JP6631041B2 - Oxygen concentration measurement device - Google Patents

Oxygen concentration measurement device Download PDF

Info

Publication number
JP6631041B2
JP6631041B2 JP2015109442A JP2015109442A JP6631041B2 JP 6631041 B2 JP6631041 B2 JP 6631041B2 JP 2015109442 A JP2015109442 A JP 2015109442A JP 2015109442 A JP2015109442 A JP 2015109442A JP 6631041 B2 JP6631041 B2 JP 6631041B2
Authority
JP
Japan
Prior art keywords
oxygen
light
oxygen concentration
fluorescence
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015109442A
Other languages
Japanese (ja)
Other versions
JP2016223870A (en
Inventor
大野 隆
隆 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015109442A priority Critical patent/JP6631041B2/en
Publication of JP2016223870A publication Critical patent/JP2016223870A/en
Application granted granted Critical
Publication of JP6631041B2 publication Critical patent/JP6631041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Fuel Cell (AREA)

Description

本発明は、測定対象領域の酸素濃度を光学的に測定する酸素濃度測定装置に関し、特に燃料電池内部の酸素ガス流路内の酸素ガス濃度を測定するために好適に用いることができる酸素濃度測定装置に関する。   The present invention relates to an oxygen concentration measuring device that optically measures an oxygen concentration in a measurement target area, and particularly to an oxygen concentration measurement that can be suitably used for measuring an oxygen gas concentration in an oxygen gas flow path inside a fuel cell. Equipment related.

燃料電池は、負極側に供給される水素と正極側に供給される酸素の電気化学反応を利用して発電を行う装置である。発電に際して二酸化炭素や窒素酸化物等の有害物質を発生しない、発電効率やエネルギー利用効率が高い、燃料となる水素を容易に得ることができる、といった様々な利点を有していることから、近年様々な分野で用いられている。   A fuel cell is a device that generates power using an electrochemical reaction between hydrogen supplied to a negative electrode side and oxygen supplied to a positive electrode side. In recent years, it has various advantages such as not generating harmful substances such as carbon dioxide and nitrogen oxides during power generation, high power generation efficiency and energy use efficiency, and being able to easily obtain hydrogen as fuel. It is used in various fields.

燃料電池では、負極側で水素から離脱した電子が外部回路を通って正極側に移動することにより電流が流れる。また、水素から電子が離脱した結果生成された水素イオンは正極側に向かって電解質中を移動し、正極側で電子を受け取った酸素(酸素イオン)と反応して水になる。従って、正極側での酸素の消費状況は発電状態を反映しており、これを評価することは、電池の構造、電解質膜や触媒の種類、発電条件等を改良して電池性能を向上させるために有効である。   In a fuel cell, a current flows when electrons released from hydrogen on the negative electrode side move to the positive electrode side through an external circuit. In addition, hydrogen ions generated as a result of the release of electrons from hydrogen move in the electrolyte toward the positive electrode, and react with oxygen (oxygen ions) that have received the electrons on the positive electrode to become water. Therefore, the state of oxygen consumption on the positive electrode side reflects the state of power generation, and evaluating this is necessary to improve battery performance by improving the structure of the battery, the type of electrolyte membrane and catalyst, the power generation conditions, and the like. It is effective for

本願出願人は、特許文献1及び非特許文献1において、燃料電池内部の酸素ガス濃度を光学的に測定する装置(酸素濃度測定装置)を提案している。この酸素濃度測定装置では、燃料電池の正極に接するように設けた酸素ガス流路に、酸素濃度に応じて蛍光強度が変化する酸素感応物質を予め塗布しておき、これに光透過窓を通して所定波長の励起光を照射して、酸素感応物質から放出される蛍光強度を検出する。酸素感応物質は、酸素濃度に応じた強度の蛍光を発する物質であり、該酸素感応物質の蛍光強度から酸素ガス流路内の酸素ガス濃度を求めることができる。   The applicant of the present application has proposed a device (oxygen concentration measuring device) for optically measuring the oxygen gas concentration in a fuel cell in Patent Document 1 and Non-Patent Document 1. In this oxygen concentration measurement device, an oxygen-sensitive substance whose fluorescence intensity changes according to the oxygen concentration is applied in advance to an oxygen gas flow path provided in contact with the positive electrode of the fuel cell, and a predetermined amount is applied to the oxygen-sensitive substance through a light transmission window. By irradiating with excitation light of a wavelength, the fluorescence intensity emitted from the oxygen-sensitive substance is detected. The oxygen-sensitive substance emits fluorescence having an intensity corresponding to the oxygen concentration, and the oxygen gas concentration in the oxygen gas flow path can be obtained from the fluorescence intensity of the oxygen-sensitive substance.

