料など耐熱性の低い材料を使用できるようにするために低温化が求められる。
特開2007−324477号公報
このような問題を解決するため、プラズマを用いて基板処理を行うことが一般的に行われているが、経年変化や加熱装置からの熱を受けることが原因でプラズマ電極が変形してしまうと、プラズマにより生成されるイオンやラジカルなどの活性種の生成量や分布にばらつきが生じてしまい、均一に膜を処理することが困難となってしまう場合があった。
本発明の目的は、均一な基板処理を可能とする技術を提供することにある。
本発明の一態様によれば、
基板を処理する処理室を形成する反応管と、
前記反応管の外周に設置され前記処理室内にプラズマを形成する電極と、
前記電極を固定する電極固定ユニットと、
前記電極固定ユニットの外周に設けられ、前記反応管内を加熱する加熱装置を有し、
前記電極は、前記電極固定ユニットの表面から一定の距離を離すためのスペーサを有する技術が提供される。
本発明によれば均一な基板処理を可能とする技術を提供することが可能となる。
本発明の第1の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面で示す図である。 図1に示す基板処理装置におけるA−A断面図である。 (a)は、本発明における電極を石英カバーに設置した際の斜視図であり、(b)は、本発明におけるヒータ、石英カバー、電極、電極を固定する突起部310、反応管の位置関係を示すための図である。 (a)は、本発明における電極の部分拡大正面図であり、(b)は、電極を石英カバーに固定する点を説明する部分拡大側面図である。 本発明における電極形状の一例を示す水平方向断面図であり、(a)は、片側端部を略直角に曲げた例を示す図、(b)は、両側端部を略直角に曲げた例を示す図、(c)は、片側端部を鈍角に曲げた例を示す図、(d)は、両側端部を鈍角に曲げた例を示す図、(e)は、V字形状に形成した例を示す図、(f)は、中央部を所定の曲率半径Rで曲げた例を示す図、(g)は、電極を円弧状に形成した例を示す図である。 本発明における第1の実施形態のスペーサを示す図であり、(a)側面図であり、(b)は正面図である。 図1に示す基板処理装置におけるコントローラの概略構成図であり、コントローラの制御系の一例を示すブロック図である。 図1に示す基板処理装置を用いた基板処理プロセスの一例を示すフローチャートである。 本発明における第1の実施形態の変形例を示す図である。
<発明の実施形態>
以下、本発明の実施形態について図1から図5を参照しながら説明する。
(1)基板処理装置の構成
(加熱装置)
図1に示すように、処理炉202は加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(処理室)
ヒータ207の内側には、後述する電極固定ユニットとしての石英カバー301が配設され、更に石英カバー301の内側には、後述するプラズマ生成部の電極300が配設されている。更に、電極300の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)や炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器と称する場合もある。
(ガス供給部)
処理室201内には、ノズル249a,249bが、マニホールド209の側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bが、それぞれ接続されている。このように、処理容器には2本のノズル249a,249bと、2本のガス供給管232a,232bとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。なお、反応管203のみを処理容器とした場合、ノズル249a,249bは反応管203の側壁を貫通するように設けられていてもよい。
ガス供給管232a,232bには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、上流方向から順に、MFC241c,241dおよびバルブ243c,243dがそれぞれ設けられている。
ノズル249a,249bは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直にそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、それぞれ、反応管203の下部から上部にわたって複数設けられている。
このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部(周縁部)と、で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249a,249bを経由してガスを搬送している。そして、ノズル249a,249bにそれぞれ開口されたガス供給孔250a,250bから、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される膜の膜厚の均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
ガス供給管232aからは、所定元素を含む原料として、例えば、所定元素としてのシリコン(Si)を含むシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。
シラン原料ガスとは、気体状態のシラン原料、例えば、常温常圧下で液体状態であるシラン原料を気化することで得られるガスや、常温常圧下で気体状態であるシラン原料等のことである。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、それらの両方を意味する場合がある。
シラン原料ガスとしては、例えば、Siおよびアミノ基(アミン基)を含む原料ガス、すなわち、アミノシラン原料ガスを用いることができる。アミノシラン原料とは、アミノ基を有するシラン原料のことであり、また、メチル基やエチル基やブチル基等のアルキル基を有するシラン原料でもあり、少なくともSi、窒素(N)および炭素(C)を含む原料のことである。すなわち、ここでいうアミノシラン原料は、有機系の原料ともいえ、有機アミノシラン原料ともいえる。
アミノシラン原料ガスとしては、例えば、ビスターシャリーブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガスを用いることができる。BTBASは、1分子中に1つのSiを含み、Si−N結合、N−C結合を有し、Si−C結合を有さない原料ガスであるともいえる。BTBASガスは、Siソースとして作用する。
