JP6634709B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP6634709B2
JP6634709B2 JP2015115932A JP2015115932A JP6634709B2 JP 6634709 B2 JP6634709 B2 JP 6634709B2 JP 2015115932 A JP2015115932 A JP 2015115932A JP 2015115932 A JP2015115932 A JP 2015115932A JP 6634709 B2 JP6634709 B2 JP 6634709B2
Authority
JP
Japan
Prior art keywords
groove
vehicle
ratio
land
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115932A
Other languages
Japanese (ja)
Other versions
JP2017001472A (en
Inventor
佳史 小石川
佳史 小石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2015115932A priority Critical patent/JP6634709B2/en
Publication of JP2017001472A publication Critical patent/JP2017001472A/en
Application granted granted Critical
Publication of JP6634709B2 publication Critical patent/JP6634709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、トレッド部にタイヤ周方向に延びる複数本の主溝を設けた空気入りタイヤに関し、更に詳しくは、耐摩耗性とウエット性能とをより高い次元で両立させ、更にはドライ路面での操縦安定性を改善することを可能にした空気入りタイヤに関する。   The present invention relates to a pneumatic tire provided with a plurality of main grooves extending in a tire circumferential direction in a tread portion, and more particularly, to achieve both higher wear resistance and wet performance in a higher dimension, and furthermore, on a dry road surface. The present invention relates to a pneumatic tire capable of improving steering stability.

空気入りタイヤでは、一般的に、トレッド部にタイヤ周方向に延びる複数本の主溝が形成され、これら主溝によりタイヤ周方向に延在する複数列の陸部が区画され、各陸部にタイヤ幅方向に延びるラグ溝やサイプ等の横溝要素が形成されている。   In a pneumatic tire, generally, a plurality of main grooves extending in the tire circumferential direction are formed in a tread portion, and a plurality of rows of land portions extending in the tire circumferential direction are defined by these main grooves. Lateral groove elements such as lug grooves and sipes extending in the tire width direction are formed.

上述のような構成を有する空気入りタイヤにおいて、トレッド部の溝面積を減らした場合(例えば、特許文献1〜2参照)、トレッド部の剛性が高くなるため耐摩耗性を改善することが可能であるものの、それに伴ってウエット性能が低下するという問題がある。また、車両に対する装着方向が指定された空気入りタイヤにおいて、ラグ溝のピッチ数や配列を車両内側領域と車両外側領域とで互いに異ならせることにより、二律背反関係にあるタイヤ性能を両立させること(例えば、特許文献3〜5参照)が行われているが、このような手法では耐摩耗性とウエット性能とを両立させることが難しいのが現状である。   In the pneumatic tire having the above-described configuration, when the groove area of the tread portion is reduced (for example, see Patent Literatures 1 and 2), the rigidity of the tread portion increases, so that the wear resistance can be improved. However, there is a problem that the wet performance is reduced accordingly. Further, in a pneumatic tire in which the mounting direction with respect to the vehicle is specified, the pitch number and arrangement of the lug grooves are made different from each other between the vehicle inside region and the vehicle outside region so that the tire performances in a trade-off relationship are compatible (for example, However, at present, it is difficult to achieve both abrasion resistance and wet performance with such a method.

特開2014−166824号公報JP 2014-166824 A 特開2014−184828号公報JP 2014-184828 A 特開2013−244132号公報JP 2013-244132 A 特開2012−236455号公報JP 2012-236455 A 特開2011−255685号公報JP 2011-255885 A

本発明の目的は、耐摩耗性とウエット性能とをより高い次元で両立させ、更にはドライ路面での操縦安定性を改善することを可能にした空気入りタイヤを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a pneumatic tire capable of achieving both higher abrasion resistance and wet performance at a higher level and further improving steering stability on a dry road surface.

上記目的を達成するための本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えると共に、車両に対する装着方向が指定された空気入りタイヤにおいて、
前記トレッド部にタイヤ周方向に延びる複数本の主溝を設け、これら主溝により複数列の陸部を区画し、各陸部にタイヤ幅方向に延びる複数本の横溝要素を形成し、これら複数本の横溝要素が溝幅1.2mm以下の横溝要素と溝幅1.2mmを超える横溝要素とを含み、前記トレッド部の車両内側の接地端からタイヤ赤道までを車両内側領域とし、前記トレッド部の車両外側の接地端からタイヤ赤道までを車両外側領域とし、各陸部の接地領域内での幅と各陸部において溝幅1.2mmを超える横溝要素により分断されずにタイヤ周方向に連続的に延在する部分の接地領域内での幅との比率を連続陸部比率としたとき、前記トレッド部の全体としての連続陸部比率が70%以上であり、前記車両外側領域での連続陸部比率が前記車両内側領域での連続陸部比率よりも大きく、かつ前記車両外側領域に含まれる陸部に形成される溝幅1.2mm以下の横溝要素が前記車両内側領域に含まれる陸部に形成される溝幅1.2mm以下の横溝要素よりも相対的に多くなっており、前記車両外側領域に含まれる陸部の溝面積比率が前記車両内側領域に含まれる陸部の溝面積比率よりも大きいことを特徴とするものである。
In order to achieve the above object, a pneumatic tire of the present invention includes a ring-shaped tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and these sidewall portions. And a pair of bead portions arranged on the radial inside of the tire, and the pneumatic tire in which the mounting direction with respect to the vehicle is specified,
A plurality of main grooves extending in the tire circumferential direction are provided on the tread portion, a plurality of rows of land portions are defined by these main grooves, and a plurality of lateral groove elements extending in the tire width direction are formed on each land portion. The lateral groove element includes a lateral groove element having a groove width of 1.2 mm or less and a lateral groove element having a groove width of more than 1.2 mm, and a region from the ground contact end of the tread portion inside the vehicle to the tire equator is defined as a vehicle inside region, and the tread portion includes: The area from the ground contact end on the outside of the vehicle to the tire equator is defined as the vehicle outside area, and is continuous in the tire circumferential direction without being divided by the width of each land part in the ground contact area and the lateral groove element exceeding 1.2 mm in groove width on each land part When the ratio of the width of the portion extending in the contact area to the width of the continuously extending portion is the continuous land portion ratio, the continuous land portion ratio of the tread portion as a whole is 70% or more, and the continuous The land ratio is the area inside the vehicle. Continuous land portion greater than the ratio, and the vehicle follows the groove width 1.2mm formed in land portions included in outer region lateral grooves element groove width is formed in the land portions included in the vehicle inner side region 1. It is relatively larger than the horizontal groove element of 2 mm or less, and the groove area ratio of the land portion included in the vehicle outside region is larger than the land area groove ratio of the land portion included in the vehicle inside region. Things.