図1に、特許文献1に記載の酸素濃度測定装置100の要部構成を示す。この酸素濃度測定装置100では、光源101から所定の広がり角で発せられる光(励起光)がコリメートレンズ102で平行光に変換され、全反射ミラー103及びダイクロイックミラー104で反射された後、可視化セル105内の酸素ガス流路に照射される。前記コリメートレンズ102は励起光の光軸方向に移動可能であり、該コリメートレンズ102を移動させることによって、可視化セル105内の酸素ガス流路の大きさに応じた面積で励起光を照射することができる。酸素ガス流路105に予め塗布された酸素感応物質からの蛍光は、光検出器106により検出される。   FIG. 1 shows a main configuration of an oxygen concentration measuring apparatus 100 described in Patent Document 1. In the oxygen concentration measuring device 100, light (excitation light) emitted from a light source 101 at a predetermined spread angle is converted into parallel light by a collimating lens 102, reflected by a total reflection mirror 103 and a dichroic mirror 104, The oxygen gas flow path 105 is irradiated. The collimating lens 102 is movable in the optical axis direction of the excitation light. By moving the collimating lens 102, the excitation light can be irradiated with an area corresponding to the size of the oxygen gas flow path in the visualization cell 105. Can be. Fluorescence from the oxygen-sensitive substance previously applied to the oxygen gas flow path 105 is detected by the photodetector 106.

特開2011−89944号公報JP 2011-89944 A

大野隆,他2名,"燃料電池酸素濃度可視化装置 FC-O2モニタ FCM-405-Oxy形", 島津評論, Vol. 67, No. 1・2 (2010)Takashi Ohno, et al., "Fuel Cell Oxygen Concentration Visualization System FC-O2 Monitor FCM-405-Oxy Type", Shimadzu Review, Vol. 67, No. 1-2 (2010)

通常、酸素濃度の測定は、外部光を遮断した暗室で行われる。しかし、上述の酸素濃度測定装置100では、光源101から酸素ガス流路までの光路上にコリメートレンズ102や全反射ミラー103、ダイクロイックミラー104といった光学素子が配置されている。このため、外部光を遮断しても、光源から発せられた励起光の一部がコリメートレンズ102等の光学素子で散乱して迷光となる。こうした迷光が光検出器106に入射すると蛍光強度の測定結果が不正確になり酸素ガス濃度の測定精度が悪化してしまう、という問題があった。   Usually, the measurement of the oxygen concentration is performed in a dark room where external light is blocked. However, in the above-described oxygen concentration measuring apparatus 100, optical elements such as a collimator lens 102, a total reflection mirror 103, and a dichroic mirror 104 are arranged on an optical path from a light source 101 to an oxygen gas flow path. Therefore, even if the external light is blocked, a part of the excitation light emitted from the light source is scattered by the optical element such as the collimator lens 102 and becomes stray light. When such stray light enters the photodetector 106, there is a problem that the measurement result of the fluorescence intensity becomes inaccurate and the measurement accuracy of the oxygen gas concentration deteriorates.

本発明が解決しようとする課題は、酸素濃度に応じた強度の蛍光を発する酸素感応物質を用いて測定対象空間内の酸素ガス濃度を測定する酸素濃度測定装置において、測定の精度を向上させることである。   The problem to be solved by the present invention is to improve the accuracy of measurement in an oxygen concentration measurement device that measures an oxygen gas concentration in a measurement target space using an oxygen-sensitive substance that emits fluorescence having an intensity corresponding to the oxygen concentration. It is.