BTBASのように常温常圧下で液体状態である液体原料を用いる場合は、液体状態の原料を気化器やバブラ等の気化システムにより気化して、シラン原料ガス(BTBASガス等)として供給することとなる。
ガス供給管232bからは、原料とは化学構造が異なる反応体(リアクタント)として、例えば、酸素(O)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。
O含有ガスは、酸化剤(酸化ガス)、すなわち、Oソースとして作用する。O含有ガスとしては、例えば、酸素(O)ガスや水蒸気(HOガス)等を用いることができる。酸化剤としてOガスを用いる場合は、例えば、後述するプラズマ源を用いてこのガスをプラズマ励起し、プラズマ励起ガス(O ガス)として供給することとなる。
ガス供給管232c,232dからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。
主に、ガス供給管232a、MFC241a、バルブ243aにより、第1のガス供給系としての原料供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、第2のガス供給系としての反応体供給系(リアクタント供給系)が構成される。主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。原料供給系、反応体供給系および不活性ガス供給系を単にガス供給系(ガス供給部)とも称する。
(基板支持具)
図1に示すように基板支持具としてのボート217は、複数枚、例えば25〜200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。
但し、本実施形態はこのような形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。
(プラズマ生成部)
次にプラズマ生成部について、図1から図3を用いて説明する。
図2に示すように、プラズマは容量結合プラズマ(Capacitively Coupled Plasma、略称:CCP)を用い、反応ガス供給時に石英などで作製された真空隔壁である反応管203の内部で生成する。
図2および図3(a)に示すように、電極300は、ウエハ200の配列方向に長い矩形形状を有する薄板で構成されている。電極300は、図示しない整合器を介して高周波電源320が接続される第1の電極(Hot電極)300−1と、基準電位であるアースに接続され、接地されている第2の電極(Ground電極)300−2とが交互に配置されている。本発明では特に区別して説明する必要のない場合には、電極300として記載して説明する。
電極300は反応管203とヒータ207との間に、反応管203の外壁に沿うように略円弧状に配置され、例えば、中心角が30度以上240度以下となる円弧状に形成された後述する石英カバーの内壁面に固定されて配置される。電極300には、高周波電源320から図示しない整合器を介し、例えば周波数13.56MHzの高周波が入力されることによって反応管203内にプラズマ活性種302が生成される。このように生成されたプラズマによって、ウエハ200の周囲から基板処理のためのプラズマ活性種302をウエハ200の表面に供給することが可能となる。主に、電極300と、高周波電源320によってプラズマ生成部が構成される。図示しない整合器や後述する電極固定ユニット301を含んでプラズマ生成部と考えてもよい。
電極300は、アルミニウムや銅、ステンレスなどの金属で構成することもできるが、ニッケルなどの耐酸化材料で構成することにより、電極表面の電気伝導率の劣化を抑制しつつ、基板処理が可能となる。電極表面の電気伝導率の劣化を抑制することによって、プラズマ生成効率の劣化を抑制することが可能となる。
また、電極300には、図4(a)に示すように、後述する突起頭部311を通す円形切欠き部303と、突起軸部312をスライドさせるスライド切欠き部304からなる切欠き部305が形成されている。
電極300は、十分な強度を持ち、かつ、熱源によるウエハ加熱の効率を著しく妨げないように、形成される必要がある。例えば、電極板の厚さは0.1mm以上、1mm以下、幅は5mm以上、30mm以下となる範囲で構成されることが好ましい。また、電極300は、ヒータ207の加熱による変形抑制のための変形抑制部としての曲げ構造を有している。この曲げ構造の例を図5(a)〜(g)に示す。電極300は、石英反応管203とヒータ207の間に配置されるため、そのスペースの制約上、図5(a)〜(g)の電極300側部の曲げ幅hは1mm以上、5mm以下の範囲で設定されることが好ましい。この曲げ幅が1mmよりも小さくなると変形抑制としての効果を得ることが困難となってしまい、5mmよりも大きくなると、電極を配置するための空間を大きく構成する必要が生じてしまい、装置構造全体を大きくする要因となってしまう。
電極300の変形抑制構造として、例えば、図5(a),(b)に示すように、曲げ角度αを鋭角または直角となるように構成することで単純な構造で変形抑制効果を得ることができる。この場合の曲げ角度αは10°〜90°の範囲で設定されることが好ましい。また、電極300の表面には熱酸化による被膜が形成されており、基板処理時の加熱によって電極300に生じる熱応力により当該被膜が剥れてパーティクルが発生してしまう可能性が生じる。このため、図5(c)〜(g)のように曲げ角度αを鈍角とすることで、曲げ構造の曲げ部分での熱応力の集中が緩和され、パーティクルの発生を低減することができる。また、図5(f),(g)のように円弧状とすることで、熱応力の集中緩和効果をさらに大きく得ることが可能となり、パーティクルの低減をさらに期待できる。このとき、図5(c)〜(e)の曲げ角度αは直角または鈍角となるように、すなわち90°〜175°の範囲で設定されることが好ましい。また、図5(f),(g)の電極300中央部の曲率半径Rは1mm〜60mmの範囲で設定されることが好ましい。また、図5(b),(d)のように、2ケ所で曲げを設けることによって、電極板のねじれ方向に応力が掛かることで生じるねじれ変形に対しても強い構造となるため、ねじれ方向への応力が生じやすい高温帯域での使用が容易となる。
縦型基板処理装置において、反応室温度を500℃、反応室圧力を窒素ガス100Pa、高周波電源320の周波数を13.56MHzにて実施し、長さ1m、電極幅15mm、厚さ1mmからなる電極を採用し、チューブ形状の反応管の外壁に極性が交互になるよう、電極ピッチ(中心間距離)25mmで複数本を極性が交互になるように配置して、CCPモードのプラズマを生成した。
