JP6637155B2 - 極端紫外光生成装置 - Google Patents

極端紫外光生成装置 Download PDF

Info

Publication number
JP6637155B2
JP6637155B2 JP2018501535A JP2018501535A JP6637155B2 JP 6637155 B2 JP6637155 B2 JP 6637155B2 JP 2018501535 A JP2018501535 A JP 2018501535A JP 2018501535 A JP2018501535 A JP 2018501535A JP 6637155 B2 JP6637155 B2 JP 6637155B2
Authority
JP
Japan
Prior art keywords
unit
imaging
target
movement amount
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018501535A
Other languages
English (en)
Other versions
JPWO2017145366A1 (ja
Inventor
鈴木 徹
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Publication of JPWO2017145366A1 publication Critical patent/JPWO2017145366A1/ja
Application granted granted Critical
Publication of JP6637155B2 publication Critical patent/JP6637155B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/006X-ray radiation generated from plasma being produced from a liquid or gas details of the ejection system, e.g. constructional details of the nozzle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Description

本開示は、極端紫外光生成装置に関する。
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm〜45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成する極端紫外光生成装置と縮小投影反射光学系(reduced projection reflection optics)とを組み合わせた露光装置の開発が期待されている。
EUV光生成装置としては、ターゲット物質にパルスレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、シンクロトロン放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
国際公開第2010/0117861号 米国特許出願公開第2013/0256136号明細書 米国特許出願公開第2010/0294958号明細書
概要
本開示の1つの観点に係る極端紫外光生成装置は、プラズマ生成領域に向けて、複数のターゲットを軌道に沿って出力するターゲット供給部と、プラズマ生成領域に向けてレーザ光を照射するレーザ装置と、撮像方向が軌道に対して非直交でかつ非平行であり、プラズマ生成領域を含む領域を撮像して画像データを出力する撮像部と、プラズマ生成領域を含む領域に照明光を出力する照明部と、撮像部の撮像位置を撮像方向に沿って変更する撮像位置変更部と、画像データに基づき、撮像位置の移動量を決定する移動量決定部と、移動量決定部により決定された移動量に基づいて撮像位置変更部を制御する制御部と、を備える。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP式のEUV光生成システムの構成を概略的に示す図である。 図2は、本開示の比較例に係るLPP式のEUV光生成システムの構成を概略的に示す図である。 図3は、画像処理部63による画像処理について説明するフローチャートである。 図4は、本開示の課題を説明する図である。 図5は、本開示の第1の実施形態に係るEUV光生成装置に含まれるターゲット画像計測装置60、ターゲット供給部26、及びEUV光生成制御部5を示す図である。 図6は、移動量決定部64の構成を示す図である。 図7は、図5に示される撮像位置において撮像部62から出力される画像データI(y,z)の例を示す図である。 図8は、ターゲット27の軌道TRに対応するラインに沿った正規化相関値γ(y,z)の例を示す図である。 図9は、正規化相関値γ(y,z)の各ピーク値と、y方向に関する各ピーク位置との例を示す図である。 図10は、センサステージ62hが移動することに伴い、合焦状態となった例を示す図である。 図11は、合焦状態において撮像部62により出力される画像データの例を示す図である。 図12は、合焦状態における正規化相関値γ(y,z)の例を示す図である。 図13は、合焦状態における回帰直線の例を示す図である。 図14は、第1の実施形態におけるEUV光生成装置のターゲット画像計測動作を説明するフローチャートである。 図15は、本開示の第2の実施形態に係るEUV光生成装置に含まれるターゲット画像計測装置60、ターゲット供給部26、及びEUV光生成制御部5を示す図である。 図16は、第2の実施形態において、撮像部62から出力される画像データI(y,z)の例を示す図である。 図17は、第2の実施形態において、テンプレート記憶部70に記憶されるテンプレートデータT(z)の例を示す図である。 図18は、第1〜第3のラインLa〜Lcに沿って得られる正規化相関値γ(y,z)の例を示す図である。 図19は、正規化相関値γ(y,z)の各ピーク値の例を示す図である。 図20は、第3の実施形態において、プラズマ生成領域25が移動される場合におけるEUV光生成システムの制御系統を示す図である。 図21は、第3の実施形態に係るターゲット画像計測装置60の構成を示す図である。 図22は、移動前後のプラズマ生成領域25の座標位置を例示する図である。 図23は、第3の実施形態に係る画像処理部63に含まれる移動量決定部64aの構成を示す図である。 図24は、相関サーチ処理部71により各ターゲット27の像について算出される正規化相関値γ(y,z)のピーク値を例示する図である。 図25は、第3の実施形態におけるEUV光生成装置のターゲット画像計測動作を説明するフローチャートである。 図26は、第4の実施形態に係るターゲット画像計測装置60の構成を示す図である。
実施形態
<内容>
1.EUV光生成システムの全体説明
1.1 構成
1.2 動作
2.比較例に係るEUV光生成装置
2.1 構成
2.1.1 ターゲット供給部
2.1.2 ターゲット検出装置
2.1.3 ターゲット画像計測装置
2.2 動作
2.2.1 ターゲットの出力
2.2.2 ターゲット通過タイミングの検出
2.2.3 ターゲット画像計測動作
3. 課題
4.第1の実施形態
4.1 構成
4.1.1 撮像部及び照明部
4.1.2 移動量決定部
4.2 動作
4.3 効果
5.第2の実施形態
5.1 構成及び動作
5.1.1 撮像部及び照明部
5.1.2 移動量決定部
5.2 効果
6.第3の実施形態
6.1 構成
6.1.1 制御系統
6.1.2 撮像部及び照明部
6.1.3 移動量決定部
6.2 動作
6.3 効果
7.第4の実施形態
7.1 構成及び動作
7.1.1 制御系統
7.1.2 撮像部及び照明部
7.1.3 移動量決定部
8.変形例
8.1 撮像部の撮像方向
8.2 撮像部及び照明部
8.3 撮像部の撮像位置の変更
8.4 相関サーチ処理部
8.5 制御部
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.EUV光生成システムの全体説明
1.1 構成
図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる場合がある。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示されるように、EUV光の出力方向をZ方向とする。ターゲットの出力方向と反対の方向をY方向とする。Z方向とY方向との両方に垂直な方向をX方向とする。
図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含む。チャンバ2は、密閉可能な容器である。ターゲット供給部26は、ターゲット物質をチャンバ2内部に供給するよう構成され、例えば、チャンバ2の壁を貫通するように取り付けられる。ターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
