JP2007292577A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2007292577A
JP2007292577A JP2006120254A JP2006120254A JP2007292577A JP 2007292577 A JP2007292577 A JP 2007292577A JP 2006120254 A JP2006120254 A JP 2006120254A JP 2006120254 A JP2006120254 A JP 2006120254A JP 2007292577 A JP2007292577 A JP 2007292577A
Authority
JP
Japan
Prior art keywords
light
incident
unit
light source
uniformizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120254A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
拓也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006120254A priority Critical patent/JP2007292577A/en
Publication of JP2007292577A publication Critical patent/JP2007292577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure luminous energy allowing precise detection by an optical sensor, without lowering substantially the luminous energy. <P>SOLUTION: The light source device includes a light source 101 for emitting visible light, a convergence part 102 for converging the light from the light source 101 to a light uniformizing part 103, the light uniformizing part 103 for uniformizing the light, a light acquisition part 104 for taking out one part of the light total-reflected inside the light uniformizing part 103, the optical sensor 105 for receiving the light taken out by the light acquisition part 104, and a light source luminous energy controller 106 for regulating the luminous energy of the light source 101 in response to an output from the optical sensor 105. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光源装置に関し、詳細には光量をモニタし、光量のコントロールを行う技術に関する。   The present invention relates to a light source device, and more particularly to a technique for monitoring the amount of light and controlling the amount of light.

プロジェクタや検査対象物となる硝子板や塗料塗布面に光を照射してCCDカメラなどで観察して傷や塗装不良を検査する検査装置などにおいては、光源の光量を一定に制御し、かつ均一な光を出射する光源装置が必要である。そのために、光量をモニタし、フィードバック制御によって光量を調整する技術が開示されている。(例えば、特許文献1参照)。   In inspection equipment that inspects scratches and coating defects by irradiating light onto the projector and the glass plate or paint application surface to be inspected and observing with a CCD camera etc., the light quantity of the light source is controlled uniformly and uniformly A light source device that emits light is necessary. Therefore, a technique for monitoring the light amount and adjusting the light amount by feedback control is disclosed. (For example, refer to Patent Document 1).

図6は従来の光源装置の構成を示した図である。光源101の光は集光部102を介して光均一化部103の入射面に集光し、光均一化部103で均一化した後、光均一化部103の出射面から出射する。そして、光均一化部103の内部の欠陥601や表面の傷によって乱反射した漏れ光を光センサ105が受光し、電気信号に変換して出力する。そして、光センサ105の出力に応じて光源光量コントローラ106が光源101の光量を調節する。
特開2005−233927号公報
FIG. 6 is a diagram showing a configuration of a conventional light source device. The light from the light source 101 is condensed on the incident surface of the light homogenizing unit 103 via the condensing unit 102, is uniformed by the light uniformizing unit 103, and then exits from the exit surface of the light uniformizing unit 103. Then, the light sensor 105 receives the leaked light irregularly reflected by the defect 601 inside the light uniformizing unit 103 or the scratch on the surface, converts it into an electrical signal, and outputs it. Then, the light source light amount controller 106 adjusts the light amount of the light source 101 according to the output of the optical sensor 105.
JP 2005-233927 A

しかしながら、前記従来の構成では、光均一化部103に偶然ある欠陥や表面の傷によって乱反射する光の漏れ光を利用するため、光センサ105が受光する光量は小さく、検出精度が悪い。光均一化部103が欠陥や表面の傷が少ない品質の良いものであれば漏れ光量はさらに低下して光源をフィードバック制御することが困難になる。   However, in the above-described conventional configuration, light leakage light that is irregularly reflected due to a defect or surface scratch on the light uniformizing unit 103 is used, so the amount of light received by the optical sensor 105 is small and the detection accuracy is poor. If the light uniformizing unit 103 has good quality with few defects and scratches on the surface, the amount of leaked light is further reduced, making it difficult to feedback control the light source.

従って、本発明は光量をほとんど低下させずに、かつ光センサ105が精度良く検出できる光量を確保する光源装置を提供することを課題とする。   Accordingly, it is an object of the present invention to provide a light source device that ensures a light amount that can be accurately detected by the optical sensor 105 without substantially reducing the light amount.