ここで、基板処理時の炉内圧力は、10Pa以上、300Pa以下の範囲で制御されることが好ましい。これは、炉内の圧力が10Paより低い場合、プラズマのデバイ長よりもガス分子の平均自由工程が長くなってしまい、炉壁を直接叩くプラズマが顕著化するため、パーティクルの発生を抑制することが困難となってしまう。また、炉内の圧力が300Paより高い場合、プラズマの生成効率が飽和してしまうため、反応ガスを供給してもプラズマの生成量は変化することがなく、反応ガスを無駄に消費することとなってしまうと同時に、ガス分子の平均自由行程が短くなることで、ウエハまでのプラズマ活性種の輸送効率が悪くなってしまう。
(電極固定ユニット)
次に電極300を固定する電極固定ユニットとしての石英カバー301について、図3から図4を用いて説明する。図3(a),(b)、図4(a),(b)で示すように、複数本設けられた電極300は、その切欠き部305を湾曲形状の石英カバー301の内壁面に設けられた突起部310に引掛け、スライドさせて固定し、この石英カバー301と一体となるようユニット化(フック式電極ユニット)して反応管203の外周に設置されている。なお、石英カバー301と電極300の材料として、それぞれ、石英とニッケル合金を採用している。
石英カバー301は、十分な強度を持ち、かつ、ヒータ207によるウエハ加熱の効率を著しく下げないよう、厚さは1mm以上、5mm以下の範囲となるように構成されることが好ましい。石英カバー301の厚みが1mm未満となってしまうと、石英カバー301の自重や温度変化などに対する所定の強度を得ることができなくなってしまい、5mmよりも大きく構成するとヒータ207から放射される熱エネルギーを吸収してしまうため、ウエハ200への熱処理を適切に行うことができなくなってしまう。
また、石英カバー301は反応管側である内壁面に、電極300を固定するための鋲形状の固定部としての突起部310を複数有している。この突起部310は、突起頭部311と突起軸部312から構成されている。突起頭部311の径は、電極300の切欠き部305の円形切欠き部303の径より小さく、突起軸部312の径は、スライド切欠き部304の幅よりもそれぞれ細くなっている。電極300の切欠き部305は鍵穴のような形状をし、このスライド切欠き部304は上記の突起軸部312をスライド時に誘導でき、かつ、この突起頭部311はこのスライド切欠き部304で抜けない構造となっている。つまり、電極固定ユニットは、電極300が係止される柱状部である突起軸部312と電極300が抜けてしまうことを抑制する先端部である突起頭部311を備えた固定部を有しているといえる。なお、前述した切欠き部305と突起頭部311の形状は、図3、4に示した形状に限定されないことは明らかである。
石英カバー301と電極300の距離を一定に離すために、両者の間にスペーサやバネ等の弾性体を石英カバー301または電極300に有してもよく、また、これらは石英カバー301または電極300と一体となった構造を有してもよい。本実施例においては、図6で示すようなスペーサ330が電極300と一体となった構造を有している。なお、このスペーサ330は、図3では、電極300の上部、下部に計2つ設けているが、更に電極300の中央部にも設けても良い。
基板温度500℃以下で高い基板処理能力を得るためには、石英カバー301の占有率を中心角30°以上240°以下の円弧形状とし、また、パーティクルの発生を避けるために排気口である排気管231やノズル249a、249bなどを避けた配置が望ましい。つまり、電極固定ユニットである石英カバー301は、反応管203内に設けられたガス供給部であるノズル249a、249bとガス排気部である排気管231が設置された位置以外の反応管203の外周に配置される。仮に30°よりも小さい中心角となるように構成すると、配置する電極300の本数が少なくなってしまい、プラズマの生成量が減少してしまう。このため、処理室内での基板処理にも影響が生じてしまうこととなる。また、240°よりも大きい中心角となるように構成すると、反応管203の側面を石英カバー301が覆う面積が大きくなりすぎてしまい、ヒータ207からの熱エネルギーを遮断してしまう。したがって、ヒータ207からの熱エネルギーがウエハ200に到達し難くなり、処理室内での基板処理に影響が生じてしまうこととなる。本実施例においては中心角110°の石英カバー301を2台で左右対称に設置している。主に電極300を固定する石英カバー301にて電極固定ユニットが構成される。電極300や後述するスペーサを含んで電極固定ユニットとして構成してもよく、電極300を含む場合には、プラズマ生成部を含んで電極固定ユニットとして構成してもよい。
(スペーサ)
次に電極固定ユニットである石英カバー301の表面から電極300を一定の距離を離すためのスペーサ330について図6を用いて説明する。スペーサ330は例えば、板バネ状の弾性体で構成されており、電極300または、石英カバー301のどちらか一方に固定されている。スペーサ330は、例えば、SUSなどの金属材料、または弾性を有する耐熱材料で形成されており、電極と当接される電極当接部330−1と石英カバー301と当接される石英カバー当接部330−2によって構成されている。なお、本実施形態では、スペーサを板ばね形状として説明しているが、これに限らず、電極から一定の距離を維持することができる形状であればよい。例えば、アルミナやセラミック等の耐熱部材で円筒形状に構成され、スペーサの内側を突起軸部が貫通または遊嵌するように設けられてもよい。この場合、スペーサが突起軸部に固定されていてもよい。
(排気部)
反応管203には、図1に示すように処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249a,249bと同様にマニホールド209に設けてもよい。
(周辺装置)
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。
シールキャップ219の処理室201と反対側には、ボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。
ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
反応管203の内部には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル249a,249bと同様に、反応管203の内壁に沿って設けられている。
(制御装置)