チャンバ2の壁には、少なくとも1つの貫通孔が設けられている。その貫通孔は、ウインドウ21によって塞がれ、ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過する。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置される。EUV集光ミラー23は、第1及び第2の焦点を有する。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成される。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されてもよい。EUV集光ミラー23の中央部には貫通孔24が設けられ、貫通孔24をパルスレーザ光33が通過する。
EUV光生成装置1は、EUV光生成制御部5、ターゲットセンサ4等を含む。ターゲットセンサ4は、ターゲット27の通過タイミング、位置、形状、大きさ、軌道、速度のうちいずれかまたは複数を検出するよう構成される。
EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含む。接続部29内部には、アパーチャ293が形成された壁291が設けられる。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置される。
また、EUV光生成装置1は、レーザ光伝送装置34、レーザ光集光ミラー22、ターゲット回収部28等を含む。レーザ光伝送装置34は、レーザ光の伝送状態を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備える。ターゲット回収部28は、ターゲット27のうちプラズマ化しなかった残渣を回収する。
1.2 動作
図1を参照して、例示的なLPP式のEUV光生成システムの動作を説明する。レーザ装置3から出力されたパルスレーザ光31は、レーザ光伝送装置34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射する。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射される。
ターゲット供給部26は、ターゲット物質によって形成されたターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成される。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射される。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射される。EUV集光ミラー23は、放射光251に含まれるEUV光を、他の波長域の光に比べて高い反射率で反射する。EUV集光ミラー23によって反射されたEUV光を含む反射光252は、中間集光点292で集光され、露光装置6に出力される。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
EUV光生成制御部5は、EUV光生成システム11全体の制御を統括するよう構成される。EUV光生成制御部5は、ターゲットセンサ4の検出結果を処理するよう構成される。ターゲットセンサ4の検出結果に基づいて、EUV光生成制御部5は、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御するよう構成されてもよい。さらに、EUV光生成制御部5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
2.比較例に係るEUV光生成装置
2.1 構成
図2に、本開示の比較例に係るLPP式のEUV光生成システムの構成を概略的に示す。本比較例において、EUV光生成装置1に含まれるターゲット供給部26及びターゲットセンサ4の構成及び動作を詳述する。ターゲットセンサ4は、ターゲット検出装置50と、ターゲット画像計測装置60と、を含んでいる。
2.1.1 ターゲット供給部
ターゲット供給部26は、ターゲット供給部アクチュエータ261を介してチャンバ2に取り付けられている。ターゲット供給部アクチュエータ261は、チャンバ2に対するターゲット供給部26の位置をZ方向及びX方向に移動させる二軸ステージである。
ターゲット供給部26は、溶融されたターゲットの材料を、内部に貯蔵している。このターゲットの材料は、ターゲット供給部26の内部に供給される不活性ガスによって加圧される。ターゲット供給部26は、チャンバ2の内部に位置する図示しない開口部を有している。ターゲット供給部26の上記開口部付近に、図示しない加振装置が配置されている。
2.1.2 ターゲット検出装置
ターゲット検出装置50は、照明部51と、計測部52と、信号処理部53と、を含んでいる。照明部51と計測部52とは、ターゲット供給部26とプラズマ生成領域25との間におけるターゲット27の軌道TRを挟んで互いに略反対側に配置されている。照明部51と計測部52とは、例えば、その光軸がX方向に平行となるように配置されている。
照明部51は、光源51aと、照明光学系51bと、光学フィルタ51cと、を含んでいる。光源51aは、CW(Continuous Wave)レーザ光を照明光として出力するレーザ光源である。照明光学系51bは、光源51aから出力された照明光が、計測部52が計測対象とするターゲット27の軌道TRを含む領域を照射するように照明光を整形する。光学フィルタ51cは、例えばバンドパスフィルタであり、光源51aから出力された照明光を透過させるが、プラズマ生成領域25から輻射されるEUV光の透過を抑制する。
照明部51は、筐体51dに収容されている。筐体51dには、低圧のチャンバ2内と、大気圧下の照明部51とを隔てるためのウインドウ51eが設けられている。
計測部52は、光センサ52aと、光学フィルタ52bと、受光光学系52cと、を含んでいる。光センサ52aは、図示しない受光素子が、単一であるか、若しくは、1次元又は2次元状に配列されたものである。光センサ52aは、例えば、フォトダイオード、光電子増倍管、マルチ・ピクセル・フォトンカウンタのいずれかにより構成されている。
光学フィルタ52bは、例えばバンドパスフィルタであり、光源51aから出力された照明光を透過させるが、プラズマ生成領域25から輻射されるEUV光の透過を抑制する。受光光学系52cは、光源51aから光学フィルタ52b介して入射した照明光を、光センサ52aに集光する。光センサ52aは、受光光学系52cにより集光された光の強度変化を、出力電圧の変化として出力する。
計測部52は、筐体52dに収容されている。筐体52dには、低圧のチャンバ2内と、大気圧下の計測部52とを隔てるためのウインドウ52eが設けられている。
照明部51から射出された照明光は、ターゲット27の軌道TRを含む領域を通過して光センサ52aにより受光される。この照明光の光路を1つのターゲット27が通過した場合には、照明光の一部がターゲット27により遮られ、光センサ52aからの出力電圧が変化する。
信号処理部53には、光センサ52aから出力される電圧信号が入力される。信号処理部53は、光センサ52aから入力される電圧信号が変化した際に、照明光の光路をターゲット27が通過したことを表すターゲット通過タイミング信号を生成する。
2.1.3 ターゲット画像計測装置
ターゲット画像計測装置60は、照明部61と、撮像部62と、画像処理部63と、を含んでいる。照明部61と撮像部62とは、プラズマ生成領域25を挟んで互いに略反対側に配置されている。照明部61と撮像部62とは、例えば、その光軸がX方向に平行となるように配置されている。
照明部61は、光源61aと、照明光学系61bと、を含んでいる。光源61aは、キセノンフラッシュランプやパルスレーザ光源等のパルス光源である。光源61aは、EUV光生成制御部5から入力される発光トリガに基づいて、パルス状の照明光を出力する。照明光学系61bは、光源61aから出力された照明光が、撮像部62が撮像対象とするプラズマ生成領域25を含む領域を照射するように照明光を整形する。
照明部61は、筐体61cに収容されている。筐体61cには、低圧のチャンバ2内と、大気圧下の照明部61とを隔てるためのウインドウ61dが設けられている。
撮像部62は、イメージセンサ62aと、光学フィルタ62bと、結像光学系62cと、光シャッタ62dと、転写光学系62eと、を含んでいる。イメージセンサ62aは、図示しない受光素子が2次元状に配列されたものであり、例えば、CCD(Charge-coupled device)型メージセンサである。撮像部62は、プラズマ生成領域25を含む領域を撮像して画像データを出力する。