本発明では、車両に対する装着方向が指定された空気入りタイヤにおいて、トレッド部の全体としての連続陸部比率を70%以上とすることにより、トレッド部のタイヤ周方向の剛性を高めて耐摩耗性を改善することができる。また、車両外側領域での連続陸部比率を車両内側領域での連続陸部比率よりも大きくすることにより、ドライ路面での操縦安定性に対する寄与が大きい車両外側領域における剛性の増大効果を相対的に大きくするので、ドライ路面での操縦安定性を改善することができる。更に、車両外側領域に含まれる陸部の溝面積比率を車両内側領域に含まれる陸部の溝面積比率よりも大きくすることにより、コーナリング時に相対的に大きな負荷が掛かる車両外側領域での排水性が良好になるので、ウエット性能(特に、ウエット路面でのコーナリング性能)を改善することができる。   According to the present invention, in a pneumatic tire in which the mounting direction with respect to a vehicle is specified, the continuous land portion ratio of the entire tread portion is set to 70% or more, so that the rigidity of the tread portion in the tire circumferential direction is increased and the wear resistance is improved. Can be improved. In addition, by increasing the ratio of the continuous land portions in the vehicle outside region to the continuous land portion ratio in the vehicle inside region, the effect of increasing the rigidity in the vehicle outside region that greatly contributes to steering stability on dry road surfaces is relatively reduced. The steering stability on dry roads can be improved. Furthermore, by making the groove area ratio of the land portion included in the vehicle outside region larger than the groove area ratio of the land portion included in the vehicle inside region, drainage in the vehicle outside region where a relatively large load is applied at the time of cornering. , The wet performance (particularly, the cornering performance on a wet road surface) can be improved.

本発明において、トレッド部の全体としての接地領域内での溝面積比率は30%以下であることが好ましい。トレッド部の全体としての溝面積比率を上記の如く規定することにより、耐摩耗性の改善効果を十分に得ることができる。   In the present invention, it is preferable that the groove area ratio in the ground region as a whole of the tread portion is 30% or less. By specifying the groove area ratio of the tread portion as a whole as described above, the effect of improving the wear resistance can be sufficiently obtained.

同様に、トレッド部の主溝を除いた部位の接地領域内での溝面積比率は10%以下であることが好ましい。トレッド部の主溝を除いた部位の溝面積比率を上記の如く規定することにより、耐摩耗性の改善効果を十分に得ることができる。   Similarly, it is preferable that the groove area ratio in the tread portion excluding the main groove in the ground contact region is 10% or less. By defining the groove area ratio of the portion excluding the main groove of the tread portion as described above, the effect of improving the wear resistance can be sufficiently obtained.

車両外側領域に含まれる陸部の溝面積比率と車両内側領域に含まれる陸部の溝面積比率との差は2%〜5%であることが好ましい。両者の差を適正化することにより、ドライ路面での操縦安定性を良好に維持しつつ、ウエット性能の改善効果を十分に得ることができる。   The difference between the land area groove area ratio included in the vehicle outside area and the land area groove area ratio included in the vehicle inside area is preferably 2% to 5%. By optimizing the difference between the two, it is possible to sufficiently obtain the effect of improving the wet performance while maintaining good steering stability on a dry road surface.

車両外側領域での連続陸部比率と車両内側領域での連続陸部比率との差は5%〜15%であることが好ましい。両者の差を適正化することにより、ドライ路面での操縦安定性の改善効果を十分に得ることができる。   The difference between the continuous land portion ratio in the vehicle outside region and the continuous land portion ratio in the vehicle inside region is preferably 5% to 15%. By optimizing the difference between the two, it is possible to sufficiently obtain the effect of improving steering stability on dry road surfaces.

また、トレッド部の全体としての連続陸部比率は70%〜95%であることが好ましい。トレッド部の全体としての連続陸部比率の上限値を規定することにより、ウエット性能を良好に維持することができる。   Further, the continuous land portion ratio of the entire tread portion is preferably 70% to 95%. By defining the upper limit of the continuous land portion ratio as a whole of the tread portion, it is possible to maintain good wet performance.

本発明は、各種車両に装着される空気入りタイヤに適用可能であるが、特に乗用車に装着される空気入りタイヤに適用することが好ましい。乗用車用の空気入りタイヤでは、耐摩耗性、ウエット性能、ドライ路面での操縦安定性を同時に改善することが求められているので、このような用途では顕著な効果を期待することができる。   The present invention is applicable to pneumatic tires mounted on various vehicles, but is particularly preferably applied to pneumatic tires mounted on passenger vehicles. Since pneumatic tires for passenger cars are required to simultaneously improve wear resistance, wet performance, and steering stability on dry road surfaces, remarkable effects can be expected in such applications.

