JP6624680B2 - Sliding device - Google Patents

Sliding device Download PDF

Info

Publication number
JP6624680B2
JP6624680B2 JP2016103374A JP2016103374A JP6624680B2 JP 6624680 B2 JP6624680 B2 JP 6624680B2 JP 2016103374 A JP2016103374 A JP 2016103374A JP 2016103374 A JP2016103374 A JP 2016103374A JP 6624680 B2 JP6624680 B2 JP 6624680B2
Authority
JP
Japan
Prior art keywords
sliding
graphite particles
layer
flaky graphite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016103374A
Other languages
Japanese (ja)
Other versions
JP2017210995A (en
Inventor
貴文 山内
貴文 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2016103374A priority Critical patent/JP6624680B2/en
Publication of JP2017210995A publication Critical patent/JP2017210995A/en
Application granted granted Critical
Publication of JP6624680B2 publication Critical patent/JP6624680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、軸部材および軸部材を支承する摺動部材を備える摺動装置に関するものであり、詳細には、合成樹脂製の軸部材と、裏金層上に合成樹脂および鱗片状黒鉛からなる摺動層とを備える摺動部材とを有する摺動装置に係るものである。   The present invention relates to a sliding device including a shaft member and a sliding member that supports the shaft member. More specifically, the present invention relates to a shaft member made of a synthetic resin and a slide made of a synthetic resin and flake graphite on a back metal layer. And a sliding member having a moving layer.

従来、互いに摺動接触する摺動面がともに樹脂組成物である二つの部材を組合わせた構造の摺動装置が用いられている。二つの部材のうちの一方は、回転動作あるいは往復動作を行う軸部材であり、他方は、この軸部材を支承する摺動層を有する摺動部材である。
軸部材として、強度を高めるために、合成樹脂にカーボン繊維、ガラス繊維、金属粒子、セラミックス粒子等の硬質粒子を含有させたものが従来より知られている(特許文献1、特許文献2参照)。
Conventionally, a sliding device having a structure in which two members whose sliding surfaces that are in sliding contact with each other are both a resin composition has been used. One of the two members is a shaft member that performs a rotating operation or a reciprocating operation, and the other is a sliding member having a sliding layer that supports the shaft member.
As a shaft member, a material in which hard particles such as carbon fibers, glass fibers, metal particles, and ceramic particles are contained in a synthetic resin in order to increase strength has been conventionally known (see Patent Documents 1 and 2). .

他方、摺動部材としては、合成樹脂に固体潤滑剤として鱗片状黒鉛を添加した樹脂組成物を有する摺動部材が、従来より用いられている(特許文献3)。天然黒鉛は、一般的に、その性状によって、鱗片状黒鉛、鱗状黒鉛、土壌黒鉛に分けられる。黒鉛化度は、鱗状黒鉛が100%と最も高く、次いで鱗片状黒鉛の99.9%であり、土壌黒鉛は28%と低い。従来、摺動部材用の固体潤滑剤としての黒鉛は、黒鉛化度が高い鱗状黒鉛または鱗片状黒鉛の天然黒鉛を機械的に粉砕した鱗片状粒子が用いられてきた。   On the other hand, as a sliding member, a sliding member having a resin composition obtained by adding scaly graphite as a solid lubricant to a synthetic resin has been conventionally used (Patent Document 3). Natural graphite is generally classified into scaly graphite, scaly graphite and soil graphite according to its properties. The degree of graphitization is highest for scaly graphite at 100%, then at 99.9% for scaly graphite, and as low as 28% for soil graphite. Conventionally, as a graphite as a solid lubricant for a sliding member, flaky graphite having a high degree of graphitization or flaky particles obtained by mechanically pulverizing natural graphite such as flaky graphite has been used.

この鱗片形状の黒鉛は、炭素原子が規則正しく網目構造を形成して平面状に広がるAB面(六角網面平面、ベーサル面)が多数積層し、AB面に垂直なC軸方向に厚みを有する結晶である。積層したAB面相互間のファンデルワールス力による結合力がAB面の面内方向の結合力に比べてはるかに小さいため、AB面間でせん断が起きやすい。そのため、この黒鉛は、AB面の広がりに対して積層の厚みが薄いため、全体としては薄板状を呈している。なお、鱗片状黒鉛粒子は、外力を受けた場合にAB面間のせん断が起こることにより固体潤滑剤として機能すると考えられている。   This scaly graphite is a crystal in which carbon atoms form a regular network structure and a large number of AB planes (hexagonal mesh planes, basal planes) are laminated, and have a thickness in the C-axis direction perpendicular to the AB planes. It is. Since the bonding force due to the van der Waals force between the stacked AB surfaces is much smaller than the bonding force in the in-plane direction of the AB surfaces, shear is likely to occur between the AB surfaces. Therefore, this graphite has a thin plate shape as a whole because the thickness of the lamination is smaller than that of the AB plane. It is considered that the flaky graphite particles function as a solid lubricant by shearing between AB surfaces when subjected to an external force.

特開2001‐132757号公報JP 2001-132775 A 特開平5‐179277号公報JP-A-5-179277 特開2005‐89514号公報JP 2005-89514 A

互いに摺動する摺動面がともに樹脂組成物である軸部材と摺動部材とを組合わせた構造の摺動装置は、摺動面間に油の供給がなされる環境で頻繁に起動と停止が繰り返される形態で運転(以下、「間欠的運転」という)がなされる場合も多く、運転状態から停止状態になる時に、摺動面間に形成されていた油膜が途切れて、一時的に軸部材から、特に表面に突出する硬質粒子から摺動部材の摺動面に極圧的な負荷が加わる。特許文献3のような鱗片状黒鉛粒子を合成樹脂に含有させた樹脂組成物を用いた摺動部材は、硬質粒子を含有する樹脂組成物からなる軸部材を支承する摺動部に用いると、摺動部材の摺動面の樹脂に割れが生じて摺動面からの脱落がおこり摺動性能の低下が起こることが判明した。   A sliding device having a structure in which a shaft member and a sliding member, both of which slide surfaces slide with each other, is a resin composition, is frequently started and stopped in an environment where oil is supplied between the sliding surfaces. (Hereinafter referred to as “intermittent operation”) is often performed, and when the operation state changes to the stop state, the oil film formed between the sliding surfaces is interrupted, and the shaft is temporarily stopped. An extreme pressure load is applied to the sliding surface of the sliding member from the member, especially from the hard particles protruding on the surface. A sliding member using a resin composition containing flake graphite particles in a synthetic resin as in Patent Document 3 is used for a sliding portion that supports a shaft member made of a resin composition containing hard particles. It was found that the resin on the sliding surface of the sliding member was cracked and dropped from the sliding surface, resulting in a decrease in sliding performance.

したがって、本発明の目的は、摺動面がともに樹脂組成物である軸部材と摺動部材を組合わせた構造の摺動装置において、従来技術の上記欠点を克服して、間欠的運転形態においても摺動部材の摺動面に樹脂の割れ及び脱落が発生し難く、耐摩耗性に優れる摺動装置を提供することである。   Therefore, an object of the present invention is to provide a sliding device having a structure in which a sliding member is a combination of a shaft member and a sliding member, both of which are made of a resin composition. Another object of the present invention is to provide a sliding device which is less likely to cause cracking and falling off of the resin on the sliding surface of the sliding member and has excellent wear resistance.

本発明の一観点によれば、5〜50体積%の硬質粒子が分散された合成樹脂からなる軸部材と、この軸部材を支承(支持)する摺動部材とを備えた摺動装置が提供される。この摺動部材は、裏金層と、この裏金層上に設けられた摺動層とを備え、摺動層は、合成樹脂と、合成樹脂に分散された鱗片状黒鉛粒子からなり、鱗片状黒鉛粒子の体積の合計は、摺動層の体積の5〜50体積%を占める。鱗片状黒鉛粒子は平板形状を有し、その断面組織は、黒鉛結晶のAB面が平板形状の厚さ方向(すなわち、黒鉛結晶のAB面に対して垂直方向であるC軸方向)に複数積層している。鱗片状黒鉛粒子の平均粒径は3〜25μmである。鱗片状黒鉛粒子は、組織内部に空隙を有する空隙含有鱗片状黒鉛粒子を含む。ここで、空隙含有鱗片状黒鉛粒子とは、鱗片状黒鉛粒子のうち、
長軸方向の長さが3μm以上であり、
断面組織内で鱗片状黒鉛粒子の長軸方向に伸長する空隙であって、鱗片状黒鉛粒子の長軸方向に平行な方向の空隙長さが、鱗片状黒鉛粒子の長軸方向の長さの50%以上である空隙を有するものである。摺動層中の鱗片状黒鉛粒子の全体積に対する空隙含有鱗片状黒鉛粒子の体積割合は10%以上である。
According to one aspect of the present invention, there is provided a sliding device including a shaft member made of a synthetic resin in which 5 to 50% by volume of hard particles are dispersed, and a sliding member that supports (supports) the shaft member. Is done. The sliding member includes a back metal layer and a sliding layer provided on the back metal layer, and the sliding layer is made of a synthetic resin and flaky graphite particles dispersed in the synthetic resin, and the flaky graphite. The total volume of the particles accounts for 5 to 50% by volume of the volume of the sliding layer. The flake graphite particles have a flat plate shape, and the cross-sectional structure thereof is such that a plurality of AB planes of the graphite crystal are laminated in a thickness direction of the flat plate shape (that is, a C-axis direction perpendicular to the AB plane of the graphite crystal). are doing. The average particle size of the flaky graphite particles is 3 to 25 μm. The flaky graphite particles include void-containing flaky graphite particles having voids inside the tissue. Here, the void-containing flaky graphite particles, among the flaky graphite particles,
The length in the major axis direction is 3 μm or more,
In the cross-sectional structure is a void extending in the major axis direction of the flake graphite particles, the void length in a direction parallel to the major axis direction of the flake graphite particles, the length of the major axis direction of the flake graphite particles It has a void of 50% or more. The volume ratio of the void-containing flake graphite particles to the total volume of the flake graphite particles in the sliding layer is 10% or more.

本発明の摺動装置は、主に、摺動部材の摺動層中に分散する鱗片状黒鉛粒子が潤滑成分として作用する。上記のとおり、摺動層中に分散する鱗片状黒鉛粒子は、AB面(六角網面平面)が多数積層し、AB面に垂直方向であるC軸方向に厚みを有する結晶であり、AB面間でせん断が起きやすく平板状を呈しており、摺動面に黒鉛結晶のAB面からなる面が露出した場合、摺動方向に相手軸と摺動面では相手軸に対してAB面が接触するので、相手軸から摺動面に対して略平行に負荷が加わると、AB面間でせん断が容易に起こり、その結果、摺動面と相手軸表面との摩擦力が小さくなり、摺動層の摩耗量が少なくなる。   In the sliding device of the present invention, flake graphite particles dispersed in the sliding layer of the sliding member mainly act as a lubricating component. As described above, the flaky graphite particles dispersed in the sliding layer are crystals having a large number of AB planes (hexagonal planes) laminated and having a thickness in the C-axis direction perpendicular to the AB plane. When the surface consisting of the AB surface of the graphite crystal is exposed on the sliding surface, the AB surface comes into contact with the mating shaft in the sliding direction with the mating shaft. Therefore, when a load is applied from the mating shaft substantially parallel to the sliding surface, shearing easily occurs between the AB surfaces, and as a result, the frictional force between the sliding surface and the mating shaft surface decreases, and the sliding force decreases. Layer wear is reduced.