次に制御装置について図7を用いて説明する。図7に示すように、制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各種処理(成膜処理)における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のMFC241a〜241d、バルブ243a〜243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115、シャッタ開閉機構115s、高周波電源320等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、回転機構267の制御、MFC241a〜241dによる各種ガスの流量調整動作、バルブ243a〜243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の正逆回転、回転角度および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作、高周波電源320の電力供給等を制御するように構成されている。
コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
上述の基板処理装置を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成するプロセス例について、図8を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
本明細書では、図8に示す成膜処理のシーケンスを、便宜上、以下のように示すこともある。以下の変形例や他の実施形態の説明においても、同様の表記を用いることとする。
(BTBAS→O )×n ⇒ SiO
本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(搬入ステップ:S1)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力・温度調整ステップ:S2)
処理室201の内部、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくとも後述する成膜ステップが終了するまでの間は常時作動させた状態を維持する。
また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくとも後述する成膜ステップが終了するまでの間は継続して行われる。但し、成膜ステップを室温以下の温度条件下で行う場合は、ヒータ207による処理室201内の加熱は行わなくてもよい。なお、このような温度下での処理だけを行う場合には、ヒータ207は不要となり、ヒータ207を基板処理装置に設置しなくてもよい。この場合、基板処理装置の構成を簡素化することができる。
続いて、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも後述する成膜ステップが終了するまでの間は継続して行われる。
(成膜ステップ:S3,S4,S5,S6)
その後、ステップS3,S4,S5,S6を順次実行することで成膜ステップを行う。
(原料ガス供給ステップ:S3,S4)
ステップS3では、処理室201内のウエハ200に対してBTBASガスを供給する。
バルブ243aを開き、ガス供給管232a内へBTBASガスを流す。BTBASガスは、MFC241aにより流量調整され、ノズル249aを介してガス供給孔250aから処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対してBTBASガスが供給されることとなる。このとき同時にバルブ243cを開き、ガス供給管232c内へNガスを流す。Nガスは、MFC241cにより流量調整され、BTBASガスと一緒に処理室201内へ供給され、排気管231から排気される。
また、ノズル249b内へのBTBASガスの侵入を防止するため、バルブ243dを開き、ガス供給管232d内へNガスを流す。Nガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。
MFC241aで制御するBTBASガスの供給流量は、例えば1sccm以上、2000sccm以下、好ましくは10sccm以上、1000sccm以下の範囲内の流量とする。MFC241c,241dで制御するNガスの供給流量は、それぞれ例えば100sccm以上、10000sccm以下の範囲内の流量とする。処理室201内の圧力は、上述した通り、例えば1以上、2666Pa以下、好ましくは67Pa以上、1333Pa以下の範囲内の圧力とする。BTBASガスをウエハ200に対して供給する時間は、例えば1秒以上、100秒以下、好ましくは1秒以上、50秒以下の範囲内の時間とする。
ヒータ207の温度は、ウエハ200の温度が、例えば0℃以上150℃以下、好ましくは室温(25℃)以上100℃以下、より好ましくは40℃以上90℃以下の範囲内の温度となるような温度に設定する。BTBASガスは、ウエハ200等へ吸着し易く反応性の高いガスである。このため、例えば室温程度の低温下であっても、ウエハ200上にBTBASガスを化学吸着させることができ、実用的な成膜レートを得ることができる。本実施形態のように、ウエハ200の温度を150℃以下、さらには100℃以下、さらには90℃以下とすることで、ウエハ200に加わる熱量を低減させることができ、ウエハ200が受ける熱履歴の制御を良好に行うことができる。また、0℃以上の温度であれば、ウエハ200上にBTBASを十分に吸着させることができ、十分な成膜レートが得られることとなる。よって、ウエハ200の温度は0℃以上150℃以下、好ましくは室温以上100℃以下、より好ましくは40℃以上90℃以下の範囲内の温度とするのがよい。
上述の条件下でウエハ200に対してBTBASガスを供給することにより、ウエハ200(表面の下地膜)上に、例えば1原子層(1分子層)未満から数原子層(数分子層)程度の厚さのSi含有層が形成される。Si含有層はSi層であってもよいし、BTBASの吸着層であってもよいし、それらの両方を含んでいてもよい。
Si層とは、Siにより構成される連続的な層の他、不連続な層や、これらが重なってできるSi薄膜をも含む総称である。Si層を構成するSiは、アミノ基との結合が完全に切れていないものや、Hとの結合が完全に切れていないものも含む。
BTBASの吸着層は、BTBAS分子で構成される連続的な吸着層の他、不連続な吸着層をも含む。BTBASの吸着層を構成するBTBAS分子は、Siとアミノ基との結合が一部切れたものや、SiとHとの結合が一部切れたものや、NとCとの結合が一部切れたもの等も含む。すなわち、BTBASの吸着層は、BTBASの物理吸着層であってもよいし、BTBASの化学吸着層であってもよいし、それらの両方を含んでいてもよい。