上記課題を解決するために成された本発明は、測定対象空間に置かれた検出面に塗布された酸素感応物質の蛍光強度を測定することによって前記測定対象空間の酸素ガス濃度を測定する装置であって、
a) 所定波長の励起光を発する光源と、
b) 前記励起光を前記検出面に照射する、光学素子を含む照射光学系と、
c) 前記酸素感応物質から発せられる蛍光が入射する光入射面と、一端が前記検出面を臨む方向に開口し、他端が前記光入射面に当接している、前記光学素子のうち前記蛍光が前記光入射面に入射する経路の外に配置された光学素子と前記光入射面とを結ぶ直線経路を遮断する筒状体であるカバー部材とを有する光検出部と、
を備えることを特徴とする。
Means for Solving the Problems The present invention made in order to solve the above-mentioned problem provides an apparatus for measuring an oxygen gas concentration in the measurement target space by measuring a fluorescence intensity of an oxygen sensitive substance applied to a detection surface placed in the measurement target space. And
a) a light source that emits excitation light of a predetermined wavelength;
b) irradiating the excitation light on the detection surface, an irradiation optical system including an optical element,
a light incident surface which the fluorescence incident emitted from c) the oxygen sensitive material, one end opening in a direction facing the detection surface, the other end is in contact with the light incident surface, the fluorescent of the optical element A light detection unit having a cover member that is a tubular body that blocks a linear path connecting the optical element and the light incident surface, which is disposed outside a path incident on the light incident surface,
It is characterized by having.

本発明に係る酸素濃度測定装置では、照射光学系を通して励起光を酸素感応物質が塗布された検出面に照射する。そして、光検出部により酸素感応物質の蛍光の強度を検出する。このとき、検出面を臨む方向に開口した筒状体であるカバー部材が光検出部の光入射面に取り付けられているため、照射光学系の光学素子で散乱され生じた迷光が光検出器に入射するのを防ぐことができる。従って、酸素感応物質からの蛍光の強度を正確に測定して酸素ガス濃度を高精度で測定することができる。   In the oxygen concentration measuring device according to the present invention, the excitation light is applied to the detection surface coated with the oxygen-sensitive substance through the irradiation optical system. Then, the intensity of the fluorescence of the oxygen-sensitive substance is detected by the light detection unit. At this time, since the cover member, which is a cylindrical body opened in the direction facing the detection surface, is attached to the light incident surface of the light detection unit, stray light generated by scattering by the optical element of the irradiation optical system is applied to the light detector. It is possible to prevent incidence. Therefore, the intensity of the fluorescence from the oxygen-sensitive substance can be accurately measured, and the oxygen gas concentration can be measured with high accuracy.

上記光検出部は、酸素感応物質の蛍光の総強度を測定するものであってもよいが、撮像装置(カメラ)であることが好ましい。これにより検出面の画像を取得し、該画像における明度の分布(酸素感応物質の蛍光強度の分布)から測定対象空間内での酸素ガス濃度の分布を得ることができる。この構成は、特に、燃料電池内部の酸素ガス流路内の酸素ガス濃度を測定するために好適に用いることができる。   The light detector may measure the total intensity of the fluorescence of the oxygen-sensitive substance, but is preferably an imaging device (camera). Thus, an image of the detection surface is obtained, and the distribution of the oxygen gas concentration in the measurement target space can be obtained from the distribution of the brightness (the distribution of the fluorescence intensity of the oxygen-sensitive substance) in the image. This configuration can be suitably used particularly for measuring the oxygen gas concentration in the oxygen gas flow path inside the fuel cell.

燃料電池には、用途や使用場所に応じた様々な大きさのものがあり、検出面の大きさも様々である。こうした検出面に柔軟に対応すべく、前記照射光学系は、前記励起光の光軸方向に移動可能に配置されたコリメートレンズを備えることが好ましい。これにより、検出面の大きさに応じて励起光の照射面積を変更することができる。   There are fuel cells of various sizes according to applications and places of use, and the size of the detection surface also varies. In order to flexibly cope with such a detection surface, it is preferable that the irradiation optical system includes a collimating lens arranged so as to be movable in an optical axis direction of the excitation light. Thereby, the irradiation area of the excitation light can be changed according to the size of the detection surface.