また、本発明の摺動装置の摺動部材は、間欠的運転形態において運転状態から停止状態になる時に摺動層に一時的に極圧的な負荷が加わるような状況では、摺動部材の摺動層中に分散する、組織内部に空隙を有する空隙含有鱗片状黒鉛粒子によって、以下の理由により摺動面の樹脂の脱落が防がれる。   Further, the sliding member of the sliding device of the present invention may be used in an intermittent operation mode in a situation where an extreme pressure is temporarily applied to the sliding layer when the sliding layer is changed from the operating state to the stopped state. The void-containing flaky graphite particles having voids inside the tissue dispersed in the sliding layer can prevent the resin on the sliding surface from falling off for the following reasons.

空隙含有鱗片状黒鉛粒子の組織内(内部組織)の空隙の長軸方向に垂直な方向の最大長さ(隙間)は、摺動層の摺動面に対して垂直方向の断面組織にて0.01μm〜1μm程度である。摺動層に含まれる空隙含有鱗片状黒鉛粒子は、外力が加わると粒子の内部の隙間が小さくなるように弾性変形が起こる。すなわち、空隙の長軸方向と略垂直方向の空隙の長さが小さくなるように弾性変形する。
本発明の摺動装置の摺動部材では、装置の運転状態から停止状態になる時の一時的に摺動面に極圧的な負荷が加わる場合は、摺動層に含まれる空隙含有鱗片状黒鉛粒子は、空隙が小さくなるように弾性変形を起こすことにより、摺動層に加わる極圧的な負荷が緩和される。このような緩衝作用を有する空隙含有鱗片状黒鉛粒子が摺動層内に分散するため、摺動層の合成樹脂に加わる極圧的な負荷が緩和され、この結果、摺動面の樹脂の脱落が防がれる。
The maximum length (gap) in the direction perpendicular to the long axis direction of the voids in the structure (internal structure) of the void-containing flaky graphite particles is 0 in the cross-sectional structure perpendicular to the sliding surface of the sliding layer. It is about 0.01 μm to 1 μm. The void-containing flaky graphite particles contained in the sliding layer undergo elastic deformation so that a gap inside the particles becomes small when an external force is applied. That is, the gap is elastically deformed so that the length of the gap in a direction substantially perpendicular to the long axis direction of the gap becomes small.
In the sliding member of the sliding device of the present invention, when an extreme pressure load is temporarily applied to the sliding surface when the device changes from the operation state to the stop state, the flake-like voids included in the sliding layer are formed. The graphite particles undergo elastic deformation so as to reduce the voids, thereby alleviating the extreme pressure load applied to the sliding layer. Since the void-containing flake graphite particles having such a buffering action are dispersed in the sliding layer, the extreme pressure load applied to the synthetic resin of the sliding layer is reduced, and as a result, the resin on the sliding surface falls off. Is prevented.

長軸方向の長さが3μm未満の鱗片状黒鉛粒子は、組織内部に空隙を有していても、摺動層の摺動面に加わる極圧的な負荷を緩和する効果が低い。長軸方向の長さが3μm以上であると、摺動層の摺動面に加わる極圧的な負荷を緩和する効果を有するので、合成樹脂に長軸方向の長さが3μm以上である空隙含有鱗片状黒鉛粒子が分散することにより、摺動層の摺動面に極圧的な負荷が加わった場合でも、摺動面の合成樹脂の割れや脱落が防がれる。   The flaky graphite particles having a length of less than 3 μm in the major axis direction have a low effect of relieving the extreme pressure load applied to the sliding surface of the sliding layer, even if there are voids inside the tissue. When the length in the major axis direction is 3 μm or more, an effect of relaxing an extreme pressure load applied to the sliding surface of the sliding layer is obtained. By dispersing the flaky graphite particles, even when an extreme pressure is applied to the sliding surface of the sliding layer, the synthetic resin on the sliding surface can be prevented from cracking or falling off.

組織内部に空隙を有してない鱗片状黒鉛粒子を合成樹脂に分散させた摺動層を有する従来の摺動装置の摺動部材では、摺動部材が用いられる摺動装置の運転状態から停止状態になる時の一時的に摺動面に加わる極圧的な負荷によって摺動面の合成樹脂に割れが生じて脱落し、この合成樹脂の脱落部が起点となって、摺動層の摩耗が起きやすくなる。   In the sliding member of a conventional sliding device having a sliding layer in which flaky graphite particles having no voids in the tissue are dispersed in a synthetic resin, the sliding device in which the sliding member is used is stopped from an operating state. The extreme pressure applied to the sliding surface temporarily causes the synthetic resin on the sliding surface to crack and fall off, and the falling part of this synthetic resin becomes the starting point, causing the sliding layer to wear. Is more likely to occur.

鱗片状黒鉛粒子(空隙含有鱗片状黒鉛粒子を含む全鱗片状黒鉛粒子)の平均粒径は、3〜25μmとすることが好ましい。鱗片状黒鉛粒子の平均粒径が3μm未満であると、摺動層中に鱗片黒鉛粒子どうしの凝集部が形成されやすく、摺動層の強度が低くなる場合がある。鱗片黒鉛粒子の平均粒径が25μmを超えると、摺動時に摺動層に加わる負荷により摺動層中の鱗片状黒鉛粒子にせん断が起こり、摺動層の強度が低くなる場合がある。   The average particle size of the flaky graphite particles (all flaky graphite particles including void-containing flaky graphite particles) is preferably 3 to 25 μm. When the average particle size of the flaky graphite particles is less than 3 μm, an aggregated portion of the flaky graphite particles is easily formed in the sliding layer, and the strength of the sliding layer may be reduced. If the average particle size of the flake graphite particles exceeds 25 μm, the load applied to the sliding layer during sliding may cause shearing of the flaky graphite particles in the sliding layer, which may lower the strength of the sliding layer.

本発明の一具体例によれば、摺動層中の鱗片状黒鉛粒子の全体積に対する空隙含有鱗片状黒鉛粒子の体積割合が20%以上であることが好ましい。摺動層中の鱗片状黒鉛粒子の全体積に対する空隙含有鱗片状黒鉛粒子の体積割合が20%以上である場合は、20体積%未満である場合よりも耐摩耗性がさらに向上する。これは、摺動層中に分散する空隙含有鱗片状黒鉛粒子の体積割合が多くなることにより、摺動層が受ける軸部材からの極圧的な負荷がより緩和されるために、摺動面から樹脂が脱落し難くなり、耐摩耗性が向上すると考えられる。さらに、空隙含有鱗片状黒鉛粒子の体積割合は25体積%以上であることが好ましい。   According to one embodiment of the present invention, the volume ratio of the void-containing flaky graphite particles to the total volume of the flaky graphite particles in the sliding layer is preferably 20% or more. When the volume ratio of the void-containing flake graphite particles to the total volume of the flake graphite particles in the sliding layer is 20% or more, the wear resistance is further improved as compared with the case where the volume ratio is less than 20% by volume. This is because the volume ratio of the void-containing flake graphite particles dispersed in the sliding layer is increased, and the extreme pressure load from the shaft member on the sliding layer is further reduced. It is considered that the resin hardly falls off from the resin and the wear resistance is improved. Further, the volume ratio of the void-containing flake graphite particles is preferably 25% by volume or more.

本発明の一具体例によれば、鱗片状黒鉛粒子(空隙含有鱗片状黒鉛粒子を含む全鱗片黒鉛粒子)の長軸と短軸との比の平均で表される平均アスペクト比(A1)は、5〜15であることが好ましい。鱗片状黒鉛粒子の平均アスペクト比が5以上であると、平均アスペクト比が5未満である場合よりも、耐摩耗性がさらに向上する。これは、鱗片状黒鉛粒子の表面積が大きくなることにより、合成樹脂との鱗片状黒鉛粒子の接触面積が大きくなり、合成樹脂との密着性が大きくなるために摺動時に摺動面から脱落し難くなるからと考えられる。さらに、鱗片状黒鉛粒子の平均アスペクト比は、6以上とすることが好ましい。また、鱗片状黒鉛粒子の平均アスペクト比が15以下であると、運転状態から停止状態になる時に摺動層に加わる極圧的な負荷により摺動層中の鱗片状黒鉛粒子にせん断が起こり難いが、鱗片状黒鉛粒子の平均アスペクト比が15を超えると、摺動層中の鱗片状黒鉛粒子にせん断が起こり摺動層の強度が小さくなる場合がある。   According to one embodiment of the present invention, the average aspect ratio (A1) represented by the average of the ratio of the major axis to the minor axis of the flaky graphite particles (all flake graphite particles including void-containing flaky graphite particles) is: , 5 to 15. When the average aspect ratio of the flaky graphite particles is 5 or more, the wear resistance is further improved as compared with the case where the average aspect ratio is less than 5. This is because the surface area of the flaky graphite particles increases, the contact area of the flaky graphite particles with the synthetic resin increases, and the adhesive property with the synthetic resin increases. It is thought that it becomes difficult. Further, the average aspect ratio of the flaky graphite particles is preferably 6 or more. Further, when the average aspect ratio of the flaky graphite particles is 15 or less, shear is unlikely to occur in the flaky graphite particles in the sliding layer due to an extreme pressure applied to the sliding layer when the operating state is stopped. However, when the average aspect ratio of the flaky graphite particles exceeds 15, the flaky graphite particles in the sliding layer may be sheared and the strength of the sliding layer may be reduced.

本発明の一具体例によれば、鱗片状黒鉛粒子(空隙含有鱗片状黒鉛粒子を含む全鱗片黒鉛粒子)は、異方分散指数S1が3以上であることが好ましい。この異方分散指数S1は、各鱗片状黒鉛粒子についての比X1/Y1の値の平均として定義される。ここで、X1は、摺動層の摺動面に対して垂直方向の断面組織における鱗片状黒鉛粒子の摺動面に平行方向の長さであり、Y1は、摺動層の摺動面に対し垂直方向の断面組織における鱗片状黒鉛粒子の摺動面に垂直方向の長さである。
鱗片状黒鉛の長軸方向(AB面からなる表面の広がる方向)が摺動面に略平行に配向するものの割合が大きいほど、この異方分散指数S1の値が大きくなる。
According to one embodiment of the present invention, the flake graphite particles (all flake graphite particles including void-containing flake graphite particles) preferably have an anisotropic dispersion index S1 of 3 or more. This anisotropic dispersion index S1 is defined as the average of the values of the ratio X1 / Y1 for each flaky graphite particle. Here, X1 is the length in the direction parallel to the sliding surface of the flake graphite particles in the cross-sectional structure perpendicular to the sliding surface of the sliding layer, and Y1 is the length of the sliding surface of the sliding layer. On the other hand, it is the length in the direction perpendicular to the sliding surface of the flaky graphite particles in the vertical section structure.
The value of the anisotropic dispersion index S1 increases as the proportion of the major axis direction of the flake graphite (the direction in which the surface composed of the AB plane spreads) is oriented substantially parallel to the sliding surface increases.