ここで、1原子層(1分子層)未満の厚さの層とは不連続に形成される原子層(分子層)のことを意味しており、1原子層(1分子層)の厚さの層とは連続的に形成される原子層(分子層)のことを意味している。Si含有層は、Si層とBTBASの吸着層との両方を含み得る。但し、上述の通り、Si含有層については「1原子層」、「数原子層」等の表現を用いることとし、「原子層」を「分子層」と同義で用いる。
BTBASが自己分解(熱分解)する条件下、すなわち、BTBASの熱分解反応が生じる条件下では、ウエハ200上にSiが堆積することでSi層が形成される。BTBASが自己分解(熱分解)しない条件下、すなわち、BTBASの熱分解反応が生じない条件下では、ウエハ200上にBTBASが吸着することでBTBASの吸着層が形成される。但し、本実施形態では、ウエハ200の温度を例えば150℃以下の低温としているので、BTBASの熱分解は生じにくい。結果として、ウエハ200上へは、Si層ではなく、BTBASの吸着層の方が形成されやすくなる。
ウエハ200上に形成されるSi含有層の厚さが数原子層を超えると、後述する改質処理での改質の作用がSi含有層の全体に届かなくなる。また、ウエハ200上に形成可能なSi含有層の厚さの最小値は1原子層未満である。よって、Si含有層の厚さは1原子層未満から数原子層程度とするのが好ましい。Si含有層の厚さを1原子層以下、すなわち、1原子層または1原子層未満とすることで、後述する改質処理での改質の作用を相対的に高めることができ、改質処理の改質反応に要する時間を短縮することができる。また、成膜処理のSi含有層の形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、Si含有層の厚さを1原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。
Si含有層が形成された後、バルブ243aを閉じ、処理室201内へのBTBASガスの供給を停止する。このとき、APCバルブ244を開いたままとし、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはSi含有層の形成に寄与した後のBTBASガスや反応副生成物等を処理室201内から排除する(S4)。また、バルブ243c,243dは開いたままとして、処理室201内へのNガスの供給を維持する。Nガスはパージガスとして作用する。なお、このステップS4を省略し、原料ガス供給ステップとしてもよい。
原料ガスとしては、BTBASガスのほか、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスジメチルアミノシラン(Si[N(CH、略称:BDMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:BDEAS)ガス等を好適に用いることができる。このほか、原料ガスとしては、ジメチルアミノシラン(DMAS)ガス、ジエチルアミノシラン(DEAS)ガス、ジプロピルアミノシラン(DPAS)ガス、ジイソプロピルアミノシラン(DIPAS)ガス、ブチルアミノシラン(BAS)ガス、ヘキサメチルジシラザン(HMDS)ガス等の各種アミノシラン原料ガスや、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシランすなわちシリコンテトラクロライド(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機系ハロシラン原料ガスや、モノシラン(SiH、略称:MS)ガス、ジシラン(Si、略称:DS)ガス、トリシラン(Si、略称:TS)ガス等のハロゲン基非含有の無機系シラン原料ガスを好適に用いることができる。
不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
(反応ガス供給ステップ:S5,S6)
成膜処理が終了した後、処理室201内のウエハ200に対して反応ガスとしてのプラズマ励起させたOガスを供給する(S5)。
このステップでは、バルブ243b〜243dの開閉制御を、ステップS3におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。Oガスは、MFC241bにより流量調整され、ノズル249bを介してガス供給孔250bから処理室201内へ供給される。このとき、高周波電源320から電極300へ高周波電力(本実施の形態では周波数13.56MHz)を供給(印加)する。処理室201内へ供給されたOガスは処理室201の内部でプラズマ状態に励起され、活性種(O )としてガス供給孔250cを介してウエハ200に対して供給され、排気管231から排気される。なお、プラズマ状態に励起されたOガスを、酸素プラズマとも称する。
MFC241bで制御するOガスの供給流量は、例えば100sccm以上、10000sccm以下の範囲内の流量とする。高周波電源320から電極300へ印加する高周波電力は、例えば50W以上、1000W以下の範囲内の電力とする。処理室201内の圧力は、例えば10Pa以上、300Pa以下の範囲内の圧力とする。プラズマを用いることで、処理室201内の圧力をこのような比較的低い圧力帯としても、Oガスを活性化させることが可能となる。Oガスをプラズマ励起することにより得られた活性種をウエハ200に対して供給する時間は、例えば1秒以上、100秒以下、好ましくは1秒以上、50秒以下の範囲内の時間とする。その他の処理条件は、上述のステップS3と同様な処理条件とする。
酸素プラズマ中で生成されたイオンと電気的に中性な活性種はウエハ200の表面に形成されたSi含有層に対して後述する酸化処理を行う。
上述の条件下でウエハ200に対してOガスを供給することにより、ウエハ200上に形成されたSi含有層がプラズマ酸化される。この際、プラズマ励起されたOガスのエネルギーにより、Si含有層が有するSi−N結合、Si−H結合が切断される。Siとの結合を切り離されたN、H、および、Nに結合するCは、Si含有層から脱離することとなる。そして、N等が脱離することで未結合手(ダングリングボンド)を有することとなったSi含有層中のSiが、Oガスに含まれるOと結合し、Si−O結合が形成されることとなる。この反応が進行することにより、Si含有層は、SiおよびOを含む層、すなわち、シリコン酸化層(SiO層)へと変化させられる(改質される)。
なお、Si含有層をSiO層へと改質させるには、Oガスをプラズマ励起させて供給する必要がある。Oガスをノンプラズマの雰囲気下で供給しても、上述の温度帯では、Si含有層を酸化させるのに必要なエネルギーが不足しており、Si含有層からNやCを充分に脱離させたり、Si含有層を充分に酸化させてSi−O結合を増加させたりすることは、困難なためである。