本発明に係る酸素濃度測定装置を用いることにより、励起光が照射光学系に含まれる光学素子で散乱して生じた迷光が光検出部に入射することを防止し、酸素感応物質からの蛍光の強度を正確に測定して測定対象空間内の酸素ガス濃度の測定精度を向上することができる。   By using the oxygen concentration measuring device according to the present invention, it is possible to prevent stray light generated by scattering of the excitation light by the optical element included in the irradiation optical system from being incident on the light detection unit, and to prevent fluorescence from the oxygen-sensitive substance from being emitted. The intensity can be accurately measured, and the measurement accuracy of the oxygen gas concentration in the measurement target space can be improved.

従来の酸素濃度測定装置の要部構成図。FIG. 2 is a configuration diagram of a main part of a conventional oxygen concentration measurement device. 本発明に係る酸素濃度測定装置の一実施例の要部構成図。FIG. 1 is a configuration diagram of a main part of an embodiment of an oxygen concentration measuring device according to the present invention. 本発明に係る酸素濃度測定装置の別の実施例の要部構成図。FIG. 4 is a configuration diagram of a main part of another embodiment of the oxygen concentration measuring device according to the present invention. 本発明に係る酸素濃度測定装置のさらに別の実施例の要部構成図。FIG. 9 is a configuration diagram of a main part of still another embodiment of the oxygen concentration measurement device according to the present invention.

本発明に係る酸素濃度測定装置の一実施例について、以下、図面を参照して説明する。本実施例の酸素濃度測定装置10は、燃料電池内部の酸素ガス流路内の酸素ガス濃度を測定する装置である。酸素ガス流路(検出面)には、約400nmの光を吸収して約650nmの蛍光を発する酸素感応物質が予め塗布されている。酸素感応物質は、酸素濃度に応じた強度の蛍光を発する(例えば蛍光が酸素ガスによって消光される)白金ポルフィリン等の物質である。   An embodiment of the oxygen concentration measuring apparatus according to the present invention will be described below with reference to the drawings. The oxygen concentration measuring device 10 of the present embodiment is a device for measuring the oxygen gas concentration in the oxygen gas flow path inside the fuel cell. An oxygen-sensitive substance that absorbs light of about 400 nm and emits fluorescence of about 650 nm is applied in advance to the oxygen gas flow path (detection surface). The oxygen-sensitive substance is a substance such as platinum porphyrin that emits fluorescence having an intensity corresponding to the oxygen concentration (for example, the fluorescence is quenched by oxygen gas).

図2は、本実施例の酸素濃度測定装置10の要部構成図である。
酸素濃度測定装置10は、LED光源1、コリメートレンズ2、全反射ミラー3、ダイクロイックミラー(誘電体多層膜ミラー)4、及びカメラ6を備えている。また、コリメートレンズ2は、図示しない移動機構によって励起光の光軸方向に移動可能に配置されている。なお、LED光源1は、LEDと、該LEDから発せられる光を所定の広がり角に成形するビームエクスパンダーを備えている。あるいは、LED光源1に代えて、レーザと、該レーザから発せられる光を所定の広がり角に成形するビームエクスパンダーを有するレーザ光源を用いても良い。
FIG. 2 is a main part configuration diagram of the oxygen concentration measuring device 10 of the present embodiment.
The oxygen concentration measuring device 10 includes an LED light source 1, a collimating lens 2, a total reflection mirror 3, a dichroic mirror (dielectric multilayer film mirror) 4, and a camera 6. The collimating lens 2 is arranged so as to be movable in the optical axis direction of the excitation light by a moving mechanism (not shown). The LED light source 1 includes an LED and a beam expander for shaping light emitted from the LED to a predetermined divergence angle. Alternatively, instead of the LED light source 1, a laser light source having a laser and a beam expander for shaping light emitted from the laser into a predetermined spread angle may be used.