鱗片状黒鉛粒子は、異方分散指数S1が3以上であり、長軸方向が摺動面に略平行に配向するものの割合が大きいと、摺動層の摺動面に露出する鱗片状黒鉛粒子のうちAB面が摺動面に略平行に配向するものの割合が大きくなるので、摺動層の摺動面と軸部材表面との摩擦力が小さくなり、摺動層の摩耗量が少なくなる。鱗片状黒鉛粒子の異方分散指数は、4以上であることがさらに好ましい。   The flaky graphite particles have an anisotropic dispersion index S1 of 3 or more, and if the proportion of those whose major axis direction is substantially parallel to the sliding surface is large, the flaky graphite particles exposed on the sliding surface of the sliding layer. Of these, the proportion of those in which the AB surface is oriented substantially parallel to the sliding surface increases, so that the frictional force between the sliding surface of the sliding layer and the shaft member surface decreases, and the wear amount of the sliding layer decreases. The flake graphite particles more preferably have an anisotropic dispersion index of 4 or more.

さらに、上記のとおり摺動部材が用いられる装置の運転状態から停止状態になる時に摺動部材の摺動面に軸部材からの極圧的な負荷が加わる場合、異方分散指数S1が3以上であると、空隙含有鱗片状黒鉛粒子も、その長軸方向および粒子の内部組織の空隙の伸長方向が摺動面に略平行に配向するものの割合が大きくなるために、空隙含有鱗片状黒鉛粒子の空隙による摺動層に加わる極圧的な負荷を緩和する効果がさらに高まる。   Further, when an extreme pressure load from the shaft member is applied to the sliding surface of the sliding member when the device using the sliding member is changed from the operation state to the stop state as described above, the anisotropic dispersion index S1 is 3 or more. In that case, the void-containing flaky graphite particles also have a large proportion of those whose longitudinal direction and the direction of extension of the voids of the internal structure of the particles are oriented substantially parallel to the sliding surface. The effect of alleviating the extreme pressure load applied to the sliding layer by the voids is further enhanced.

本発明の一具体例によれば、摺動部材の摺動層に用いられる合成樹脂は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、フェノール、エポキシ、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   According to one embodiment of the present invention, the synthetic resin used for the sliding layer of the sliding member is PAI (polyamide imide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), phenol, epoxy , POM (polyacetal), PEEK (polyether ether ketone), PE (polyethylene), PPS (polyphenylene sulfide) and PEI (polyetherimide).

本発明の一具体例によれば、摺動部材の摺動層は、球状黒鉛、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤1〜20体積%をさらに含むことができる。固体潤滑剤を含有することにより、摺動層の摺動特性を高めることができる。 According to one embodiment of the present invention, the sliding layer of the sliding member has 1 to 20 volumes of one or more solid lubricants selected from spheroidal graphite, MoS 2 , WS 2 , h-BN and PTFE. %. By containing a solid lubricant, the sliding characteristics of the sliding layer can be enhanced.

本発明の一具体例によれば、摺動部材の摺動層は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材を1〜10体積%をさらに含むことができる。充填材を含有することにより、摺動層の耐摩耗性を高めることが可能となる。 According to one embodiment of the present invention, the sliding layer of the sliding member is selected from CaF 2 , CaCo 3 , talc, mica, mullite, iron oxide, calcium phosphate, and Mo 2 C (molybdenum carbide). The seed or two or more fillers may further comprise 1 to 10% by volume. By containing the filler, it becomes possible to enhance the wear resistance of the sliding layer.

本発明の一具体例によれば、摺動部材は、裏金層と摺動層との間に多孔質金属層をさらに有することができる。裏金層の表面に多孔質金属層を設けることにより、摺動層と裏金層の接合強度を高めることができる。すなわち、多孔質金属層の空孔部に摺動層を構成する組成物が含浸されることによるアンカー効果により裏金層と摺動層との接合力の強化が可能になる。   According to one embodiment of the present invention, the sliding member may further include a porous metal layer between the back metal layer and the sliding layer. By providing the porous metal layer on the surface of the back metal layer, the bonding strength between the sliding layer and the back metal layer can be increased. That is, the bonding force between the back metal layer and the sliding layer can be enhanced by the anchor effect due to the impregnation of the composition constituting the sliding layer into the pores of the porous metal layer.

多孔質金属層は、Cu、Cu合金、Fe、Fe合金等の金属粉末を金属板や条等の表面上に焼結することにより形成することができる。多孔質金属層の空孔率は20〜60%程度であればよい。多孔質金属層の厚さは0.05〜0.5mm程度とすればよい。この場合、多孔質金属層の表面上に被覆される摺動層の厚さは0.05〜0.4mm程度となるようにすればよい。ただし、ここで記載した寸法は一例であり、本発明がこの値の限定されるものではなく、異なる寸法に変更するも可能である。   The porous metal layer can be formed by sintering a metal powder such as Cu, Cu alloy, Fe, and Fe alloy on the surface of a metal plate or a strip. The porosity of the porous metal layer may be about 20 to 60%. The thickness of the porous metal layer may be about 0.05 to 0.5 mm. In this case, the thickness of the sliding layer coated on the surface of the porous metal layer may be about 0.05 to 0.4 mm. However, the dimensions described here are examples, and the present invention is not limited to this value, and can be changed to different dimensions.

本発明の一具体例によれば、軸部材に用いられる合成樹脂は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、PF(フェノール)、EP(エポキシ)、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   According to one embodiment of the present invention, the synthetic resin used for the shaft member is PAI (polyamide imide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), PF (phenol), EP (epoxy) ), POM (polyacetal), PEEK (polyetheretherketone), PE (polyethylene), PPS (polyphenylenesulfide), and PEI (polyetherimide).

本発明の一具体例によれば、軸部材に用いられる硬質粒子は、CF(炭素繊維)、GF(ガラス繊維)、BN、Al、SiC、SiO、AlNおよびTiOのうちから選ばれる1種または2種以上からなることができる。軸部材は、これら硬質粒子を含有することにより、軸部材の強度(剛性)が高くなる。硬質粒子の平均粒径は、1〜50μmとすることができる。 According to one embodiment of the present invention, the hard particles used for the shaft member are selected from CF (carbon fiber), GF (glass fiber), BN, Al 2 O 3 , SiC, SiO 2 , AlN and TiO 2 . It can consist of one or two or more selected. Since the shaft member contains these hard particles, the strength (rigidity) of the shaft member is increased. The average particle size of the hard particles can be 1 to 50 μm.

軸部材は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材1〜10体積%をさらに含むことができる。また、軸部材は、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤を5体積%以下をさらに含むことができる。 The shaft member further contains 1 to 10% by volume of one or more fillers selected from CaF 2 , CaCo 3 , talc, mica, mullite, iron oxide, calcium phosphate, and Mo 2 C (molybdenum carbide). Can be included. The shaft member, MoS 2, WS 2, h-BN and one or more solid lubricants selected from PTFE can further comprise 5% by volume or less.

本発明の一例による摺動装置を示す図。The figure which shows the sliding device by one example of this invention. 本発明の一例による摺動装置の摺動部材の断面を示す図。The figure which shows the cross section of the sliding member of the sliding device by one example of this invention. 本発明の一例による摺動装置の軸部材の断面を示す図。The figure which shows the cross section of the shaft member of the sliding device by one example of this invention. 空隙含有鱗片状黒鉛粒子の断面を示す図。The figure which shows the cross section of a flaky graphite particle containing voids. 鱗片状黒鉛粒子のアスペクト比(A1)および異方分散指数(S1)を説明する図。The figure explaining the aspect ratio (A1) and the anisotropic dispersion index (S1) of flaky graphite particles. 本発明の他の例による摺動部材の断面を示す図。The figure which shows the cross section of the sliding member by other examples of this invention. 本発明の摺動装置の一具体例の断面を示す図。The figure which shows the cross section of one specific example of the sliding device of this invention.

図1に本発明による摺動装置1の一例を概略的に示す。摺動装置1は、軸部材2および軸部材2を支承する摺動部材3を備える。摺動部材3は、裏金層4および摺動層5を有する。
本発明の摺動装置1の具体的形態として、円柱形状の軸部材2を円筒形状の摺動部材3が支承する摺動装置とすることができる(図7参照)。この場合は、円筒形状の摺動部材3の内面に摺動層5が形成される。しかし、本発明による摺動装置はこの形態に限定されずに、軸部材2および摺動部材3が平板である形態、その他いずれの形態であってもよい。
FIG. 1 schematically shows an example of a sliding device 1 according to the present invention. The sliding device 1 includes a shaft member 2 and a sliding member 3 that supports the shaft member 2. The sliding member 3 has a back metal layer 4 and a sliding layer 5.
As a specific form of the sliding device 1 of the present invention, a sliding device in which a cylindrical shaft member 2 is supported by a cylindrical sliding member 3 can be used (see FIG. 7). In this case, the sliding layer 5 is formed on the inner surface of the cylindrical sliding member 3. However, the sliding device according to the present invention is not limited to this form, and may have a form in which the shaft member 2 and the sliding member 3 are flat plates, or any other form.

図2に本発明による摺動装置の摺動部材3の一例の断面を概略的に示す。摺動部材3は、裏金層4上に摺動層5が設けられている。摺動層5は、合成樹脂6と5〜50体積%の鱗片状黒鉛粒子7とからなる。鱗片状黒鉛粒子7の断面組織は、黒鉛結晶のAB面が平板形状の厚さ方向(黒鉛結晶のC軸方向)に複数積層している。鱗片状黒鉛粒子7の平均粒径は3〜25μmである。
鱗片状黒鉛粒子7は、摺動層5の摺動面に対して垂直方向の断面組織を観察すると、長軸および短軸を有する伸長形状を有している。鱗片状黒鉛粒子7の長軸は、黒鉛結晶のAB面に平行な方向に伸長する。
FIG. 2 schematically shows a cross section of an example of the sliding member 3 of the sliding device according to the present invention. The sliding member 3 has a sliding layer 5 provided on a back metal layer 4. The sliding layer 5 comprises a synthetic resin 6 and 5 to 50% by volume of flake graphite particles 7. In the cross-sectional structure of the flaky graphite particles 7, a plurality of AB planes of the graphite crystal are laminated in the thickness direction of the flat plate shape (the C-axis direction of the graphite crystal). The average particle size of the flaky graphite particles 7 is 3 to 25 μm.
Observing the cross-sectional structure in the direction perpendicular to the sliding surface of the sliding layer 5, the flaky graphite particles 7 have an elongated shape having a long axis and a short axis. The major axis of the flake graphite particles 7 extends in a direction parallel to the AB plane of the graphite crystal.