Si含有層をSiO層へ変化させた後、バルブ243bを閉じ、Oガスの供給を停止する。また、電極300への高周波電力の供給を停止する。そして、ステップS4と同様の処理手順、処理条件により、処理室201内に残留するOガスや反応副生成物を処理室201内から排除する(S6)。なお、このステップS6を省略して反応ガス供給ステップとしてもよい。
酸化剤、すなわち、プラズマ励起させるO含有ガスとしては、Oガスの他、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、過酸化水素(H)ガス、水蒸気(HOガス)、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いてもよい。
不活性ガスとしては、Nガスの他、例えば、ステップS4で例示した各種希ガスを用いることができる。
(所定回数実施:S7)
上述したS3,S4,S5,S6をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回)、すなわち、1回以上行うことにより、ウエハ200上に、所定組成および所定膜厚のSiO膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiO層の厚さを所望の膜厚よりも小さくし、SiO層を積層することで形成されるSiO膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。
(大気圧復帰ステップ:S8)
上述の成膜処理が完了したら、ガス供給管232c,232dのそれぞれから不活性ガスとしてのNガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するOガス等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰:S8)。
(搬出ステップ:S9)
その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。
縦型基板処理装置において、反応室温度を500℃、反応室圧力を窒素ガス100Pa、高周波電源320の周波数を13.56MHzにて実施し、長さ1m、電極幅15mm、厚さ1mmからなる電極を採用し、チューブ形状の反応管の外壁に極性が交互になるよう、電極ピッチ(中心間距離)25mmで複数本を極性が交互になるように配置して、CCPモードのプラズマを生成した。
ここで、基板処理時の炉内圧力は、10Pa以上、300Pa以下の範囲で制御されることが好ましい。これは、炉内の圧力が10Paより低い場合、プラズマのデバイ長よりもガス分子の平均自由工程が長くなってしまい、炉壁を直接叩くプラズマが顕著化するため、パーティクルの発生を抑制することが困難となってしまうためである。また、炉内の圧力が300Paより高い場合、プラズマの生成効率が飽和してしまうため、反応ガスを供給してもプラズマの生成量は変化することがなく、反応ガスを無駄に消費することとなってしまうと同時に、ガス分子の平均自由行程が短くなることで、ウエハまでのプラズマ活性種の輸送効率が悪くなってしまうためである。
(3)本実施形態による効果
本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)プラズマを生成するための電極を固定治具に固定する構造とすることによって、プラズマ電極が変形することを抑制可能な構造とすることが可能となる。
(b)電極が変形することを抑制可能となるため、処理室内に供給する活性種を安定的に供給することが可能となり、ウエハ処理を均一に行うことが可能となる。
(c)電極固定ユニットの中心角を30°以上240°以下の円弧形状とし、電極を配置することで、ウエハ処理に影響しないように電極固定ユニットの外周にある加熱装置からの熱エネルギーの遮断を最低限に抑えることが可能となる。
(4)変形例
本実施形態における基板処理工程は、上述の態様に限定されず、以下に示す変形例のように変更することができる。
(変形例1)
前記の実施形態では、電極300を石英カバー301の突起部310に固定する方法を採用しているが、図9に示すように、石英カバー301を外側石英カバー301−1と内側石英カバー301−2で構成し、電極300を反応管203側と加熱装置であるヒータ207側で挟み込むように構成することによって保持する方法を採用してもよい。この場合、電極300の位置ズレの防止を図るために、外側石英カバー301−1と内側石英カバー301−2の電極保持側には電極300と同形の保持溝が設けられている。なお、この溝は、片方の絶縁カバーに設けられても、両方の絶縁カバーに設けられてもよい。
以上、本発明の実施形態について具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
また、例えば、上述の実施形態では、原料を供給した後に反応体を供給する例について説明した。本発明はこのような態様に限定されず、原料、反応体の供給順序は逆でもよい。すなわち、反応体を供給した後に原料を供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。
上述の実施形態等では、ウエハ200上にSiO膜を形成する例について説明した。本発明はこのような態様に限定されず、ウエハ200上に、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)等のSi系酸化膜を形成する場合にも、好適に適用可能である。
例えば、上述したガスの他、もしくは、これらのガスに加え、アンモニア(NH)ガス等の窒素(N)含有ガス、プロピレン(C)ガス等の炭素(C)含有ガス、三塩化硼素(BCl)ガス等の硼素(B)含有ガス等を用い、例えば、SiN膜、SiON膜、SiOCN膜、SiOC膜、SiCN膜、SiBN膜、SiBCN膜、BCN膜等を形成することができる。なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。これらの場合、反応ガスとしての酸化剤には、上述した反応ガスを用いることができる。
また、本発明は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む金属系酸化膜や金属系窒化膜を形成する場合においても、好適に適用可能である。すなわち、本発明は、ウエハ200上に、TiO膜、TiOC膜、TiOCN膜、TiON膜、TiN膜、TiBN膜、TiBCN膜、ZrO膜、ZrOC膜、ZrOCN膜、ZrON膜、ZrN膜、ZrBN膜、ZrBCN膜、HfO膜、HfOC膜、HfOCN膜、HfON膜、HfN膜、HfBN膜、HfBCN膜、TaO膜、TaOC膜、TaOCN膜、TaON膜、TaN膜、TaBN膜、TaBCN膜、NbO膜、NbOC膜、NbOCN膜、NbON膜、NbN膜、NbBN膜、NbBCN膜、AlO膜、AlOC膜、AlOCN膜、AlON膜、AlN膜、AlBN膜、AlBCN膜、MoO膜、MoOC膜、MoOCN膜、MoON膜、MoN膜、MoBN膜、MoBCN膜、WO膜、WOC膜、WOCN膜、WON膜、WN膜、WBN膜、WBCN膜等を形成する場合にも、好適に適用することが可能となる。
