JP6631383B2 - Heater having gas supply piping structure - Google Patents

Heater having gas supply piping structure Download PDF

Info

Publication number
JP6631383B2
JP6631383B2 JP2016084283A JP2016084283A JP6631383B2 JP 6631383 B2 JP6631383 B2 JP 6631383B2 JP 2016084283 A JP2016084283 A JP 2016084283A JP 2016084283 A JP2016084283 A JP 2016084283A JP 6631383 B2 JP6631383 B2 JP 6631383B2
Authority
JP
Japan
Prior art keywords
flow path
heater
gas
support member
mounting table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016084283A
Other languages
Japanese (ja)
Other versions
JP2017195266A (en
Inventor
木村 功一
功一 木村
晃 三雲
晃 三雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016084283A priority Critical patent/JP6631383B2/en
Publication of JP2017195266A publication Critical patent/JP2017195266A/en
Application granted granted Critical
Publication of JP6631383B2 publication Critical patent/JP6631383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、半導体ウエハ等の被加熱物を載置して加熱する加熱ヒータに関し、特に半導体製造装置向けのガス供給配管構造を有するウエハ加熱ヒータに関する。   The present invention relates to a heater for mounting and heating an object to be heated such as a semiconductor wafer, and more particularly to a wafer heater having a gas supply piping structure for a semiconductor manufacturing apparatus.

LSIなどの半導体デバイスを製造する半導体製造装置では、被処理物である半導体ウエハに対してCVDやスパッタリングに代表される成膜処理やエッチング処理など、様々な薄膜処理が施される。これら薄膜処理は半導体ウエハを加熱状態で処理することが多く、当該処理が行われるチャンバー内には薄膜処理の際に半導体ウエハを載置してその下面から加熱するサセプタとも称されるウエハ加熱ヒータが一般的に搭載されている。   2. Description of the Related Art In a semiconductor manufacturing apparatus that manufactures a semiconductor device such as an LSI, various thin film processes such as a film forming process typified by CVD and sputtering and an etching process are performed on a semiconductor wafer to be processed. These thin-film processes often process semiconductor wafers in a heated state, and a wafer heater, also called a susceptor, in which a semiconductor wafer is placed and heated from the lower surface during the thin-film process in a chamber where the process is performed. Is generally installed.

上記ウエハ加熱ヒータは、例えば特許文献1に示されるように上面に平坦なウエハ載置面を備えたセラミックス製の円板状部材からなるウエハ載置台と、これを下面側から支持する円筒状の支持部材とから構成されており、該ウエハ載置台の内部に埋設された抵抗発熱体で半導体ウエハを加熱するようになっている。ウエハ載置台の内部には、更にプラズマを発生させる高周波(RF)電極や半導体ウエハをウエハ載置面に電気的に吸着固定させる静電チャック(ESC)電極が設けられることもある。   The wafer heating heater includes, for example, a wafer mounting table formed of a ceramic disk-shaped member having a flat wafer mounting surface on an upper surface as shown in Patent Document 1, and a cylindrical support for supporting the wafer mounting table from the lower surface side. The semiconductor wafer is heated by a resistance heating element buried inside the wafer mounting table. A high frequency (RF) electrode for generating plasma or an electrostatic chuck (ESC) electrode for electrically attracting and fixing a semiconductor wafer to a wafer mounting surface may be further provided inside the wafer mounting table.

上記したウエハ加熱ヒータでは製品となる半導体デバイスの品質のばらつきを抑えるため、ウエハ載置面での均熱性を高めて半導体ウエハを全面に亘って均一に処理することが求められている。そのため、ウエハ載置台に埋設する抵抗発熱体の回路パターンを緻密にして温度ムラが生じないようにしたり、ウエハ載置面を複数ゾーンに分割してそれぞれに配設した複数の抵抗発熱体できめ細かく温度制御したりする技術が提案されている。   In the above-described wafer heater, in order to suppress a variation in quality of a semiconductor device as a product, it is required to uniformly heat the semiconductor wafer over the entire surface by increasing the uniformity of the wafer mounting surface. For this reason, the circuit pattern of the resistive heating element embedded in the wafer mounting table is made dense so that temperature unevenness does not occur. Techniques for controlling temperature have been proposed.

特開2003−17224号公報JP 2003-17224A

上記した半導体製造装置では、CVDやエッチング等に用いる反応性ガスとしてハロゲン系等の腐食性の高いガスが用いられるので、抵抗発熱体等の電極の端子部やそこからの引出線は円筒状支持部材の内側に収納すると共に、該円筒状支持部材の両端部をそれぞれウエハ載置台の底面及びチャンバーの床面に気密シールすることで円筒状支持部材の内側をチャンバーの腐食性ガス雰囲気から隔離している。   In the above-described semiconductor manufacturing apparatus, a highly corrosive gas such as a halogen-based gas is used as a reactive gas used for CVD, etching, and the like, so that the terminal portions of the electrodes such as the resistance heating element and the lead wires therefrom are cylindrically supported. The inside of the cylindrical support member is isolated from the corrosive gas atmosphere of the chamber by housing the inside of the member and sealing both ends of the cylindrical support member to the bottom surface of the wafer mounting table and the floor surface of the chamber, respectively. ing.