鱗片状黒鉛粒子7は、空隙含有鱗片状黒鉛粒子71およびそれ以外の非空隙含有鱗片状黒鉛粒子72とからなる。なお、非空隙含有鱗片状黒鉛粒子72には、内部組織に隙間を有さない鱗片状黒鉛粒子のみならず、空隙を有するものの上記に記載した空隙含有鱗片状黒鉛粒子の要件を満足しない鱗片状黒鉛粒子も含まれる。
摺動層5中の鱗片状黒鉛粒子7の全体積に対する空隙含有鱗片状黒鉛粒子71の体積割合は10%以上であり、好適には20%以上であり、より好適には25%以上である。
なお、摺動層5と裏金層4との間に多孔質金属層8を設けてもよい。多孔質金属層8を
設けた摺動部材の一例の断面を図6に概略的に示す。
The flaky graphite particles 7 are composed of void-containing flaky graphite particles 71 and other non-void-containing flaky graphite particles 72. The non-porous flaky graphite particles 72 include not only flaky graphite particles having no gap in the internal structure, but also flaky flakes that have voids but do not satisfy the requirements for the void-containing flaky graphite particles described above. Graphite particles are also included.
The volume ratio of the void-containing flake graphite particles 71 to the total volume of the flake graphite particles 7 in the sliding layer 5 is 10% or more, preferably 20% or more, and more preferably 25% or more. .
Note that a porous metal layer 8 may be provided between the sliding layer 5 and the back metal layer 4. FIG. 6 schematically shows a cross section of an example of the sliding member provided with the porous metal layer 8.

図4に、空隙含有鱗片状黒鉛粒子71の概略図を示す。摺動層5内に分散する空隙含有鱗片状黒鉛粒子71は、内部組織に空隙9を有し、空隙9は、空隙含有鱗片状黒鉛粒子71の長軸方向と略平行な方向に伸長する。
空隙9は、空隙含有鱗片状黒鉛粒子71の長軸方向に平行な方向の空隙の長さL1が、その鱗片状黒鉛粒子71の長軸の長さLの50%以上である。空隙9は、空隙含有鱗片状黒鉛粒子71の長軸方向に対して垂直な方向の最大長さが0.01〜1μm程度である。
なお、図4では、内部組織に1つの空隙9を有する鱗片状黒鉛粒子71を示したが、内部組織に複数の空隙を有してもよい。(この場合の空隙の長さL1は、各空隙の長さの合計から、長軸方向に平行な方向に重複する長さを引いた値になる。)
FIG. 4 shows a schematic view of the void-containing flake graphite particles 71. The void-containing flake graphite particles 71 dispersed in the sliding layer 5 have voids 9 in the internal structure, and the voids 9 extend in a direction substantially parallel to the long axis direction of the void-containing flake graphite particles 71.
In the void 9, the length L1 of the void in the direction parallel to the long axis direction of the void-containing flake graphite particles 71 is 50% or more of the long axis L of the flake graphite particles 71. The maximum length of the void 9 in the direction perpendicular to the long axis direction of the void-containing flake graphite particles 71 is about 0.01 to 1 μm.
Although FIG. 4 shows the flaky graphite particles 71 having one void 9 in the internal structure, the internal structure may have a plurality of voids. (The length L1 of the gap in this case is a value obtained by subtracting the length overlapping in the direction parallel to the long axis direction from the total length of each gap.)

次に、摺動層5に含まれる鱗片黒鉛粒子7の全体積に対する空隙含有鱗片状黒鉛粒子71の体積割合の測定方法について説明する。摺動層5の摺動面に垂直な方向の複数箇所の断面を電子顕微鏡を用い倍率1000倍(他倍率も可)で電子像を撮影する。一般的な画像解析手法(例えば、解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて、撮影画像中の鱗片黒鉛粒子7を、空隙含有鱗片状黒鉛粒子71と、それ以外の非空隙含有鱗片状黒鉛粒子72に区分する。撮影画像中の全鱗片状黒鉛粒子7の合計面積と全空隙含有鱗片状黒鉛粒子71の合計面積を測定し、鱗片状黒鉛粒子7に対する空隙含有鱗片状黒鉛粒子71の面積割合を算出する。この面積割合は、体積割合に相当する。   Next, a method of measuring the volume ratio of the void-containing flake graphite particles 71 to the total volume of the flake graphite particles 7 contained in the sliding layer 5 will be described. An electronic image is taken of a cross section of a plurality of portions in a direction perpendicular to the sliding surface of the sliding layer 5 at a magnification of 1000 (another magnification is also possible) using an electron microscope. Using a general image analysis method (for example, analysis software: Image-Pro Plus (Version 4.5); manufactured by Planetron Co., Ltd.), the flake graphite particles 7 in the photographed image are replaced with the void-containing flake graphite particles 71. And other non-void-containing flake graphite particles 72. The total area of all the flaky graphite particles 7 and the total area of all the void-containing flaky graphite particles 71 in the captured image are measured, and the area ratio of the void-containing flaky graphite particles 71 to the flaky graphite particles 7 is calculated. This area ratio corresponds to the volume ratio.

摺動層5内に分散する鱗片状黒鉛粒子7の長軸Lと短軸Sとの比の平均で表される平均アスペクト比A1は5〜15であることが好ましい。平均アスペクト比A1は、6以上とすることがさらに好ましい。   The average aspect ratio A1 represented by the average of the ratio between the major axis L and the minor axis S of the flaky graphite particles 7 dispersed in the sliding layer 5 is preferably 5 to 15. More preferably, the average aspect ratio A1 is 6 or more.

摺動層5に分散する鱗片状黒鉛粒子7の異方分散指数S1は、3以上であることが好ましい。異方分散指数S1は、摺動層5の摺動面に対して垂直方向の断面組織での鱗片状黒鉛粒子7の摺動面に対して平行方向の長さをX1、摺動層5の摺動面に対して垂直方向の断面組織での鱗片状黒鉛粒子7の摺動面に対して垂直方向の長さをY1としたとき(図5参照)、各鱗片状黒鉛粒子の比X1/Y1の値を全鱗片状黒鉛粒子について平均したものとして表される。異方分散指数S1は4以上とすることがさらに好ましい。   The flake graphite particles 7 dispersed in the sliding layer 5 preferably have an anisotropic dispersion index S1 of 3 or more. The anisotropic dispersion index S1 is X1 which is the length in the direction parallel to the sliding surface of the flake graphite particles 7 in the cross-sectional structure perpendicular to the sliding surface of the sliding layer 5, and X1 of the sliding layer 5. When the length in the direction perpendicular to the sliding surface of the flake graphite particles 7 in the cross-sectional structure in the direction perpendicular to the sliding surface is Y1 (see FIG. 5), the ratio X1 / X1 of each flake graphite particle is obtained. It is expressed as the value of Y1 averaged over all flake graphite particles. More preferably, the anisotropic dispersion index S1 is 4 or more.

上記に説明した摺動装置の摺動部材について、製造工程に沿いながら以下に詳細に説明する。
(1)原材料黒鉛粒子の準備
鱗片状黒鉛粒子の原材料としては、平板形状を有する鱗片状黒鉛粒子を用いるが、天然鱗片状黒鉛粒子および人造鱗片状黒鉛粒子のいずれを用いてもよい。この鱗片状黒鉛粒子は、レーザー回折式粒度測定装置により測定されるAB面(六角網面)に平行な方向の平均粒径が3〜30μmであり、また、粒子の平均厚さが0.2〜3.5μmであるものを用いることが好ましい。なお、原材料である鱗片状黒鉛粒子は、内部組織に空隙を有していない。
The sliding member of the sliding device described above will be described in detail below along the manufacturing process.
(1) Preparation of Raw Material Graphite Particles As the raw material of the flaky graphite particles, flaky graphite particles having a flat plate shape are used, and any of natural flaky graphite particles and artificial flaky graphite particles may be used. The flaky graphite particles have an average particle size of 3 to 30 μm in a direction parallel to the AB plane (hexagonal mesh plane) measured by a laser diffraction type particle size measuring device, and have an average thickness of 0.2 μm. It is preferable to use one having a thickness of about 3.5 μm. In addition, the flaky graphite particles as a raw material have no void in the internal structure.

(2)合成樹脂粒子の準備
原材料である合成樹脂粒子は、鱗片状黒鉛粒子の平均粒径の50〜150%の平均粒径を有するものを用いることが好ましい。合成樹脂としては、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPSおよびPEIのうちから選ばれる1種または2種以上からなるものを用いることができる。
(2) Preparation of Synthetic Resin Particles It is preferable to use synthetic resin particles as raw materials having an average particle size of 50 to 150% of the average particle size of the flaky graphite particles. As the synthetic resin, a resin composed of one or more selected from PAI, PI, PBI, PA, phenol, epoxy, POM, PEEK, PE, PPS and PEI can be used.

(3)混合
鱗片状黒鉛粒子の体積割合が5〜50体積%となるように、準備した鱗片状黒鉛粒子と合成樹脂粒子との割合を調整する。この鱗片状黒鉛粒子および合成樹脂粒子を有機溶剤で希釈しロールミルを用いて混合して粘度が40000〜110000mPa・sとなる組成物を作製する。
(3) Mixing The ratio between the prepared flaky graphite particles and the synthetic resin particles is adjusted so that the volume ratio of the flaky graphite particles is 5 to 50% by volume. The flaky graphite particles and the synthetic resin particles are diluted with an organic solvent and mixed using a roll mill to prepare a composition having a viscosity of 40,000 to 110,000 mPa · s.

従来は、黒鉛粒子や他の充填材粒子を含有する樹脂組成物の希釈液の粘度は、通常は最大でも15000mPa・s程度とされていた。しかし、ここでは、希釈した組成物の粘度を40000〜110000mPa・sと通常よりも大きくする。組成物の粘度が110000mPa・sを超えると、溶剤の濃度が低すぎて、樹脂粒子と鱗片状黒鉛粒子とを均質に分散させ難くなり、さらに、ロールミルでの混合時に、鱗片状黒鉛粒子に割れが発生する場合がある。   Conventionally, the viscosity of a diluent of a resin composition containing graphite particles and other filler particles has been usually about 15,000 mPa · s at the maximum. However, here, the viscosity of the diluted composition is set to 40,000 to 110,000 mPa · s, which is larger than usual. When the viscosity of the composition exceeds 110,000 mPa · s, the concentration of the solvent is too low, and it is difficult to uniformly disperse the resin particles and the flaky graphite particles, and further, at the time of mixing with a roll mill, the flake graphite particles are broken. May occur.

ロールミルのロール間のギャップは、鱗片状黒鉛粒子の平均粒径の400%程度に相当する間隔に設定して、有機溶剤中に樹脂粒子、鱗片状黒鉛粒子や他充填材粒子を均質分散させる。   The gap between the rolls of the roll mill is set to an interval corresponding to about 400% of the average particle size of the flaky graphite particles, and the resin particles, the flaky graphite particles and the other filler particles are uniformly dispersed in the organic solvent.

上記した合成樹脂粒子の平均粒径が、鱗片状黒鉛粒子の平均粒径の50〜150%である関係は、ロール間のギャップを通過するときに鱗片黒鉛粒子に過度な負荷が加わりせん断が発生してしまうことを防ぐために好適である。摺動層に、固体潤滑剤や充填材をさらに含有させる場合、これら固体潤滑剤や充填材の粒子は、鱗片状黒鉛粒子の平均粒径の50%以下の平均粒径を有するものが好ましい。   The above-mentioned relationship that the average particle size of the synthetic resin particles is 50 to 150% of the average particle size of the flaky graphite particles is that an excessive load is applied to the flake graphite particles when passing through the gap between the rolls, and shear occurs. This is suitable for preventing such a situation. When the sliding layer further contains a solid lubricant or filler, the solid lubricant or filler particles preferably have an average particle size of 50% or less of the average particle size of the flaky graphite particles.