これらの場合、例えば、原料ガスとして、テトラキス(ジメチルアミノ)チタン(Ti[N(CH、略称:TDMAT)ガス、テトラキス(エチルメチルアミノ)ハフニウム(Hf[N(C)(CH)]、略称:TEMAH)ガス、テトラキス(エチルメチルアミノ)ジルコニウム(Zr[N(C)(CH)]、略称:TEMAZ)ガス、トリメチルアルミニウム(Al(CH、略称:TMA)ガス、チタニウムテトラクロライド(TiCl)ガス、ハフニウムテトラクロライド(HfCl)ガス等を用いることができる。
すなわち、本発明は、半金属元素を含む半金属系膜や金属元素を含む金属系膜を形成する場合に、好適に適用することができる。これらの成膜処理の処理手順、処理条件は、上述の実施形態や変形例に示す成膜処理と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の実施形態と同様の効果が得られる。
成膜処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
以上述べたように、本発明によれば均一な基板処理を可能とする技術を提供することが可能となる。
200…ウエハ、201…処理室、203…反応管、207…ヒータ(加熱装置)、217…ボート、232a、232b、232c、232d…ガス供給管、249a,249b…ノズル、250a、250b、250c…ガス供給孔、300…電極、301…石英カバー、303…円形切欠き部、304…スライド切欠き部、305…切欠き部、311…突起頭部、312…突起軸部、320…高周波電源、330…スペーサ

Claims (11)

  1. 基板を処理する処理室を形成する反応管と、
    前記反応管の外周に設置され前記処理室内にプラズマを形成する電極と、
    前記電極を固定する電極固定ユニットと、
    前記電極固定ユニットの外周に設けられ、前記反応管内を加熱する加熱装置を有し、
    前記電極は、前記電極固定ユニットの表面から一定の距離を離すためのスペーサを有する基板処理装置。
  2. 前記電極固定ユニットは、前記電極が係止される突起軸部と前記電極が抜けることを抑制する突起頭部を備えた固定部を有し、
    前記スペーサは弾性体で構成され、前記電極が前記突起頭部方向への押付け力を生成する請求項1に記載の基板処理装置。
  3. 前記電極固定ユニットは、中心角が30°以上240°以下となる円弧形状である請求項1または2に記載の基板処理装置。
  4. 前記電極固定ユニットは石英で形成される石英カバーである請求項1〜3のいずれか1つに記載の基板処理装置。
  5. 前記電極固定ユニットは、前記反応管内に設けられたガス供給部とガス排気部が設置された位置以外の前記反応管外周に配置される請求項1に記載の基板処理装置。
  6. 前記電極は、前記反応管側と前記加熱装置側を前記電極固定ユニットで挟まれて固定される請求項1に記載の基板処理装置。
  7. 基板を処理する処理室を形成する反応管と、前記反応管の外周に設置され前記処理室内にプラズマを形成する電極を固定する電極固定ユニットと、前記電極固定ユニットの外周に設けられ、前記反応管内を加熱する加熱装置を有し、前記電極固定ユニットに固定された電極は、前記電極固定ユニットの表面から一定の距離を離すためのスペーサを有する基板処理装置の前記処理室内に前記基板を搬入する工程と、
    前記処理室内にプラズマを生成して前記基板を処理する工程と、
    前記基板を前記処理室から搬出する工程と、
    を有する半導体装置の製造方法。
  8. 処理室内にプラズマを生成する電極と、
    前記電極を固定する固定部と、
    前記電極と前記固定部とを一定の距離に離すためのスペーサを有する電極固定ユニットであって、
    前記固定部は、前記電極を係止する突起軸部と、前記電極が抜けることを抑制する突起頭部と、を備え、
    前記電極は、前記突起軸部に係止される切欠き部と、
    を有する電極固定ユニット。
  9. 前記固定部を、前記処理室を形成する反応管の外壁に沿うように中心角が30°以上240°以下となる円弧状に配置する請求項8に記載の電極固定ユニット。
  10. 前記固定部は、前記処理室を形成する反応管内に設けられたガス供給部とガス排気部が設置された位置以外の前記反応管外周に配置される請求項8に記載の電極固定ユニット。
  11. 基板を処理する処理室を形成する反応管と、前記反応管の外周に設置され前記処理室内にプラズマを形成する電極を固定する電極固定ユニットと、前記電極固定ユニットの外周に設けられ、前記反応管内を加熱する加熱装置を有し、前記電極固定ユニットに固定された電極は、前記電極固定ユニットの表面から一定の距離を離すためのスペーサを有する基板処理装置の前記処理室内に前記基板を搬入する手順と、
    前記処理室内にプラズマを生成して前記基板を処理する手順と、
    前記基板を前記処理室から搬出する手順と、
    をコンピュータを用いて前記基板処理装置に実行させるプログラム。
JP2018540538A 2016-09-21 2016-09-21 基板処理装置、半導体装置の製造方法および電極固定ユニット Active JP6641025B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077857 WO2018055700A1 (ja) 2016-09-21 2016-09-21 基板処理装置、半導体装置の製造方法および電極固定ユニット

Publications (2)

Publication Number Publication Date
JPWO2018055700A1 JPWO2018055700A1 (ja) 2019-01-31
JP6641025B2 true JP6641025B2 (ja) 2020-02-05

Family

ID=61689891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018540538A Active JP6641025B2 (ja) 2016-09-21 2016-09-21 基板処理装置、半導体装置の製造方法および電極固定ユニット

Country Status (4)

Country Link
US (1) US10796934B2 (ja)