光学フィルタ62bは、例えばノッチフィルタであり、ターゲット検出装置50の照明部51から発せられた照明光の透過を選択的に抑制する。結像光学系62cは、光源61aから発せられた照明光によるターゲット27の像を、光シャッタ62d上に結像させる。光シャッタ62dは、EUV光生成制御部5から入力される光シャッタトリガに基づいてシャッタを開閉する。転写光学系62eは、光シャッタ62dが開状態の場合に、光シャッタ62dに結像されたターゲット27の像を、イメージセンサ62aの撮像面に転写する。イメージセンサ62aは、撮像面に転写されたターゲット27の像を光電変換して、ターゲット27の像を表す画像データを生成し、画像処理部63に出力する。
撮像部62は、筐体62fに収容されている。筐体62fには、低圧のチャンバ2内と、大気圧下の撮像部62とを隔てるためのウインドウ62gが設けられている。
画像処理部63には、イメージセンサ62aから、画像データが入力される。画像処理部63は、イメージセンサ62aから入力された画像データ中からターゲット27の像を検出し、検出した像に基づいてターゲット27の状態を計測する。ターゲット27の状態とは、ターゲット27の位置、形状、大きさ、軌道、速度等である。
2.2 動作
2.2.1 ターゲットの出力
上述のターゲット供給部26において、不活性ガスによって加圧されたターゲットの材料は、開口部を介して出力される。ターゲット供給部26に加振装置によって振動が与えられることにより、ターゲットの材料は、複数のドロップレットに分離される。各ドロップレットが、ターゲット27として、ターゲット供給部26からプラズマ生成領域25まで、ほぼ直線状の軌道TRに沿って移動する。ターゲット供給部26の内部に供給される不活性ガスの圧力は、EUV光生成制御部5からの制御信号によって制御される。不活性ガスの圧力が制御されることにより、ターゲット27の移動速度が調整される。
2.2.2 ターゲット通過タイミングの検出
ターゲット検出装置50に含まれる照明部51は、ターゲット27の軌道TR及びその周囲に向けて照明光を出力する。この照明光の光路を1つのターゲット27が通過するとき、光センサ52aの出力電圧が変化する。信号処理部53は、光センサ52aの出力電圧が変化したことに応じてターゲット通過タイミング信号を生成し、EUV光生成制御部5に出力する。
EUV光生成制御部5は、ターゲット通過タイミング信号をレーザ装置3に出力する。レーザ装置3は、ターゲット通過タイミング信号を受信した時から所定の遅延時間が経過したタイミングでレーザ発振を行い、パルスレーザ光31を出力する。この遅延時間は、ターゲット27がプラズマ生成領域25に到達するタイミングでパルスレーザ光33がプラズマ生成領域25に集光されるように設定される。
2.2.3 ターゲット画像計測動作
ターゲット画像計測装置60に含まれる照明部61は、プラズマ生成領域25及びその周囲に向けてパルス状の照明光を出力する。照明部61による照明光の出力は、ターゲット検出装置50から出力されるターゲット通過タイミング信号に対して所定の遅延時間で出力されるように、EUV光生成制御部5によって制御される。照明部61から出力された照明光の光路に少なくとも1つのターゲット27が存在するとき、照明光がターゲット27を照射する。光シャッタ62dは、照明部61の発光に同期して、閉状態から開状態に移行するように、EUV光生成制御部5によって制御される。
このとき、ターゲット27の像が、撮像部62に含まれるイメージセンサ62aの撮像面に転写される。イメージセンサ62aは、光シャッタ62dの閉状態から開状態への移行に同期して露光が開始するように、EUV光生成制御部5によって制御される。イメージセンサ62aは、露光終了後に、ターゲット27の像を表す画像データを画像処理部63に出力する。画像処理部63は、画像データ中からターゲット27の像を検出し、検出した像に基づいてターゲット27の状態を計測する。画像処理部63は、ターゲット27の状態を表すデータをEUV光生成制御部5に送信する。
EUV光生成制御部5は、ターゲット27の状態を表すデータに含まれるターゲット27の位置、形状、大きさ、軌道、速度等のデータに基づいて、レーザ装置3やターゲット供給部26等を制御する。例えば、レーザ装置3がプリパルスレーザ光及びメインパルスレーザ光を出力する場合に、プリパルスレーザ光に対するメインパルスレーザ光の遅延時間を調整する。プリパルスレーザ光は、ドロップレット状のターゲット27に照射され、ターゲット27を拡散させる。メインパルスレーザ光は、拡散したターゲット27に照射されてプラズマを生成させる。
この場合、ターゲット画像計測装置60は、ターゲット27の一形態である拡散ターゲットを撮像してもよい。EUV光生成制御部5は、ターゲット画像計測装置60により計測されるターゲット27の状態に基づいて、プリパルスレーザ光やメインパルスレーザ光の各遅延時間や、ターゲット供給部26、レーザ光伝送装置34のアクチュエータ等を制御してもよい。また、EUV光生成制御部5は、ターゲットの移動速度のデータに基づいて、ターゲット27の移動速度が目標値に近づくように、ターゲット供給部26の内部に供給される不活性ガスの圧力を制御してもよい。
図3は、画像処理部63による画像処理について説明するフローチャートである。画像処理部63は、以下の処理により、画像データ中からターゲット27の像を検出し、ターゲット27の状態を計測する。
まず、S101において、画像処理部63は、撮像部62から入力された画像データに対して、照度補正処理を行う。具体的には、画像処理部63は、画像データ全体から画素値の平均値を求め、各画素値から平均値を減算する。次に、S102において、画像処理部63は、二値化処理を行う。具体的には、画像処理部63は、照度補正処理後の画像データの各画素値を所定の閾値と比較し、画素値が閾値より大きい画素を抽出する。
次に、S103において、画像処理部63は、ブロブ解析を行う。具体的には、画像処理部63は、二値化処理により抽出した画素が集合した領域であるブロブを抽出し、各ブロブの面積、形状等を算出する。次に、S104において、画像処理部63は、面積及び円形度フィルタ処理を行う。具体的には、画像処理部63は、ブロブ解析により抽出した各ブロブについて、所定の面積及び円形度フィルタを適用することにより、面積が一定値以上でかつ、円形度が一定値以上のブロブを、ターゲット27の像として抽出する。
ターゲット27の状態を表すターゲット27の位置、形状、大きさ、軌道、速度等は、S103におけるブロブ解析の結果等に基づいて求められる。
3. 課題
図4は、本開示の課題を説明する図である。上述の比較例では、ターゲット画像計測装置60に含まれる撮像部62は、高い空間分解能を得るために、結像光学系62cが大きな開口数(NA)を有することが好ましい。しかしながら、開口数を大きくすると、撮像部62の被写界深度が小さくなる。被写界深度とは、撮像部62のフォーカスの合う領域である合焦領域FAの撮像方向への幅である。
また、撮像部62の撮像位置は、種々の要因によって撮像方向に位置が変動し得る。撮像位置とは、合焦領域FAの撮像方向への中心位置である。合焦領域FA内に存在する被写体がイメージセンサ62aの撮像面に結像される。撮像位置の変動は、例えば、EUV光やパルスレーザ光33の散乱光による加熱によって、ウインドウ62gや結像光学系62c等の光学素子の屈折率が変動することによって生じ得る。図4は、撮像位置が変動し、合焦領域FAにプラズマ生成領域25が含まれる「合焦状態」から、合焦領域FAにプラズマ生成領域25が含まれない「非合焦状態」へ変化する例を示している。上述のように、撮像部62の被写界深度は小さいことが好ましいため、合焦状態から撮像位置が僅かに変動した場合であっても、非合焦状態となり得る。
合焦状態では、ターゲット27の像は、コントラストが高く鮮明であるので、ターゲット27の状態の計測精度は高い。一方、非合焦状態では、ターゲット27の像は、コントラストが低下して不鮮明となり、ターゲット27の状態の計測精度が低下する。ターゲット27の状態の計測精度が低下すると、レーザ装置3やターゲット供給部26等の制御が不安定となり、EUV光の生成が不安定となり得る。
以下に説明される実施形態においては、この課題を解決するために、撮像部62の撮像位置を変更可能とするとともに、撮像方向をターゲットの軌道TRに対して非直交とし、複数のターゲット27が撮像された画像データに基づいて、撮像位置を変更することにより、ターゲット27の像を鮮明化して、EUV光の生成を安定化させる。
4.第1の実施形態
次に、本開示の第1の実施形態に係るEUV光生成装置を含むEUV光生成システムについて説明する。なお、以下では、上記比較例のEUV光生成装置を含むEUV光生成システムの構成要素と略同じ部分については、同一の符号を付し、適宜説明を省略する。
4.1 構成
図5は、本開示の第1の実施形態に係るEUV光生成装置に含まれるターゲット画像計測装置60、ターゲット供給部26、及びEUV光生成制御部5を示す。第1の実施形態におけるターゲット画像計測装置60に含まれる撮像部62は、センサステージ62hと、ステージサポート部62iとをさらに含んでいる。また、第1の実施形態における画像処理部63は、移動量決定部64をさらに含んでいる。その他の構成は、比較例の構成と同様である。なお、EUV光生成制御部5は、本開示における制御部に相当する。