合成樹脂粒子と鱗片状黒鉛粒子との混合方法は、上記実施形態で示したロールミルを用いた混合方法に限定されないで、他の混合機を使用するか、または、他の混合条件で調整することも可能である。   The mixing method of the synthetic resin particles and the flake graphite particles is not limited to the mixing method using the roll mill described in the above embodiment, or using another mixer, or adjusting under other mixing conditions. Is also possible.

(4)裏金
裏金層としては、Fe合金、Cu、Cu合金等の金属板を用いることができる。裏金層表面、すなわち摺動層との界面となる側に多孔質金属層を形成してもよい。多孔質金属層は裏金層と同じ組成を有することも、異なる組成または材料を用いることも可能である。
(4) Back metal As the back metal layer, a metal plate of Fe alloy, Cu, Cu alloy, or the like can be used. A porous metal layer may be formed on the surface of the back metal layer, that is, on the side that is the interface with the sliding layer. The porous metal layer can have the same composition as the back metal layer, or can use a different composition or material.

(5)被覆工程
混合後の組成物は、裏金層の一方の表面、あるいは裏金層上の多孔質金属層に塗布され、組成物を塗布した裏金は、組成物の厚さを均一とするため、所定の一定の間隙を有するロール間に通される。
混合後の組成物の粘度は、摺動部材の摺動層中での鱗片状黒鉛粒子の長軸方向の異方分散(配向)にも密接に関係するため、この鱗片状黒鉛粒子の異方分散は、この被覆工程での条件設定が重要であることが判明した。
(5) Coating Step The composition after mixing is applied to one surface of the back metal layer or the porous metal layer on the back metal layer, and the back metal coated with the composition is used to make the thickness of the composition uniform. Is passed between rolls having a predetermined constant gap.
The viscosity of the composition after mixing is closely related to the long-axis anisotropic dispersion (orientation) of the flaky graphite particles in the sliding layer of the sliding member. For the dispersion, it was found that setting the conditions in this coating step was important.

混合工程で組成物の粘度が高い(すなわち、有機溶剤の割合が少ない)場合、組成物を塗布した裏金層がロール間を通過するときに、組成物中の鱗片状黒鉛粒子が、その平板面(黒鉛結晶のAB面)が摺動面に対して平行な方向を向くように流動しにくくなるからである。
他方、組成物の粘度が110000mPa・s以下であると、被覆工程で鱗片状黒鉛粒子が有機溶剤とともに流動しやすいので、鱗片状黒鉛粒子は、その平板面の向く方向が、摺動部材の摺動層内で配向、すなわち異方に分散する。具体的には、組成物の粘度が110000mPa・s以下であると、摺動層に分散する鱗片状黒鉛粒子は、異方分散指数S1が2.5以上となる。さらに組成物の粘度が100000mPa・s以下であると異方分散指数が3以上、80000mPa・s以下であると異方分散指数が4以上となる。
When the viscosity of the composition is high in the mixing step (that is, the proportion of the organic solvent is small), when the back metal layer coated with the composition passes between the rolls, the flaky graphite particles in the composition are converted to the flat surface thereof. This is because the (AB surface of the graphite crystal) is less likely to flow so as to be oriented in a direction parallel to the sliding surface.
On the other hand, if the viscosity of the composition is 110,000 mPa · s or less, the flaky graphite particles are likely to flow together with the organic solvent in the coating step. It is oriented in the moving layer, that is, dispersed anisotropically. Specifically, when the viscosity of the composition is 110000 mPa · s or less, the flake graphite particles dispersed in the sliding layer have an anisotropic dispersion index S1 of 2.5 or more. Further, when the viscosity of the composition is 100000 mPa · s or less, the anisotropic dispersion index becomes 3 or more, and when the viscosity is 80000 mPa · s or less, the anisotropic dispersion index becomes 4 or more.

(6)予備乾燥工程
組成物を被覆した裏金層(あるいは、裏金層および多孔質多孔質金属層)に、有機溶剤が組成物中に5〜15体積%残存するように予備乾燥を施す。従来の製造方法では予備乾燥工程を圧延工程前には行われていないが、予備乾燥工程により組成物中の有機溶剤の体積割合を5〜15%程度に低くすることが、後述する圧延工程での空隙含有鱗片状黒鉛粒子の形成に密接に関係する。
なお、従来の摺動部材の製造では、圧延工程前に予備乾燥工程を設けることはなかった。
(6) Pre-drying step The back metal layer (or the back metal layer and the porous metal layer) coated with the composition is pre-dried so that the organic solvent remains in the composition in an amount of 5 to 15% by volume. In the conventional manufacturing method, the pre-drying step is not performed before the rolling step, but the pre-drying step reduces the volume ratio of the organic solvent in the composition to about 5 to 15% in the rolling step described later. Is closely related to the formation of void-containing flaky graphite particles.
In the production of a conventional sliding member, a preliminary drying step was not provided before the rolling step.

(7)圧延工程
組成物を被覆した裏金層(あるいは、裏金層および多孔質多孔質金属層)は、予備乾燥後に、厚さを均一とするため所定の一定間隙を有するロール間に通される。予備乾燥工程後の組成物は、有機溶剤が5〜15体積%しか残存しないため組成物中で鱗片状黒鉛粒子と合成樹脂粒子が接触する頻度が高くなっている。このため、圧延工程で組成物がロール間の間隙を通過する際、鱗片状黒鉛粒子と合成樹脂粒子が接した状態で、ロールから負荷が加えられることで、鱗片状黒鉛粒子の表面が局部的に高い負荷を受け内部に空隙が形成されると考えられる。
(7) Rolling Step The back metal layer (or the back metal layer and the porous metal layer) coated with the composition is passed between rolls having a predetermined constant gap after pre-drying to make the thickness uniform. . In the composition after the preliminary drying step, only 5 to 15% by volume of the organic solvent remains, so that the frequency of contact between the flaky graphite particles and the synthetic resin particles in the composition is high. Therefore, when the composition passes through the gap between the rolls in the rolling step, by applying a load from the rolls in a state where the flaky graphite particles and the synthetic resin particles are in contact, the surface of the flaky graphite particles is localized. It is considered that a high load is applied to the inside and voids are formed inside.

従来の組成物の粘度は最大でも15000mPa・s程度になされており組成物中の有機溶剤の割合が多く(40〜50体積%程度)、また、圧延工程前に有機溶剤の残存する体積割合を少なくするための予備乾燥も施されることがなかったので、圧延工程において組成物の有機溶剤の割合が多すぎて鱗片状黒鉛粒子に対し内部に空隙が形成される負荷が加わることがなかった。
なお、予備乾燥工程での組成物中の有機溶剤の残存割合が5%未満であると、圧延工程で組成物が流動し難く、摺動部材(摺動層)の厚さの均一化、摺動面の平滑化が困難になるばかりでなく、圧延工程時に鱗片状黒鉛粒子に過度の負荷が加わり鱗片状黒鉛粒子が複数の小粒子にせん断されやすくなる。
The viscosity of the conventional composition is made to be about 15000 mPa · s at the maximum, and the proportion of the organic solvent in the composition is large (about 40 to 50% by volume). Since the preliminary drying for reducing was not performed, the ratio of the organic solvent in the composition was too large in the rolling step, and the load of forming voids inside the flake graphite particles was not applied. .
If the residual ratio of the organic solvent in the composition in the preliminary drying step is less than 5%, the composition is less likely to flow in the rolling step, and the thickness of the sliding member (sliding layer) is made uniform and the sliding is performed. Not only is it difficult to smooth the moving surface, but also an excessive load is applied to the flaky graphite particles during the rolling process, and the flaky graphite particles are likely to be sheared into a plurality of small particles.

(8)乾燥焼成工程
圧延工程を終えた後、組成物中に残存する有機溶剤の乾燥および合成樹脂の焼成のための加熱を施して、摺動部材が得られる。
(8) Drying and Firing Step After the rolling step, heating for drying the organic solvent remaining in the composition and firing the synthetic resin is performed to obtain a sliding member.

なお、上記の実施例の製造方法とは異なり、合成樹脂に空隙を有さない鱗片状黒鉛粒子のみが分散した摺動層を有する従来の摺動部材に対して圧延工程を施すことで、摺動層中の鱗片状黒鉛粒子の内部に空隙を形成する試みを行ったが、結果は、鱗片状黒鉛粒子の内部組織に空隙の形成は確認できなかった。これは、摺動部材の摺動層の鱗片状黒鉛粒子は、既に焼成により強度が高くなった合成樹脂により保持(拘束)されるので、圧延工程での負荷により鱗片状黒鉛粒子は周囲の合成樹脂とともに流動するだけで、鱗片状黒鉛粒子には組織内部に空隙が形成される程度の負荷が加えられないからと考えられる。   In addition, unlike the manufacturing method of the above embodiment, by performing a rolling process on a conventional sliding member having a sliding layer in which only flake graphite particles having no voids in the synthetic resin are dispersed, An attempt was made to form voids inside the flake graphite particles in the moving layer, but as a result, no formation of voids was found in the internal structure of the flake graphite particles. This is because the flaky graphite particles of the sliding layer of the sliding member are held (constrained) by the synthetic resin whose strength has already been increased by firing, so that the flaky graphite particles are synthesized by the load in the rolling process. It is considered that the flake graphite particles are not subjected to a load such that voids are formed inside the tissue only by flowing together with the resin.

(9)測定
鱗片状黒鉛粒子の平均粒径の測定は、摺動部材の摺動面に垂直方向の断面を電子顕微鏡を用いて電子像を1000倍で撮影して行なう。具体的には、鱗片状黒鉛粒子の平均粒径は、得られた電子像を一般的な画像解析手法(例えば、解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて面積を測定し、それを円と想定した場合の平均直径に換算して求める。ただし、電子像の撮影倍率は1000倍に限定されず、他の倍率に変更することができる。
(9) Measurement The average particle size of the flaky graphite particles is measured by photographing an electronic image of a cross section perpendicular to the sliding surface of the sliding member with an electron microscope at a magnification of 1000 times. Specifically, the average particle size of the flaky graphite particles is determined by a general image analysis method (for example, analysis software: Image-Pro Plus (Version 4.5); manufactured by Planetetron Corporation). The area is measured by using it and converted to the average diameter when it is assumed to be a circle. However, the photographing magnification of the electronic image is not limited to 1000 times, and can be changed to another magnification.

鱗片状黒鉛粒子は、断面組織が、黒鉛結晶のAB面が平板形状の厚さ方向(C軸方向)に複数積層している組織となっていることは、摺動部材の摺動面に垂直方向の断面において、複数個(例えば20個)の鱗片状黒鉛粒子を電子顕微鏡を用いて倍率2000倍で電子像を撮影し、撮影画像中の鱗片状黒鉛粒子の断面組織が、平板形状の厚さ方向に複数積層している層状部が形成されていることを観察することにより確認できる。   The fact that the flaky graphite particles have a cross-sectional structure in which a plurality of AB planes of graphite crystals are laminated in the thickness direction (C-axis direction) of the flat plate shape is perpendicular to the sliding surface of the sliding member. In the cross section in the direction, an electron image of a plurality (for example, 20) of flaky graphite particles is photographed at a magnification of 2000 using an electron microscope, and the cross-sectional structure of the flaky graphite particles in the photographed image has a flat plate-like thickness. It can be confirmed by observing that a plurality of layered portions are formed in the vertical direction.