前記従来の課題を解決するために、本発明の光源装置は、可視光を放射する光源と、前記光源の可視光を集光して光を照射する集光部と、入射面に入射した前記集光部からの光を側面で全反射させて均一化し、出射面から出射する光均一化部と、前記光均一化部の側面に配置し、前記光均一化部内部を全反射する光を一部取り出す光取得部と、前記光取得部によって取り出した光を受光し、電気信号に変換する光センサと、前記光センサの電気信号に応じて前記光源の光量を変化させる光源光量コントローラとを備えることを特徴とするものである。   In order to solve the conventional problems, a light source device of the present invention includes a light source that emits visible light, a light collecting unit that collects visible light from the light source and irradiates light, and the light incident on an incident surface. The light from the condensing part is totally reflected on the side surface to be uniformed, and the light uniformizing part that exits from the light exiting surface and the light that is disposed on the side surface of the light uniformizing part to totally reflect the inside of the light uniformizing part. A light acquisition unit that partially extracts, a light sensor that receives light extracted by the light acquisition unit and converts the light into an electric signal, and a light source light amount controller that changes the light amount of the light source according to the electric signal of the light sensor. It is characterized by comprising.

さらに光源装置において、前記光取得部は、入射した光と垂線とのなす角度が臨界角未満となる出射面を備え、入射した光が出射面から外部へ出射するプリズムであることを特徴とするものである。   Further, in the light source device, the light acquisition unit is a prism that includes an exit surface in which an angle formed between the incident light and the perpendicular is less than a critical angle, and the incident light exits from the exit surface to the outside. Is.

さらに光源装置において、前記光取得部は、前記光均一化部の屈折率以上の屈折率を持つことを特徴とするものである。   Further, in the light source device, the light acquisition unit has a refractive index equal to or higher than a refractive index of the light uniformizing unit.

さらに光源装置において、前記光取得部は、前記光均一化部の入射面の垂線と前記光均一化部の入射面へ入射する入射光との最大のなす角度を持つ入射光が前記光均一化部側面において側面の垂線となす角度より大きく、90度より小さい臨界角となる屈折率を持つことを特徴とするものである。   Further, in the light source device, the light acquisition unit is configured to make the incident light having the maximum angle between the perpendicular of the incident surface of the light uniformizing unit and the incident light incident on the incident surface of the light uniformizing unit the light uniformizing unit. It has a refractive index that is larger than the angle formed by the perpendicular to the side surface and smaller than 90 degrees on the side surface.

さらに光源装置において、前記光取得部の入射面の一辺が、前記光均一化部の入射面と同一平面上に位置することを特徴とするものである。   Furthermore, in the light source device, one side of the incident surface of the light acquisition unit is located on the same plane as the incident surface of the light uniformizing unit.

以上のように、本発明の光源装置によると、光量及び均一度にほとんど影響を与えず、光センサが十分な光量を受光することができるため、精度の良い光量の制御が可能となる。   As described above, according to the light source device of the present invention, the light sensor can receive a sufficient amount of light with little influence on the amount of light and uniformity, so that the light amount can be accurately controlled.

以下に、本発明の光源装置の実施の形態を図面とともに詳細に説明する。   Embodiments of the light source device of the present invention will be described below in detail with reference to the drawings.

以下に、本発明の請求項1ないし請求項5に記載された発明の実施の形態について、図1ないし図5を用いて説明する。   Embodiments of the present invention described in claims 1 to 5 of the present invention will be described below with reference to FIGS.

図1は本発明の実施例1における光源装置の構成図である。
図1において、光源101は、可視光を放射する光源であって、例えば、水銀灯、ナトリウム灯、発光ダイオードやレーザーなどであり、可視光を放射する光源であれば何れも適用可能である。また、一つの光源ではなく、複数の光源を集光させたものでも良い。
FIG. 1 is a configuration diagram of a light source device in Embodiment 1 of the present invention.
In FIG. 1, a light source 101 is a light source that emits visible light, such as a mercury lamp, a sodium lamp, a light emitting diode, or a laser, and any light source that emits visible light is applicable. Moreover, what condensed the some light source instead of one light source may be used.