燃料電池では、用途や使用場所に応じて様々な大きさのものが用いられる。従って、酸素ガス流路の大きさも10mm四方程度のものから1000mm四方に至るものまで様々である。本実施例の酸素濃度測定装置10では、コリメートレンズ2をLED光源1から遠ざかる方向に移動すると、励起光の照射面積を大きくすることができる。従って、燃料電池の酸素ガス流路の大きさに合わせて励起光の照射面積を変更することができる。   Fuel cells of various sizes are used depending on the application and the place of use. Therefore, the size of the oxygen gas flow path also varies from about 10 mm square to 1000 mm square. In the oxygen concentration measuring apparatus 10 of the present embodiment, when the collimating lens 2 is moved away from the LED light source 1, the irradiation area of the excitation light can be increased. Therefore, the irradiation area of the excitation light can be changed according to the size of the oxygen gas flow path of the fuel cell.

LED光源1から所定の広がり角で発せられた約400nmの励起光(図中の一点鎖線)は、コリメートレンズ2により平行光に変換された後、全反射ミラー3及びダイクロイックミラー4で反射されて検出面5に入射する。これにより、検出面5に塗布された酸素感応物質から発せられた蛍光(図中の破線)はカメラ6で撮像され、所定の画像処理が施されたあと、図示しない表示部の画面上に表示される。   Excitation light of about 400 nm (dashed-dotted line in the figure) emitted from the LED light source 1 at a predetermined spread angle is converted into parallel light by the collimating lens 2 and then reflected by the total reflection mirror 3 and the dichroic mirror 4. The light enters the detection surface 5. As a result, the fluorescence (broken line in the figure) emitted from the oxygen-sensitive substance applied to the detection surface 5 is imaged by the camera 6, subjected to predetermined image processing, and displayed on a screen of a display unit (not shown). Is done.

本実施例の酸素濃度測定装置10では、カメラ6の光入射面7にカバー部材8が取り付けられている。カバー部材8は検出面5を臨む方向に開口した筒状体である。カバー部材8には、黒色の樹脂製や黒色塗装された金属製のものであって、表面が粗く加工され反射が抑えられたものを用いることが好ましい。また、励起光が通過する光路上に位置する光学素子(即ち、コリメートレンズ2及び全反射ミラー3)において励起光が散乱されて生じた迷光が光入射面7に直接入射するのを防ぐような長さに形成されている。つまり、コリメートレンズ2及び全反射ミラー3と、光入射面7を結ぶ直線経路を遮断するようにカバー部材8が装着されている。これは、カメラ6に取り付けられたカバー部材8の長さや形状を踏まえ、コリメートレンズ2及び全反射ミラー3で散乱された迷光が光入射面7に直接入射することがない位置にコリメートレンズ2及び全反射ミラー3が配置されている、と言い換えることもできる。従って、励起光がコリメートレンズ2及び全反射ミラー3で散乱され迷光になっても、それらが検出されることがない。そのため、検出面5の蛍光強度を正確に測定して酸素ガス濃度を高精度で測定することができる。   In the oxygen concentration measuring device 10 of the present embodiment, a cover member 8 is attached to the light incident surface 7 of the camera 6. The cover member 8 is a cylindrical body opened in a direction facing the detection surface 5. The cover member 8 is preferably made of a black resin or a black painted metal, whose surface is roughened to suppress reflection. Further, the optical element (ie, the collimating lens 2 and the total reflection mirror 3) positioned on the optical path through which the excitation light passes prevents the stray light generated by scattering the excitation light from directly entering the light incident surface 7. It is formed in length. That is, the cover member 8 is mounted so as to block a linear path connecting the collimating lens 2 and the total reflection mirror 3 to the light incident surface 7. This is because, based on the length and shape of the cover member 8 attached to the camera 6, the collimator lens 2 and the stray light scattered by the total reflection mirror 3 do not directly enter the light incident surface 7. In other words, the total reflection mirror 3 is arranged. Therefore, even if the excitation light is scattered by the collimator lens 2 and the total reflection mirror 3 and becomes stray light, they are not detected. Therefore, the fluorescence intensity of the detection surface 5 can be accurately measured, and the oxygen gas concentration can be measured with high accuracy.