本発明において、トレッド部の接地領域は、タイヤを標準リムにリム組みして空気圧230kPaを充填した状態で平面上に垂直に置いて所定の荷重を加えたときに測定されるタイヤ軸方向の接地幅に基づいて特定される。接地端は、接地領域のタイヤ軸方向の最外側位置である。「所定の荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている最大負荷能力の70%に相当する荷重とする。   In the present invention, the ground contact area of the tread portion is measured when a predetermined load is applied by placing the tire vertically on a plane with the tire mounted on a standard rim and filled with an air pressure of 230 kPa and applying a predetermined load. Specified based on width. The ground contact end is the outermost position in the tire axial direction of the ground contact area. The “predetermined load” is a load corresponding to 70% of the maximum load capacity defined for each tire in the standard system including the standard on which the tire is based.

トレッド部又は陸部の溝面積比率は、トレッド部又は陸部の踏面におけるネガティブ要素の面積とポジティブ要素の面積との総和に対するネガティブ要素の面積の比率(%)である。ネガティブ要素とは溝部分(サイプを含む)を意味し、ポジティブ要素とは陸部分を意味する。   The groove area ratio of the tread portion or the land portion is the ratio (%) of the area of the negative element to the sum of the area of the negative element and the area of the positive element on the tread of the tread portion or the land portion. The negative element means a groove portion (including a sipe), and the positive element means a land portion.

本発明の実施形態からなる空気入りタイヤを示す子午線断面図である。1 is a meridian sectional view showing a pneumatic tire according to an embodiment of the present invention. 図1の空気入りタイヤのトレッドパターンを示す展開図である。FIG. 2 is a development view showing a tread pattern of the pneumatic tire of FIG. 1.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1〜図2は本発明の実施形態からなる空気入りタイヤを示すものである。この空気入りタイヤは、車両装着時におけるタイヤ表裏の装着方向が指定されたタイヤである。図1〜図2において、INは車両装着時の車両内側であり、OUTは車両装着時の車両外側である。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show a pneumatic tire according to an embodiment of the present invention. This pneumatic tire is a tire in which the mounting directions of the front and back of the tire when the vehicle is mounted are specified. 1 and 2, IN is the inside of the vehicle when mounted on the vehicle, and OUT is the outside of the vehicle when mounted on the vehicle.

図1に示すように、本実施形態の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、該トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備えている。   As shown in FIG. 1, the pneumatic tire according to the present embodiment includes a tread portion 1 extending in the tire circumferential direction and having an annular shape, and a pair of sidewall portions 2 and 2 disposed on both sides of the tread portion 1. And a pair of beads 3, 3 arranged radially inward of the sidewalls 2 in the tire radial direction.

一対のビード部3,3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。   A carcass layer 4 is mounted between the pair of bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded from the inside of the tire to the outside around a bead core 5 arranged in each bead portion 3. A bead filler 6 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 5.

一方、トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°〜40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層8が配置されている。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。   On the other hand, a plurality of belt layers 7 are buried on the outer peripheral side of the carcass layer 4 in the tread portion 1. These belt layers 7 include a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to cross each other between the layers. In the belt layer 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in a range of, for example, 10 ° to 40 °. As the reinforcing cord of the belt layer 7, a steel cord is preferably used. At least one belt cover layer 8 in which reinforcing cords are arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is disposed on the outer peripheral side of the belt layer 7 for the purpose of improving high-speed durability. I have. As the reinforcing cord of the belt cover layer 8, an organic fiber cord such as nylon or aramid is preferably used.

なお、上述したタイヤ内部構造は空気入りタイヤにおける代表的な例を示すものであるが、これに限定されるものではない。   The above-described tire internal structure is a typical example of a pneumatic tire, but is not limited thereto.

図2に示すように、トレッド部1には、タイヤ周方向に延びる3本の主溝11が形成されている。ここで、主溝とは溝幅が3.0mm以上、好ましくは3.0mm〜8.0mmであり、かつ溝深さが4.0mm以上、好ましくは、4.0mm〜8.0mmである周方向溝を意味する。つまり、溝幅が3.0mm未満であるか、或いは、溝深さが4.0mm未満である周方向溝は主溝には該当しない。主溝11は、タイヤ赤道CLよりも車両内側に位置する主溝11Aと、タイヤ赤道CL上に位置する主溝11Bと、タイヤ赤道CLよりも車両外側に位置する主溝11Cとを含んでいる。これら主溝11A〜11Cはいずれもタイヤ周方向に沿って直線状に延在している。そして、トレッド部1には、主溝11Aよりも車両内側に位置する内側ショルダー陸部21と、主溝11Aと主溝11Bとの間に位置する内側センター陸部22と、主溝11Bと主溝11Cとの間に位置する外側センター陸部23と、主溝11Cよりも車両外側に位置する外側ショルダー陸部24とが区画されている。   As shown in FIG. 2, the tread portion 1 is formed with three main grooves 11 extending in the tire circumferential direction. Here, the main groove means a groove having a groove width of 3.0 mm or more, preferably 3.0 mm to 8.0 mm, and a groove depth of 4.0 mm or more, preferably 4.0 mm to 8.0 mm. Means direction groove. In other words, a circumferential groove having a groove width of less than 3.0 mm or a groove depth of less than 4.0 mm does not correspond to a main groove. The main groove 11 includes a main groove 11A located on the vehicle inner side of the tire equator CL, a main groove 11B located on the tire equator CL, and a main groove 11C located on the vehicle outer side of the tire equator CL. . Each of these main grooves 11A to 11C extends linearly along the tire circumferential direction. The tread portion 1 has an inner shoulder land portion 21 located on the vehicle inner side of the main groove 11A, an inner center land portion 22 located between the main groove 11A and the main groove 11B, a main groove 11B and a main groove 11B. An outer center land portion 23 located between the groove 11C and an outer shoulder land portion 24 located outside the vehicle from the main groove 11C are defined.