集光部102は、光源101の放射光を光均一化部入射面103aに集光する。集光部102は例えば、集光レンズや楕円ミラーなどである。光均一化部103は、光均一化部入射面103aからの入射光を側面で全反射させて光均一化部出射面103bに導き、光均一化部出射面103bから出射する。光は光均一化部103内部で複数回反射することにより均一化され、光均一化部出射面103bは一様な光量分布となる。なお、本実施例においては、一例として角柱のロッドプリズムを使用している。光取得部104は、光均一化部103の側面に配置し、光均一化部103内部を全反射する光の一部を取り出す。光センサ105は、光取得部104から出射した光を受光する。光センサ105は、例えばフォトダイオードであり、受光した光の光量を電気信号に変換して出力する。光源光量コントローラ106は、光センサ105の出力に応じて光源101の光量を制御する。光源光量コントローラ106は、例えば、光センサ105からの電気信号をA/D変換(アナログ値からデジタル値への変換)を行う。そして、各光源の光量が予め定められた値となるように、入力をA/D変換後の光センサ105からの電気信号(デジタル値)、出力を各光源の駆動信号とした比例動作と積分動作を組み合わせたPI(Proportional Integral)制御を行う。   The condensing part 102 condenses the emitted light of the light source 101 on the light uniformizing part incident surface 103a. The condensing unit 102 is, for example, a condensing lens or an elliptical mirror. The light homogenizer 103 totally reflects the incident light from the light homogenizer entrance surface 103a on the side surface, guides it to the light uniformizer exit surface 103b, and emits it from the light uniformizer exit surface 103b. The light is uniformed by being reflected a plurality of times inside the light uniformizing unit 103, and the light uniformizing unit exit surface 103b has a uniform light quantity distribution. In this embodiment, a prismatic rod prism is used as an example. The light acquisition unit 104 is disposed on the side surface of the light homogenization unit 103 and extracts a part of the light that totally reflects inside the light homogenization unit 103. The optical sensor 105 receives the light emitted from the light acquisition unit 104. The optical sensor 105 is, for example, a photodiode, and converts the amount of received light into an electrical signal and outputs it. The light source light amount controller 106 controls the light amount of the light source 101 according to the output of the optical sensor 105. The light source light quantity controller 106 performs, for example, A / D conversion (conversion from an analog value to a digital value) on the electrical signal from the optical sensor 105. Then, proportional operation and integration with the input as an electrical signal (digital value) from the optical sensor 105 after A / D conversion and the output as the drive signal of each light source so that the light quantity of each light source becomes a predetermined value. PI (Proportional Integral) control combining operations is performed.

次に、光均一化部103から光取得部104が光を取り出す原理について図2を用いて詳しく説明する。
図2は図1の光均一化部103、光取得部104及び光センサ105を拡大した図である。
Next, the principle by which the light acquisition unit 104 extracts light from the light uniformizing unit 103 will be described in detail with reference to FIG.
FIG. 2 is an enlarged view of the light homogenizing unit 103, the light acquiring unit 104, and the optical sensor 105 of FIG.

図2において、最大入射角光線201は光均一化部入射面103aに入射する光線において、入射角202が最大の光線である。入射角202は、光均一化部入射面103aの垂線206と最大入射角光線201とのなす角である。出射角203は、光均一化部入射面103aを透過後の最大入射角光線201と垂線206とのなす角である。入射角204は、光取得部104に光線が入射する光取得部入射面104aの垂線207と最大入射角光線201とのなす角である。入射角205は、光取得部104の出射面、光取得部出射面104bの垂線208と最大入射角光線201とのなす角である。   In FIG. 2, the maximum incident angle light beam 201 is the light beam having the maximum incident angle 202 among the light beams incident on the light uniformizing unit incident surface 103a. The incident angle 202 is an angle formed by the normal 206 of the light uniformizing portion incident surface 103 a and the maximum incident light ray 201. The exit angle 203 is an angle formed between the maximum incident angle light beam 201 after passing through the light uniformizing portion incident surface 103 a and the perpendicular 206. The incident angle 204 is an angle formed between the perpendicular line 207 of the light acquisition unit incident surface 104 a on which the light beam enters the light acquisition unit 104 and the maximum incident angle light beam 201. The incident angle 205 is an angle formed by the emission surface of the light acquisition unit 104, the normal 208 of the light acquisition unit emission surface 104 b, and the maximum incident angle light ray 201.

本実施例においては、空気の屈折率を1、光均一化部103の屈折率を1.5とした時、最大入射角光線201が24度の入射角202で光均一化部入射面103aに入射すると、出射角203は16度となる。そして、入射角204は74度となり、臨界角が約41.8度のため、光取得部104が無い場合は最大入射角光線201含む光均一化部103に入射した全ての光は全反射する。しかし、光取得部104が有り、その屈折率が光均一化部103の屈折率以上である場合は、最大入射角光線201含む光均一化部103に入射した全ての光は光取得部入射面104aを透過する。なおここでは、光取得部104の屈折率は1.5とする。そして、入射角205が臨界角の41.8度未満となる光取得部出射面104bを設けて、最大入射角光線201含む光均一化部103に入射した全ての光を出射する。光センサ105は、光取得部出射面104bから出射した光を受光する。   In this embodiment, when the refractive index of air is 1 and the refractive index of the light uniformizing unit 103 is 1.5, the maximum incident angle light ray 201 is incident on the light uniformizing unit incident surface 103a at an incident angle 202 of 24 degrees. When incident, the exit angle 203 is 16 degrees. Since the incident angle 204 is 74 degrees and the critical angle is about 41.8 degrees, when there is no light acquisition unit 104, all light incident on the light uniformizing unit 103 including the maximum incident angle light ray 201 is totally reflected. . However, when the light acquisition unit 104 is provided and the refractive index thereof is equal to or higher than the refractive index of the light uniformizing unit 103, all light incident on the light uniformizing unit 103 including the maximum incident angle light ray 201 is incident on the light acquisition unit incident surface. 104a is transmitted. Here, the refractive index of the light acquisition unit 104 is 1.5. Then, the light acquisition unit emitting surface 104b having an incident angle 205 less than the critical angle of 41.8 degrees is provided, and all the light incident on the light uniformizing unit 103 including the maximum incident angle light ray 201 is emitted. The optical sensor 105 receives the light emitted from the light acquisition unit emission surface 104b.

