JP6639449B2 - 黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。 - Google Patents

黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。 Download PDF

Info

Publication number
JP6639449B2
JP6639449B2 JP2017157980A JP2017157980A JP6639449B2 JP 6639449 B2 JP6639449 B2 JP 6639449B2 JP 2017157980 A JP2017157980 A JP 2017157980A JP 2017157980 A JP2017157980 A JP 2017157980A JP 6639449 B2 JP6639449 B2 JP 6639449B2
Authority
JP
Japan
Prior art keywords
bamboo
antibacterial agent
cooling
steam
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017157980A
Other languages
English (en)
Other versions
JP2017206557A5 (ja
JP2017206557A (ja
Inventor
治男 西田
治男 西田
恵作 山城
恵作 山城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2017157980A priority Critical patent/JP6639449B2/ja
Publication of JP2017206557A publication Critical patent/JP2017206557A/ja
Publication of JP2017206557A5 publication Critical patent/JP2017206557A5/ja
Application granted granted Critical
Publication of JP6639449B2 publication Critical patent/JP6639449B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、竹由来の抗菌剤の製造方法に関する。
竹をはじめとする植物の抽出液に抗菌性があることはよく知られている。
例えば、植物性炭素繊維に木酢液や竹酢液を含侵させ乾燥した抗真菌性素材が、抗真菌活性を奏することが開示されている(特許文献1)。
しかし、特許文献1では、抗真菌性素材中に多くの成分が含有されていることを明示しつつ、抗菌活性の有効成分や対象菌種の特定は行われていない。
これに対して、例えば、植物タール成分のグアイヤコールを主成分とする芳香族成分が殺菌剤、防虫剤、および消臭剤として作用することが開示されている(特許文献2)。
しかし、タール成分は、これに含まれるベンゾピレン類などに起因する毒性や発がん性のリスクも伴っている。EUでは、食品中のベンゾピレン濃度基準は1〜5ppbであり、WHOの水質ガイドラインの基準は0.7ppbとされている。
これに対して、例えば、タール分とアルコール分を含んだ竹酢液を濾過してタール分を除去し、さらに、このタール分の除去された竹酢液を蒸留してアルコール分も除去して得られる竹酢液を有用成分として利用する技術が開示されている(特許文献3参照)。
しかし、この技術は、乾留液の原液をさらに処理する付加的な処理プロセスを必要とする。
これに対して、例えば、竹の葉や根を高温・高圧の水蒸気で蒸留して竹酢液を抽出する方法が開示されており、得られる竹酢液はタール分やベンゾピレンの含有量を少なくできる特徴があるとされている(特許文献4)。
しかし、この方法では、高密度な竹繊維の内部に含まれる竹酢液をスムーズに外部に排出できず、能率よく竹酢液を分離できない欠点がある。
これに対して、例えば、竹を爆砕することで竹酢液を効率的に分離する装置が開示されており、得られる竹酢液は殺虫剤や抗菌剤等に使用できるとされている(特許文献5参照)。
しかし、特許文献4、5には、いずれも、竹酢液中に残存するタール分やベンゾピレンの含有量は開示されていない。また、特許文献4、5の技術は、いずれも圧力容器を必要とする。
また、例えば、粉末状にしたモウソウチク竹茹部分を120〜180℃で水蒸気処理し、これを冷却した後、エタノール等を含む抽出溶剤で抽出することで、得られるアスコルビン酸ラジカルを含有する抗菌組成物が開示されており、メチシリン耐性黄色ブドウ球菌(MRSA)に対する抗菌効果を有するとされている(特許文献6参照)。
しかし、この抗菌組成物を得る方法は、化学処理を必要とするため、大量の化学物質を使用しなければならず、抽出後の溶剤分離・処理などの付加的なプロセスを必要とする。
特開2008−189636号公報 特開2001−335408号公報 特開平5−095769号公報 特開2005−015722号公報 特開2006−299186号公報 特開2010−116377号公報