陸部21〜24の各々には、タイヤ幅方向に延びる複数本の横溝要素30が形成されている。横溝要素30は、溝幅が1.2mm以下であるサイプ(又は細溝)31と、溝幅が1.2mmを超えるラグ溝32とを含んでいる。溝幅が1.2mmを超えるラグ溝32は陸部21〜24のタイヤ周方向の連続性を実質的に分断するものであるが、溝幅が1.2mm以下であるサイプ(又は細溝)31は陸部21〜24のタイヤ周方向の連続性を実質的に分断するものではない。サイプ31及びラグ溝32からなる横溝要素30のタイヤ周方向のピッチ及びタイヤ幅方向の長さは陸部21〜24において個別に設定されている。   Each of the land portions 21 to 24 is formed with a plurality of lateral groove elements 30 extending in the tire width direction. The lateral groove element 30 includes a sipe (or narrow groove) 31 having a groove width of 1.2 mm or less, and a lug groove 32 having a groove width exceeding 1.2 mm. The lug groove 32 having a groove width of more than 1.2 mm substantially divides the continuity of the land portions 21 to 24 in the tire circumferential direction, but a sipe (or a narrow groove) having a groove width of 1.2 mm or less. Reference numeral 31 does not substantially disrupt the continuity of the land portions 21 to 24 in the tire circumferential direction. The pitch in the tire circumferential direction and the length in the tire width direction of the lateral groove element 30 including the sipe 31 and the lug groove 32 are individually set in the land portions 21 to 24.

トレッド部1の車両内側の接地端Einからタイヤ赤道CLまでを車両内側領域Ainとし、トレッド部1の車両外側の接地端Eoutからタイヤ赤道CLまでを車両外側領域Aoutとしたとき、車両内側領域Ainでの溝パターンと車両外側領域Aoutでの溝パターンとは互いに非対称になっている。   When the region from the ground contact end Ein on the vehicle inside of the tread portion 1 to the tire equator CL is the vehicle inside region Ain, and the region from the ground contact end Eout on the vehicle outside of the tread portion 1 to the tire equator CL is the vehicle outside region Aout, the vehicle inside region Ain And the groove pattern in the vehicle outside area Aout are asymmetrical to each other.

図2に示すように、陸部21〜24の接地領域内での幅はそれぞれA1,A2,A3,A4である。また、陸部21〜24において溝幅1.2mmを超える横溝要素30(即ち、ラグ溝32)により分断されずにタイヤ周方向に連続的に延在する部分の接地領域内での幅はそれぞれB1,B2,B3,B4である。これら陸部21〜24の接地領域内での幅A1〜A4と陸部21〜24において溝幅1.2mmを超える横溝要素30により分断されずにタイヤ周方向に連続的に延在する部分の接地領域内での幅B1〜B4に基づいて連続陸部比率が算出される。 As shown in FIG. 2, the width of the ground area of the land portions 21 to 24 are A 1, A 2, A 3 , A 4 , respectively. In the land portions 21 to 24, the widths of the portions extending continuously in the tire circumferential direction without being divided by the lateral groove elements 30 (i.e., the lug grooves 32) having a groove width of more than 1.2 mm in the ground contact area are respectively set. B 1 , B 2 , B 3 and B 4 . The widths A 1 to A 4 of the land portions 21 to 24 in the ground contact area and the land portions 21 to 24 extend continuously in the tire circumferential direction without being divided by the lateral groove element 30 having a groove width of more than 1.2 mm. The continuous land portion ratio is calculated based on the widths B 1 to B 4 of the portion in the contact area.

上記空気入りタイヤにおいて、トレッド部1の全体としての連続陸部比率Xt〔Xt=(B1+B2+B3+B4)/(A1+A2+A3+A4)×100%〕は、70%以上、より好ましくは70%〜95%の範囲に設定されている。また、車両外側領域Aoutでの連続陸部比率Xout〔Xout=(B3+B4)/(A3+A4)×100%〕は車両内側領域Ainでの連続陸部比率Xin〔Xin=(B1+B2)/(A1+A2)×100%〕よりも大きくなるように設定されている。 In the pneumatic tire, the continuous land portion ratio Xt [Xt = (B 1 + B 2 + B 3 + B 4 ) / (A 1 + A 2 + A 3 + A 4 ) × 100%] of the tread portion 1 as a whole is 70%. The above is more preferably set in the range of 70% to 95%. Further, the continuous land portion ratio Xout [Xout = (B 3 + B 4 ) / (A 3 + A 4 ) × 100%] in the vehicle outside region Aout is the continuous land portion ratio Xin [Xin = (B 1 + B 2 ) / (A 1 + A 2 ) × 100%].