4.1.1 撮像部及び照明部
撮像部62は、撮像方向がターゲット27の軌道TRに対して非直交でかつ非平行となるように配置されている。また、撮像部62の撮像方向は、XY平面と平行である。すなわち、撮像部62の撮像方向と、ターゲット27の軌道TRの方向を示すY方向とのなす角度φは、0<φ<90°または90°<φ<180°の角度範囲内に設定されている。第1の実施形態では、φ=45°としている。照明部61は、撮像部62に対して対向するように配置されている。すなわち、照明部61の照明方向と、撮像部62の撮像方向とは、互いに逆方向であって、かつ平行である。
このように、撮像部62の撮像方向がターゲット27の軌道TRに対して非直交でかつ非平行であることにより、撮像部62から出力される画像データには、撮像位置に対する距離が異なる複数のターゲット27の像が同時に撮像される。
センサステージ62hは、撮像部62の筐体62fを保持している。ステージサポート部62iは、センサステージ62hを、撮像部62の撮像方向に沿って移動可能に支持している。また、ステージサポート部62iは、チャンバ2に固定されている。センサステージ62hは、例えば、ボイスコイルモータ等によって駆動される直動アクチュエータであり、EUV光生成制御部5の制御に基づき、筐体62fを、撮像部62の撮像方向に沿って移動させる。センサステージ62hは、本開示における撮像位置変更部に相当する。
図5は、撮像部62の合焦領域FAが、プラズマ生成領域25からずれた位置に存在し、撮像部62がプラズマ生成領域25に対して非合焦状態である場合を示している。後述する移動量決定部64は、撮像部62をプラズマ生成領域25に対して合焦状態とするために必要なセンサステージ62hの移動量を決定する。
4.1.2 移動量決定部
図6は、移動量決定部64の構成を示す図である。移動量決定部64は、テンプレート記憶部70と、相関サーチ処理部71と、回帰係数算出部72と、移動量算出部73と、を含んでいる。
テンプレート記憶部70は、撮像部62がプラズマ生成領域25に対して合焦状態にある場合に撮像されたターゲット27の画像である合焦画像を記憶している。この合焦画像は、テンプレート記憶部70に予め記憶されている。相関サーチ処理部71は、テンプレート記憶部70に記憶された合焦画像をテンプレートとして、正規化相関サーチ処理を行う。
相関サーチ処理部71による正規化相関サーチ処理は、例えば、下式(1)に基づいて行われる。
Figure 0006637155
ここで、I(y,z)は、撮像部62から出力される画像データを表している。y,zは、図5に示されるように、撮像部62の撮像面における座標を表している。T(y,z)は、テンプレートデータを表している。Iavは、画像データI(y,z)の平均値を表している。Tavは、テンプレートデータT(y,z)の平均値を表している。また、ys,zsは、テンプレートデータT(y,z)の中心位置を表している。γ(ys,zs)は、合焦画像との類似度を表す正規化相関値である。以下、γ(ys,zs)を、単にγ(y,z)と表す。
相関サーチ処理部71は、実際には、上式(1)に基づく離散的なアルゴリズムに基づいて、画像データI(y,z)内の全範囲において、テンプレートデータT(y,z)の中心位置を変更しながら正規化相関値γ(y,z)を算出する。正規化相関値γ(y,z)は、画像データI(y,z)中において、合焦画像との類似度が高い位置ほど「1」に近い値となり、合焦画像との類似度が低い位置ほど「0」に近い値となる。
図7は、図5に示される撮像位置において撮像部62から出力される画像データI(y,z)の例を示す。この画像データI(y,z)には、軌道TRに沿って連続する3つのターゲット27a,27b,27cが撮像されている。本例では、プラズマ生成領域25よりも軌道TRの下流側に位置するターゲット27cが最も合焦度が高い状態で撮像されており、プラズマ生成領域25に位置するターゲット27bは非合焦状態となっている。なお、画像データI(y,z)中に撮像されるターゲット27の数は、「3」に限られず、2以上であればよい。
図8は、ターゲット27の軌道TRに対応するライン(z=z0)に沿った正規化相関値γ(y,z)の例を示す。このように、3つのターゲット27a,27b,27cは、合焦度が高いものほど正規化相関値γ(y,z)のピーク値が大きくなる。本例では、ターゲット27cに対応する正規化相関値γ(y,z)のピーク値が最も大きい。
また、相関サーチ処理部71は、正規化相関値γ(y,z)に基づき、画像データI(y,z)内に撮像された各ターゲット27に対応する正規化相関値γ(y,z)のピーク値及びピーク位置を算出する。図9は、正規化相関値γ(y,z)の各ピーク値γPa,γPb,γPcと、y方向に関する各ピーク位置yPa,yPb,yPcとを示している。
回帰係数算出部72は、相関サーチ処理部71により算出されたピーク値及びピーク位置に基づいて回帰係数を算出する。回帰係数とは、図9に示される回帰直線の傾きを表す。具体的には、回帰係数算出部72は、下式(2)に基づいて回帰係数θを算出する。
Figure 0006637155
ここで、γavは、正規化相関値γ(y,z)のピーク値γPiの平均値である。yavは、正規化相関値γ(y,z)のピーク位置yPiの平均値である。
図9に示す例では、回帰係数θが負である。このように、回帰係数θが負であることは、軌道TRの下流側に撮像部62が合焦していること、すなわち、撮像部62の撮像位置が、プラズマ生成領域25から撮像部62側にずれていることを表す。逆に、回帰係数θが正であることは、撮像部62の撮像位置が、プラズマ生成領域25から撮像部62とは反対側にずれていることを表す。
移動量算出部73は、回帰係数算出部72により算出された回帰係数θに基づき、撮像部62の撮像位置を、プラズマ生成領域25にほぼ一致させるために必要なセンサステージ62hの移動量を算出する。移動量には、移動方向、及び移動距離が含まれる。移動距離はスカラー量である。
具体的には、移動量算出部73は、回帰係数θの正負を判定し、回帰係数θが負である場合には、センサステージ62hの移動方向を「正方向」とし、回帰係数θが正である場合には、センサステージ62hの移動方向を「負方向」とする。正方向とは、撮像部62をプラズマ生成領域25に近づける方向である。負方向とは、撮像部62をプラズマ生成領域25から遠ざける方向である。
また、移動量算出部73は、プラズマ生成領域25に対する撮像部62の撮像位置のずれ量と、回帰係数θの絶対値との関係とを予め記憶しており、回帰係数θの絶対値に基づいて、センサステージ62hの移動距離を算出する。
4.2 動作
EUV光生成装置1は、露光装置6から入力されるトリガ信号に応じて、EUV光を繰り返し出力するバースト期間と、EUV光を出力しない休止期間とを交互に繰り返すバースト動作を行う。バースト期間は、露光装置6において、半導体ウエハ上の1つの露光エリアに露光が行われる期間である。休止期間は、1つの露光エリアの露光が終了した後、別の露光エリアの露光が開始されるまでの期間である。休止期間には、図示しないウエハステージの移動が行われる。
バースト期間では、レーザ装置3によるレーザ発振動作と、ターゲット供給部26によるターゲット生成動作とが共に実行される。休止期間では、ターゲット生成動作が持続されたまま、レーザ発振動作が停止される。ターゲット画像計測装置60によるターゲット画像計測動作は、例えば、休止期間中に行われる。なお、ターゲット画像計測動作は、ターゲット生成動作が行われ、かつレーザ発振動作が停止されている期間に行われればよく、バースト動作の休止期間以外の期間に行われてもよい。
図14は、第1の実施形態におけるEUV光生成装置のターゲット画像計測動作を説明するフローチャートである。EUV光生成装置は、以下の処理により、ターゲット画像計測動作を行う。まず、S201において、照明部61によりパルス状の照明光が出力されるとともに、この照明光が照射された複数のターゲット27の像が、撮像部62により撮像される。この撮像により生成された画像データは、移動量決定部64に入力される。
次に、S202おいて、相関サーチ処理部71により、テンプレート記憶部70に予め記憶されたターゲット27の合焦画像をテンプレートとして、正規化相関サーチ処理が行われる。また、相関サーチ処理部71により、撮像部62により撮像された各ターゲット27に対応する正規化相関値γ(y,z)のピーク値及びピーク位置が算出される。
次に、S203おいて、回帰係数算出部72により、回帰係数θが算出される。そして、S204おいて、EUV光生成制御部5により、回帰係数算出部72により算出された回帰係数θの絶対値が所定値以下であるか否かの判定が行われる。回帰係数θの絶対値が所定値より大きいと判定された場合(S204;No)には、S205に移行する。S205において、移動量算出部73により、回帰係数θに基づいて、センサステージ62hの移動量が算出される。