解決しようとする問題点は、従来の竹由来の抗菌剤は、毒性や発がん性の恐れがあるベンゾピレンを相当量含むものや、あるいはベンゾピレンを除去するために付加的なプロセスや圧力容器を必要とするものであり、また、食中毒原因菌に対する選択性を有するものが得られていない点である。
本発明に係る黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法は、密閉可能な容器に配置した竹を180〜250℃の温度範囲の常圧過熱水蒸気0.2〜1.0kg/竹1kgの流量で処理し、竹酢成分を含みかつタール分を含まない水蒸気を生成し、少なくとも前記水蒸気と接触する面を、該水蒸気を冷却凝縮させた液中に金属イオンが混入しないように非金属で形成した流路に、前記水蒸気を流通させながら水冷により冷却凝縮して、ギ酸を40mg/L以上、酢酸を1000mg/L以上、コハク酸およびリンゴ酸のいずれか一方または双方を500mg/L以上、フルフラール化合物を100mg/L以上含有し、ベンゾピレン類の含有量が0.7ppb以下の竹酢液を生成する。
また、本発明によって製造された抗菌剤は、ギ酸を40mg/L以上、酢酸を1000mg/L以上、コハク酸およびリンゴ酸のいずれか一方または双方を500mg/L以上、フルフラール化合物を100mg/L以上を含有し、ベンゾピレン類の含有量が0.7ppb以下である。
本発明によって製造された黄色ブドウ球菌およびセレウス菌用選択性抗菌剤は、竹を180〜250℃の常圧過熱水蒸気で処理して発生する加水分解生成物の蒸気を冷却・凝縮して得られるものであり、黄色ブドウ球菌およびセレウス菌に対して食中毒原因菌選択性を有する。ここで、食中毒原因菌選択性とは、無数の細菌種のなかで食中毒原因細菌種(黄色ブドウ球菌およびセレウス菌)に対して好適に作用するという意とともに、食中毒原因細菌種には作用するが真菌類等には作用しないためにヒトに対する過剰な毒性を有しないという意の双方を含む。また、この抗菌剤は、毒性や発がん性を有するベンゾピレン類の含有率が低いため、安全に使用できる。
図1は食中毒原因菌選択性抗菌剤製造実施例1で製造した選択性抗菌剤を含浸したろ紙を、普通寒天培地上に置き、その周囲に形成されたセレウス菌(Bacillus cereus)の増殖阻止円である。 図2は、食中毒原因菌選択性抗菌剤製造実施例1で製造した選択性抗菌剤を含浸したろ紙を、普通寒天培地上に置き、その周囲に形成された黄色ブドウ球菌(Staphylococcus aureus)の増殖阻止円である。
本発明の実施の形態(以下、本実施の形態例という。)について、以下に説明する。
本実施の形態例に係る食中毒原因菌選択性抗菌剤(以下、これを単に選択性抗菌剤ということがある。)は、竹を常圧過熱水蒸気で処理して発生する加水分解生成物の蒸気を冷却・凝縮して得られる。冷却・凝縮される流体は、加水分解生成物の蒸気とともに水蒸気を含む。
竹は、広義には、イネ目イネ科タケ亜科のうち、木本のように茎が木質化する種の総称である。日本に生育する竹は600種あるといわれており、そのうちの代表的なものとして、マダケ、モウソウチク(孟宗竹)、ハチク等が挙げられる。本発明の実施の携帯においては、一般的な竹のみならず、アズマザサ、ヤダケ、アズマネザサ、スズタケ、クマザサやチシマザサなどのイネ科タケ亜科に属するササ類を含む。
本実施の形態例において、用いる竹の種類を限定するものではない。また、竹とは、幹、枝、葉、および根からなる総体的なものを意味する。
竹は、その主要な構成成分として、セルロース、ヘミセルロースおよびリグニンからなる。ヘミセルロースはセルロースとリグニン、あるいはセルロース同士を結合させる接着剤の役割を担っている。このヘミセルロースは、約300℃以下の低温で分解し、酢酸やコハク酸、リンゴ酸、ギ酸などを生成する。とりわけ、リンゴ酸は220℃以下の温度領域で生成する。一方、セルロースは、約300℃以上の高い温度で分解し、リグニンは、ヘミセルロースやセルロースの分解温度とも一部重なりながら広い温度帯で分解する。リグニンは、250℃以上の温度では、タール分となる芳香族成分の生成量が顕著となる。
竹の常圧過熱水蒸気での処理は、水蒸気導入口および水蒸気導出口を設け、竹を配置および取出し可能に構成した実質的に密閉可能な容器、または水蒸気導入部および水蒸気導出部を設け、周囲の空間を実質的に密閉可能に覆うカバーを設けたコンベアーに、竹を配置し、常圧過熱水蒸気を水蒸気導入口または水蒸気導入部から導入し、水蒸気導出口または水蒸気導出部から導出される、発生加水分解生成物の蒸気を非金属性の冷却器中で冷却凝縮する。実質的に密閉可能とは、空気の流入が無く、酸素による酸化(燃焼)が抑えられるような容器形態をいう。
実質的に密閉可能な容器(以下、これを単に容器ということがある)には、例えば、開閉可能な蓋が設けられ、あるいは、搬入・搬出可能に設けられ、竹を配置および取出し可能に構成される。
カバーを設けたコンベアー(以下、これを単にコンベアーということがある。)には、例えばコンベアーの両端に水蒸気導入部および水蒸気導出部が設けられる。また、コンベアーのカバーは、コンベアーの周囲の空間を実質的に密閉可能に覆うように構成される。竹は、例えばコンベアーの一端から搬入、配置され、コンベアーの他端から搬出、取出しされる。