次に光均一化部103及び光取得部104の外観の一例を説明する。図3は、光均一化部103及び光取得部104の外観図である。図3に示すように、光均一化部103は、8.5mm×5.2mm×50mmの角柱である。光取得部入射面104aは、5mm×5mmであり、この面に入射する光が光取得部104の内部へ導かれる。   Next, an example of the appearance of the light uniformizing unit 103 and the light acquiring unit 104 will be described. FIG. 3 is an external view of the light homogenization unit 103 and the light acquisition unit 104. As shown in FIG. 3, the light uniformizing unit 103 is a prismatic column of 8.5 mm × 5.2 mm × 50 mm. The light acquisition unit incident surface 104 a is 5 mm × 5 mm, and light incident on this surface is guided into the light acquisition unit 104.

次に、図3の光取得部104をZ軸方向に前後させた時、光均一化部出射面103bにおける光の損失や均一度がどのように変化するかについて説明する。図4は、光取得部104のZ軸方向の位置に対する光均一化部出射面103bにおける光量及び均一度を示すグラフである。   Next, how the light loss and uniformity on the light uniformizing unit exit surface 103b change when the light acquisition unit 104 of FIG. 3 is moved back and forth in the Z-axis direction will be described. FIG. 4 is a graph showing the amount of light and the degree of uniformity on the light uniformizing unit exit surface 103b with respect to the position of the light acquisition unit 104 in the Z-axis direction.

図4において横軸はZ軸位置、縦軸は光量及び均一度である。また、横軸のZ軸位置の0は図3において辺301が辺302の位置に配置されている時である。光量401は、光取得部104無しの時の光量を100%としてプロットしている。参照軸は左の縦軸である。ここで損失した光量が光取得部104、ひいては光センサへ入射する光量である。水平均一度402及び垂直均一度403は、図3において光均一化部出射面103bの中心を通り、X軸方向及びY軸方向にそれぞれ引いた線、線303及び線304の光量の均一度を光取得部104無しの時の均一度を100%としてプロットしており、大きい値は均一度が良く、小さい値は均一度が悪い。参照軸は右の縦軸である。   In FIG. 4, the horizontal axis represents the Z-axis position, and the vertical axis represents the light amount and the uniformity. Further, 0 in the Z-axis position on the horizontal axis is when the side 301 is arranged at the position of the side 302 in FIG. The light quantity 401 is plotted with the light quantity when the light acquisition unit 104 is not provided as 100%. The reference axis is the left vertical axis. The amount of light lost here is the amount of light incident on the light acquisition unit 104 and thus on the optical sensor. The water average once 402 and the vertical uniformity 403 represent the uniformity of the light amounts of the lines 303, 304, which are drawn in the X-axis direction and the Y-axis direction, respectively, through the center of the light uniformizing part exit surface 103b in FIG. The uniformity when the light acquisition unit 104 is not provided is plotted as 100%. A large value indicates good uniformity and a small value indicates poor uniformity. The reference axis is the right vertical axis.