しかしながら、上記引出線はチャンバー床面の貫通孔を経てチャンバー外部の電源等に接続させる必要があるため、円筒状支持部材の内側は当該貫通孔により大気圧雰囲気になっており、よって酸化性の空気による端子部等の酸化が避けられない。例えば、ウエハ載置台を600℃に加熱して被処理物にCVD処理を施す場合、ウエハ載置台の下面に取り付けた端子部は約600℃で酸化性雰囲気に曝されることになる。   However, since the lead wire needs to be connected to a power source or the like outside the chamber through a through hole in the chamber floor, the inside of the cylindrical support member is in an atmospheric pressure atmosphere by the through hole, and therefore, has an oxidizing property. Oxidation of terminals and the like by air is inevitable. For example, when a wafer mounting table is heated to 600 ° C. to perform a CVD process on an object to be processed, a terminal portion attached to a lower surface of the wafer mounting table is exposed to an oxidizing atmosphere at about 600 ° C.

そこで円筒状支持部材の内側にチャンバー外部から窒素ガス等の不活性ガスを導入して円筒状支持部材の内側を不活性ガス雰囲気にすることが行われている。しかし、チャンバー外部から導入する不活性ガスの温度は通常は円筒状支持部材の内側の温度より低温であるため、この低温の不活性ガスの導入によってウエハ載置面の温度が局所的に低下することがあった。   Therefore, an inert gas such as nitrogen gas is introduced into the inside of the cylindrical support member from the outside of the chamber to make the inside of the cylindrical support member an inert gas atmosphere. However, since the temperature of the inert gas introduced from the outside of the chamber is usually lower than the temperature inside the cylindrical support member, the temperature of the wafer mounting surface is locally lowered by the introduction of the low-temperature inert gas. There was something.

本発明は、このような従来の事情に鑑みてなされたものであり、半導体ウエハ等の被加熱物を載置する載置台の載置面の均熱性を損なうことなく該載置台の下面側において筒状支持部材の内側に収納されている端子部や引出線等の酸化及び腐食を防ぐことが可能な加熱ヒータを提供することを目的とする。   The present invention has been made in view of such a conventional situation, and the lower surface side of the mounting table without impairing the heat uniformity of the mounting surface of the mounting table for mounting an object to be heated such as a semiconductor wafer. An object of the present invention is to provide a heater capable of preventing oxidation and corrosion of a terminal portion, a lead wire, and the like housed inside a cylindrical support member.

上記目的を達成するため、本発明に係る加熱ヒータは、被加熱物の載置面を上面に備えた載置台と、前記載置台を下側から支持する筒状の支持部材とを有する加熱ヒータであって、前記筒状支持部の内側に、不活性ガスを前記内側に導入する流路と前記内側のガスを排出する流路とが設けられており、これら2つの流路が少なくとも部分的に接して熱交換器を構成していることを特徴としている。   In order to achieve the above object, a heater according to the present invention includes a mounting table having a mounting surface for an object to be heated on an upper surface, and a tubular support member configured to support the mounting table from below. A flow path for introducing an inert gas into the inside and a flow path for discharging the inside gas are provided inside the cylindrical support portion, and these two flow paths are at least partially , And constitutes a heat exchanger.

本発明によれば、被加熱物の載置台の載置面の均熱性を損なうことなく該載置台の下面側の電極や引出線等の酸化及び腐食を防ぐことができる。   ADVANTAGE OF THE INVENTION According to this invention, oxidation and corrosion of the electrode and the lead wire on the lower surface side of the mounting table can be prevented without impairing the heat uniformity of the mounting surface of the mounting table of the object to be heated.

本発明の一具体例の加熱ヒータを備えた半導体製造装置の模式的な縦断面図である。It is a typical longitudinal section of a semiconductor manufacturing device provided with a heater of one example of the present invention. 図1の加熱ヒータが有するガス供給配管構造の部分断面図である。FIG. 2 is a partial cross-sectional view of a gas supply pipe structure included in the heater of FIG. 1.

最初に本発明の実施形態を列記して説明する。本発明の加熱ヒータの実施形態は、被加熱物の載置面を上面に備えた載置台と、前記載置台を下側から支持する筒状の支持部材とを有する加熱ヒータであって、前記筒状支持部の内側に、不活性ガスを前記内側に導入する流路と前記内側のガスを排出する流路とが設けられており、これら2つの流路が少なくとも部分的に接して熱交換器を構成していることを特徴としている。これにより被加熱物の載置台の載置面の均熱性を損なうことなく該載置台の下面側の端子部や引出線等の酸化及び腐食を防ぐことが可能になる。   First, embodiments of the present invention will be listed and described. An embodiment of the heater of the present invention is a heater having a mounting table provided with a mounting surface of an object to be heated on an upper surface, and a cylindrical support member for supporting the mounting table from below. A flow path for introducing an inert gas into the inside and a flow path for discharging the inside gas are provided inside the cylindrical support portion, and the two flow paths are at least partially in contact with each other to perform heat exchange. It is characterized by constituting a vessel. This makes it possible to prevent oxidation and corrosion of the terminal portions and the lead wires on the lower surface side of the mounting table without impairing the heat uniformity of the mounting surface of the mounting table for the object to be heated.

上記本発明の加熱ヒータの実施形態においては、前記2つの流路が少なくとも部分的に接する部分が2重配管構造を構成しているのが好ましい。これにより、設計自由度の高い熱交換器を簡易に構成することが可能になる。   In the above-described embodiment of the heater of the present invention, it is preferable that a portion where the two flow paths at least partially contact each other forms a double piping structure. This makes it possible to easily configure a heat exchanger having a high degree of design freedom.

上記本発明の加熱ヒータの実施形態においては、前記不活性ガスを導入する流路が前記2重配管構造の内側流路であり、前記内側のガスを排出する流路が前記2重配管構造の外側流路であるのが好ましい。これにより、載置台の下面側の端子部や引出線等に確実に不活性ガスを供給することが可能になる。   In the above-described embodiment of the heater of the present invention, the flow path for introducing the inert gas is an inner flow path of the double pipe structure, and the flow path for discharging the inner gas is formed of the double pipe structure. Preferably it is an outer channel. This makes it possible to reliably supply the inert gas to the terminal portion, the lead wire, and the like on the lower surface side of the mounting table.

上記本発明の加熱ヒータの実施形態においては、前記不活性ガスを導入する流路が前記2重配管構造の外側流路であり、前記内側のガスを排出する流路が前記2重配管構造の内側流路であってもよい。これにより、外側流路を流れる低温の不活性ガスを、内側流路を流れる高温の排ガスと支持部材の内側の高温の雰囲気ガスとによって両側から加熱することが可能になる。   In the above-described embodiment of the heater of the present invention, the flow path for introducing the inert gas is an outer flow path of the double pipe structure, and the flow path for discharging the inner gas is formed of the double pipe structure. It may be an inner channel. This makes it possible to heat the low-temperature inert gas flowing through the outer flow path from both sides by the high-temperature exhaust gas flowing through the inner flow path and the high-temperature atmosphere gas inside the support member.

上記本発明の加熱ヒータの実施形態においては、前記2重配管構造の内側流路と外側流路のそれぞれの先端開口部が、前記内側流路の流路方向に離間しているのが好ましい。これにより、導入流路の開口部から放出された不活性ガスが支持部材の内側で滞留することなくショートパスして排出流路から排出されるのを防ぐことができる。   In the above-described embodiment of the heater according to the present invention, it is preferable that the respective front end openings of the inner flow path and the outer flow path of the double pipe structure are separated in the flow direction of the inner flow path. Accordingly, it is possible to prevent the inert gas discharged from the opening of the introduction flow path from being discharged from the discharge flow path through a short path without staying inside the support member.

次に、本発明の加熱ヒータの一具体例として半導体ウエハ用の加熱ヒータ及びこれを搭載する半導体製造装置について、図1を参照しながら説明する。この図1に示す半導体製造装置は、半導体ウエハWに対してエッチング処理やCVD処理などを行うチャンバー1と、その内部に搭載されたウエハ加熱ヒータ2とから主に構成され、該ウエハ加熱ヒータ2は、ウエハ載置面21aを上面に備えた好適にはセラミックスからなる略円板状のウエハ載置台21と、これを下面から支持する好適にはセラミックスからなる略円筒形状の支持部材22とを有している。上記のウエハ載置台21や支持部材22の好適な材質であるセラミックとしては、例えば窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化アルミニウム等を挙げることができる。   Next, as a specific example of the heater of the present invention, a heater for a semiconductor wafer and a semiconductor manufacturing apparatus equipped with the heater will be described with reference to FIG. The semiconductor manufacturing apparatus shown in FIG. 1 mainly includes a chamber 1 for performing an etching process, a CVD process, and the like on a semiconductor wafer W, and a wafer heater 2 mounted therein. Comprises a substantially disk-shaped wafer mounting table 21 preferably made of ceramics having a wafer mounting surface 21a on its upper surface, and a substantially cylindrical support member 22 made of preferably ceramics for supporting the wafer mounting table 21 from below. Have. Examples of the ceramic that is a suitable material for the wafer mounting table 21 and the support member 22 include aluminum nitride, silicon nitride, silicon carbide, and aluminum oxide.

上記ウエハ載置台21の内部には、所定の回路パターンを有する例えばモリブデン箔やタングステン箔からなる抵抗発熱体21bがウエハ載置面21aに対して平行に埋設されており、その両端部に接続する端子部21cが支持部材22の内側でウエハ載置台21の下面側から突出している。ウエハ載置台21の内部には、更に必要に応じてRF電極やESC電極、熱電対等の温度センサーが設けられることがあり、これらの端子部も同様に支持部材22の内側でウエハ載置台21の下面側から突出するか下面側に露出することになる。   Inside the wafer mounting table 21, a resistance heating element 21b having a predetermined circuit pattern and made of, for example, molybdenum foil or tungsten foil is buried in parallel with the wafer mounting surface 21a, and is connected to both ends thereof. The terminal portion 21 c projects from the lower surface side of the wafer mounting table 21 inside the support member 22. A temperature sensor such as an RF electrode, an ESC electrode, or a thermocouple may be further provided inside the wafer mounting table 21 as necessary. It protrudes from the lower surface or is exposed to the lower surface.

上記の端子部21cに引出線23の一端部が接続しており、該引出線23は支持部材22の内側を下端まで延在し、チャンバー1の底面に設けられている貫通孔1aを通ってチャンバー1の外部に引き出されている。支持部材22の両端部は外側に屈曲したフランジ部を形成しており、その環状端面に設けた図示しないO−リング等のシール材及び該フランジ部を貫通する図示しないネジやクランプ等の結合手段によってチャンバー1の底面に気密にシールされた状態で取り付けられている。   One end of a lead wire 23 is connected to the terminal portion 21c. The lead wire 23 extends inside the support member 22 to the lower end, and passes through a through hole 1a provided on the bottom surface of the chamber 1. It is drawn out of the chamber 1. Both ends of the support member 22 form outwardly bent flanges, and seal members such as O-rings (not shown) provided on the annular end surfaces thereof and coupling means such as screws and clamps (not shown) penetrating the flanges. And is attached to the bottom surface of the chamber 1 in an airtightly sealed state.

この支持部材22の内側に、図示しないパージガス供給源からパージガスとしての不活性ガスを支持部材22の内側に導入する導入流路24と、支持部材22の内側のガスを排出する排出流路25とが設けられている。そして、これら2本の流路は少なくとも一部において、導入流路24が内側流路、排出流路25が外側流路を構成する2重配管構造26になっている。この排出流路25の排出先はそのままチャンバー1外部で大気開放する構造でもよいし、真空ポンプなどのガス吸引手段を介してチャンバー1外部で大気開放する構造でもよい。   Inside the support member 22, an introduction flow path 24 for introducing an inert gas as a purge gas from a purge gas supply source (not shown) to the inside of the support member 22, and a discharge flow path 25 for discharging the gas inside the support member 22. Is provided. At least a part of these two flow paths has a double piping structure 26 in which the introduction flow path 24 forms an inner flow path and the discharge flow path 25 forms an outer flow path. The discharge destination of the discharge flow path 25 may be a structure that is opened to the atmosphere outside the chamber 1 as it is, or may be a structure that is opened to the atmosphere outside the chamber 1 via a gas suction means such as a vacuum pump.

上記構成により、2重配管構造26部分に熱交換器の機能を持たせることができるので、支持部材22の内側に導入される低温の不活性ガスが内側流路を流れている間に外側流路を流れる高温の排出ガスによって加熱することができる。その結果、低温の不活性ガスがウエハ載置台21の下面に触れることがなくなるので、ウエハ載置面21aの均熱性を乱すことなく端子部21cやその引出線23の酸化及び腐食を防ぐことができる。また、ウエハ載置面21aの温度が局所的に下がるのを防ぐことができるので、過度のクールスポットの発生による割れ等のリスクを低減することができる。   With the above configuration, the function of the heat exchanger can be provided to the double piping structure 26, so that the low-temperature inert gas introduced into the support member 22 flows through the inner flow path while the low-temperature inert gas flows through the inner flow path. It can be heated by hot exhaust gas flowing through the path. As a result, the low-temperature inert gas does not come into contact with the lower surface of the wafer mounting table 21, so that oxidation and corrosion of the terminal portion 21c and the lead wire 23 thereof can be prevented without disturbing the uniformity of the temperature of the wafer mounting surface 21a. it can. Further, since the temperature of the wafer mounting surface 21a can be prevented from being locally lowered, the risk of cracking due to the generation of an excessive cool spot can be reduced.

更に、上記構造は低温の不活性ガスを外部からのエネルギー等を消費することなく加熱できるのでコストを抑えることができる上、構造が極めて簡易であるので設計自由度が高いという利点も有している。また、導入流路24を内側流路にすることで、内側流路のみを支持部材22内で自在に延在させることができるので、載置台の下面側の端子部や引出線等に確実に不活性ガスを供給することが可能になる。   Furthermore, the above structure can heat the low-temperature inert gas without consuming external energy or the like, so that the cost can be suppressed, and the structure is extremely simple, so that there is an advantage that the degree of design freedom is high. I have. In addition, since the introduction flow path 24 is an inner flow path, only the inner flow path can be freely extended in the support member 22, so that the terminal section or the lead wire on the lower surface side of the mounting table is surely provided. It becomes possible to supply an inert gas.

本発明の一具体例の加熱ヒータは、2重配管構造の内側と外側を流れるガスを上記とは反対にして、導入流路24を外側流路、排出流路25を内側流路にしてもよい。これにより、外側流路を流れる低温の不活性ガスは、内側流路を流れる高温の排ガスと支持部材22の内側に存在する高温の雰囲気ガスとによって両側から加熱されるので、より効果的に加熱することが可能になる。   In the heater according to one embodiment of the present invention, the gas flowing inside and outside the double piping structure is reversed, and the introduction flow path 24 is set to the outside flow path, and the discharge flow path 25 is set to the inside flow path. Good. Thereby, the low-temperature inert gas flowing through the outer flow path is heated from both sides by the high-temperature exhaust gas flowing through the inner flow path and the high-temperature atmosphere gas existing inside the support member 22, so that the heating is more effectively performed. It becomes possible to do.

更に、本発明の一具体例の加熱ヒータは、2重配管構造の内側流路と外側流路のそれぞれの先端開口部が、図1に示すように内側流路の流路方向に離間しているのが好ましい。これにより、導入流路から放出された不活性ガスが支持部材22の内側でほとんど滞留することなく直ぐに排出流路から排出されるのを防ぐことができる。なお、図1に示すように内側流路の開口部をウエハ載置台21の近傍にまで延在させて外側流路の開口部をウエハ載置台21から離間させる場合は、外側流路を導入流路24にするのが好ましい。導入流路24から排出された不活性ガスを支持部材22の内側の雰囲気ガスと混合させてからウエハ載置台21に接触させることができるのでより均熱性が高まるからである。   Further, in the heater according to one specific example of the present invention, the respective front end openings of the inner flow path and the outer flow path of the double pipe structure are separated in the flow direction of the inner flow path as shown in FIG. Is preferred. Thereby, it is possible to prevent the inert gas discharged from the introduction flow path from being immediately discharged from the discharge flow path without substantially staying inside the support member 22. When the opening of the inner flow path is extended to the vicinity of the wafer mounting table 21 and the opening of the outer flow path is separated from the wafer mounting table 21 as shown in FIG. Road 24 is preferred. This is because the inert gas discharged from the introduction flow path 24 can be mixed with the atmospheric gas inside the support member 22 and then brought into contact with the wafer mounting table 21, so that the heat uniformity is further improved.

上記した2重配管構造26の形状は図1に示すような直管形状に限定されるものではなく、支持部材22の内壁面に沿ってスパイラル状に旋回する形状や、支持部材22の軸方向に複数回往復する形状等の様々な形状を用いることができる。これにより、熱交換器としての伝熱面積を所望の広さにすることが可能になる。2重配管構造26のサイズは、所定の不活性ガス供給量の下、ウエハ載置面21aの均熱性を乱さない程度に熱交換可能であれば特に限定はないが、一般的には内径1.0〜5.0mm程度、肉厚0.5〜1.0mm程度の内側配管の外側に、50〜100mm程度の長さに亘って内径3.0〜10.0mm程度の配管を設けるのが好ましい。   The shape of the above-mentioned double piping structure 26 is not limited to a straight pipe shape as shown in FIG. 1, but may be a spiral shape along the inner wall surface of the support member 22 or an axial direction of the support member 22. Various shapes such as a shape that reciprocates a plurality of times can be used. This makes it possible to make the heat transfer area as a heat exchanger a desired size. The size of the double piping structure 26 is not particularly limited as long as heat exchange can be performed under a predetermined inert gas supply amount so as not to disturb the uniformity of the wafer mounting surface 21a. It is preferable to provide a pipe having an inner diameter of about 3.0 to 10.0 mm over a length of about 50 to 100 mm outside the inner pipe having a thickness of about 0.0 to 5.0 mm and a thickness of about 0.5 to 1.0 mm. preferable.

上記の不活性ガスとしては、電極等の構成材料を劣化させるような反応を起こさないガスであれば特に制約はなく、He、Ne、Ar、Kr、Xe、Rnのような希ガスや、Nガスなどを使用することができる。これらの中では、コストなどの観点からNやArが好ましい。なお、支持部材22の内側の不活性ガス雰囲気を減圧状態に保ってもよく、これにより支持部材22の内側の雰囲気を介したウエハ載置台21からチャンバー1底面への熱伝導を減少させることができる。 The inert gas is not particularly limited as long as it does not cause a reaction that degrades the constituent materials of the electrodes and the like. Rare gases such as He, Ne, Ar, Kr, Xe, and Rn, and N2 Two gases or the like can be used. Among these, from the viewpoint of cost N 2 or Ar is preferred. The inert gas atmosphere inside the support member 22 may be kept in a reduced pressure state, so that heat conduction from the wafer mounting table 21 to the bottom surface of the chamber 1 via the atmosphere inside the support member 22 may be reduced. it can.

以上、本発明の加熱ヒータについて具体例を挙げて説明したが、本発明は係る具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施することが可能である。すなわち、本発明の技術的範囲は、特許請求の範囲及び均等物に及ぶものである。   As described above, the heater of the present invention has been described with reference to specific examples. However, the present invention is not limited to the specific examples, and can be implemented in various modes without departing from the gist of the present invention. is there. That is, the technical scope of the present invention covers the claims and equivalents.

窒化アルミニウム粉末99.5質量部に焼結助剤として酸化イットリウム0.5質量部を加え、更にバインダー、有機溶剤を加えて、ボールミル混合することにより、スラリーを作製した。得られたスラリーをスプレードライ法で噴霧することにより顆粒を作製し、これをプレス成形して2枚の同形状の成形体を作製した。これら成形体を窒素雰囲気中にて700℃の条件で脱脂した後、窒素雰囲気中において1850℃で焼結して、2枚の窒化アルミニウム焼結体を得た。得られた焼結体を、直径330mm、厚み8mmの円板状に加工した。このときの表面粗さはRaで0.8μm、平面度は50μmであった。   A slurry was prepared by adding 0.5 parts by mass of yttrium oxide as a sintering aid to 99.5 parts by mass of aluminum nitride powder, further adding a binder and an organic solvent, and mixing with a ball mill. The obtained slurry was sprayed by a spray drying method to produce granules, which were press-molded to produce two molded articles having the same shape. These molded bodies were degreased at 700 ° C. in a nitrogen atmosphere, and then sintered at 1850 ° C. in a nitrogen atmosphere to obtain two aluminum nitride sintered bodies. The obtained sintered body was processed into a disk shape having a diameter of 330 mm and a thickness of 8 mm. At this time, the surface roughness was 0.8 μm in Ra, and the flatness was 50 μm.

これら2枚の窒化アルミニウム焼結体のうち、一方の焼結体の片面に抵抗発熱体を形成すべくWペーストを線幅が全て4mmとなるようにスクリーン印刷により塗布してから窒素雰囲気中にて700℃で脱脂した後、窒素雰囲気中にて1830℃で焼成した。これにより略同心円状の回路パターンを有する抵抗発熱体を形成した。次に、もう一方の窒化アルミニウム焼結体の片面に接着用の窒化アルミニウムを主成分とする接着材料を塗布してから脱脂を行った。そして、これら2枚の窒化アルミニウム焼結体を抵抗発熱体を覆うように重ね合わせて接合させた。このようにして得た接合体に対してその片面に抵抗発熱体の両端部にそれぞれ達する2つの穴をザグリ加工し、各穴に抵抗発熱体の端部に当接するようにW製外部端子を嵌入した。   Of these two aluminum nitride sintered bodies, a W paste is applied by screen printing to form a resistance heating element on one surface of one of the two sintered bodies so that the line width is all 4 mm. After degreasing at 700 ° C., it was baked at 1830 ° C. in a nitrogen atmosphere. Thus, a resistance heating element having a substantially concentric circuit pattern was formed. Next, an adhesive material containing aluminum nitride as a main component was applied to one surface of the other aluminum nitride sintered body, followed by degreasing. Then, these two aluminum nitride sintered bodies were overlapped and joined so as to cover the resistance heating element. The joint obtained in this way is counterbored on one surface with two holes that reach both ends of the resistance heating element, and W-shaped external terminals are fitted in each hole so as to abut the ends of the resistance heating element. It was inserted.

このようにして作製したウエハ載置台の上記W製外部端子を嵌入させた面に、両端部にフランジ部を有する内径60mm、高さ150mm、肉厚2mmのAlN製の円筒状の支持部材の一端部を気密に接合した。そして、支持部材の内側でウエハ載置台の下面から突出している外部端子に給電線を接続した。   One end of an AlN cylindrical support member having an inner diameter of 60 mm, a height of 150 mm, and a thickness of 2 mm, having flanges at both ends, is formed on the surface of the wafer mounting table thus prepared in which the W external terminals are fitted. The parts were hermetically joined. Then, a power supply line was connected to an external terminal protruding from the lower surface of the wafer mounting table inside the support member.

この支持部材の一端部が接合されたウエハ載置台をCVD装置のチャンバー内に搭載し、支持部材の他端部をチャンバーの底部にO−リングで気密シールした状態で固定した。更に、図1に示すように、内径3.0mm、肉厚0.5mmの内側配管の外側に内径6.0mm、肉厚1.0mmの外側配管を同心円状に設けた構造の2重配管をチャンバー底部の貫通孔から挿入した。この外側配管は支持部材の軸方向中央部まで延在させてその位置で先端部が開口するようにし、内側配管は支持部材のほぼ上端部まで延在させてウエハ載置台の近傍で先端部が開口するようにした。そして、内側配管をパージガスの導入流路にすべく窒素ガス供給源を接続すると共に外側配管を排出流路にすべく排気ポンプを接続して支持部材の内側を1気圧未満に保持できるようにした。このようにして本発明の実施例のウエハ加熱ヒータを作製した。   The wafer mounting table to which one end of the support member was bonded was mounted in a chamber of a CVD apparatus, and the other end of the support member was fixed to the bottom of the chamber in an air-tight manner with an O-ring. Further, as shown in FIG. 1, a double pipe having a structure in which an outer pipe having an inner diameter of 6.0 mm and a thickness of 1.0 mm is provided concentrically on the outer side of an inner pipe having an inner diameter of 3.0 mm and a thickness of 0.5 mm. It was inserted through a through hole at the bottom of the chamber. The outer pipe extends to the center in the axial direction of the support member so that the distal end is opened at that position, and the inner pipe extends to almost the upper end of the support member so that the distal end is in the vicinity of the wafer mounting table. It was made to open. Then, a nitrogen gas supply source is connected so that the inner pipe is used as a purge gas introduction flow path, and an exhaust pump is connected so that the outer pipe is used as a discharge flow path, so that the inside of the support member can be maintained at less than 1 atm. . Thus, a wafer heater according to an example of the present invention was manufactured.

比較のため、上記導入流路としての内側流路及び排出流路としての外側流路とそれぞれほぼ同じ流路断面積及び流路長さになるような2本の配管を2重配管構造にせずに支持部材の内側に設けた以外は上記実施例の加熱ヒータと同様にして本発明の比較例の加熱ヒータを製作した。そして、これら実施例及び比較例の加熱ヒータの各々に対して、抵抗発熱体に給電することでウエハ載置台を所定の温度に加熱すると共に、窒素ガスで支持部材の内側をパージして載置面の均熱性を評価した。   For comparison, two pipes having substantially the same cross-sectional area and length as the inner flow path as the introduction flow path and the outer flow path as the discharge flow path were not formed in a double pipe structure. A heater according to a comparative example of the present invention was manufactured in the same manner as the heater according to the above embodiment except that the heater was provided inside the support member. Then, for each of the heaters of the example and the comparative example, the wafer mounting table is heated to a predetermined temperature by supplying power to the resistance heating element, and the inside of the support member is purged with nitrogen gas to be mounted. The thermal uniformity of the surface was evaluated.

具体的には、チャンバー内を真空にすると共に、加熱ヒータの抵抗発熱体に給電して加熱ヒータを600℃に加熱した。そして、排気ポンプを起動して支持部材の内側ガスを排気しながら導入流路に100cm/minの常温、常圧の窒素ガスを導入した。その際、センサレー社製の300mm、17点ウエハ測温計を用いて窒素ガスパージ前後の定常状態におけるウエハ載置面の温度分布を測定した。この測定により得たウエハ載置面の17点の温度のうち、φ100の周上の4点を算術平均した平均温度と中心点の温度との温度差を下記表1に示す。 Specifically, the inside of the chamber was evacuated, and power was supplied to the resistance heating element of the heater to heat the heater to 600 ° C. Then, while evacuating the inside gas of the support member by activating the exhaust pump, nitrogen gas of normal temperature and normal pressure of 100 cm 3 / min was introduced into the introduction flow path. At this time, the temperature distribution on the wafer mounting surface in a steady state before and after the nitrogen gas purge was measured using a 300 mm, 17-point wafer thermometer manufactured by Sensorley. Table 1 shows the temperature difference between the average temperature obtained by arithmetically averaging four points on the circumference of φ100 and the temperature at the center point among the 17 temperatures on the wafer mounting surface obtained by this measurement.

Figure 0006631383
Figure 0006631383

上記表1から分かるように、実施例では窒素ガスパージ前後での温度変化は−0.2℃であったのに対して、比較例では窒素ガスパージ前後での温度変化−9.8℃であった。従って、実施例は比較例に比べて窒素ガスをパージした際にも良好な均熱性が得られることが分かった。これは、実施例では低温の不活性ガスを高温の支持部材内の雰囲気ガスと熱交換してから支持部材内に導入したのでウエハ載置面の均熱性が乱されなかったのに対して、比較例では低温の不活性ガスを熱交換せずにそのまま支持部材内に導入したのでウエハ載置台がこの不活性ガスにより局所的に冷やされたことにより、特にウエハ載置面の搭載された17点ウエハの中心部において局所的に低温になったと考えることができる。   As can be seen from the above Table 1, the temperature change before and after the nitrogen gas purge was -0.2 ° C in the example, whereas the temperature change before and after the nitrogen gas purge was -9.8 ° C in the comparative example. . Therefore, it was found that better heat uniformity was obtained in the example than in the comparative example even when purging with nitrogen gas. This is because, in the example, the low-temperature inert gas was heat-exchanged with the atmosphere gas in the high-temperature support member and then introduced into the support member, so that the uniformity of the wafer mounting surface was not disturbed. In the comparative example, since the low-temperature inert gas was directly introduced into the supporting member without heat exchange, the wafer mounting table was locally cooled by the inert gas, and in particular, the wafer mounting surface 17 was mounted. It can be considered that the temperature became low locally at the center of the point wafer.