常圧過熱水蒸気とは、定容積状態で加熱して得られる加圧飽和水蒸気と異なり、膨張できる状態で100℃の水蒸気をさらに加熱して得られる、標準気圧下で100℃以上の過熱水蒸気をいう。
常圧過熱水蒸気のメリットは、(1)乾留と異なり、温度制御が精密にできるという点である。このメリットにより、目的とする抗菌剤成分がそれらの必要な濃度で生成することができ、タール分の混入などを排除することもできる。(2)圧力が常圧、すなわち大気圧であるため、反応容器の耐圧が不要であり、スケールアップが容易であるという点である。また、(3)常圧過熱水蒸気によって分解除去される成分が、水蒸気流に乗って留出回収されるため、分解生成物が反応容器内で液化滞留しない点である。さらに、(4)加圧水蒸気の場合に問題となる加圧状態のまま冷却した際の、反応器内部での凝縮液の生成や、冷却に長い時間を要する点が、常圧水蒸気処理の場合、処理中、一定の範囲の流量で水蒸気が流通するので、容器内部凝縮は起こらず、さらにこれを冷却凝縮する際は、よりコンパクトな冷却凝縮装置で実施可能である。
例えば蓋付き容器を用いる場合、容器の蓋を開けて容器内に竹を配置して蓋を閉じた後、水蒸気導入口から常圧の過熱水蒸気を導入する。発生する加水分解生成物の蒸気、すなわち、竹の分解により生じた揮発竹酢成分は水蒸気導出口から導出される。この場合、竹を容器の内部に収容できる寸法、例えば、最大寸法が数十cm〜数mになるように切って用いる。なお、大型の容器を用いれば、竹の裁断は実質的にほとんど不要になる。抗菌性成分の発生が実質的に終了すると、容器から竹の反応残渣を取出し、新たな竹を容器に配置する処理を間歇的に、あるいはベルトコンベア方式の場合は連続的に実施される。ここで取り出された竹の残渣は、粉砕処理によりバイオマスコンポジット原料として利用することができる。
常圧過熱水蒸気の温度は、好ましくは、180〜250℃、より好ましくは200℃〜230℃である。これにより、竹のヘミセルロースが優先分解する。また、この温度領域ではタール成分を生成しない。180℃未満の温度域では、ヘミセルロースの分解速度が低下し、有機酸の生成する速度も低下するため、効率的ではない。一方、250℃を越える温度域では、前述したようにタール分となる芳香族成分の生成量が顕著となり好ましくない。
常圧過熱水蒸気処理は、常圧過熱水蒸気を0.2〜1.0(kg/竹1kg)の流量で流通させることが好ましい。これにより、適切なヘミセルロース成分の優先的分解と、得られる選択性抗菌剤、すなわち竹酢液の導出量および濃度が確保できる。
常圧過熱水蒸気が0.2(kg/竹1kg)を下回る流量の場合、竹への熱供給が不足し、抗菌剤成分の生成量が不十分となるおそれがある。一方、1.0(kg/竹1kg)を超える流量の場合、分解反応および分解生成物の留出はより速やかに進行するものの、過剰な水蒸気の一部は反応に関与せずに流通し、冷却凝縮して得られる選択性抗菌剤の濃度を低下させるだけでなく、冷却凝縮装置の長大化を余儀なくされるおそれがある。
冷却凝縮の方法は、好ましくは選択性抗菌剤が金属に接触することが無いという条件を保持すれば、特に限定されず、公知の冷却凝縮方法が利用可能である。選択性抗菌剤が液化して金属に接触すると、例えば100℃を越える温度では金属が溶解し易く金属イオンが冷却凝縮液中に混入するおそれがある。
好適に利用される冷却凝縮方法としては、冷却用の水中に直接導いて水溶液化する、直接液化法(水溶液化法)、あるいは充填剤を擁した容器中に直接水蒸気を導いて、充填剤表面上で冷却凝縮させる直接冷却方式、さらには、熱交換器(凝縮器)を用い、管壁等を介して間接的に水蒸気を冷却凝縮する間接冷却方式がある。
水溶液化法は、導出される水蒸気中の竹酢成分の濃度が高く、希釈が必要な場合に有効に用いられる方式である。導出された竹酢成分蒸気を直接冷水中で曝気することによって吸収させる方式や、冷却水を吸収塔で降らし、気液接触で冷却して竹酢液を回収する方式等が好適に用いられる。
直接冷却方式に用いられる冷却用充填剤は、凝縮液によって溶解される成分が無いものであれば、いかなる冷却用充填剤も使用可能である。たとえば、ガラス製のリング、セラミック製のリングやボール、バイオマスチップ、竹炭/木炭チップ、250℃でも変形しない耐熱性プラスチック製のリングや球状、棒状、繊維状の成形体などが好適に用いられる。この直接冷却方式に用いられる充填剤を擁する容器の内表面の材質も、金属を含まないガラス製、グラスライニング、セラミック製、竹/木製、あるいは250℃でも変形しない耐熱性プラスチック製などが好適に用いられる。
間接冷却方式は、空冷、水冷、および蒸発式凝縮器など公知の冷却凝縮装置が使用できる。空冷凝縮器としては、薄板のフィンがあるプレートフィンチューブ形で、自然風あるいはファンを用いて強制的に冷却することができる。水冷凝縮器としては、横形と縦形のシェルアンドチューブおよびダブルチューブ(二重管)型などが利用できる。蒸発式凝縮器としては、アンモニアやフルオロ系冷媒などが好適に用いられる。これらの間接冷却方式の中で、装置のシンプルさや保守の容易さなどから、空冷および水冷式凝縮器がより好適に使用される。さらに、間接冷却方式に用いられる凝縮器の少なくとも水蒸気と接触する表面部分の材質は、金属を含まないガラス製、グラスライニング、セラミック製、竹または木製、あるいは250℃でも変形しない耐熱性プラスチック製などが好適に用いられる。