図4の光量401を見ると、Z軸位置が0mmの時が最も光量が大きく、Z軸位置が大きくなるにつれて急激に光量が低下し、その後は97%付近を中心に波打ちながら収束している。この波打つのは、光源の発光部分の状態やレンズの性能により、光均一化部入射面103aの光量分布が、中心が明るく周辺が暗いためである。明るい中心の光が光均一化部103の側面に到達し、そこに光取得部104が有り、光が取り出されると光量の損失が大きくなる。従って、最初に光量が底辺(実線で囲まれた部分)になる時のZ軸位置は、光均一化部入射面103aの中心から出射した光が側面に達したZ軸位置となっており、図3において出射角203は16度なので5.2/2/tan(16度)=9.1mmとなる。僅かに計算値より異なり、底辺が平坦になっているのは、光均一化部103が角柱であり、光均一化部入射面103aの中心から光均一化部103の側面までの距離が一律でないためである。   Looking at the light quantity 401 in FIG. 4, the light quantity is greatest when the Z-axis position is 0 mm, the light quantity decreases rapidly as the Z-axis position increases, and then converges while undulating around 97%. . This undulation is because the light amount distribution of the light uniformizing portion entrance surface 103a is bright in the center and dark in the periphery depending on the state of the light emitting portion of the light source and the performance of the lens. The bright center light reaches the side surface of the light uniformizing unit 103, where the light acquisition unit 104 is provided. When the light is extracted, the loss of the light amount increases. Therefore, the Z-axis position when the amount of light first reaches the bottom (the part surrounded by the solid line) is the Z-axis position where the light emitted from the center of the light uniformizing part incident surface 103a reaches the side surface, In FIG. 3, since the output angle 203 is 16 degrees, 5.2 / 2 / tan (16 degrees) = 9.1 mm. Slightly different from the calculated value, the bottom is flat because the light uniformizing unit 103 is a prism, and the distance from the center of the light uniformizing unit incident surface 103a to the side surface of the light uniformizing unit 103 is not uniform. Because.

ここで、光センサ105が受光する光量を考える。光センサ105は、本実施例においては例えば最大0.8mWの光を受光できるとする。つまり、0.8mW以上の光を光センサ105に導くことができれば、光量は十分であると言える。一方、光取得部104に入射する光量は以下の式で与えられる。   Here, the amount of light received by the optical sensor 105 is considered. In this embodiment, the optical sensor 105 is assumed to be able to receive light of a maximum of 0.8 mW, for example. That is, it can be said that the amount of light is sufficient if light of 0.8 mW or more can be guided to the optical sensor 105. On the other hand, the amount of light incident on the light acquisition unit 104 is given by the following equation.

Figure 2007292577
Figure 2007292577

また、本実施例においては、光源の光量を800mW、光均一化部103への集光効率を0.5とする。光取得部104へ入射する光量は、光均一化部出射面103bにおける光量の損失であり、光取得部104へ入射する光量が光センサ105の受光する光量とほぼ等価である。図4において光センサ105が受光する光量が最も小さいZ軸位置は0mmであり、この時の光量が99.25%であるので、光取得部104入射光量率は0.0075である。   In this embodiment, the light amount of the light source is 800 mW, and the light collection efficiency to the light uniformizing unit 103 is 0.5. The amount of light incident on the light acquisition unit 104 is a loss of the amount of light on the light uniformizing unit exit surface 103b, and the amount of light incident on the light acquisition unit 104 is substantially equivalent to the amount of light received by the optical sensor 105. In FIG. 4, the Z-axis position where the light quantity received by the optical sensor 105 is the smallest is 0 mm, and the light quantity at this time is 99.25%, so the incident light quantity ratio of the light acquisition unit 104 is 0.0075.

数1より光取得部104に入射する光量、つまり光センサ105が受光する光量は3mWとなり、Z軸位置がどこでも光センサ105に十分な光量の光が届くことが分かる。なお、光センサ105の出力が飽和しないようにするには、光センサ105の受光部の前に減光フィルタなどを置いて、入射光量を調整すれば良い。   From Equation 1, it can be seen that the amount of light incident on the light acquisition unit 104, that is, the amount of light received by the optical sensor 105 is 3 mW, and a sufficient amount of light reaches the optical sensor 105 wherever the Z-axis position is. In order to prevent the output of the optical sensor 105 from being saturated, an incident light amount may be adjusted by placing a neutral density filter or the like in front of the light receiving portion of the optical sensor 105.

以上のように、本実施例においては、光均一化部103の側面に光均一化部103以上の屈折率を持つ光取得部104を配置することにより、光均一化部103内部を全反射する光の一部を取り出し、光センサ105で十分な光量を受光できる。   As described above, in this embodiment, the light acquisition unit 104 having a refractive index equal to or higher than that of the light homogenization unit 103 is disposed on the side surface of the light homogenization unit 103 to totally reflect the inside of the light homogenization unit 103. A part of the light is taken out and a sufficient amount of light can be received by the optical sensor 105.

さらに、光取得部104を適切なZ軸位置に配置することで、光均一化部出射面103bにおいてより光量の損失なく、より均一度を高くできる。   Furthermore, by arranging the light acquisition unit 104 at an appropriate Z-axis position, the uniformity of the light uniformizing unit emission surface 103b can be increased without any loss of light quantity.