JP (1) JP6641025B2 (ja)
CN (1) CN109314053B (ja)
WO (1) WO2018055700A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983558B (zh) * 2016-12-14 2022-12-30 株式会社爱发科 成膜装置及成膜方法
JP6916766B2 (ja) * 2018-08-27 2021-08-11 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法
JP6966402B2 (ja) * 2018-09-11 2021-11-17 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法および基板処理装置の電極
JP7149884B2 (ja) * 2019-03-20 2022-10-07 東京エレクトロン株式会社 熱処理装置及び成膜方法
CN110629205B (zh) * 2019-10-29 2024-02-13 苏州创瑞机电科技有限公司 气相沉积炉、其使用方法及气相沉积系统
JP7431210B2 (ja) 2021-12-28 2024-02-14 株式会社Kokusai Electric 基板処理装置、プラズマ生成装置、半導体装置の製造方法、プラズマ生成方法及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754801B2 (ja) * 1986-02-25 1995-06-07 株式会社フレンドテツク研究所 半導体装置製造装置およびその反応管内部の洗浄方法
JPH01103828A (ja) * 1987-10-16 1989-04-20 Fuji Electric Corp Res & Dev Ltd プラズマcvd装置
JPH02159027A (ja) * 1988-12-13 1990-06-19 Tel Sagami Ltd プラズマ処理装置
JP2573131Y2 (ja) * 1992-03-31 1998-05-28 株式会社島津製作所 真空成膜装置
JP2001026877A (ja) * 1999-07-15 2001-01-30 Mitsubishi Heavy Ind Ltd Pcvd用基板表面ヒータ装置
US20030164143A1 (en) * 2002-01-10 2003-09-04 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus
WO2004079813A1 (ja) * 2003-03-04 2004-09-16 Hitachi Kokusai Electric Inc. 基板処理装置およびデバイスの製造方法
US20070240644A1 (en) * 2006-03-24 2007-10-18 Hiroyuki Matsuura Vertical plasma processing apparatus for semiconductor process
JP4794360B2 (ja) 2006-06-02 2011-10-19 株式会社日立国際電気 基板処理装置
JP2009209447A (ja) * 2008-02-04 2009-09-17 Hitachi Kokusai Electric Inc 基板処理装置
KR101568944B1 (ko) * 2011-09-09 2015-11-12 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 플라즈마 발생 장치 및 cvd 장치
US8736049B1 (en) * 2013-03-13 2014-05-27 Palo Alto Research Center Incorporated Micro-plasma generation using micro-springs

Also Published As

Publication number Publication date
US20190206705A1 (en) 2019-07-04
WO2018055700A1 (ja) 2018-03-29
JPWO2018055700A1 (ja) 2019-01-31
US10796934B2 (en) 2020-10-06
CN109314053A (zh) 2019-02-05
CN109314053B (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7025577B2 (ja) プラズマ生成装置、基板処理装置、反応管、プラズマ生成方法、半導体装置の製造方法およびプログラム
JP6641025B2 (ja) 基板処理装置、半導体装置の製造方法および電極固定ユニット
KR102242146B1 (ko) 기판 처리 장치, 기판 처리 장치의 전극 및 반도체 장치의 제조 방법
KR101998463B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 기록 매체 및 프로그램
KR101997959B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
WO2020053960A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6453727B2 (ja) 基板処理装置およびそれを用いた半導体装置の製造方法
JP7457818B2 (ja) 基板処理装置、半導体装置の製造方法、プログラム、補助プレートおよび基板保持具
JP7342138B2 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法、プラズマ生成方法およびプログラム
JP7431210B2 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法、プラズマ生成方法及びプログラム
WO2022054855A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR20230160257A (ko) 전극, 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR20230138399A (ko) 기판 처리 장치, 전극 및 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6641025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250