以上説明した本実施の形態に係る食中毒原因菌選択性抗菌剤の製造方法は、タール成分の沈降処理やフィルタや活性炭などによるろ過処理、再蒸留などの付加的な処理プロセスを実質的に伴わない。また、反応容器内に竹を配置して処理する場合、圧力容器を用いる場合に必要となる容器の安全性確保が不要である。このため、より簡易な装置および方法でタール成分を含まない食中毒原因菌選択性抗菌剤を得ることができる。処理された竹残渣は、バイオマスコンポジット原料として利用可能である。
得られる竹酢液、すなわち、食中毒原因菌選択性抗菌剤は、前述したように毒性や発がん性を有するベンゾピレンの含有量が低い。食中毒原因菌選択性抗菌剤のベンゾピレンの含有量は、好ましくは、0.7ppb以下である。
食中毒原因菌選択性抗菌剤は、好ましくは、ギ酸を40mg/L(リットル)以上、酢酸を1000mg/L以上,コハク酸およびリンゴ酸のうちのいずれか一方または双方を500mg/L以上、フルフラール化合物を100mg/L以上を含有する。リンゴ酸は、220℃以下の温度域で生成する。フルフラール化合物は、フルフラールのほかにフルフリルアルコールを含む。
各成分の上限値は特に設定されないが、いずれも酸性物質であるため、その取扱い易さの点から、それぞれ、20000mg/Lを超えない範囲が好適である。この値を超える場合には、水を用いて、取扱いに適した濃度に適宜希釈することも好適な実施態様である。
上記成分の分析方法は、一般公知の方法を何ら制限なく用いることができる。好適な方法としては、高速液体クロマトグラフ(以後、HPLCともいう)を用いる方法が、簡便かつ確実に行うことができる。有機酸、フルフラール化合物、およびベンゾピレン類の定量分析に対応した分析カラムをHPLCに取り付け、適切な溶離液、例えば、有機酸類の分析のためには、濃度20mMのりん酸緩衝液を利用し、分析カラム温度を一定温度、例えば37℃に保持して実施することにより、再現性に優れた分析が可能である。定量分析を実施するには、ギ酸、酢酸、リンゴ酸、コハク酸、フルフラール化合物、およびベンゾピレン類の標準物質を用いて、先に、検量線を作製することによって、それぞれの含有量を特定することができる。
食中毒原因菌としては、従来から重視されているものとして、腸管出血性大腸菌、サルモネラ菌、黄色ブドウ球菌、カンピロバクター、腸炎ビブリオ、ウェルシュ菌、セレウス菌などが挙げられる。これらの中でも、黄色ブドウ球菌は、様々な表皮感染症や食中毒、また肺炎、髄膜炎、敗血症等の感染症の起因菌である。また、セレウス菌は、土壌や汚水など自然界に多く存在しており、かつ食中毒の原因菌でもある。
後述する実施例では、食中毒原因菌(食中毒原因細菌)としてBacillus cereus(セレウス菌)およびStaphylococcus aureus(黄色ブドウ球菌)の2種、ならびに参照細菌として食中毒原因菌ではない常在菌であるEscherichia coli(大腸菌)およびBacillus subtilis(枯草菌(納豆菌))の2種、合わせて4種について検討し、本実施の形態例に係る食中毒原因菌選択性抗菌剤の食中毒原因菌に対する選択性が確認されている。
Bacillus cereus(セレウス菌):土壌や汚水など自然界に多く存在。食中毒の原因菌である。
Staphylococcus aureus(黄色ブドウ球菌):様々な表皮感染症や食中毒、また肺炎、髄膜炎、敗血症等の感染症の起因菌である。
Escherichia coli(大腸菌):環境中に存在するバクテリアの主要な種の一つで、腸内細菌でもある。
Bacillus subtilis(枯草菌(納豆菌)):土壌中や、空気中に飛散している常在細菌で枯草の表面などから分離される。
また、実施例では、Mucor(ケカビ属)、Trichoderma(トリコデルマ)、Penicillium(アオカビ)のカビ3種については本実施の形態例に係る食中毒原因菌選択性抗菌剤が作用しないことが確認されている。単細胞生物である細菌に対して選択性を有する一方多細胞生物である真菌類、いわゆるカビに対して作用しないことから、食中毒原因菌選択性抗菌剤は、多細胞生物であるヒトに対する過剰な毒性を有しないと推定される。
Mucor(ケカビ属):接合菌の中でもっとも普遍的に見られるものであり、土壌、糞、食品、その他、様々な湿った有機物の上に出現する。種によっては広く様々な場所に出現するものもあり、糞など特定の基質に特によく出現するものもある。特に強い病原性を示すというものはない。
Trichoderma(トリコデルマ):一般に森林土壌など、植物遺体の多い環境には非常に多いもので、枯れ木や朽ち木などにもよく繁茂する。土壌菌の分離を行う場合に、よく寒天培地上を覆いつくす。また、そのような場合、このカビが出現した培地では他のカビの出現が減ると言われる。これは、このカビが他の菌の生育を妨げる物質を分泌する、いわゆる他感作用を持つためである。この性質を利用し、他のカビによる病害を防ぐことも考えられている。ハイイロカビやフハイカビによる病害を防ぐ目的で作物の根元に接種する方法も実用化されている。抗生物質を産出する種も存在する。