図4において、水平均一度402及び垂直均一度403を見ると、Z軸位置がそれぞれ18mm及び12mm以下では均一度が光取得部104無しの時と同等を維持しているが、それ以上では均一度が波打ちながら悪化している。つまり、光取得部104によって光均一化部出射面103bの光量のムラが大きくなっている。従って、Z軸位置は水平及び垂直均一度が光取得部104無しの時と同等である範囲を選択すると良い。本実施例においては、12mm以下が好ましい。   In FIG. 4, when the water average once 402 and the vertical uniformity 403 are observed, the uniformity is maintained at the Z-axis position of 18 mm and 12 mm or less, respectively. One time is getting worse with waves. In other words, the light acquisition unit 104 increases the unevenness in the amount of light on the light uniformizing unit exit surface 103b. Therefore, it is preferable to select a range in which the horizontal and vertical uniformity is the same as that when the light acquisition unit 104 is not provided as the Z-axis position. In this embodiment, it is preferably 12 mm or less.

さらに、光量の損失をより少なくするために、12mm以下において光量損失が許容できるZ軸位置を選択すればよい。もし、機構上などの他の制約が無い場合は、最も光量損失の少ない0mmを選択するのが好ましい。   Furthermore, in order to reduce the loss of light quantity, it is sufficient to select a Z-axis position where the light quantity loss is allowable at 12 mm or less. If there is no other restriction such as a mechanism, it is preferable to select 0 mm with the least amount of light loss.

また、光取得部104の屈折率を適切に選択することにより、さらに光量損失を少なくすることができる。図5は、光均一化部103と光取得部104の境界と境界への入射光の様子を表した図である。   Further, the light loss can be further reduced by appropriately selecting the refractive index of the light acquisition unit 104. FIG. 5 is a diagram illustrating the boundary between the light homogenizing unit 103 and the light acquiring unit 104 and the state of incident light on the boundary.

図5において、境界501は、光均一化部103と光取得部104の境界であり、紙面上境界501より上が光均一化部103、下が光取得部104の領域である。光均一化部103の側面には、角度範囲502の光線が入射する。臨界線503は、境界501に入射した光の臨界角を示す線であり、臨界角は入射角204と角度範囲505を足した角度である。   In FIG. 5, a boundary 501 is a boundary between the light uniformizing unit 103 and the light acquiring unit 104, and the region above the paper upper boundary 501 is the light uniformizing unit 103 and the region below the light acquiring unit 104. Light rays in the angle range 502 are incident on the side surface of the light uniformizing unit 103. The critical line 503 is a line indicating the critical angle of light incident on the boundary 501, and the critical angle is an angle obtained by adding the incident angle 204 and the angle range 505.

ここで、臨界線503が図5に示すように、最大入射角光線201と境界501の間になるように光均一化部103に対する光取得部104の屈折率を選択すると、臨界角以上の角度範囲504の光線は全反射して角度範囲506に出射し、角度範囲505の光線は境界501を透過して角度範囲507に出射する。   Here, when the refractive index of the light acquisition unit 104 with respect to the light uniformizing unit 103 is selected so that the critical line 503 is between the maximum incident angle light ray 201 and the boundary 501 as shown in FIG. The rays in the range 504 are totally reflected and emitted to the angle range 506, and the rays in the angle range 505 are transmitted through the boundary 501 and emitted to the angle range 507.

例えば、光均一化部103の屈折率1.5に対して、光取得部104の屈折率を1.49とすると、入射角204が74度に対して臨界角は83.4度となるので角度範囲505は9.4度、角度範囲504は6.6度となる。そして、角度範囲506は角度範囲504の反射なので同じく6.6度、角度範囲507は角度範囲505の透過であるので計算より14.6度となる。光源の配向特性がどの角度においても一定であるとすると、光取得部104への入射光量は3mWに9.4度/16度を掛けて1.8mWとなり、光センサ105が光量検出するに当たって十分な光量である。また、光均一化部出射面103bの光量は、99.56%となり、より光量の損失を少なくできる。   For example, if the refractive index of the light obtaining unit 104 is 1.49 with respect to the refractive index of 1.5 of the light uniformizing unit 103, the critical angle is 83.4 degrees with respect to the incident angle 204 of 74 degrees. The angle range 505 is 9.4 degrees, and the angle range 504 is 6.6 degrees. Since the angle range 506 is a reflection of the angle range 504, the angle range 506 is similarly 6.6 degrees, and the angle range 507 is a transmission of the angle range 505, so it is 14.6 degrees from the calculation. Assuming that the orientation characteristics of the light source are constant at any angle, the amount of light incident on the light acquisition unit 104 is 3 mW multiplied by 9.4 degrees / 16 degrees to be 1.8 mW, which is sufficient for the optical sensor 105 to detect the amount of light. The amount of light. Moreover, the light quantity of the light uniformizing part exit surface 103b is 99.56%, and the loss of the light quantity can be further reduced.