また、カバー部材8は検出面5のサイズに応じて形状を変化させることができる。例えば、検出面5が光入射面7よりも大きい場合に、検出面5の大きさに合わせてカバー部材8全体を大きくするように変形可能に構成することができる。カメラ6の大きさに比べてカバー部材8を適宜に大きくすることで、迷光の進入をより効果的に抑えることができる。   The shape of the cover member 8 can be changed according to the size of the detection surface 5. For example, when the detection surface 5 is larger than the light incident surface 7, the entire cover member 8 can be configured to be deformable so as to be larger according to the size of the detection surface 5. By appropriately increasing the size of the cover member 8 as compared with the size of the camera 6, the entry of stray light can be more effectively suppressed.

上記実施例は一例であって、本発明の趣旨に沿って適宜に変更可能である。上記実施例ではLED光源を用いたが、酸素感応物質による光吸収が起こる波長を含み該酸素感応物質の蛍光波長を含まない波長範囲の光を発する白色光源を用いても良い。また、本実施例では燃料電池の酸素ガス流路内の酸素ガス濃度を測定する場合を例に挙げたが、当然、それ以外の測定対象空間内の酸素ガス濃度も同様に測定することができる。   The above embodiment is an example, and can be appropriately changed in accordance with the gist of the present invention. Although an LED light source is used in the above embodiment, a white light source that emits light in a wavelength range that includes a wavelength at which light is absorbed by the oxygen-sensitive substance but does not include the fluorescence wavelength of the oxygen-sensitive substance may be used. Further, in the present embodiment, the case where the oxygen gas concentration in the oxygen gas flow path of the fuel cell is measured has been described as an example, but it goes without saying that the oxygen gas concentration in other measurement target spaces can be similarly measured. .

上記実施例における照射光学系に代えて、図3あるいは図4に示すような構成を採ることもできる。
図3に示す酸素濃度測定装置20では、LED光源11からの励起光をコリメートレンズ12で平行光に変換し、斜方向から検出面15に照射する。そして、検出面15に塗布された酸素感応物質からの蛍光をカメラ16により撮像する。カメラ16は上記実施例と同様に、光入射面17にカバー部材18を備えている。この構成では、全反射ミラーやダイクロイックミラーを用いないため、迷光の発生要因を少なくすることができる。
Instead of the irradiation optical system in the above embodiment, a configuration as shown in FIG. 3 or FIG. 4 can be adopted.
In the oxygen concentration measuring device 20 shown in FIG. 3, the excitation light from the LED light source 11 is converted into parallel light by the collimating lens 12, and is irradiated on the detection surface 15 from an oblique direction. Then, the fluorescence from the oxygen-sensitive substance applied to the detection surface 15 is imaged by the camera 16. The camera 16 includes a cover member 18 on the light incident surface 17 as in the above embodiment. In this configuration, since a total reflection mirror or a dichroic mirror is not used, it is possible to reduce the generation factor of stray light.

図4に示す酸素濃度測定装置30では、LED光源21からの励起光をコリメートレンズ22で平行光に変換し、ダイクロイックミラー23を通過させて検出面25に照射する。検出面25からの蛍光は、ダイクロイックミラー23及び全反射ミラー24で反射された後、カメラ26で撮像される。カメラ26も、上記実施例と同様に、光入射面27にカバー部材28を備えている。図4の構成で使用するダイクロイックミラー23には、図2の構成で用いるダイクロイックミラーと違い、励起光の波長の光を透過して蛍光の波長の光を反射するものを用いる。なお、この構成では全反射ミラー24に代えて、励起光を透過し蛍光を反射するダイクロイックミラーを用いてもよい。ダイクロイックミラーを用いることにより、励起光の散乱により生じた迷光(即ち、励起光と同一波長の迷光)をより確実に遮断し、酸素ガスの測定精度をより一層高めることができる。   In the oxygen concentration measuring device 30 shown in FIG. 4, the excitation light from the LED light source 21 is converted into parallel light by the collimator lens 22, and the parallel light passes through the dichroic mirror 23 and irradiates the detection surface 25. The fluorescence from the detection surface 25 is reflected by the dichroic mirror 23 and the total reflection mirror 24, and then captured by the camera 26. The camera 26 also has a cover member 28 on the light incident surface 27 as in the above embodiment. The dichroic mirror 23 used in the configuration shown in FIG. 4 is different from the dichroic mirror used in the configuration shown in FIG. 2 in that it transmits light having the wavelength of excitation light and reflects light having the wavelength of fluorescence. In this configuration, a dichroic mirror that transmits excitation light and reflects fluorescence may be used instead of the total reflection mirror 24. By using the dichroic mirror, stray light generated by scattering of the excitation light (that is, stray light having the same wavelength as the excitation light) can be more reliably blocked, and the measurement accuracy of the oxygen gas can be further improved.