Penicillium(アオカビ):最も普遍的に見られるカビの一つであり、常に空中に胞子が飛散している。ほとんどのアオカビは、健康なヒトには感染せず非病原性である。
これらの食中毒原因菌の抑制効果を判断する方法としては、一般公知の方法が何ら制限なく用いることができる。好適に用いられる方法として、それぞれの食中毒原因菌の増殖に適した培地、例えば、細菌に対しては普通寒天培地、カビについてはポテトデキストロース寒天培地を用いて、細菌やカビの増殖状況への影響を観察することによって、確認することができる。例えば、本発明の選択性抗菌剤をろ紙に含侵させ、これを寒天培地の中央に置き、ろ紙周辺の増殖が抑えられることで現れる増殖阻止円の観察、あるいは、本発明の選択性抗菌剤をあらかじめ培地表面に塗布し、その上に微生物を接種し、その増殖状況をコントロール培地と比較して確認することができる。
つぎに、本実施の形態例に係る食中毒原因菌選択性抗菌剤含有成形体は、炭100質量部に対して、本実施の形態例に係る食中毒原因菌選択性抗菌剤30〜300質量部を配合してなる。
炭は、特に限定するものではなく、例えば、竹炭、木炭、もみ殻炭等を用いることができる。また、炭100質量部に対する食中毒原因菌選択性抗菌剤の配合量は、30質量部未満では効果が不十分となるおそれがあり、300質量部を超えると成形体の物理的強度が低下し、その形状を維持できなくなるおそれがある。
ここで、食中毒原因菌選択性抗菌剤含有成形体を製造する方法としては、一般公知の方法が何ら制限なく、利用可能である。好適な方法を例示すれば、生分解性を有する高分子材料、例えばポリビニルアルコール0.1〜10質量部の水溶液をバインダーとして練り合わせた後、型枠に流し込み、常圧下、0〜200℃の温度範囲で乾燥処理して成形体前駆体を得る。その後、成形体前駆体に食中毒原因菌選択性抗菌剤30〜300質量部を含浸することで食中毒原因菌選択性抗菌剤含有成形体を得ることができる。
本実施の形態例に係る食中毒原因菌選択性抗菌剤含有成形体は、その表面より含侵された食中毒原因菌選択性抗菌剤が徐々に揮発するため、食材保管のための密閉容器内などに置くことにより、長期にわたり、食材の食中毒原因菌による汚染を防止することができる。
以下、本発明を実施例により具体的に説明するが、これらの実施例は何ら本発明の範囲を制限するものではない。
(選択性抗菌剤の製造実施例1)
孟宗竹(直径約10〜15cm、長さ約30cm、重量8kg)を、仕様を以下に示す常圧過熱水蒸気式加水分解装置(直本工業株式会社 NHL-1型)を用いて、200℃、210℃、220℃、230℃の異なる温度で、常圧過熱水蒸気流量6kg/h(0.75kg/竹1kg)で5時間常圧過熱水蒸気処理を行った。
<常圧過熱過熱水蒸気処理装置>
蒸気発生部: ヒーター容量 6.3kW
最高換算蒸発量 9.45kg/h
最高使用圧力 0.11MPa
竹処理槽: ヒーター容量 8kW
庫内寸法 W590x D385x H555mm3
その際に発生した加水分解生成物を含む排出蒸気を約3mのシリコンチューブ式水冷コンデンサーを用いて冷却凝縮し選択抗菌剤として回収した。水蒸気処理開始から1時間ごとに回収を行い、それぞれの時間毎の含有成分を、島津製作所製の高圧液体クロマトグラフ(HPLC)で分析した。ポンプには、DGU-14AとLC-10AT VP、カラムオーブンにはCTO-10AC VPを用いた。竹酢液サンプルは10倍に希釈し、マイクロシリンジで10μLを採取し、カラムとしてYMC-Triart(C-18、S-3μm、12nm)を装着したHPLCに注入し測定した。分析条件は、溶離液がりん酸緩衝液(20mM)、流量が0.425ml/min、カラム温度が37℃、検出器としてUV検出器(島津製作所製、SPD-10A VP)用いて行った。
200℃、210℃、220℃、および230℃の温度の過熱水蒸気処理で分解し水蒸気とともに留出した成分を1時間ごとにサンプリングした。サンプリング時間(0〜1、1〜2、2〜3、3〜4、および4〜5時間)ごとのHPLC分析結果を、各候補成分の検量線に基づいて主成分の濃度を定量した結果について表1〜4に示す。
ギ酸を40mg/L以上、酢酸を1000mg/L以上,コハク酸および/またはリンゴ酸を500mg/L以上、フルフラール化合物を100mg/L以上という条件は、処理温度200℃および210℃の温度では、1〜5時間の留出物で達成され、220℃では、1〜4時間の留出液、230℃では、1〜2時間の留出液で達成された。
Figure 0006639449
Figure 0006639449
Figure 0006639449
Figure 0006639449
(選択性抗菌剤の製造実施例2)