以上のように、光取得部104の屈折率を臨界角が入射角204より大きく90度未満となるように選択することにより、光センサ105が光量検出するに当たって十分な光量の範囲で、光量の損失を少なくすることができる。また、光量の損失が少なくなることにより、均一度に与える影響もより低減される。   As described above, by selecting the refractive index of the light acquisition unit 104 so that the critical angle is larger than the incident angle 204 and less than 90 degrees, the light sensor 105 can detect the light amount within a range of light amount sufficient for detecting the light amount. Loss can be reduced. Further, since the loss of light quantity is reduced, the influence on the uniformity is further reduced.

なお、本実施例は本発明の一例を示したものであり、これに限るものではない。   In addition, a present Example shows an example of this invention and is not restricted to this.

本発明にかかる光源装置は、光均一化部を使用する光学システムに有用で、特に光を一定かつ均一に照射する装置に有用である。   The light source device according to the present invention is useful for an optical system using a light uniformizing unit, and particularly useful for a device that irradiates light uniformly and uniformly.

本発明の実施例1における光源装置の構成図1 is a configuration diagram of a light source device according to a first embodiment of the present invention. 本発明の実施例1における光均一化部103、光取得部104及び光センサ105の拡大図Enlarged view of the light homogenizer 103, the light acquisition unit 104, and the optical sensor 105 in the first embodiment of the present invention 本発明の実施例1における光均一化部103及び光取得部104の外観図External view of the light uniformizing unit 103 and the light acquiring unit 104 in Embodiment 1 of the present invention 本発明の実施例1における光均一化部出射面103bにおける光量及び均一度を示すグラフThe graph which shows the light quantity and uniformity in the light uniformizing part output surface 103b in Example 1 of this invention. 本発明の実施例1における光均一化部103と光取得部104の境界と境界への入射光の様子を表す図The figure showing the mode of the incident light to the boundary of the light equalization part 103 and the light acquisition part 104 in Example 1 of this invention, and a boundary 従来の光源装置の構成図Configuration diagram of conventional light source device

符号の説明Explanation of symbols

101 光源
102 集光部
103 光均一化部
103a 光均一化部入射面
103b 光均一化部出射面
104 光取得部
104a 光取得部入射面
104b 光取得部出射面
105 光センサ
106 光源光量コントローラ
201 最大入射角光線
202 入射角
203 出射角
204 入射角
205 入射角
206 垂線
207 垂線
208 垂線
301 辺
302 辺
303 線
304 線
401 光量
402 水平均一度
403 垂直均一度
501 境界
502 角度範囲
503 臨界線
504 角度範囲
505 角度範囲
506 角度範囲
507 角度範囲
601 欠陥
DESCRIPTION OF SYMBOLS 101 Light source 102 Condensing part 103 Light homogenization part 103a Light homogenization part entrance surface 103b Light homogenization part exit surface 104 Light acquisition part 104a Light acquisition part entrance surface 104b Light acquisition part exit surface 105 Optical sensor 106 Light source light quantity controller 201 Maximum Incident angle Ray 202 Incident angle 203 Emission angle 204 Incident angle 205 Incident angle 206 Perpendicular 207 Perpendicular 208 Perpendicular 301 Side 302 Side 303 Line 304 Line 401 Light quantity 402 Water average once 403 Vertical uniformity 501 Boundary 502 Angular range 503 Critical line 504 Angular range 505 Angle range 506 Angle range 507 Angle range 601 Defect

Claims (5)