更に、車両外側領域Aoutに含まれる陸部23,24の溝面積比率Routは車両内側領域Ainに含まれる陸部21,22の溝面積比率Rinよりも大きくなるように設定されている。ここで、溝面積比率Rinは陸部21,22の総面積に対する陸部21,22に含まれる溝成分の総面積の比率(%)であり、溝面積比率Routは陸部23,24の総面積に対する陸部23,24に含まれる溝成分の総面積の比率(%)である。上述のように車両外側領域Aoutでの連続陸部比率Xoutを車両内側領域Ainでの連続陸部比率Xinよりも大きくした場合、一様なトレッドパターンであれば、溝面積比率Routは溝面積比率Rinよりも小さくなるが、上記空気入りタイヤでは、車両内側領域Ainに含まれる陸部21,22に形成されるサイプ31を相対的に少なくし、車両外側領域Aoutに含まれる陸部23,24に形成されるサイプ31を相対的に多くすることにより、溝面積比率Routを溝面積比率Rinよりも大きくしている。   Further, the groove area ratio Rout of the land portions 23 and 24 included in the vehicle outside region Aout is set to be larger than the groove area ratio Rin of the land portions 21 and 22 included in the vehicle inside region Ain. Here, the groove area ratio Rin is the ratio (%) of the total area of the groove components included in the land portions 21 and 22 to the total area of the land portions 21 and 22, and the groove area ratio Rout is the total of the land portions 23 and 24. It is a ratio (%) of the total area of the groove components included in the land portions 23 and 24 to the area. As described above, when the continuous land portion ratio Xout in the vehicle outside region Aout is larger than the continuous land portion ratio Xin in the vehicle inside region Ain, if the tread pattern is uniform, the groove area ratio Rout is equal to the groove area ratio. Although it is smaller than Rin, in the pneumatic tire, the sipe 31 formed in the land portions 21 and 22 included in the vehicle inside region Ain is relatively reduced, and the land portions 23 and 24 included in the vehicle outside region Aout are reduced. The groove area ratio Rout is made larger than the groove area ratio Rin by relatively increasing the number of the sipe 31 formed in the groove.

上述した空気入りタイヤでは、トレッド部1の全体としての連続陸部比率Xtを70%以上とすることにより、トレッド部1のタイヤ周方向の剛性を高めて耐摩耗性を改善することができる。ここで、トレッド部1の全体としての連続陸部比率Xtが70%よりも小さいと、耐摩耗性の改善効果が不十分になる。特に、トレッド部1の全体としての連続陸部比率Xtは70%〜95%の範囲に設定すると良い。トレッド部1の全体としての連続陸部比率Xtが95%よりも大きいと、溝面積が小さくなるためウエット性能の改善効果が低下する。   In the pneumatic tire described above, by setting the continuous land portion ratio Xt of the tread portion 1 as a whole to 70% or more, the rigidity of the tread portion 1 in the tire circumferential direction can be increased, and the wear resistance can be improved. Here, if the continuous land portion ratio Xt of the tread portion 1 as a whole is smaller than 70%, the effect of improving the wear resistance becomes insufficient. In particular, the continuous land portion ratio Xt of the tread portion 1 as a whole is preferably set in a range of 70% to 95%. If the continuous land portion ratio Xt of the tread portion 1 as a whole is greater than 95%, the groove area is reduced, and the effect of improving the wet performance is reduced.

また、上述した空気入りタイヤでは、車両外側領域Aoutでの連続陸部比率Xoutを車両内側領域Ainでの連続陸部比率Xinよりも大きくすることにより、ドライ路面での操縦安定性に対する寄与が大きい車両外側領域Aoutにおける剛性の増大効果を相対的に大きくするので、ドライ路面での操縦安定性を改善することができる。   Further, in the above-described pneumatic tire, by making the continuous land portion ratio Xout in the vehicle outside region Aout larger than the continuous land portion ratio Xin in the vehicle inside region Ain, the contribution to the steering stability on a dry road surface is large. Since the effect of increasing the rigidity in the vehicle outside area Aout is relatively increased, steering stability on a dry road surface can be improved.

車両外側領域Aoutでの連続陸部比率Xoutと車両内側領域Ainでの連続陸部比率Xinとの差(Xout−Xin)は5%〜15%の範囲に設定すると良い。これにより、ドライ路面での操縦安定性の改善効果を十分に得ることができる。連続陸部比率Xoutと連続陸部比率Xinとの差(Xout−Xin)が5%よりも小さいと車両外側領域Aoutでの剛性が不足するためドライ路面での操縦安定性の改善効果が不十分になり、逆に15%よりも大きいと車両外側領域Aoutと車両内側領域Ainとの剛性差が過大になるためドライ路面での操縦安定性の改善効果が低下する。   The difference (Xout-Xin) between the continuous land portion ratio Xout in the vehicle outside region Aout and the continuous land portion ratio Xin in the vehicle inside region Ain may be set in a range of 5% to 15%. Thereby, the effect of improving the steering stability on a dry road surface can be sufficiently obtained. If the difference (Xout−Xin) between the continuous land portion ratio Xout and the continuous land portion ratio Xin is less than 5%, the rigidity in the vehicle outside area Aout is insufficient, and the effect of improving the steering stability on a dry road surface is insufficient. On the contrary, if it is larger than 15%, the rigidity difference between the vehicle outside area Aout and the vehicle inside area Ain becomes excessively large, so that the effect of improving the steering stability on a dry road surface decreases.

更に、上述した空気入りタイヤでは、車両外側領域Aoutに含まれる陸部23,24の溝面積比率Routを車両内側領域Ainに含まれる陸部21,22の溝面積比率Rinよりも大きくすることにより、コーナリング時に相対的に大きな負荷が掛かる車両外側領域Aoutでの排水性が良好になるので、ウエット性能(特に、ウエット路面でのコーナリング性能)を改善することができる。   Further, in the pneumatic tire described above, the groove area ratio Rout of the land portions 23 and 24 included in the vehicle outside region Aout is made larger than the groove area ratio Rin of the land portions 21 and 22 included in the vehicle inside region Ain. Since the drainage performance in the vehicle outside area Aout where a relatively large load is applied during cornering is improved, wet performance (particularly, cornering performance on a wet road surface) can be improved.