次に、S206において、EUV光生成制御部5は、移動量決定部64により決定された移動量に基づき、センサステージ62hに位置変更指令を出力し、センサステージ62hを移動させる。例えば、図9に示されるように、回帰係数θが負の場合には、センサステージ62hは、回帰係数θの絶対値に応じた距離だけ正方向に移動される。
図10は、センサステージ62hが移動することに伴い、撮像部62の撮像位置がプラズマ生成領域25にほぼ一致し、合焦状態となった例を示す。図11は、合焦状態において撮像部62により出力される画像データの例を示す。このように、プラズマ生成領域25に位置するターゲット27bの像はコントラストが向上し、鮮明化する。図12は、合焦状態における正規化相関値γ(y,z)の例を示す。図13に示すように、回帰直線の傾き、すなわち回帰係数θの値がほぼ「0」となる。
S206の後、再びS201に戻り、上述のS201〜S204の動作が行われる。S204において、回帰係数θの絶対値が所定値以下であると判定された場合(S204;Yes)には、S207に移行する。S207では、上記比較例において説明した画像処理に代えて、濃淡ブロブ解析を行う。具体的には、画像処理部63は、S201において取得された画像データI(y,z)中から、正規化相関値γ(y,z)のピーク値が最も大きいターゲット27の像を対象として、濃淡ブロブ解析を行う。この濃淡ブロブ解析は、二値化処理を行わずに行われる。濃淡ブロブ解析の結果に基づいて、ターゲット27の状態を表すターゲット27の位置、形状、大きさ、軌道、速度等が求められる。
4.3 効果
第1の実施形態によれば、ターゲット27の軌道TRに対して傾斜した方向から撮像することにより得られた画像データに基づいて撮像部62の撮像位置を変更するので、ターゲット27を鮮明に撮像することができ、EUV光の生成を安定化させることができる。
5.第2の実施形態
次に、本開示の第2の実施形態に係るEUV光生成装置を含むEUV光生成システムについて説明する。なお、以下では、上記比較例、又は第1の実施形態に係るEUV光生成装置を含むEUV光生成システムの構成要素と略同じ部分については、同一の符号を付し、適宜説明を省略する。
第1の実施形態では、照明部61を撮像部62に対して対向させることにより、照明部61から出力された照明光を、ターゲット27の軌道TRを介して撮像部62に入射させている。すなわち、第1の実施形態では、照明光をターゲット27が遮蔽することにより生じる影を、ターゲット像として撮像している。これに対して、第2の実施形態では、照明部61を撮像部62に対して対向させないことにより、照明部61から出力された照明光を、ターゲット27の軌道TRに照射させる。すなわち、第2の実施形態では、ターゲット27による照明光の反射光を、ターゲット像として撮像する。
図15は、本開示の第2の実施形態に係るEUV光生成装置に含まれるターゲット画像計測装置60、ターゲット供給部26、及びEUV光生成制御部5を示す。第2の実施形態に係るターゲット画像計測装置60は、主としてターゲット27の軌道TRを計測する、いわゆるフローセンサである。
5.1 構成及び動作
5.1.1 撮像部及び照明部
撮像部62は、第1の実施形態と同様に、撮像方向がターゲット27の軌道TRに対して非直交でかつ非平行となるように配置されている。撮像部62の撮像方向と、Y方向とのなす角度φは、0<φ<90°または90°<φ<180°の角度範囲内に設定されている。第2の実施形態では、φ=45°としている。
照明部61は、撮像部62に対して対向しない位置に配置されている。第2の実施形態では、照明部61は、その照明方向が、撮像部62の撮像方向に直交するように配置されている。照明部61から出力される照射光は、プラズマ生成領域25及び合焦領域FAを含む領域を照射する。
第2の実施形態では、照明部61に含まれる光源61aは、パルス状の照明光ではなく、CW光を照明光として出力する。撮像部62に含まれるイメージセンサ62aは、ターゲット27により反射された光を受光する。EUV光生成制御部5は、光シャッタ62d及びイメージセンサ62aを制御し、ターゲット27の像が線状に撮像されるように露光時間を調整する。
5.1.2 移動量決定部
図16は、第2の実施形態において撮像部62から出力される画像データI(y,z)の例を示す。第2の実施形態では、移動量決定部64に含まれる相関サーチ処理部71は、y方向に直交する複数のラインに沿って、1次元的に相関サーチ処理を行う。例えば、相関サーチ処理部71は、図16に示すように、y座標位置がyaである第1のラインLaと、y座標位置がybである第2のラインLbと、y座標位置がycである第3のラインLcとに沿って相関サーチ処理を行う。第2のラインLbは、プラズマ生成領域25に対応する画像データI(y,z)の中心を通過する。
第2の実施形態では、相関サーチ処理部71による正規化相関サーチ処理は、例えば、下式(3)に基づいて行われる。
Figure 0006637155
図17は、第2の実施形態において、テンプレート記憶部70に記憶されるテンプレートデータT(z)の例を示す。このテンプレートデータT(z)は、線状のターゲット27の像のうち、合焦状態にある部分のz方向における輝度分布を表すものである。なお、zsは、テンプレートデータT(z)の中心位置を表している。相関サーチ処理部71は、テンプレートデータT(z)を用いて、中心位置zsを変更しながら正規化相関値γ(yi,zs)を算出する。yiは、相関サーチ処理を行うy座標位置を表している。以下、γ(yi,zs)を、単にγ(y,z)と表す。
図18は、第1〜第3のラインLa〜Lcに沿って得られる正規化相関値γ(y,z)の例を示す。第2の実施形態では、相関サーチ処理部71は、正規化相関値γ(y,z)に基づきピーク値及びピーク位置を求める。第1〜第3のラインLa〜Lcに沿って得られる正規化相関値γ(y,z)の各ピーク値は、図16に示す線状のターゲット27の像のうち、コントラストが高い部分を通るラインにおいて最も大きくなる。図19は、正規化相関値γ(y,z)の各ピーク値γPa,γPb,γPcを示している。
回帰係数算出部72は、相関サーチ処理部71により算出されたピーク値及びピーク位置に基づいて回帰係数を算出する。具体的には、回帰係数算出部72は、下式(4)に基づいて回帰係数θを算出する。
Figure 0006637155
ここで、γavは、正規化相関値γ(y,z)のピーク値γPiの平均値である。yavは、相関サーチ処理を行ったラインの座標位置yiの平均値、すなわちy方向に関するピーク位置の平均値である。
図19に示す例では、回帰係数θが負である。このように、回帰係数θが負であることは、軌道TRの下流側に撮像部62のフォーカスが合っていることを示している。第1の実施形態と同様に、移動量算出部73は、回帰係数算出部72により算出された回帰係数θに基づき、撮像部62の撮像位置を、プラズマ生成領域25にほぼ一致させるために必要なセンサステージ62hの移動量を算出する。
その他の構成及び動作については、第1の実施形態と同様である。なお、第2の実施形態では、y座標位置が異なるz方向に沿った3本のラインに沿って正規化相関値γ(y,z)を算出する例を示しているが、このラインの数は、「3」に限られず、2以上であればよい。
5.2 効果
第2の実施形態によれば、上述の相関サーチ処理を行うラインの数を多くすることにより、より精度よくセンサステージ62hの移動量を決定することができる。また、第2の実施形態では、各ラインにおいて求められる正規化相関値γ(y,z)のピーク位置から、ターゲット27の実際の軌道を精度よく求めることができる。
6.第3の実施形態
次に、本開示の第3の実施形態に係るEUV光生成装置を含むEUV光生成システムについて説明する。なお、以下では、上記比較例、又は第1の実施形態に係るEUV光生成装置を含むEUV光生成システムの構成要素と略同じ部分については、同一の符号を付し、適宜説明を省略する。
第1の実施形態では、プラズマ生成領域25の位置は固定されているが、プラズマ生成領域25の位置は、露光装置6からの制御により変更されることがある。第3の実施形態として、プラズマ生成領域25の位置が変更される場合のEUV光生成システムについて説明する。
6.1 構成
6.1.1 制御系統
図20は、第3の実施形態において、プラズマ生成領域25が移動される場合におけるEUV光生成システムの制御系統を示す。第3の実施形態に係るEUV光生成装置に含まれるEUV光生成制御部5は、EUV光生成制御部5にとって外部装置である露光装置6から、プラズマ生成領域25を移動する指令信号を受信する。プラズマ生成領域25を移動する指令信号は、プラズマ生成領域25をX方向、Y方向、Z方向にそれぞれどれだけ移動させるか、またはプラズマ生成領域25をどの座標位置に移動させるかを示す情報を含んでいる。ここでは一例として、プラズマ生成領域25を座標位置(Xt,Yt,Zt)に移動させるものとする。
EUV光生成制御部5は、露光装置6からプラズマ生成領域25を移動する指令信号を受信すると、以下のようにして、ターゲット位置とレーザ光集光位置とを変更することにより、プラズマ生成領域25を移動させる。