上記の方法によって、摺動層に含まれる鱗片状黒鉛粒子の全体積に対する空隙含有鱗片状黒鉛粒子の体積割合が10%以上であることも確認できる。   By the above method, it can also be confirmed that the volume ratio of the void-containing flaky graphite particles to the total volume of the flaky graphite particles contained in the sliding layer is 10% or more.

鱗片状黒鉛粒子のアスペクト比A1は、摺動部材の摺動面に対して垂直方向の断面を電子顕微鏡を用いて電子像を200倍で撮影した画像を、上記の像解析手法を用い、各鱗片状黒鉛粒子の長軸の長さLと短軸の長さSの比(L/S)として求める(図5参照)。なお、鱗片状黒鉛粒子の長軸の長さLは、上記電子画像中の鱗片状黒鉛粒子の長さが最大となる位置での長さを示し、鱗片状黒鉛粒子の短軸の長さSは、この長軸の長さLの方向に直交する方向での長さが最大となる位置での長さを示す。   The aspect ratio A1 of the flaky graphite particles is obtained by taking an image obtained by photographing an electronic image of the cross section in the direction perpendicular to the sliding surface of the sliding member at a magnification of 200 using an electron microscope using the above-described image analysis method. It is determined as the ratio (L / S) of the length L of the major axis to the length S of the minor axis of the flake graphite particles (see FIG. 5). In addition, the length L of the major axis of the flake graphite particles indicates the length at the position where the length of the flake graphite particles in the electronic image is the maximum, and the length S of the minor axis of the flake graphite particles Indicates the length at the position where the length in the direction orthogonal to the direction of the length L of the long axis is maximum.

鱗片状黒鉛粒子の異方分散指数S1は、上記の手法で得られた電子像を、上記画像解析手法を用い、摺動層中の各鱗片状黒鉛粒子の摺動面に対して平行方向の長さX1と、摺動面に対して垂直方向の長さY1を測定し、それらの長さの比(X1/Y1)の平均値を算出して求める(図5参照)。   The anisotropic dispersion index S1 of the flaky graphite particles is obtained by converting the electronic image obtained by the above-described method into a direction parallel to the sliding surface of each of the flaky graphite particles in the sliding layer using the above-described image analysis method. The length X1 and the length Y1 in the direction perpendicular to the sliding surface are measured, and the average value of the ratio (X1 / Y1) of the lengths is calculated and obtained (see FIG. 5).

図3に本発明による摺動装置1の軸部材2の一例の断面を概略的に示す。軸部材2は、合成樹脂10に硬質粒子11が分散されている。軸部材の製造工程としては、合成樹脂と硬質粒子を混合後、ペレット化を行い、射出成型にて円柱状や平板状等の所定の形状に成型できる。   FIG. 3 schematically shows a cross section of an example of the shaft member 2 of the sliding device 1 according to the present invention. In the shaft member 2, hard particles 11 are dispersed in a synthetic resin 10. As a manufacturing process of the shaft member, after mixing the synthetic resin and the hard particles, the mixture is pelletized, and can be molded into a predetermined shape such as a columnar shape or a flat shape by injection molding.

軸部材2の合成樹脂10は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、PF(フェノール)、EP(エポキシ)、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   The synthetic resin 10 of the shaft member 2 is made of PAI (polyamide imide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), PF (phenol), EP (epoxy), POM (polyacetal), PEEK (poly (Ether ether ketone), PE (polyethylene), PPS (polyphenylene sulfide), and PEI (polyetherimide).

軸部材2は、合成樹脂10と、この合成樹脂10に分散された硬質粒子11からなり、硬質粒子11は、摺動層5の5〜50体積%を占めることができる。
軸部材2の硬質粒子11は、CF(炭素繊維)、GF(ガラス繊維)、BN、Al、SiC、SiO、AlNおよびTiOのうちから選ばれる1種または2種以上からなることができる。硬質粒子11の平均粒径は1〜50μm程度とすることができる。
The shaft member 2 is composed of a synthetic resin 10 and hard particles 11 dispersed in the synthetic resin 10, and the hard particles 11 can occupy 5 to 50% by volume of the sliding layer 5.
The hard particles 11 of the shaft member 2 are made of one or more selected from CF (carbon fiber), GF (glass fiber), BN, Al 2 O 3 , SiC, SiO 2 , AlN and TiO 2. be able to. The average particle size of the hard particles 11 can be about 1 to 50 μm.

軸部材2は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材1〜10体積%をさらに含むことができる。また、軸部材2は、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤を5体積%以下をさらに含むことができる。 The shaft member 2 contains 1 to 10% by volume of one or more fillers selected from CaF 2 , CaCo 3 , talc, mica, mullite, iron oxide, calcium phosphate, and Mo 2 C (molybdenum carbide). It can further include. Further, the shaft member 2 may further include 5 vol% or less of one or more solid lubricants selected from MoS 2 , WS 2 , h-BN and PTFE.

本発明による摺動装置の実施例1〜11、および比較例12〜16を以下に示すとおり作製した。実施例1〜11および比較例12〜16の軸部材及び摺動部材の摺動層の組成は、表1に示すとおりである。   Examples 1 to 11 and Comparative Examples 12 to 16 of the sliding device according to the present invention were produced as shown below. The compositions of the sliding layers of the shaft members and the sliding members of Examples 1 to 11 and Comparative Examples 12 to 16 are as shown in Table 1.

実施例1〜11および比較例12〜16の軸部材は、表1に示す樹脂(EP、PF)と硬質粒子(CF(カーボン繊維)、SiO粒子)を混合し、ペレット化し、このペレットを射出成型機を用い円柱形状に成形した。 The shaft members of Examples 1 to 11 and Comparative Examples 12 to 16 were prepared by mixing resins (EP, PF) and hard particles (CF (carbon fiber), SiO 2 particles) shown in Table 1 and pelletizing them. It was molded into a cylindrical shape using an injection molding machine.

実施例1〜11および比較例12〜16の原材料として用いた鱗片状黒鉛粒子は、平面状に広がるAB面(六角網面平面)が多数積層しC軸方向に厚みを有する組織となっており、AB面の広がりに対して積層の厚みが薄いため、粒子の形状は薄板状を呈している。この鱗片状黒鉛粒子は、内部組織内には空隙がなかった。   The flaky graphite particles used as raw materials in Examples 1 to 11 and Comparative Examples 12 to 16 have a structure in which a large number of AB surfaces (hexagonal mesh planes) that spread in a plane are stacked and have a thickness in the C-axis direction. Since the thickness of the laminate is smaller than the extent of the AB plane, the shape of the particles is a thin plate. The scaly graphite particles had no voids in the internal structure.

実施例1〜11および比較例12〜16の原材料である合成樹脂(PAI、PI)粒子は、平均粒径が、原材料である鱗片状黒鉛粒子の平均粒径に対して125%であるものを用いた。実施例5〜7の原材料として用いた固体潤滑剤(球状黒鉛、PTFE)は平均粒径が、原材料である鱗片状黒鉛粒子の平均粒径に対して100%のものを用い、充填材(CaCo)の粒子は、平均粒径が鱗片状黒鉛粒子の平均粒径に対して25%のものを用いた。 The synthetic resin (PAI, PI) particles which are the raw materials of Examples 1 to 11 and Comparative Examples 12 to 16 had an average particle diameter of 125% with respect to the average particle diameter of the flake graphite particles which were the raw materials. Using. The solid lubricant (spherical graphite, PTFE) used as a raw material in Examples 5 to 7 had an average particle diameter of 100% of the average particle diameter of the flaky graphite particles as a raw material, and was used as a filler (CaCoO). 3 ) The particles having an average particle size of 25% of the average particle size of the flaky graphite particles were used.

上記の原材料を用いた表1に示す組成物を有機溶剤で希釈し、表1の「粘度(mPa・s)」欄に示す粘度の組成物を準備し、次に、ロールミルを用いて組成物の混合を行った。なお、ロールミルのロール間のギャップは、実施例1〜11および比較例12〜16では、原材料として用いた鱗片状黒鉛粒子の平均径に対する比率を400%に設定した。   The composition shown in Table 1 using the above raw materials was diluted with an organic solvent to prepare a composition having the viscosity shown in the column of "Viscosity (mPa · s)" in Table 1, and then the composition was prepared using a roll mill. Was mixed. In Examples 1 to 11 and Comparative Examples 12 to 16, the gap between the rolls of the roll mill was set to a ratio of 400% to the average diameter of the flaky graphite particles used as a raw material.

次に混合後の摺動部材の組成物をFe合金製の裏金層の一方の表面に塗布したのち、ロールにて組成物が所定の厚さとなるように被覆した。なお、実施例1〜9及び比較例12〜16の裏金層としてはFe合金を用い、実施例10、11は表面にCu合金の多孔質焼結部を有するFe合金を用いた。   Next, the composition of the sliding member after mixing was applied to one surface of a back metal layer made of an Fe alloy, and then the composition was coated with a roll to a predetermined thickness. The back metal layers of Examples 1 to 9 and Comparative Examples 12 to 16 used Fe alloys, and Examples 10 and 11 used Fe alloys having a porous sintered portion of Cu alloy on the surface.

次に、実施例1〜11および比較例13〜16については、組成物中の溶剤を10%残存するように予備乾燥工程を施した後に圧延工程を実施し、比較例12については、予備乾燥工程を実施しない(有機溶剤の残存量は50%)で圧延工程を実施し、その後組成物の有機溶剤の乾燥および合成樹脂の焼成を施して摺動部材を作製した。作製された実施例1〜11および比較例12〜16の摺動部材の摺動層の厚さは0.3mmであり、裏金層の厚さは1.7mmであった。   Next, for Examples 1 to 11 and Comparative Examples 13 to 16, a rolling step was performed after performing a preliminary drying step so that 10% of the solvent in the composition remained, and for Comparative Example 12, a preliminary drying step was performed. The rolling step was performed without performing the step (the remaining amount of the organic solvent was 50%), and thereafter, the organic solvent of the composition was dried and the synthetic resin was fired to produce a sliding member. The sliding layers of the fabricated sliding members of Examples 1 to 11 and Comparative Examples 12 to 16 had a thickness of 0.3 mm, and the back metal layer had a thickness of 1.7 mm.