車両外側領域Aoutに含まれる陸部23,24の溝面積比率Routと車両内側領域Ainに含まれる陸部21,22の溝面積比率Rinとの差(Rout−Rin)は2%〜5%の範囲に設定すると良い。これにより、ドライ路面での操縦安定性を良好に維持しつつ、ウエット性能の改善効果を十分に得ることができる。溝面積比率Routと溝面積比率Rinとの差(Rout−Rin)が2%よりも小さいとウエット性能の改善効果が低下し、逆に5%よりも大きいと車両外側領域Aoutでの剛性が不足するためドライ路面での操縦安定性の改善効果が低下する。   The difference (Rout−Rin) between the groove area ratio Rout of the land portions 23 and 24 included in the vehicle outside region Aout and the groove area ratio Rin of the land portions 21 and 22 included in the vehicle inside region Ain is 2% to 5%. It is good to set it to the range. As a result, it is possible to sufficiently obtain the effect of improving the wet performance while maintaining good steering stability on a dry road surface. If the difference (Rout−Rin) between the groove area ratio Rout and the groove area ratio Rin is smaller than 2%, the effect of improving the wet performance is reduced, and if it is larger than 5%, the rigidity in the vehicle outside area Aout is insufficient. Therefore, the effect of improving steering stability on dry road surfaces is reduced.

また、トレッド部1の全体としての接地領域内での溝面積比率Rtは30%以下、好ましくは、20%〜30%であると良い。これにより、耐摩耗性の改善効果を十分に得ることができる。トレッド部1の全体としての接地領域内での溝面積比率Rtが30%よりも大きいと耐偏摩耗性の改善効果が低下する。   Further, the groove area ratio Rt in the tread portion 1 as a whole in the contact region is preferably 30% or less, and more preferably 20% to 30%. Thereby, the effect of improving the wear resistance can be sufficiently obtained. When the groove area ratio Rt in the tread portion 1 as a whole in the contact region is larger than 30%, the effect of improving uneven wear resistance is reduced.

同様に、トレッド部1の主溝11を除いた部位(即ち、陸部21〜24)の接地領域内での溝面積比率Rrは10%以下、好ましくは、5%〜10%であると良い。これにより、耐摩耗性の改善効果を十分に得ることができる。トレッド部1の主溝11を除いた部位の溝面積比率Rrが10%よりも大きいと耐偏摩耗性の改善効果が低下する。   Similarly, the groove area ratio Rr of the portion of the tread portion 1 excluding the main groove 11 (i.e., the land portions 21 to 24) in the contact region is 10% or less, preferably 5% to 10%. . Thereby, the effect of improving the wear resistance can be sufficiently obtained. If the groove area ratio Rr of the portion of the tread 1 excluding the main groove 11 is larger than 10%, the effect of improving uneven wear resistance is reduced.

図1及び図2に描写された実施形態は乗用車用の空気入りタイヤに関するものであるが、本発明は他の用途の空気入りタイヤに適用することも可能である。   Although the embodiment depicted in FIGS. 1 and 2 relates to a pneumatic tire for a passenger car, the present invention can be applied to a pneumatic tire for other uses.

タイヤサイズ155/65R14で、トレッド部と一対のサイドウォール部と一対のビード部とを備えると共に、車両に対する装着方向が指定された空気入りタイヤにおいて、トレッド部にタイヤ周方向に延びる複数本の主溝を設け、これら主溝により複数列の陸部を区画し、各陸部にタイヤ幅方向に延びる複数本の横溝要素を形成し、トレッド部の全体としての連続陸部比率Xt、車両内側領域での連続陸部比率Xin、車両外側領域での連続陸部比率Xout、トレッド部の全体としての接地領域内での溝面積比率Rt、トレッド部の主溝を除いた部位の接地領域内での溝面積比率Rr、車両内側領域に含まれる陸部の溝面積比率Rin、車両外側領域に含まれる陸部の溝面積比率Routを表1のように設定した従来例、比較例1〜2及び実施例1〜8のタイヤを製作した。   A pneumatic tire having a tire size of 155 / 65R14, a tread portion, a pair of sidewall portions, and a pair of bead portions, and a plurality of main tires extending in a tire circumferential direction on a tread portion in a pneumatic tire whose mounting direction to a vehicle is designated. A groove is provided, a plurality of rows of land portions are defined by these main grooves, a plurality of lateral groove elements extending in the tire width direction are formed on each land portion, and a continuous land portion ratio Xt of the tread portion as a whole, a vehicle inner area. , The continuous land portion ratio Xout in the vehicle outside region, the groove area ratio Rt in the ground region as a whole of the tread portion, and the ground region of the portion excluding the main groove of the tread portion in the ground region. Conventional example, grooved area ratio Rr, land area groove area ratio Rin included in the vehicle inside area, and land area groove area ratio Rout included in the vehicle outside area, set as shown in Table 1, Comparative Examples 1-2, and implementation Example 1 Eight tires were manufactured.

これら試験タイヤについて、下記試験方法により、耐摩耗性、ドライ路面での操縦安定性、ウエット性能を評価し、その結果を表1に併せて示した。   For these test tires, abrasion resistance, steering stability on a dry road surface, and wet performance were evaluated by the following test methods, and the results are shown in Table 1.

耐摩耗性:
各試験タイヤをリムサイズ14×4.5Jのホイールに組み付けて排気量660ccの軽自動車に装着し、ウォームアップ後の空気圧(F/R)を230kPa/220kPaとし、テストコースを8000km走行した後、溝残量から推定摩耗寿命(km)を算出した。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほど耐摩耗性が優れていることを意味する。
Abrasion resistance:
Each test tire was mounted on a rim size 14 × 4.5J wheel and mounted on a mini car with a displacement of 660 cc. The estimated wear life (km) was calculated from the remaining amount. The evaluation results are shown as indices with the conventional example as 100. The larger the index value, the better the wear resistance.

ドライ路面での操縦安定性:
各試験タイヤをリムサイズ14×4.5Jのホイールに組み付けて排気量660ccの軽自動車に装着し、ウォームアップ後の空気圧(F/R)を230kPa/220kPaとし、ドライ路面のテストコースにおいてパネラーによる官能評価を実施した。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほどドライ路面での操縦安定性が優れていることを意味する。
Driving stability on dry road:
Each test tire is mounted on a rim size 14 x 4.5 J wheel and mounted on a mini car with a displacement of 660 cc. The air pressure (F / R) after warm-up is 230 kPa / 220 kPa. An evaluation was performed. The evaluation results are shown as indices with the conventional example taken as 100. The larger the index value, the better the steering stability on a dry road surface.

ウエット性能:
各試験タイヤをリムサイズ14×4.5Jのホイールに組み付けて排気量660ccの軽自動車に装着し、ウォームアップ後の空気圧(F/R)を230kPa/220kPaとし、水深1mmの路面上で半径30mの円旋回を実施し、その旋回タイムを計測した。評価結果は、計測値の逆数を用い、従来例を100とする指数にて示した。この指数値が大きいほどウエット性能が優れていることを意味する。
Wet performance:
Each test tire was mounted on a rim size 14 × 4.5J wheel and mounted on a mini car with a displacement of 660 cc. A circular turn was performed, and the turn time was measured. The evaluation results were indicated by an index using the reciprocal of the measured value and the conventional example as 100. The larger the index value, the better the wet performance.

Figure 0006634709
Figure 0006634709

この表1から判るように、実施例1〜8のタイヤは、いずれも、従来例との対比において、耐摩耗性とウエット性能が同時に改善されており、しかもドライ路面での操縦安定性についても改善効果が得られていた。一方、比較例1においては、車両外側領域での連続陸部比率Xoutが車両内側領域での連続陸部比率Xinよりも大きくなっているものの、それに伴って車両外側領域に含まれる陸部の溝面積比率Routが車両内側領域に含まれる陸部の溝面積比率Rinよりも小さくなっているため、ウエット性能が不十分であった。また、比較例2においては、車両外側領域に含まれる陸部の溝面積比率Routが車両内側領域に含まれる陸部の溝面積比率Rinよりも大きくなっているものの、それに伴って車両外側領域での連続陸部比率Xoutが車両内側領域での連続陸部比率Xinよりも小さくなっているため、ドライ路面での操縦安定性が不十分であった。   As can be seen from Table 1, all of the tires of Examples 1 to 8 have improved wear resistance and wet performance at the same time as compared with the conventional example, and also have improved steering stability on dry road surfaces. An improvement effect was obtained. On the other hand, in Comparative Example 1, although the continuous land portion ratio Xout in the vehicle outside region is larger than the continuous land portion ratio Xin in the vehicle inside region, the land portion groove included in the vehicle outside region is accordingly accompanying. Since the area ratio Rout was smaller than the land area ratio Rin of the land portion included in the vehicle inside area, the wet performance was insufficient. Further, in Comparative Example 2, although the land area groove area ratio Rout included in the vehicle outside area is larger than the land area groove area ratio Rin included in the vehicle inside area, the land area groove area ratio Rin is accordingly increased in the vehicle outside area. Is smaller than the continuous land ratio Xin in the area inside the vehicle, the steering stability on dry road surfaces was insufficient.

1 トレッド部
2 サイドウォール部
3 ビード部
11 主溝
21,22,23,24 陸部
30 横溝要素
31 サイプ
32 ラグ溝
Ain 車両内側領域
Aout 車両外側領域
CL タイヤ赤道
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 11 Main groove 21,22,23,24 Land part 30 Lateral groove element 31 Sipe 32 Lug groove Ain Vehicle inside area Aout Vehicle outside area CL Tire equator

Claims (7)

タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えると共に、車両に対する装着方向が指定された空気入りタイヤにおいて、
前記トレッド部にタイヤ周方向に延びる複数本の主溝を設け、これら主溝により複数列の陸部を区画し、各陸部にタイヤ幅方向に延びる複数本の横溝要素を形成し、これら複数本の横溝要素が溝幅1.2mm以下の横溝要素と溝幅1.2mmを超える横溝要素とを含み、前記トレッド部の車両内側の接地端からタイヤ赤道までを車両内側領域とし、前記トレッド部の車両外側の接地端からタイヤ赤道までを車両外側領域とし、各陸部の接地領域内での幅と各陸部において溝幅1.2mmを超える横溝要素により分断されずにタイヤ周方向に連続的に延在する部分の接地領域内での幅との比率を連続陸部比率としたとき、前記トレッド部の全体としての連続陸部比率が70%以上であり、前記車両外側領域での連続陸部比率が前記車両内側領域での連続陸部比率よりも大きく、かつ前記車両外側領域に含まれる陸部に形成される溝幅1.2mm以下の横溝要素が前記車両内側領域に含まれる陸部に形成される溝幅1.2mm以下の横溝要素よりも相対的に多くなっており、前記車両外側領域に含まれる陸部の溝面積比率が前記車両内側領域に含まれる陸部の溝面積比率よりも大きいことを特徴とする空気入りタイヤ。
A ring-shaped tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and a pair of bead portions disposed inside the tire radial direction of these sidewall portions. With the pneumatic tire, the mounting direction to the vehicle is specified,
A plurality of main grooves extending in the tire circumferential direction are provided in the tread portion, a plurality of rows of land portions are defined by these main grooves, and a plurality of lateral groove elements extending in the tire width direction are formed on each land portion. The horizontal groove element includes a horizontal groove element having a groove width of 1.2 mm or less and a horizontal groove element having a groove width of more than 1.2 mm, a region from a ground contact end of the tread portion inside the vehicle to a tire equator is defined as a vehicle inside region, and the tread portion includes The area from the ground contact end on the outside of the vehicle to the tire equator is defined as the vehicle outside area, and is continuous in the tire circumferential direction without being divided by the width of each land part in the ground contact area and the lateral groove element exceeding 1.2 mm in groove width on each land part When the ratio of the width of the portion extending in the contact area to the width of the continuously extending portion is the continuous land portion ratio, the continuous land portion ratio of the tread portion as a whole is 70% or more, and the continuous The land ratio is the area inside the vehicle. Continuous land portion greater than the ratio, and the vehicle follows the groove width 1.2mm formed in land portions included in outer region lateral grooves element groove width is formed in the land portions included in the vehicle inner side region 1. It is relatively larger than the horizontal groove element of 2 mm or less, and the groove area ratio of the land portion included in the vehicle outside region is larger than the land area groove ratio of the land portion included in the vehicle inside region. Pneumatic tire.
前記トレッド部の全体としての接地領域内での溝面積比率が30%以下であることを特徴とする請求項1に記載の空気入りタイヤ。   2. The pneumatic tire according to claim 1, wherein a groove area ratio of the tread portion as a whole in a contact region is 30% or less. 3. 前記トレッド部の前記主溝を除いた部位の接地領域内での溝面積比率が10%以下であることを特徴とする請求項1又は2に記載の空気入りタイヤ。   3. The pneumatic tire according to claim 1, wherein a groove area ratio of a portion of the tread portion excluding the main groove in a ground contact region is 10% or less. 4. 前記車両外側領域に含まれる陸部の溝面積比率と前記車両内側領域に含まれる陸部の溝面積比率との差が2%〜5%であることを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。   The difference between the groove area ratio of the land portion included in the vehicle outside region and the groove area ratio of the land portion included in the vehicle inside region is 2% to 5%. The pneumatic tire described in Crab. 前記車両外側領域での連続陸部比率と前記車両内側領域での連続陸部比率との差が5%〜15%であることを特徴とする請求項1〜4のいずれかに記載の空気入りタイヤ。   The pneumatic device according to any one of claims 1 to 4, wherein a difference between a continuous land portion ratio in the vehicle outside region and a continuous land portion ratio in the vehicle inside region is 5% to 15%. tire. 前記トレッド部の全体としての連続陸部比率が70%〜95%であることを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 5, wherein a continuous land portion ratio of the tread portion as a whole is 70% to 95%. 乗用車に装着されることを特徴とする請求項1〜6のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 6, which is mounted on a passenger car.
JP2015115932A 2015-06-08 2015-06-08 Pneumatic tire Active JP6634709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115932A JP6634709B2 (en) 2015-06-08 2015-06-08 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115932A JP6634709B2 (en) 2015-06-08 2015-06-08 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2017001472A JP2017001472A (en) 2017-01-05
JP6634709B2 true JP6634709B2 (en) 2020-01-22

Family

ID=57751459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115932A Active JP6634709B2 (en) 2015-06-08 2015-06-08 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6634709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163136B2 (en) * 2018-10-22 2022-10-31 Toyo Tire株式会社 pneumatic tire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467404A (en) * 1987-09-07 1989-03-14 Yokohama Rubber Co Ltd Radial tire
JP4598263B2 (en) * 2000-12-08 2010-12-15 株式会社ブリヂストン Pneumatic tire mounting method and pneumatic tire for front wheels
JP2006240591A (en) * 2005-03-07 2006-09-14 Yokohama Rubber Co Ltd:The Pneumatic tire/rim wheel assembly body, and pneumatic tire
JP4406455B2 (en) * 2007-12-18 2010-01-27 住友ゴム工業株式会社 Pneumatic tire
JP4394161B1 (en) * 2009-04-17 2010-01-06 横浜ゴム株式会社 Pneumatic tire
JP5948995B2 (en) * 2012-03-14 2016-07-06 横浜ゴム株式会社 Pneumatic tire
JP5896941B2 (en) * 2013-02-25 2016-03-30 横浜ゴム株式会社 Pneumatic tire
CN105358339B (en) * 2013-07-12 2018-03-02 横滨橡胶株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2017001472A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6436080B2 (en) Pneumatic tire
US10730351B2 (en) Pneumatic tire
JP6424765B2 (en) Pneumatic tire
US20170036488A1 (en) Pneumatic Tire
AU2016234380B2 (en) Pneumatic tire
US9770951B2 (en) Pneumatic tire
JP6375851B2 (en) Pneumatic tire
JP6375850B2 (en) Pneumatic tire
JP2012228993A (en) Pneumatic tire
JP6634711B2 (en) Pneumatic tire
JP2018114811A (en) Pneumatic tire
JP2017159752A (en) Pneumatic tire
JP2017193222A (en) Pneumatic tire
JP6634710B2 (en) Pneumatic tire
JP2018095185A (en) Pneumatic tire
JP6634709B2 (en) Pneumatic tire
JP6634708B2 (en) Pneumatic tire
US20200189322A1 (en) Tire tread
JP6710025B2 (en) Pneumatic tires for motorcycles
JP2016022807A (en) Pneumatic tire
JP6237216B2 (en) Pneumatic tire
JP2013199154A (en) Pneumatic tire
JP7306135B2 (en) pneumatic tire
JP2013173448A (en) Pneumatic tire
JP2016002981A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6634709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250