EUV光生成制御部5は、所定タイミングにおけるターゲット27のY方向位置を座標位置Ytに変更するために、レーザ装置3を制御する。すなわち、EUV光生成制御部5は、レーザ装置3に発振タイミング変更指令を送信することにより、レーザ装置3がパルスレーザ光31を出力するための遅延時間を調整する。
EUV光生成制御部5は、ターゲット27のX方向及びZ方向の位置を座標位置(Xt,Zt)に変更するために、ターゲット供給部アクチュエータ261を制御する。すなわち、EUV光生成制御部5は、ターゲット供給部アクチュエータ261にターゲット供給位置変更指令を送信することにより、ターゲット供給部26を移動させ、ターゲット27の軌道TRを移動させる。ターゲット供給部アクチュエータ261は、本開示のターゲット軌道変更部に相当する。
EUV光生成制御部5は、レーザ光集光位置を座標位置(Xt,Yt,Zt)に変更するために、レーザ光伝送装置34を制御する。すなわち、EUV光生成制御部5は、レーザ光伝送装置34にレーザ光集光位置変更指令を送信することにより、レーザ光集光位置を変更させる。レーザ光伝送装置34は、本開示の集光位置変更部に相当する。
また、EUV光生成制御部5は、プラズマ生成領域25を座標位置(Xt,Yt,Zt)に移動させることによる撮像部62の撮像方向に沿ったプラズマ生成領域25の移動量Ltを算出する。EUV光生成制御部5は、算出した移動量Ltを、センサステージ位置変更指令としてセンサステージ62hに送信することにより、撮像方向に沿ってセンサステージ62hの位置を変更させる。
6.1.2 撮像部及び照明部
図21は、第3の実施形態に係るターゲット画像計測装置60の構成を示す。第3の実施形態における照明部61及び撮像部62の構成は、第1の実施形態と同様である。プラズマ生成領域25の位置は、上述のように露光装置6からの指令にしたがって、EUV光生成制御部5の制御により変更される。
図22は、移動前後のプラズマ生成領域25の座標位置を例示する。EUV光生成制御部5は、合焦領域FAの中心に位置するプラズマ生成領域25の初期の座標位置を(0,0,0)とし、移動後の座標位置を(Xt,Yt,Zt)とする。EUV光生成制御部5は、図22に示す幾何学的関係から導かれる下式(5)に基づいて、上述の移動量Ltを算出する。
Figure 0006637155
EUV光生成制御部5は、算出した移動量Ltに基づき、撮像部62の合焦領域FA中に移動後の座標位置(Xt,Yt,Zt)が含まれるようにセンサステージ62hを移動させる。このように、プラズマ生成領域25の移動に応じて撮像位置を移動させることで、プラズマ生成領域25においてターゲット27の像を鮮明に撮像することができる。しかし、プラズマ生成領域25の移動に応じて撮像位置を移動させたとしても、その後に撮像位置の変動が生じ得る。この撮像位置の変動は、第1の実施形態と同様に、例えば、EUV光やパルスレーザ光33の散乱光による加熱によって、ウインドウ62gや結像光学系62c等の光学素子の屈折率が変動することに起因する。
このため、第3の実施形態においても、ターゲット27の軌道TRに対して傾斜した方向から撮像することにより得られた画像データに基づいて、撮像部62の撮像位置の変更が行われる。
6.1.3 移動量決定部
図23は、第3の実施形態に係る画像処理部63に含まれる移動量決定部64aの構成を示す。第3の実施形態の移動量決定部64aは、第1の実施形態の移動量決定部64に含まれる回帰係数算出部72に代えて、変位量算出部74を含んでいる。すなわち、第3の実施形態の移動量決定部64aは、テンプレート記憶部70と、相関サーチ処理部71と、変位量算出部74と、移動量算出部73と、を含んでいる。
第1の実施形態と同様に、相関サーチ処理部71は、テンプレート記憶部70に記憶された合焦画像をテンプレートとして、上述の式(1)に基づいて、正規化相関サーチ処理を行う。なお、第3の実施形態では、画像データI(y,z)には、5個程度のターゲット27の像が撮像されていることが好ましい。
図24は、相関サーチ処理部71により各ターゲット27の像について算出される正規化相関値γ(y,z)のピーク値を例示している。変位量算出部74は、正規化相関値γ(y,z)の最大相関位置yPmを求め、この最大相関位置yPmのプラズマ生成領域25に対応する位置ytからの変位量ΔyPmを算出する。最大相関位置yPmは、正規化相関値γ(y,z)の最大値γPmに対するy座標位置である。
具体的には、変位量算出部74は、プラズマ生成領域25に対応する位置ytを、下式(6)に基づいて算出する。位置ytは、画像データI(y,z)上におけるプラズマ生成領域25のy座標位置である。
Figure 0006637155
また、変位量算出部74は、変位量ΔyPmを、下式(7)に基づいて算出する。
Figure 0006637155
第3の実施形態では、移動量算出部73は、変位量算出部74により算出された変位量ΔyPmに基づき、撮像部62の撮像位置を、プラズマ生成領域25にほぼ一致させるために必要なセンサステージ62hの移動量を算出する。
具体的には、移動量算出部73は、変位量ΔyPmの正負を判定し、変位量ΔyPmが正である場合には、センサステージ62hの移動方向を「正方向」とし、変位量ΔyPmが負である場合には、センサステージ62hの移動方向を「負方向」とする。正方向とは、撮像部62をプラズマ生成領域25に近づける方向である。負方向とは、撮像部62をプラズマ生成領域25から遠ざける方向である。
また、移動量算出部73は、プラズマ生成領域25に対する撮像部62の撮像位置のずれ量と、変位量ΔyPmの絶対値との関係とを予め記憶しており、変位量ΔyPmの絶対値に基づいて、センサステージ62hの移動距離を算出する。
6.2 動作
図25は、第3の実施形態におけるEUV光生成装置のターゲット画像計測動作を説明するフローチャートである。EUV光生成装置は、以下の処理により、ターゲット画像計測動作を行う。まず、S301において、EUV光生成制御部5は、露光装置6から送出されるプラズマ生成領域25の移動指令信号を待ち受ける。次に、S302において、EUV光生成制御部5は、露光装置6からプラズマ生成領域25の移動指令信号を受信すると(S301;Yes)、移動指令信号に従ってプラズマ生成領域25を移動させ、撮像方向に沿ったプラズマ生成領域25の移動量Ltを算出する。プラズマ生成領域25の移動は、EUV光生成制御部5が、レーザ装置3、ターゲット供給部アクチュエータ261、及びレーザ光伝送装置34を制御することにより行われる。
次に、S303において、EUV光生成制御部5は、算出した移動量Ltに基づき、センサステージ62hに位置変更指令信号を送出する。センサステージ62hは、位置変更指令信号を受け、移動後のプラズマ生成領域25が合焦領域FA中に含まれる位置に移動される。以上のようにプラズマ生成領域25の移動に応じてセンサステージ62hを移動させたとしても、光学素子の屈折率変動等によって撮像部62の撮像位置が変動し、プラズマ生成領域25が合焦領域FA外となることがある。
続く、S304は、例えば、バースト動作の休止期間に行われる。まず、S304において、照明部61によりパルス状の照明光が出力されるとともに、この照明光が照射された複数のターゲット27の像が、撮像部62により撮像される。この撮像により生成された画像データは、移動量決定部64aに入力される。
次に、S305おいて、相関サーチ処理部71により、テンプレート記憶部70に予め記憶されたターゲット27の合焦画像をテンプレートとして、正規化相関サーチ処理が行われる。また、相関サーチ処理部71により、撮像部62により撮像された各ターゲット27に対応する正規化相関値γ(y,z)のピーク値及びピーク位置が算出される。
次に、S306おいて、変位量算出部74により、正規化相関値γ(y,z)の最大相関位置yPmと、画像データI(y,z)上のプラズマ生成領域25に対応する位置ytとが求められ、変位量ΔyPmが算出される。そして、S307おいて、EUV光生成制御部5により、変位量算出部74により算出された変位量ΔyPmの絶対値が所定値以下であるか否かの判定が行われる。変位量ΔyPmの絶対値が所定値より大きいと判定された場合(S307;No)には、S308に移行する。S308において、移動量算出部73により、変位量ΔyPmに基づいて、センサステージ62hの移動量が算出される。
次に、S309において、EUV光生成制御部5は、移動量決定部64aにより決定された移動量に基づき、センサステージ62hに位置変更指令を出力し、センサステージ62hを移動させる。例えば、図28に示されるように、変位量ΔyPmが正の場合には、センサステージ62hは、変位量ΔyPmの絶対値に応じた距離だけ正方向に移動される。
この後、再びS304に戻り、上述のS204〜S307の動作が行われる。S307において、変位量ΔyPmの絶対値が所定値以下であると判定された場合(S307;Yes)には、S310に移行する。S310では、第1の実施形態と同様の画像処理が行われる。
6.3 効果