1、11、21…LED光源
10、20、30…酸素濃度測定装置
2、12、22…コリメートレンズ
3、24…全反射ミラー
4、23…ダイクロイックミラー
5、15、25…検出面
6、16、26…カメラ
7、17、27…光入射面
8、18、28…カバー部材
1, 11, 21 ... LED light sources 10, 20, 30 ... Oxygen concentration measuring device 2, 12, 22 ... Collimating lenses 3, 24 ... Total reflection mirror 4, 23 ... Dichroic mirrors 5, 15, 25 ... Detection surfaces 6, 16 , 26: Cameras 7, 17, 27: Light incident surface 8, 18, 28: Cover member

Claims (4)

測定対象空間に置かれた検出面に塗布された酸素感応物質の蛍光強度を測定することによって前記測定対象空間の酸素ガス濃度を測定する装置であって、
a) 所定波長の励起光を発する光源と、
b) 前記励起光を前記検出面に照射する、光学素子を含む照射光学系と、
c) 前記酸素感応物質から発せられる蛍光が入射する光入射面と、一端が前記検出面を臨む方向に開口し、他端が前記光入射面に当接している、前記光学素子のうち前記蛍光が前記光入射面に入射する経路の外に配置された光学素子と前記光入射面とを結ぶ直線経路を遮断する筒状体であるカバー部材とを有する光検出部と、
を備えることを特徴とする酸素濃度測定装置。
An apparatus for measuring the oxygen gas concentration of the measurement target space by measuring the fluorescence intensity of the oxygen-sensitive substance applied to the detection surface placed in the measurement target space,
a) a light source that emits excitation light of a predetermined wavelength;
b) irradiating the excitation light on the detection surface, an irradiation optical system including an optical element,
a light incident surface which the fluorescence incident emitted from c) the oxygen sensitive material, one end opening in a direction facing the detection surface, the other end is in contact with the light incident surface, the fluorescent of the optical element A light detection unit having a cover member that is a tubular body that blocks a linear path connecting the optical element and the light incident surface, which is disposed outside a path incident on the light incident surface,
An oxygen concentration measuring device comprising:
前記照射光学系が、前記励起光の光軸方向に移動可能に配置されたコリメート光学素子を備えることを特徴とする請求項1に記載の酸素濃度測定装置。   2. The oxygen concentration measuring device according to claim 1, wherein the irradiation optical system includes a collimating optical element movably arranged in an optical axis direction of the excitation light. 3. 前記カバー部材の形状を、前記検出面の大きさに応じて変更可能であることを特徴とする請求項1又は2に記載の酸素濃度測定装置。   The oxygen concentration measuring device according to claim 1, wherein a shape of the cover member can be changed according to a size of the detection surface. 測定対象空間に置かれた検出面に、酸素濃度に応じて異なる強度の蛍光を発する酸素感応物質を塗布し、
所定波長の励起光を、光学素子を含む照射光学系によって前記検出面に照射し、
前記検出面に塗布された前記酸素感応物質からの蛍光を、該蛍光が入射する光入射面と、一端が前記検出面を臨む方向に開口し、他端が前記光入射面に当接している、前記光学素子のうち前記蛍光が前記光入射面に入射する経路の外に配置された光学素子と前記光入射面とを結ぶ直線経路を遮断する筒状体であるカバー部材とを有する光検出部によって検出する
ことを特徴とする酸素濃度測定方法。
Apply an oxygen-sensitive substance that emits fluorescence of different intensity according to the oxygen concentration on the detection surface placed in the measurement target space,
Excitation light of a predetermined wavelength is irradiated on the detection surface by an irradiation optical system including an optical element,
Fluorescence from the oxygen-sensitive substance applied to the detection surface, a light incident surface on which the fluorescence is incident, one end is opened in a direction facing the detection surface, and the other end is in contact with the light incident surface. A light detection device having a cover member that is a cylindrical body that blocks a linear path connecting the optical element and the optical element , the optical element being disposed outside a path through which the fluorescence is incident on the light incident surface; A method for measuring oxygen concentration, characterized in that the oxygen concentration is detected by a part.
JP2015109442A 2015-05-29 2015-05-29 Oxygen concentration measurement device Expired - Fee Related JP6631041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109442A JP6631041B2 (en) 2015-05-29 2015-05-29 Oxygen concentration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109442A JP6631041B2 (en) 2015-05-29 2015-05-29 Oxygen concentration measurement device