1 チャンバー
2 ウエハ加熱ヒータ
21 ウエハ載置台
21a ウエハ載置面
21b 抵抗発熱体
21c 端子部
22 支持部材
23 引出線
24 導入流路
25 排出流路
26 2重配管構造
W 半導体ウエハ


DESCRIPTION OF SYMBOLS 1 Chamber 2 Wafer heater 21 Wafer mounting table 21a Wafer mounting surface 21b Resistance heating element 21c Terminal part 22 Supporting member 23 Lead wire 24 Introducing channel 25 Drain channel 26 Double piping structure W Semiconductor wafer


Claims (4)

被加熱物の載置面を上面に備えた載置台と、前記載置台を下側から支持する筒状の支持部材とを有する加熱ヒータであって、前記筒状支持部の内側に、不活性ガスを前記内側に導入する流路と前記内側のガスを排出する流路とが設けられており、これら2つの流路が少なくとも部分的に接して熱交換器を構成しており、前記2つの流路が少なくとも部分的に接する部分が2重配管構造を構成している加熱ヒータ。 A heating heater comprising: a mounting table provided with a mounting surface for an object to be heated on an upper surface; and a cylindrical support member configured to support the mounting table from below. A flow path for introducing a gas into the inside and a flow path for discharging the inside gas are provided, and the two flow paths at least partially contact to constitute a heat exchanger , A heater in which a portion at least partially in contact with a flow path constitutes a double piping structure . 前記不活性ガスを導入する流路が前記2重配管構造の内側流路であり、前記内側のガスを排出する流路が前記2重配管構造の外側流路である、請求項に記載の加熱ヒータ。 The flow path for introducing an inert gas of the double pipe structure is the inner flow path, a flow path for discharging the inner gas is outside flow path of the double pipe structure, according to claim 1 Heater. 前記不活性ガスを導入する流路が前記2重配管構造の外側流路であり、前記内側のガスを排出する流路が前記2重配管構造の内側流路である、請求項に記載の加熱ヒータ。 The flow path for introducing an inert gas of the double pipe structure is the outer flow path, a flow path for discharging the inner gas is inside flow path of the double pipe structure, according to claim 1 Heater. 前記2重配管構造の内側流路と外側流路のそれぞれの先端開口部が、前記内側流路の流路方向に離間している、請求項〜請求項のいずれか1項に記載の加熱ヒータ。 Each of the tip opening of the inner channel and the outer channel of the double pipe structure, are spaced apart in the flow path direction of the inner channel, according to any one of claims 1 to 3 Heater.
JP2016084283A 2016-04-20 2016-04-20 Heater having gas supply piping structure Active JP6631383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084283A JP6631383B2 (en) 2016-04-20 2016-04-20 Heater having gas supply piping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084283A JP6631383B2 (en) 2016-04-20 2016-04-20 Heater having gas supply piping structure

Publications (2)

Publication Number Publication Date
JP2017195266A JP2017195266A (en) 2017-10-26
JP6631383B2 true JP6631383B2 (en) 2020-01-15

Family

ID=60156483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084283A Active JP6631383B2 (en) 2016-04-20 2016-04-20 Heater having gas supply piping structure

Country Status (1)

Country Link
JP (1) JP6631383B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222931A (en) * 2009-12-28 2011-11-04 Tokyo Electron Ltd Mounting table structure and treatment apparatus

Also Published As

Publication number Publication date
JP2017195266A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US9556507B2 (en) Yttria-based material coated chemical vapor deposition chamber heater
TWI702685B (en) Extreme uniformity heated substrate support assembly
US5591269A (en) Vacuum processing apparatus
US6951587B1 (en) Ceramic heater system and substrate processing apparatus having the same installed therein
CN105849866B (en) PECVD ceramic heater with wide-range operating temperature
US7268321B2 (en) Wafer holder and semiconductor manufacturing apparatus
KR101316954B1 (en) Substrate support stage of plasma processing apparatus
JP2007317772A (en) Electrostatic chuck device
US11574822B2 (en) Wafer support table with ceramic substrate including core and surface layer
JP2005166354A (en) Ceramic heater
JP2009144211A (en) Processor, its method of use, and storage medium
US20090283034A1 (en) Wafer holder, manufacturing method thereof and semiconductor manufacturing apparatus
JP2008004926A (en) Wafer holder, method for producing the same, and semiconductor production apparatus
TWI786178B (en) Mount, heater having the mount, and deposition apparatus having the heater
JP7182083B2 (en) wafer holder
JPWO2019008889A1 (en) Substrate mounting table for heating semiconductor substrates
JP4082985B2 (en) Heating device having electrostatic adsorption function and method of manufacturing the same
JP2011049428A (en) Support device
JP6631383B2 (en) Heater having gas supply piping structure
JP2793499B2 (en) Holding structure for holding object
JP4165745B2 (en) Semiconductor wafer holding device
JP2022153883A (en) Silicon wafer for measuring temperature distribution, manufacturing method therefor, and method of manufacturing heater plate for heating semiconductor wafer
JP2024528375A (en) Substrate support assembly having an internal shaft region with an isolated environment that reduces oxidation - Patents.com
JP3122476U (en) Sealing structure of the end of a sheath heater for a disk-shaped wafer heating device
JP2007317756A (en) Semiconductor manufacturing equipment, wafer holder therefor, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250