第3の実施形態によれば、プラズマ生成領域25が移動された場合においても、ターゲット27を鮮明に撮像することができ、EUV光の生成を安定化させることができる。
7.第4の実施形態
次に、本開示の第4の実施形態に係るEUV光生成装置を含むEUV光生成システムについて説明する。なお、以下では、上記比較例、又は第2の実施形態に係るEUV光生成装置を含むEUV光生成システムの構成要素と略同じ部分については、同一の符号を付し、適宜説明を省略する。
第2の実施形態では、プラズマ生成領域25の位置は固定されているが、プラズマ生成領域25の位置は、露光装置6からの制御により変更されることがある。第4の実施形態として、プラズマ生成領域25の位置が変更される場合のEUV光生成システムについて説明する。
7.1 構成及び動作
7.1.1 制御系統
第4の実施形態に係るEUV光生成装置の制御系統は、図20に示される第3の実施形態の制御系統と同様である。EUV光生成制御部5は、露光装置6からプラズマ生成領域25を移動する指令信号を受信すると、以下のようにして、ターゲット位置とレーザ光集光位置とを変更することにより、プラズマ生成領域25を移動させる。
また、EUV光生成制御部5は、プラズマ生成領域25を座標位置(Xt,Yt,Zt)に移動させることによる撮像部62の撮像方向に沿ったプラズマ生成領域25の移動量Ltを算出する。EUV光生成制御部5は、算出した移動量Ltを、センサステージ位置変更指令としてセンサステージ62hに送信することにより、撮像方向に沿ってセンサステージ62hの位置を変更させる。
7.1.2 撮像部及び照明部
図26は、第4の実施形態に係るターゲット画像計測装置60の構成を示す。第4の実施形態における照明部61及び撮像部62の構成は、第2の実施形態と同様である。プラズマ生成領域25の位置は、上述のように露光装置6からの指令にしたがって、EUV光生成制御部5の制御により変更される。EUV光生成制御部5は、第3の実施形態と同様に移動量Ltを算出し、算出した移動量Ltに基づき、撮像部62の合焦領域FA中に移動後の座標位置(Xt,Yt,Zt)が含まれるようにセンサステージ62hを移動させる。
7.1.3 移動量決定部
第4の実施形態に係る画像処理部63に含まれる移動量決定部64aの構成は、図23に示される第3の実施形態の移動量決定部64aの構成と同様である。但し、相関サーチ処理部71は、第2の実施形態と同様に、上述の式(3)に基づく相関サーチ処理を行う。第4の実施形態では、相関サーチを行うラインの数は、5程度であることが好ましい。
変位量算出部74は、上式(3)に基づいて算出された正規化相関値γ(y,z)の最大相関位置yPmを求め、この最大相関位置yPmのプラズマ生成領域25に対応する位置ytからの変位量ΔyPmを算出する。位置ytは、上述の式(6)に基づいて算出される。また、変位量算出部74は、変位量ΔyPmを、上述の式(7)に基づいて算出する。
移動量算出部73は、変位量算出部74により算出された変位量ΔyPmに基づき、撮像部62の撮像位置を、プラズマ生成領域25にほぼ一致させるために必要なセンサステージ62hの移動量を算出する。
第4の実施形態におけるEUV光生成装置のその他の構成及び動作は、第3の実施形態におけるEUV光生成装置の構成及び動作と同様である。
8.変形例
8.1 撮像部の撮像方向
第1〜第4の実施形態では、撮像部62の撮像方向を、ターゲット27の軌道TRに対して非直交でかつ非平行であって、XY平面と平行としているが、これに限られず、XY平面と非平行であってもよい。例えば、撮像部62の撮像方向を、ターゲット27の軌道TRに対して非直交でかつ非平行であって、YZ平面と平行としてもよい。
8.2 撮像部及び照明部
第1〜第4の実施形態では、照明部61と撮像部62とを1セットのみ設けているが、照明部61と撮像部62とを複数セット設けてもよい。この場合、各撮像部62の撮像方向を、互いにそれぞれ異なる方向とすることが好ましい。これにより、ターゲット27の画像計測を複数の方向から行うことが可能となる。
8.3 撮像部の撮像位置の変更
第1〜第4の実施形態では、撮像部62の筐体62fを保持したセンサステージ62hを撮像方向に沿って移動させることにより、撮像部62の撮像位置を変更しているが、これに限られず、その他の機構により撮像部62の撮像位置を変更してもよい。例えば、筐体62f内の一部の光学素子のみを撮像方向に沿って移動させることにより、撮像部62の撮像位置を変更してもよい。このように、撮像部62の全体を移動させずに、一部の光学素子を移動させる場合には、移動対象の光学素子の移動量に対する撮像位置の移動量の倍率を考慮する必要がある。
また、第1〜第4の実施形態では、直動アクチュエータであるセンサステージ62hにより撮像部62を移動させているが、撮像部62を移動させるためのアクチュエータはこれに限られず、他のアクチュエータを用いてもよい。
8.4 制御部
第1〜第4の実施形態におけるEUV光生成制御部5、信号処理部53、及び画像処理部63は、コンピュータやプログラマブルコントローラ等の汎用の制御機器によって構成されてもよい。また、テンプレート記憶部70と、相関サーチ処理部71と、回帰係数算出部72と、移動量算出部73と、変位量算出部74とは、FPGAやカスタムチップ等によって構成されてもよい。或いは、不図示のROMやハードディスク等の記憶媒体に記憶され、実行時に随時読み出し可能なソフトウェアによって実現されてもよい。
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の各実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (12)

  1. プラズマ生成領域に向けて、複数のターゲットを軌道に沿って出力するターゲット供給部と、
    前記プラズマ生成領域に向けてレーザ光を照射するレーザ装置と、
    撮像方向が前記軌道に対して非直交でかつ非平行であり、前記プラズマ生成領域を含む領域を撮像して画像データを出力する撮像部と、
    前記プラズマ生成領域を含む領域に照明光を出力する照明部と、
    前記撮像部の撮像位置を前記撮像方向に沿って変更する撮像位置変更部と、
    前記画像データに基づき、前記撮像位置の移動量を決定する移動量決定部と、
    前記移動量決定部により決定された移動量に基づいて前記撮像位置変更部を制御する制御部と、
    を備える極端紫外光生成装置。
  2. 前記移動量決定部は、
    前記画像データに対して、前記ターゲットの合焦画像をテンプレートとして相関サーチを行い、前記合焦画像との類似度を表す複数の相関値を算出する相関サーチ処理部と、
    前記複数の相関値に基づいて、前記撮像位置の移動量を算出する移動量算出部と、
    を有する請求項1に記載の極端紫外光生成装置。
  3. 前記照明部は、前記撮像部に対向する位置に配置されており、
    前記撮像部は、2以上の前記ターゲットの像が同時に撮像された前記画像データを出力し、
    前記移動量決定部は、前記撮像部により撮像された前記各ターゲットに対応する前記相関値のピーク値及びピーク位置に基づいて、回帰係数を算出する回帰係数算出部をさらに有し、
    前記移動量算出部は、前記回帰係数算出部により算出された回帰係数に基づいて前記移動量を算出する請求項2に記載の極端紫外光生成装置。
  4. 前記照明部は、前記照明光としてパルス状の光を出力する請求項3に記載の極端紫外光生成装置。
  5. 前記照明部は、前記撮像部に対向しない位置に配置されており、
    前記撮像部は、前記ターゲットの像が前記軌道に沿った線状に撮像された前記画像データを出力し、
    前記相関サーチ処理部は、前記線状の像に直交する複数のラインに沿って前記複数の相関値を算出し、
    前記移動量決定部は、前記各ラインに沿って得られる前記複数の相関値のピーク値及びピーク位置に基づいて、回帰係数を算出する回帰係数算出部をさらに有し、
    前記移動量算出部は、前記回帰係数算出部により算出された回帰係数に基づいて前記移動量を算出する請求項2に記載の極端紫外光生成装置。
  6. 前記照明部は、前記照明光としてCW光を出力する請求項5に記載の極端紫外光生成装置。
  7. 前記ターゲットの軌道を変更するターゲット軌道変更部と、
    前記レーザ光の集光位置を変更する集光位置変更部と、
    をさらに備え、
    前記制御部は、外部から受信する前記プラズマ生成領域の移動指令信号に基づいて、前記ターゲット軌道変更部を制御して前記軌道を変更し、前記集光位置変更部を制御して前記集光位置を変更する請求項2に記載の極端紫外光生成装置。
  8. 前記照明部は、前記撮像部に対向する位置に配置されており、
    前記撮像部は、2以上の前記ターゲットの像が同時に撮像された前記画像データを出力し、
    前記移動量決定部は、前記撮像部により撮像された前記各ターゲットに対応する前記相関値のうちの最大値に対応する最大相関位置を求め、前記最大相関位置の前記プラズマ生成領域に対応する位置からの変位量を算出する変位量算出部をさらに備え、