孟宗竹(直径10〜15cm、長さ約30cm、重量8kg)を、常圧過熱水蒸気処理装置(直本工業株式会社製NHL-1型)を用いて210℃で3時間、常圧過熱水蒸気流量:2kg/h(0.25kg/竹1kg)で水蒸気処理を行った。同装置から排出される蒸気を約1mのガラスチューブ式水冷コンデンサーを用いて冷却凝縮し選択抗菌剤として回収した。開始から1時間毎に3時間までの3種類をサンプルとして回収した。回収したサンプルをそれぞれ20gとり、エバボレーターを用い水分を蒸発させて濃縮操作を行った。表5に回収時間の異なる竹酢液それぞれのサンプルの濃縮物の重量を示す。
濃縮物をアセトニトリルに溶かし、50倍濃縮液とし、液体クロマトグラフ(島津製作所 SPD-10A VP)により、ベンゾピレンの量を測定した。液体クロマトグラフの測定条件は、下記のとおりである。ベンゾピレンの検量線は、異なる濃度のベンゾピレン標準試料を用いて、同じ条件で測定した液体クロマトグラフのそれぞれのピーク積分値から作成し、サンプル濃縮物に含まれるベンゾピレンを定量的に算出するために用いた。
<液体クロマトグラフの測定条件>
カラム: 島津製作所製VP-ODS(150mm×4.6mmi.d.)
温度; 37℃
検出器: 島津製作所製SPD-10A VP
キャリアー: アセト二トリル/10mMリン酸緩衝液=8/2(v/v)
流量: 0.8ml/min
サンプル注入量: 25μl
Figure 0006639449
高速液体クロマトグラムにおけるベンゾピレンの保持時間は測定開始後14.3min付近であった。過熱水蒸気処理における回収時間の異なるサンプルの50倍濃縮液を、高速液体クロマトグラフで分析した結果、回収時間が0〜1時間および1〜2時間のサンプルは、ベンゾピレンが全く検出されなかった。回収時間が2〜3時間のサンプルは、ベンゾピレンらしき微小ピークが観測され、ベンゾピレンと仮定して検量線からベンゾピレンの濃度を計算すると8ppbであった。この高速液体クロマトグラムの分析結果は、50倍濃縮の測定値であるため、サンプル原液としてベンゾピレンの含有量を算出すると0.16ppbであった。この値は、EUでの食品中のベンゾピレン濃度基準1〜5ppbおよびWHOの水質ガイドラインの基準0.7ppbを下回る結果であった。
(選択性抗菌剤の抗菌性評価例)
選択性抗菌剤の製造実施例1の210℃で1時間から5時間で流出した選択性抗菌剤を用いて抗菌性評価試験を行った。抗菌性評価試験に使った菌類は、食中毒原因細菌2種(Bacillus cereus、Staphylococcus aureus)、常在細菌2種(Escherichia coli、Bacillus subtilis)およびカビ3種(Mucor(ケカビ属)、Trichoderma(トリコデルマ)、Penicillium(アオカビ))である。
まず、細菌4種の抗菌性試験は、普通寒天培地(Nutrient Agar)上での増殖阻止円形成の観察によって行った。普通寒天培地上に、それぞれの細菌の培養液150μLを接種し、コンラージ棒を使って寒天培地表面に展開した。次に、直径5mmの滅菌したろ紙を本発明の選択抗菌剤中に浸漬したものを取出し、培地面中央に置いた。参照サンプルとして、浸漬していないろ紙を同様に別の培地面中央に置いた。細菌の培養は、Escherichia coli(大腸菌)とStaphylococcus aureus(黄色ブドウ球菌)については37℃、Bacillus cereus(セレウス菌)とBacillus subtilis(枯草菌(納豆菌))については30℃で24時間培養を行った。その結果、図1と図2に示したように食中毒原因菌であるBacillus cereusとStaphylococcus aureusについて、明確な阻止円が、それぞれ、ろ紙の直径の3.2倍と2.6倍で観察された。参照サンプルとしての常在細菌Escherichia coliとBacillus subtilisについては、阻止円は観察されなかった。
次に、カビ3種については、ポテトデキストロース寒天(PDA)培地上での増殖挙動の変化を観察した。先に、PDA培地上に本発明の選択抗菌剤150μLをコンラージ棒を用いて展開した。その培地面中央に、各カビを白金耳を用いて接種した。参照サンプルとして、抗菌剤を展開していない培地上に、同様にカビを接種した。すべてのカビは30℃で48時間培養した。その結果、いずれのカビも参照サンプルと同様に培地上で増殖し、明確な増殖抑制は観察されなかった。
(選択的抗菌剤を含浸した炭成形体の製造実施例)
孟宗竹由来の竹炭(バンブーテクノ社製)を粉砕し、粒子径10μm〜2mmの範囲にふるい分けした。得られた竹炭粉末(25g)とポリビニルアルコール(PVA、重合度1000、けん化度98%)水溶液(濃度10%、25g)とを混和し、均一に練り合わせ、若干の流動性を持った塑性固体とした。これを、直方形のアルミ製型枠中に充填した。
これを約3日間自然乾燥した後、型枠から取出し、電気炉中、120℃で1時間、乾燥処理を行った。得られた竹炭成形体(重量6.12g)を、過剰量の選択性抗菌剤製造実施例1の210℃で1時間から5時間で流出した選択性抗菌剤中に浸漬し、1昼夜、含侵処理を行った。含侵処理中に、竹炭成形体の崩壊などは一切起こらなかった。その後、成形体を取出し、外面に付着した選択的抗菌剤をふき取った後、秤量した結果、選択的抗菌剤の含浸率は102質量%であった。