作製した各摺動部材について、上記に説明した測定方法による黒鉛粒子の平均粒径の測定を行い、その結果を表1の「平均粒径」欄に示した。また、上記に説明した測定方法により、摺動層中の鱗片状黒鉛粒子の全体積に対する空隙含有鱗片状黒鉛粒子の体積割合の測定を行い、その結果を表1の「体積割合」欄に示した(比較例16の括弧内の体積割合については後述する)。
また、上記に説明した鱗片状黒鉛粒子の平均アスペクト比(A1)、異方分散指数(S1)の測定を行い、その結果を表1の「アスペクト比(A1)」欄、「分散指数(S1)」欄に示した。
The average particle size of the graphite particles was measured for each sliding member produced by the measurement method described above, and the results are shown in the “average particle size” column of Table 1. In addition, by the measurement method described above, the volume ratio of the void-containing flaky graphite particles to the total volume of the flaky graphite particles in the sliding layer was measured, and the results are shown in the “volume ratio” column of Table 1. (The volume ratio in parentheses in Comparative Example 16 will be described later.)
Further, the average aspect ratio (A1) and anisotropic dispersion index (S1) of the flake graphite particles described above were measured, and the results were shown in Table 1 in the “Aspect Ratio (A1)” column, “Dispersion Index (S1)”. ) "Column.

さらに、各実施例および各比較例について、摺動部材を摺動層が内側になるようにして円筒形状に形成し、また軸部材を円柱形状に成形し(図7参照)、表2に示す条件で摺動試験を行った。各実施例および各比較例の摺動試験後の摺動層の摩耗量を表1の「摩耗量」欄に示す。
また、各実施例および各比較例は、摺動試験後の摺動面を、形状測定器(粗さ測定器)を用いて樹脂の脱落の有無を確認した。摺動面に深さが10μm以上の樹脂の脱落部(凹部)が確認された場合には「有」、確認されなかった場合には「無」とし、表1の「樹脂脱落の有無」欄に結果を示した。
Further, for each of the examples and comparative examples, the sliding member was formed into a cylindrical shape with the sliding layer being on the inside, and the shaft member was formed into a cylindrical shape (see FIG. 7). A sliding test was performed under the conditions. The amount of wear of the sliding layer of each of the examples and comparative examples after the sliding test is shown in the “wear amount” column of Table 1.
In each of the examples and comparative examples, the sliding surface after the sliding test was checked for the presence or absence of resin dropout using a shape measuring device (roughness measuring device). "Resistant" is shown in Table 1 if there is a dropout (recess) of resin with a depth of 10 μm or more on the sliding surface, and "No" if not. The results are shown in FIG.

表1に示す結果から分かるとおり、実施例1〜11では、摺動試験後の摺動部材の摺動層の摺動面には合成樹脂の脱落はなかったが、比較例12〜16では、摺動試験後の摺動層の摺動面には合成樹脂の脱落が発生した。実施例1〜11の摺動部材は摺動層の摺動面の合成樹脂の脱落が防がれた理由は、上記のように、摺動層中の空隙含有鱗片状黒鉛粒子の空隙により軸部材から摺動層の摺動面の合成樹脂に加わる極圧的な負荷が緩和された効果によると考えられる。また、実施例1〜11では、比較例12〜16に対して、摺動試験後の摺動層の摩耗量が少なくなった。この理由は、上記のように実施例1〜11は、摺動面に加わる極圧的な負荷が緩和され、合成樹脂の脱落が防がれたため合成樹脂の脱落部を起点とした摩耗が起こらなかったことによると考えられる。   As can be seen from the results shown in Table 1, in Examples 1 to 11, the synthetic resin did not fall off on the sliding surface of the sliding layer of the sliding member after the sliding test, but in Comparative Examples 12 to 16, After the sliding test, the synthetic resin fell off on the sliding surface of the sliding layer. The sliding members of Examples 1 to 11 were prevented from dropping out of the synthetic resin on the sliding surface of the sliding layer, as described above, because the gaps of the flaky graphite particles containing voids in the sliding layer caused the shaft to become loose. It is considered that the extreme pressure load applied from the member to the synthetic resin on the sliding surface of the sliding layer was reduced. Further, in Examples 1 to 11, the wear amount of the sliding layer after the sliding test was smaller than in Comparative Examples 12 to 16. The reason for this is that, as described above, in Examples 1 to 11, the extreme pressure load applied to the sliding surface was reduced, and the falling off of the synthetic resin was prevented because the synthetic resin was prevented from falling off. Probably because it did not.

さらに、鱗片状黒鉛粒子のアスペクト比(A1)が5以上である実施例4〜9は、アスペクト比(A1)が5未満である実施例1〜3よりも摩耗量が少なくなる結果となった。これは、上記で説明したように鱗片状黒鉛粒子の表面積が大きくなることにより、合成樹脂との鱗片状黒鉛粒子の接触面積が大きくなり、合成樹脂との密着性が大きくなるために摺動時に摺動面から脱落し難くなり、しいては耐摩耗がよくなるからと考えられる。但し、実施例10、11の結果から、鱗片状黒鉛粒子の平均アスペクト比(A1)は、15以下であるほうが摩耗量が少なくなることが理解できる。
また、実施例4〜7は、異方分散指数(S1)が4未満である実施例8〜11よりも摩耗量が少なくなる結果となったが、これは、上記で説明したように鱗片状黒鉛粒子の長軸方向が摺動面に略平行に配向するものの割合が大きいために、摺動面に加わる極圧的な負荷をより緩和しやすくなるからと考えられる。
Furthermore, Examples 4 to 9 in which the aspect ratio (A1) of the flaky graphite particles was 5 or more resulted in a smaller wear amount than Examples 1 to 3 in which the aspect ratio (A1) was less than 5. . This is because, as described above, by increasing the surface area of the flaky graphite particles, the contact area of the flaky graphite particles with the synthetic resin is increased, and the adhesion with the synthetic resin is increased. It is considered that it is difficult to fall off the sliding surface, and thus the wear resistance is improved. However, from the results of Examples 10 and 11, it can be understood that the amount of abrasion is smaller when the average aspect ratio (A1) of the flaky graphite particles is 15 or less.
In addition, in Examples 4 to 7, the abrasion loss was smaller than in Examples 8 to 11 in which the anisotropic dispersion index (S1) was less than 4. However, as described above, this was a scaly shape. It is considered that the large percentage of the graphite particles whose major axis direction is oriented substantially parallel to the sliding surface makes it easier to relieve the extreme pressure load applied to the sliding surface.

比較例12は、黒鉛粒子を含む組成物を有機溶剤で粘度が15000mPa・sとなるよう希釈し、圧延工程前の組成物中の有機溶剤の残存量を少なくするための予備乾燥工程を実施しなかったため、組成物中の有機溶剤の割合が多く、圧延工程で組成物を被覆した裏金層がロール間を通るときに組成物中の鱗片状黒鉛粒子に対し内部に空隙が形成される負荷が加わらなかったため、内部組織に空隙が形成されなかったと考えられる。このため、比較例12の摺動部材は、摺動層に空隙含有鱗片状黒鉛粒子を含まない。摺動試験において、比較例12の摺動部材は、軸部材からの極圧的な負荷が緩和されることなく摺動層の摺動面の合成樹脂に加わることにより、摺動面から合成樹脂が脱落し、摺動面の摩耗が促進されたと考えられる。   In Comparative Example 12, a composition containing graphite particles was diluted with an organic solvent so that the viscosity became 15000 mPa · s, and a preliminary drying step was performed to reduce the residual amount of the organic solvent in the composition before the rolling step. Because there was no, the proportion of the organic solvent in the composition is large, the load in which voids are formed inside the flaky graphite particles in the composition when the back metal layer coated with the composition in the rolling step passes between the rolls It is probable that no voids were formed in the internal tissue because they were not added. Therefore, the sliding member of Comparative Example 12 does not include the flake graphite particles containing voids in the sliding layer. In the sliding test, the sliding member of Comparative Example 12 was applied to the synthetic resin on the sliding surface of the sliding layer without relaxing the extreme pressure load from the shaft member. Is considered to have dropped and wear of the sliding surface was promoted.

比較例13は、摺動層に含まれる鱗片状黒鉛粒子の全体積に対する空隙含有鱗片状黒鉛粒子の体積割合が5.3%と低すぎるため、極圧的な負荷を緩和する働きが不十分となり、摺動層の表面の樹脂の脱落が発生し、摺動層の摩耗量が多くなったと考えられる。   In Comparative Example 13, the volume ratio of the void-containing flaky graphite particles to the total volume of the flaky graphite particles contained in the sliding layer was too low at 5.3%, and the function of alleviating the extreme pressure load was insufficient. It is considered that the resin on the surface of the sliding layer fell off, and the amount of wear of the sliding layer increased.

比較例14は、摺動層に含まれる鱗片状黒鉛粒子が3体積%と少ないため、摺動層と相手軸との摩擦力を低くする効果が不十分となり、摺動層の摩耗量が多くなったと考えられる。   In Comparative Example 14, since the flaky graphite particles contained in the sliding layer were as small as 3% by volume, the effect of lowering the frictional force between the sliding layer and the partner shaft was insufficient, and the wear amount of the sliding layer was large. It is thought that it became.

比較例15は、摺動層に含まれる鱗片状黒鉛粒子が60体積%と多いため、摺動層の強度が低くなり、摺動層の摩耗量が多くなったと考えられる。   In Comparative Example 15, since the flaky graphite particles contained in the sliding layer were as large as 60% by volume, it is considered that the strength of the sliding layer was low and the wear amount of the sliding layer was large.

比較例16は、空隙含有鱗片状黒鉛粒子の長軸方向の長さ(L)の極圧的な負荷を緩和する作用への影響を確認するための比較材である。具体的には、比較例16では、実施例に対し原材料の鱗片状黒鉛粒子は、平均粒径が小さいものを用い、摺動層中に分散する鱗片状黒鉛粒子の平均粒径が1.5μmとなるようにした。表1の「体積割合」に示す比較例16の括弧付の値10.5は、空隙含有鱗片状黒鉛粒子の体積割合ではなく、摺動層に分散する鱗片状黒鉛粒子のうち、
鱗片状黒鉛粒子の長軸方向の長さLが1.5μm以上であり、
且つ、
内部組織に空隙を有し、空隙は、鱗片状黒鉛粒子の長軸方向に平行な方向の長さ(L1)が、鱗片状黒鉛粒子の長軸方向の長さ(L)の50%以上である
鱗片状黒鉛粒子の体積割合を示す。
比較例16の摺動部材においては、摺動試験後の摺動層の摺動面の合成樹脂の脱落が発生し、摩耗量も多くなった。実施例と、この比較例16の結果から、長軸方向の長さが3μm未満の鱗片状黒鉛粒子は、組織内部に空隙を有していても、摺動層の摺動面に加わる極圧的な負荷を緩和する効果が低いことがわかる。
Comparative Example 16 is a comparative material for confirming the influence of the length (L) of the void-containing flake graphite particles in the major axis direction on the action of relaxing the extreme pressure load. Specifically, in Comparative Example 16, the flaky graphite particles of the raw material were smaller in average particle size than those of the Examples, and the average particle size of the flaky graphite particles dispersed in the sliding layer was 1.5 μm. It was made to become. The parenthesized value 10.5 of Comparative Example 16 shown in "Volume Ratio" in Table 1 is not the volume ratio of the void-containing flaky graphite particles, but of the flaky graphite particles dispersed in the sliding layer.
The length L of the flaky graphite particles in the major axis direction is 1.5 μm or more,
and,
The internal structure has a void, and the void has a length (L1) in the direction parallel to the major axis direction of the flake graphite particles that is 50% or more of the length (L) of the major axis direction of the flake graphite particles. The volume ratio of certain flaky graphite particles is shown.
In the sliding member of Comparative Example 16, the synthetic resin on the sliding surface of the sliding layer after the sliding test fell off, and the amount of wear increased. From the results of Example and Comparative Example 16, it was found that the flaky graphite particles having a length of less than 3 μm in the major axis direction had an extreme pressure applied to the sliding surface of the sliding layer even if there was a void inside the tissue. It is understood that the effect of alleviating the natural load is low.