    前記移動量算出部は、前記変位量算出部により算出された前記変位量に基づいて前記移動量を算出する請求項7に記載の極端紫外光生成装置。
  9. 前記照明部は、前記照明光としてパルス状の光を出力する請求項8に記載の極端紫外光生成装置。
  10. 前記照明部は、前記撮像部に対向しない位置に配置されており、
    前記撮像部は、前記ターゲットの像が前記軌道に沿った線状に撮像された前記画像データを出力し、
    前記相関サーチ処理部は、前記線状の像に直交する複数のラインに沿って前記複数の相関値を算出し、
    前記移動量決定部は、前記各ラインに沿って得られる前記複数の相関値のうちの最大値に対応する最大相関位置を求め、前記最大相関位置の前記プラズマ生成領域に対応する位置からの変位量を算出する変位量算出部をさらに備え、
    前記移動量算出部は、前記変位量算出部により算出された前記変位量に基づいて前記移動量を算出する請求項7に記載の極端紫外光生成装置。
  11. 前記照明部は、前記照明光としてCW光を出力する請求項10に記載の極端紫外光生成装置。
  12. 前記撮像位置変更部は、前記撮像部を前記撮像方向に沿って移動させる直動アクチュエータである請求項1に記載の極端紫外光生成装置。
JP2018501535A 2016-02-26 2016-02-26 極端紫外光生成装置 Active JP6637155B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055854 WO2017145366A1 (ja) 2016-02-26 2016-02-26 極端紫外光生成装置

Publications (2)

Publication Number Publication Date
JPWO2017145366A1 JPWO2017145366A1 (ja) 2018-12-20
JP6637155B2 true JP6637155B2 (ja) 2020-01-29

Family

ID=59685956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018501535A Active JP6637155B2 (ja) 2016-02-26 2016-02-26 極端紫外光生成装置

Country Status (3)

Country Link
US (1) US10712666B2 (ja)
JP (1) JP6637155B2 (ja)
WO (1) WO2017145366A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019057409A1 (en) * 2017-09-20 2019-03-28 Asml Netherlands B.V. SOURCE OF RADIATION
KR20210127948A (ko) * 2019-02-26 2021-10-25 에이에스엠엘 네델란즈 비.브이. 극자외 광원 내의 타겟 공급 제어 장치 및 방법
US11275317B1 (en) * 2021-02-26 2022-03-15 Taiwan Semiconductor Manufacturing Co., Ltd. Droplet generator and method of servicing a photolithographic tool

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405416B2 (en) * 2005-02-25 2008-07-29 Cymer, Inc. Method and apparatus for EUV plasma source target delivery
US8138487B2 (en) * 2009-04-09 2012-03-20 Cymer, Inc. System, method and apparatus for droplet catcher for prevention of backsplash in a EUV generation chamber
JP5603135B2 (ja) 2009-05-21 2014-10-08 ギガフォトン株式会社 チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法
JP5448621B2 (ja) * 2009-07-27 2014-03-19 キヤノン株式会社 撮像装置、及び撮像装置の制御方法
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法
JP5994337B2 (ja) * 2012-03-30 2016-09-21 ソニー株式会社 微小粒子分取装置及びディレイタイム決定方法
JP6087105B2 (ja) 2012-10-23 2017-03-01 ギガフォトン株式会社 極端紫外光生成装置
WO2015041260A1 (ja) * 2013-09-17 2015-03-26 ギガフォトン株式会社 極端紫外光生成装置
US10237960B2 (en) * 2013-12-02 2019-03-19 Asml Netherlands B.V. Apparatus for and method of source material delivery in a laser produced plasma EUV light source

Also Published As

Publication number Publication date
WO2017145366A1 (ja) 2017-08-31
US10712666B2 (en) 2020-07-14
JPWO2017145366A1 (ja) 2018-12-20
US20180314161A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11656429B2 (en) Systems, devices, and methods for automatic microscopic focus
JP2022095680A (ja) 極端紫外光源におけるターゲットの移動特性の決定
US10141186B2 (en) Target image-capture device, extreme-ultraviolet-light generation device, and extreme-ultraviolet-light generation system
TW201945786A (zh) 自動顯微鏡聚焦系統、裝置及方法
JP6637155B2 (ja) 極端紫外光生成装置
US10420198B2 (en) Extreme ultraviolet light generating apparatus
TWI757446B (zh) 用於euv光源的系統及方法
JP2023060045A (ja) 極端紫外光源におけるターゲット軌道計測
WO2015071066A1 (en) Radiation source
JP5944156B2 (ja) 照明光学系と結像光学系とが統合された光学系、及びそれを含む3次元映像獲得装置
TWI612851B (zh) 用於極紫外線光源的系統、將自極紫外光系統產生之照射放大光束相對於標靶材料對準的方法及極紫外光系統
JP6387381B2 (ja) オートフォーカスシステム、方法及び画像検査装置
WO2017126301A1 (ja) 極端紫外光生成装置
JP7110341B2 (ja) ターゲット撮影装置及び極端紫外光生成装置
US11287744B2 (en) Extreme ultraviolet light generation apparatus, target control method, and electronic device manufacturing method
CN205942249U (zh) 光刻系统
US20160370706A1 (en) Extreme ultraviolet light generation apparatus
JP2012181341A (ja) 顕微鏡装置
JP2010243815A (ja) 焦点検出機構及び焦点検出方法
WO2017073470A1 (ja) 光ピンセット装置
JP2018009977A (ja) パターン照射装置、撮影システムおよびハンドリングシステム
JP6676066B2 (ja) 極端紫外光生成装置
JP2017138176A (ja) 三次元情報取得システム、三次元情報取得方法及びピッキングシステム
TW202202945A (zh) 極紫外光光源之對準
JP2021043159A (ja) 画像検査装置、調整装置、及び、調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6637155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250