Claims (1)

  1. 密閉可能な容器に配置した竹を180〜250℃の温度範囲の常圧過熱水蒸気0.2〜1.0kg/竹1kgの流量で処理し、竹酢成分を含みかつタール分を含まない水蒸気を生成し、少なくとも前記水蒸気と接触する面を、該水蒸気を冷却凝縮させた液中に金属イオンが混入しないように非金属で形成した流路に、前記水蒸気を流通させながら水冷により冷却凝縮して、ギ酸を40mg/L以上、酢酸を1000mg/L以上、コハク酸およびリンゴ酸のいずれか一方または双方を500mg/L以上、フルフラール化合物を100mg/L以上含有し、ベンゾピレン類の含有量が0.7ppb以下の竹酢液を生成することを特徴とする黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。
JP2017157980A 2017-08-18 2017-08-18 黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。 Active JP6639449B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017157980A JP6639449B2 (ja) 2017-08-18 2017-08-18 黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017157980A JP6639449B2 (ja) 2017-08-18 2017-08-18 黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015011402A Division JP6278408B2 (ja) 2015-01-23 2015-01-23 黄色ブドウ球菌およびセレウス菌用抗菌剤並びに黄色ブドウ球菌およびセレウス菌用抗菌剤含有成形体

Publications (3)

Publication Number Publication Date
JP2017206557A JP2017206557A (ja) 2017-11-24
JP2017206557A5 JP2017206557A5 (ja) 2018-01-11
JP6639449B2 true JP6639449B2 (ja) 2020-02-05

Family

ID=60416302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017157980A Active JP6639449B2 (ja) 2017-08-18 2017-08-18 黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。

Country Status (1)

Country Link
JP (1) JP6639449B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343753B2 (ja) 2016-12-07 2018-06-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2020027133A1 (ja) * 2018-07-30 2020-02-06 株式会社シーライブ 滅菌・核酸分解用組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210929A (ja) * 2002-12-27 2004-07-29 Kurabo Ind Ltd 抗菌性高分子組成物
JP4057577B2 (ja) * 2004-10-26 2008-03-05 日本政策投資銀行 有機物の高速堆肥化方法
JP2014024795A (ja) * 2012-07-27 2014-02-06 Institute Of National Colleges Of Technology Japan 抗菌剤、抗菌剤の製造方法、及び抗菌剤を付着させた製品
JP2014148630A (ja) * 2013-02-04 2014-08-21 Kyushu Institute Of Technology 竹酢液の製造方法

Also Published As

Publication number Publication date
JP2017206557A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
Wei et al. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches
Xu et al. In vitro and in vivo control of Alternaria alternata in cherry tomato by essential oil from Laurus nobilis of Chinese origin
Ji et al. The major postharvest disease of onion and its control with thymol fumigation during low-temperature storage
CN110150333B (zh) 一种油樟叶精油抑菌方法
JP6639449B2 (ja) 黄色ブドウ球菌およびセレウス菌用選択性抗菌剤の製造方法。
Nurdiawati et al. Characterization of potential liquid fertilizers obtained by hydrothermal treatment of chicken feathers
Cock Antimicrobial activity of Eucalyptus major and Eucalyptus baileyana methanolic extracts
WO2023272797A1 (zh) 一种抑制单增李斯特菌的益智精油的提取方法及益智精油
Ohtsu et al. Utilization of the Japanese peppermint herbal water byproduct of steam distillation as an antimicrobial agent
Premathilake et al. Evaluation of chemical composition and assessment of antimicrobial activities of essential oil of lemongrass (Cymbopogon citratus (DC.) Stapf).
Ramos et al. Potential of cattle manure pyrolysis liquid as an alternative environmentally friendly source of agricultural fungicides
CN106350459B (zh) 产挥发性的抑菌、杀线虫活性成分的裂褶菌菌株及其应用
Tahmasebi et al. Inhibitory effect of essential oils of Sclerorhachis platyrachis and Sclerorhachis leptoclada on phytopathogenic fungi.
Hammami et al. Chemical analysis and antimicrobial effects of essential oil from Limoniastrum guyonianum growing in Tunisia
Dor et al. The influence of growth conditions on biomass, toxins and pathogenicity of Fusarium oxysporum f. sp. orthoceras, a potential agent for broomrape biocontrol
JP6278408B2 (ja) 黄色ブドウ球菌およびセレウス菌用抗菌剤並びに黄色ブドウ球菌およびセレウス菌用抗菌剤含有成形体
CN108473939A (zh) 生物活性真菌
Duhan et al. Effect of household processing on fenazaquin residues in okra fruits
Praveen et al. Antifungal volatiles from medicinal herbs suppress Fusarium oxysporum f. sp. lycopersici
Ling et al. Preservation activity of Artemisia essential oils and a monomer in treating pepper bacterium and fungus diseases
DIOP et al. Efficacy Test of Melaleuca leucadendra and Callistemon viminalis Essential Oils on in Vitro Control of a Strain of Aspergillus flavus Isolated from Peanut Seeds in Senegal
WO2021258146A1 (en) Bioactive compounds from seaweed and method
Betlej et al. Fungicidal Properties of the Medium from SCOBY Microorganism Cultivation in Saturated Wood against Coniophora puteana Fungus.
Kistriyani et al. Invasion Of Saturated Vapor Coconut Shell the Transition Obat Merah to Liquid Smoke Coconut Shell as Solutions in the Treatment of Wound Outside
CN104557808A (zh) 一种2-乙酰基呋喃的制备方法及新用途

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R150 Certificate of patent or registration of utility model

Ref document number: 6639449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150