1:摺動装置
2:軸部材
3:摺動部材
4:裏金層
5:摺動層
6:摺動部材の合成樹脂
7:鱗片状黒鉛粒子
71:空隙含有鱗片状黒鉛粒子
72:非空隙含有鱗片状黒鉛粒子
8:多孔質金属層
9:空隙
10:軸部材の合成樹脂
11:硬質粒子
1: Sliding device 2: Shaft member 3: Sliding member 4: Back metal layer 5: Sliding layer 6: Synthetic resin of sliding member 7: Flake graphite particles 71: Void-containing flake graphite particles 72: Non-void content Scale-like graphite particles 8: porous metal layer 9: voids 10: synthetic resin of shaft member 11: hard particles

Claims (12)

軸部材と、該軸部材を支承する摺動部材とを備える摺動装置であって、
前記軸部材は、合成樹脂と、該合成樹脂中に分散された硬質粒子からなり、前記硬質粒子の体積は、前記軸部材の体積の5〜50体積%であり、
前記摺動部材は、裏金層と、該裏金層上に設けられた摺動層とを備え、
前記摺動層は、合成樹脂と、該合成樹脂中に分散された鱗片状黒鉛粒子とからなり、
前記鱗片状黒鉛粒子の体積の合計は、前記摺動層の体積の5〜50体積%を占め、
前記鱗片状黒鉛粒子は、平板形状を有し、前記鱗片状黒鉛粒子の断面組織は、黒鉛結晶のAB面が前記平板形状の厚さ方向に複数積層しており、
前記鱗片状黒鉛粒子の平均粒径は、3〜25μmであり、
前記鱗片状黒鉛粒子は、空隙含有鱗片状黒鉛粒子、すなわち
長軸方向の長さが3μm以上であり、
断面組織内で前記鱗片状黒鉛粒子の長軸方向に伸長する空隙であって、該空隙の前記鱗片状黒鉛粒子の長軸方向に平行な方向の長さが、前記鱗片状黒鉛粒子の長軸方向の長さの50%以上である空隙を有する
空隙含有鱗片状黒鉛粒子を含み、
前記摺動層中の前記鱗片状黒鉛粒子の全体積に対する前記空隙含有鱗片状黒鉛粒子の体積割合が10%以上である、摺動装置。
A sliding device comprising a shaft member and a sliding member supporting the shaft member,
The shaft member is made of a synthetic resin and hard particles dispersed in the synthetic resin, and the volume of the hard particles is 5 to 50% by volume of the volume of the shaft member.
The sliding member includes a back metal layer, and a sliding layer provided on the back metal layer,
The sliding layer is made of a synthetic resin and flake graphite particles dispersed in the synthetic resin,
The total volume of the flaky graphite particles accounts for 5 to 50% by volume of the volume of the sliding layer,
The flaky graphite particles have a flat plate shape, and the cross-sectional structure of the flaky graphite particles has a plurality of AB planes of graphite crystals stacked in the thickness direction of the flat plate shape,
The average particle size of the flaky graphite particles is 3 to 25 μm,
The flaky graphite particles are void-containing flaky graphite particles, that is, the length in the major axis direction is 3 μm or more,
In the cross-sectional structure is a void extending in the major axis direction of the flake graphite particles, the length of the void in the direction parallel to the major axis direction of the flake graphite particles, the major axis of the flake graphite particles Including void-containing flaky graphite particles having voids that are 50% or more of the length in the direction,
A sliding device, wherein a volume ratio of the void-containing flake graphite particles to the total volume of the flake graphite particles in the sliding layer is 10% or more.
前記摺動層中の前記鱗片状黒鉛粒子の全体積に対する前記空隙含有鱗片状黒鉛粒子の体積割合が20%以上である、請求項1に記載された摺動装置。   The sliding device according to claim 1, wherein a volume ratio of the void-containing flake graphite particles to the total volume of the flake graphite particles in the sliding layer is 20% or more. 前記鱗片状黒鉛粒子の長軸と短軸との比の平均で表される平均アスペクト比が5〜15である、請求項1または請求項2に記載された摺動装置。   The sliding device according to claim 1, wherein an average aspect ratio represented by an average of a ratio between a major axis and a minor axis of the flake graphite particles is 5 to 15. 4. 前記鱗片状黒鉛粒子の異方分散指数が3以上であり、該異方分散指数は、各鱗片状黒鉛粒子についての比X1/Y1の平均により表され、ここで
X1は、前記摺動層の摺動面に対して垂直方向の断面組織での、前記鱗片状黒鉛粒子の前記摺動面に対して平行方向の長さであり、
Y1は、前記摺動層の摺動面に対して垂直方向の断面組織での、前記鱗片状黒鉛粒子の前記摺動面に対して垂直方向の長さである、請求項1から請求項3までのいずれか1項に記載された摺動装置。
The flaky graphite particles have an anisotropic dispersion index of 3 or more, and the anisotropic dispersion index is represented by an average of the ratio X1 / Y1 for each flaky graphite particle, where X1 is the sliding layer. In a cross-sectional structure perpendicular to the sliding surface, the length in the direction parallel to the sliding surface of the flake graphite particles,
Y1 is a length in a direction perpendicular to the sliding surface of the flake graphite particles in a cross-sectional structure perpendicular to the sliding surface of the sliding layer. The sliding device according to any one of the above.
前記摺動層の合成樹脂が、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPS、及びPEIから選ばれる1種または2種以上からなる、請求項1から請求項4までのいずれか1項に記載された摺動装置。   The synthetic resin of the sliding layer is composed of one or more selected from PAI, PI, PBI, PA, phenol, epoxy, POM, PEEK, PE, PPS, and PEI. The sliding device according to any one of the above. 前記摺動層が、球状黒鉛、MoS2、WS2、h−BN、及びPTFEから選ばれる1種または2種以上の固体潤滑剤を1〜20体積%をさらに含む、請求項1から請求項5までのいずれか1項に記載された摺動装置。   6. The sliding layer according to claim 1, wherein the sliding layer further includes 1 to 20% by volume of one or more solid lubricants selected from spheroidal graphite, MoS2, WS2, h-BN, and PTFE. A sliding device according to any one of the preceding claims. 前記摺動層が、CaF2、CaCo3、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウム、及びMo2Cから選ばれる1種または2種以上の充填材を1〜10体積%さらに含む、請求項1から請求項6までのいずれか1項に記載された摺動装置。   The said sliding layer further contains 1-10 volume% of 1 or 2 or more types of filler (s) selected from CaF2, CaCo3, talc, mica, mullite, iron oxide, calcium phosphate, and Mo2C. A sliding device according to any one of the preceding claims. 前記裏金層と前記摺動層との間に、多孔質金属層をさらに有する、請求項1から請求項7までのいずれか1項に記載された摺動装置。   The sliding device according to any one of claims 1 to 7, further comprising a porous metal layer between the back metal layer and the sliding layer. 前記軸部材の前記合成樹脂が、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPSおよびPEIのうちから選ばれる1種または2種以上である請求項1から請求項8までのいずれか1項に記載された摺動装置。   9. The synthetic resin of the shaft member is one or more selected from PAI, PI, PBI, PA, phenol, epoxy, POM, PEEK, PE, PPS and PEI. The sliding device according to any one of the above. 前記硬質粒子が、炭素繊維、ガラス繊維、BN、Al2O3、SiC、SiO2、AlN、およびTiO2のうちから選ばれる1種または2種以上からなる請求項1から請求項9までのいずれか1項に記載された摺動装置。   The method according to any one of claims 1 to 9, wherein the hard particles are made of one or more selected from carbon fibers, glass fibers, BN, Al2O3, SiC, SiO2, AlN, and TiO2. The described sliding device. 前記軸部材が、CaF2、CaCo3、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMo2Cのうちから選ばれる1種または2種以上を1〜10体積%をさらに含む請求項1から請求項10までのいずれか1項に記載された摺動装置。   11. The shaft member according to claim 1, wherein the shaft member further includes 1 to 10% by volume of one or more selected from CaF2, CaCo3, talc, mica, mullite, iron oxide, calcium phosphate, and Mo2C. A sliding device according to any one of the preceding claims. 前記軸部材が、MoS2、WS2、h−BNおよびPTFEから選ばれる1種または2種以上を5体積%以下をさらに含む請求項1から請求項11までのいずれか1項に記載された摺動装置。   The sliding according to any one of claims 1 to 11, wherein the shaft member further includes 5 vol% or less of one or more selected from MoS2, WS2, h-BN, and PTFE. apparatus.
JP2016103374A 2016-05-24 2016-05-24 Sliding device Active JP6624680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016103374A JP6624680B2 (en) 2016-05-24 2016-05-24 Sliding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016103374A JP6624680B2 (en) 2016-05-24 2016-05-24 Sliding device

Publications (2)

Publication Number Publication Date
JP2017210995A JP2017210995A (en) 2017-11-30
JP6624680B2 true JP6624680B2 (en) 2019-12-25

Family

ID=60476015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016103374A Active JP6624680B2 (en) 2016-05-24 2016-05-24 Sliding device

Country Status (1)

Country Link
JP (1) JP6624680B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517604B2 (en) * 1987-07-13 1996-07-24 大豊工業株式会社 Sliding material
JPH0988965A (en) * 1995-09-26 1997-03-31 Ntn Corp Heat resistant sliding bearing
JP2005089514A (en) * 2003-09-12 2005-04-07 Taiho Kogyo Co Ltd Sliding member
JP4993908B2 (en) * 2005-12-21 2012-08-08 日産自動車株式会社 Resin composition, sliding member and sliding device

Also Published As

Publication number Publication date
JP2017210995A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6298132B1 (en) Sliding member
JP6300843B2 (en) Sliding member
JP6599756B2 (en) Sliding member
JP5259544B2 (en) Sliding resin composition
JP6267174B2 (en) Sliding member
JP5683571B2 (en) Graphite-added resin-based sliding material and sliding member
JP6624679B2 (en) Sliding member
CN112780680B (en) Sliding member
JP6649108B2 (en) Sliding device
JP2011127015A (en) Sliding resin composition
WO2021106274A1 (en) Resin material for sliding members, and sliding member
JP6653234B2 (en) Sliding device
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP6624680B2 (en) Sliding device
JP6712203B2 (en) Sliding device
JP6382679B2 (en) Manufacturing method of sliding member
JP6704832B2 (en) Sliding device
JP2011137528A (en) Multilayer bearing
JP6712202B2 (en) Sliding member
JP2013194104A (en) Resin sliding member
JP2015113457A (en) Lubrication film and slide bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191122

R150 Certificate of patent or registration of utility model

Ref document number: 6624680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250