可視光を放射する光源と、
前記光源の可視光を集光して光を照射する集光部と、
入射面に入射した前記集光部からの光を側面で全反射させて均一化し、出射面から出射する光均一化部と、
前記光均一化部の側面に配置し、前記光均一化部内部を全反射する光を一部取り出す光取得部と、
前記光取得部によって取り出した光を受光し、電気信号に変換する光センサと、
前記光センサの電気信号に応じて前記光源の光量を変化させる光源光量コントローラと、
を備えることを特徴とする光源装置。
A light source that emits visible light;
A condensing unit for condensing visible light of the light source and irradiating the light;
The light from the condensing part incident on the incident surface is totally reflected by the side surface to be uniformed, and the light uniformizing part that is emitted from the exit surface;
A light acquisition unit that is arranged on a side surface of the light homogenization unit and extracts a part of the light that totally reflects inside the light homogenization unit;
A light sensor that receives the light extracted by the light acquisition unit and converts it into an electrical signal;
A light source light amount controller that changes the light amount of the light source in accordance with an electrical signal of the optical sensor;
A light source device comprising:
前記光取得部は、入射した光と垂線とのなす角度が臨界角未満となる出射面を備え、入射した光が出射面から外部へ出射するプリズムであることを特徴とする請求項1に記載の光源装置。 The said light acquisition part is provided with the output surface from which the angle which the incident light and a perpendicular make is less than a critical angle, It is a prism from which the incident light radiate | emits outside from an output surface. Light source device. 前記光取得部は、前記光均一化部の屈折率以上の屈折率を持つこと
を特徴とする請求項1及び請求項2に記載の光源装置。
The light source device according to claim 1, wherein the light acquisition unit has a refractive index equal to or higher than a refractive index of the light uniformization unit.
前記光取得部は、前記光均一化部の入射面の垂線と前記光均一化部の入射面へ入射する入射光との最大のなす角度を持つ入射光が前記光均一化部側面において側面の垂線となす角度より大きく、90度より小さい臨界角となる屈折率を持つこと
を特徴とする請求項1及び請求項2に記載の光源装置。
The light acquisition unit is configured such that incident light having a maximum angle between a perpendicular of an incident surface of the light uniformizing unit and incident light incident on the incident surface of the light uniformizing unit is incident on a side surface of the side surface of the light uniformizing unit. 3. The light source device according to claim 1, wherein the light source device has a refractive index that is larger than an angle formed by the perpendicular and smaller than 90 degrees and has a critical angle.
前記光取得部の入射面の一辺が、前記光均一化部の入射面と同一平面上に位置すること
を特徴とする請求項1に記載の光源装置。

The light source device according to claim 1, wherein one side of the incident surface of the light acquisition unit is located on the same plane as the incident surface of the light uniformizing unit.

JP2006120254A 2006-04-25 2006-04-25 Light source device Pending JP2007292577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120254A JP2007292577A (en) 2006-04-25 2006-04-25 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120254A JP2007292577A (en) 2006-04-25 2006-04-25 Light source device

Publications (1)

Publication Number Publication Date
JP2007292577A true JP2007292577A (en) 2007-11-08

Family

ID=38763328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120254A Pending JP2007292577A (en) 2006-04-25 2006-04-25 Light source device

Country Status (1)

Country Link
JP (1) JP2007292577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059584A (en) * 2010-09-10 2012-03-22 Nagata Seisakusho:Kk Lighting system
CN103857998A (en) * 2011-10-25 2014-06-11 美艾利尔瑞士公司 Improvements in or relating to reading of assays
CN105044112A (en) * 2015-08-10 2015-11-11 苏州听毅华自动化设备有限公司 Pipe welding line detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059584A (en) * 2010-09-10 2012-03-22 Nagata Seisakusho:Kk Lighting system
CN103857998A (en) * 2011-10-25 2014-06-11 美艾利尔瑞士公司 Improvements in or relating to reading of assays
CN105044112A (en) * 2015-08-10 2015-11-11 苏州听毅华自动化设备有限公司 Pipe welding line detection device

Similar Documents

Publication Publication Date Title
JP3249509B2 (en) Automatic high-speed optical inspection equipment
KR100793182B1 (en) Apparatus and method for detecting defects in wafer using line sensor camera
JP5006584B2 (en) Irradiation apparatus and irradiation system having the same
KR101875980B1 (en) High speed acquisition vision system and method for selectively viewing object features
TWI729403B (en) Device for measuring optolectronic units
JP2017067758A (en) system
US20130329222A1 (en) Inspecting apparatus and method for manufacturing semiconductor device
WO2016151712A1 (en) Optical machining head, optical machining device, optical machining device control method, and optical machining device control program
KR101698006B1 (en) System and method for inspection of semiconductor packages
US7894053B2 (en) Inspection apparatus
JPWO2019159427A1 (en) Camera module adjustment device and camera module adjustment method
JP2006284211A (en) Unevenness inspection device and unevenness inspection method
JP6505009B2 (en) Laser device for illumination
JP2007292577A (en) Light source device
JP2018032005A (en) Autofocus system, method and image inspection device
JP2010139483A (en) Inspection system and inspection method of optical waveguide
JP4656393B2 (en) Light source device
KR20150066425A (en) Lighing apparatus, optical inspecting apparatus using the lighting appratus, and optical microscope using the lighting apparatus
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP2006202665A (en) Light source device
JP2006313143A (en) Irregularity inspection device and method thereof
KR20120071764A (en) Auto focusing apparatus
JP2016114602A (en) Surface shape measurement device, and defect determination device
JP2008032524A (en) Laser beam machining device, and focal point detection method of laser light for measurement
JP2012150079A (en) Defect detection device for transparent member and defect detection method