Publications (2)

Publication Number Publication Date
JP2016223870A JP2016223870A (en) 2016-12-28
JP6631041B2 true JP6631041B2 (en) 2020-01-15

Family

ID=57747911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109442A Expired - Fee Related JP6631041B2 (en) 2015-05-29 2015-05-29 Oxygen concentration measurement device

Country Status (1)

Country Link
JP (1) JP6631041B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725678Y2 (en) * 1987-03-11 1995-06-07 株式会社堀場製作所 UV Fluorescence Analyzer
JPH0459831U (en) * 1990-09-29 1992-05-22
JP4677604B2 (en) * 2005-09-21 2011-04-27 国立大学法人山梨大学 Fuel cell and fuel cell reaction measuring device
JP5310479B2 (en) * 2009-10-26 2013-10-09 株式会社島津製作所 Fuel cell reaction measuring device
JP5609377B2 (en) * 2010-07-27 2014-10-22 コニカミノルタ株式会社 measuring device
JP5554289B2 (en) * 2011-06-13 2014-07-23 古河電気工業株式会社 Detection apparatus for immunochromatography and detection method thereof

Also Published As

Publication number Publication date
JP2016223870A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
ES2597456T3 (en) Infrared spectrometer
US8824514B2 (en) Measuring crystal site lifetime in a non-linear optical crystal
JP4500157B2 (en) Optical system for shape measuring device
JP5310479B2 (en) Fuel cell reaction measuring device
JP6631041B2 (en) Oxygen concentration measurement device
JP2012151014A (en) Oxygen concentration measurement device
JP5573776B2 (en) Oxygen concentration measuring device
JP2021503608A (en) Optical flow cytometer for epifluorescence measurement
JP2011089944A5 (en)
JP5590352B2 (en) Solar simulator
JP6207326B2 (en) Subject information acquisition device
JP6136475B2 (en) Fuel cell and oxygen concentration measuring device using the same
JP6129014B2 (en) Fluorescence detection apparatus and fluorescence detection method
US20160178506A1 (en) Photothermal Conversion Spectroscopic Analyzer
JP2010197229A (en) Fluorescent x-ray analyzer
JP6167552B2 (en) Oxygen concentration measuring apparatus and program used therefor
JP5888104B2 (en) Oxygen concentration measuring device
JP2013108811A (en) Fuel cell oxygen concentration measuring apparatus
JP2007292577A (en) Light source device
JP6176327B2 (en) Raman spectrometer
JP2018179920A (en) Axial force evaluation method using x-ray diffraction measurement device
JP2015141852A (en) Fuel battery cell and oxygen concentration measurement device using the same
KR20160088462A (en) Laser induced breakdown spectroscopy device for pyro-processing monitoring
JP2022118476A (en) Illumination optical system, illumination device, and optical measuring device
CN115598105A (en) Focusing method and focusing system for Raman detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R151 Written notification of patent or utility model registration

Ref document number: 6631041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees