JP2011137528A - Multilayer bearing - Google Patents

Multilayer bearing Download PDF

Info

Publication number
JP2011137528A
JP2011137528A JP2009299142A JP2009299142A JP2011137528A JP 2011137528 A JP2011137528 A JP 2011137528A JP 2009299142 A JP2009299142 A JP 2009299142A JP 2009299142 A JP2009299142 A JP 2009299142A JP 2011137528 A JP2011137528 A JP 2011137528A
Authority
JP
Japan
Prior art keywords
resin composition
layer
resin
porous layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009299142A
Other languages
Japanese (ja)
Inventor
Norikazu Soda
法和 宗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009299142A priority Critical patent/JP2011137528A/en
Publication of JP2011137528A publication Critical patent/JP2011137528A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02T10/865

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer bearing using a resin composition which does not include lead or the like, achieving an excellent dynamic friction coefficient and wear resistance and having stable sliding characteristics in high contact pressure conditions. <P>SOLUTION: The multilayer bearing 1 includes a metal substrate 2, a porous layer formed on one surface of the metal substrate 2, and the resin composition 4 impregnated into and covered with the porous layer. The porous layer is a sintered layer of polygonal soft metal powder 3 (copper-tin alloy powder). The resin composition 4 includes PTFE resin, carbon fiber 4a and a calcium compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は金属基材と多孔質層と樹脂層とからなる複層軸受に関し、特に鉛類を配合しない複層軸受に関する。   The present invention relates to a multilayer bearing composed of a metal substrate, a porous layer, and a resin layer, and more particularly to a multilayer bearing not containing lead.

鋼板などの金属板に裏打ちされた多孔質層に、ポリテトラフルオロエチレン(以下、PTFEと記す)樹脂と、鉛または酸化鉛等の鉛類を含む樹脂組成物を含浸被覆させてなる複層軸受は、高面圧下での摺動特性に優れた軸受として知られている。鉛類はPTFE樹脂の欠点である、耐摩耗特性を向上させるとともに、摺動時、相手材へのPTFE樹脂の移着を助長する効果を有しているため、軸受と相手材との摺動が、相互にPTFE樹脂を主体としたもの同士の摺動となり、摩擦係数及び耐摩耗特性の点で、優れた効果をもたらしている。   A multilayer bearing formed by impregnating a porous layer backed by a metal plate such as a steel plate with a resin composition containing polytetrafluoroethylene (hereinafter referred to as PTFE) resin and lead such as lead or lead oxide. Is known as a bearing having excellent sliding characteristics under high surface pressure. Leads are the disadvantages of PTFE resin, which improves wear resistance and promotes the transfer of PTFE resin to the mating material during sliding. However, they are mutually slidable mainly composed of PTFE resin, and have excellent effects in terms of friction coefficient and wear resistance.

しかし、環境保全を目的とする、RoHS指令、ELV指令等では鉛類の使用が制限されており、鉛類を全く含まない複層軸受が求められている。例えば、鉛類を含まない複層軸受として、PTFE樹脂を主成分とする樹脂に炭素繊維およびモース硬度4以下のウィスカを配合してなる複層軸受(特許文献1参照)が提案されている。しかし、特許文献1に記載の複層軸受は、面圧がより高くなると摺動特性が急激に低下するという問題がある。また、摺動特性の中で経時的な摩擦係数のばらつきが大きいという問題がある。   However, the use of lead is restricted by the RoHS directive, the ELV directive, etc. for the purpose of environmental protection, and a multi-layer bearing that does not contain lead at all is required. For example, as a multi-layer bearing not containing lead, a multi-layer bearing (see Patent Document 1) in which carbon fiber and whisker having a Mohs hardness of 4 or less are blended with a resin mainly composed of PTFE resin has been proposed. However, the multi-layer bearing described in Patent Document 1 has a problem that the sliding characteristics are rapidly deteriorated when the surface pressure is higher. In addition, there is a problem that variation in friction coefficient with time is large in sliding characteristics.

この特許文献1の上記問題点を解決する複層軸受として、PTFE樹脂を主成分とする樹脂に平均粒子径1〜50μmの粒状無機充填材を配合してなる複層軸受(特許文献2参照)が知られている。これら従来の複層軸受の多孔質層には球状の銅−錫合金粒子が使用されている。   As a multi-layer bearing for solving the above-mentioned problems of Patent Document 1, a multi-layer bearing formed by blending a granular inorganic filler having an average particle diameter of 1 to 50 μm with a resin mainly composed of PTFE resin (see Patent Document 2). It has been known. Spherical copper-tin alloy particles are used in the porous layer of these conventional multilayer bearings.

特開2000−055054号公報JP 2000-055054 A 特開2002−327750号公報JP 2002-327750 A

特許文献2に記載の複層軸受は、高面圧下での摺動特性の急激な低下および経時的な摩擦係数のばらつきが改善できた。しかしながら、特許文献2に記載の複層軸受は、面圧が10MPaをこえる条件では耐摩耗性が十分でないという問題があり、より高面圧領域で摺動特性を安定させた複層軸受が要求されている。   The multi-layer bearing described in Patent Document 2 was able to improve the rapid deterioration of the sliding characteristics under high surface pressure and the variation of the coefficient of friction over time. However, the multi-layer bearing described in Patent Document 2 has a problem that the wear resistance is not sufficient under a condition where the surface pressure exceeds 10 MPa, and a multi-layer bearing having stable sliding characteristics in a higher surface pressure region is required. Has been.

本発明はこのような問題に対処するためになされたものであり、金属基材、多孔質層および樹脂組成物の何れにも鉛類を全く含まない鉛レス複層軸受であって、高面圧条件において、動摩擦係数や耐摩耗特性などに優れ、さらに安定した摺動特性を有する複層軸受を提供することを目的とする。   The present invention has been made to address such problems, and is a lead-less multi-layer bearing that does not contain any lead in any of the metal substrate, the porous layer, and the resin composition. An object of the present invention is to provide a multi-layer bearing which is excellent in dynamic friction coefficient and wear resistance characteristics under pressure conditions, and which has more stable sliding characteristics.

本発明の複層軸受は、金属基材と、該金属基材の一方の表面に形成された多孔質層と、該多孔質層に含浸被覆された樹脂組成物とからなる複層軸受であって、上記多孔質層は多角形状の軟質金属粉末の焼結層であり上記樹脂組成物は、ポリテトラフルオロエチレン(以下、PTFEと記す)樹脂と、炭素繊維と、カルシウム化合物とを含む樹脂組成物であることを特徴とする。なお、本発明において「多角形状」とは、立方体、直方体のほか、表面形状が凹凸を有する立体を含む形状をいう。   The multilayer bearing of the present invention is a multilayer bearing comprising a metal substrate, a porous layer formed on one surface of the metal substrate, and a resin composition impregnated and coated on the porous layer. The porous layer is a sintered layer of polygonal soft metal powder, and the resin composition includes a resin composition containing polytetrafluoroethylene (hereinafter referred to as PTFE) resin, carbon fiber, and a calcium compound. It is a thing. In the present invention, “polygonal shape” refers to a shape including a cube and a rectangular parallelepiped, as well as a solid whose surface shape is uneven.

上記軟質金属粉末が平均粒子径10〜200μmの粉末であることを特徴とする。また、上記軟質金属粉末が銅−錫合金粉末であることを特徴とする。なお、本発明における「平均粒子径」は、レーザー解析法による測定値である。レーザー解析粒度分布測定装置としては、リーズ・アンド・ノースラップ社製、マイクロトラックHRAがある。   The soft metal powder is a powder having an average particle size of 10 to 200 μm. The soft metal powder is a copper-tin alloy powder. The “average particle diameter” in the present invention is a value measured by a laser analysis method. As a laser analysis particle size distribution measuring apparatus, there is Microtrac HRA manufactured by Leeds & Northrup.

上記樹脂組成物全体に対して、上記炭素繊維の配合割合が15〜20体積%、上記カルシウム化合物の配合割合が3〜15体積%であることを特徴とする。   The blending ratio of the carbon fiber is 15 to 20% by volume and the blending ratio of the calcium compound is 3 to 15% by volume with respect to the entire resin composition.

また、上記樹脂組成物が、ポリフェニレンサルファイド(以下、PPSと記す)樹脂を含むことを特徴とする。この場合において、樹脂組成物全体に対して、上記炭素繊維の配合割合が15〜20体積%、上記カルシウム化合物の配合割合が3〜15体積%、上記PPS樹脂の配合割合が3〜15体積%であることを特徴とする。   The resin composition includes polyphenylene sulfide (hereinafter referred to as PPS) resin. In this case, the blending ratio of the carbon fiber is 15 to 20% by volume, the blending ratio of the calcium compound is 3 to 15% by volume, and the blending ratio of the PPS resin is 3 to 15% by volume with respect to the entire resin composition. It is characterized by being.

上記炭素繊維の平均繊維長が、50〜300μmであることを特徴とする。   The average fiber length of the carbon fiber is 50 to 300 μm.

上記カルシウム化合物が、平均粒子径5〜50μmの粉末であることを特徴とする。また、上記カルシウム化合物が硫酸カルシウム粉末であることを特徴とする。   The calcium compound is a powder having an average particle size of 5 to 50 μm. The calcium compound is calcium sulfate powder.

上記複層軸受は、上記多孔質層の上記樹脂組成物が含浸被覆された側を内側として円筒状に曲げ加工されてなることを特徴とする。   The multi-layer bearing is characterized in that it is bent into a cylindrical shape with the side of the porous layer impregnated with the resin composition as the inside.

本発明の複層軸受は、金属基材と、該金属基材の一方の表面に形成された多孔質層と、該多孔質層に含浸被覆された樹脂組成物とからなり、上記多孔質層が多角形状の軟質金属粉末の焼結層であり、樹脂組成物がPTFE樹脂と、炭素繊維と、カルシウム化合物とを含む樹脂組成物であるので、球状の軟質金属粉末の焼結層を有する複層軸受と比べて多孔質層と含浸被覆された樹脂組成物(以下、含浸被覆樹脂と記す場合もある)との密着性に優れ、無潤滑、油潤滑双方において高面圧下での摺動特性に優れ、さらに耐クリープ特性にも優れる。   The multilayer bearing of the present invention comprises a metal substrate, a porous layer formed on one surface of the metal substrate, and a resin composition impregnated and coated on the porous layer. Is a sintered layer of polygonal soft metal powder, and the resin composition is a resin composition containing PTFE resin, carbon fiber, and calcium compound. Excellent adhesion to porous layer and impregnated resin composition (hereinafter sometimes referred to as impregnated resin) compared to layer bearings, sliding characteristics under high surface pressure in both non-lubricated and oil lubricated Excellent creep resistance.

本発明の複層軸受は、金属基材、多孔質層および樹脂組成物の何れにも鉛類を全く含まず、上述のように高面圧下での摺動特性、耐クリープ特性に優れるので、樹脂製軸受では割れや欠けが生じやすい分野、あるいは自動車部品、家電部品分野に好適に利用できる。   The multi-layer bearing of the present invention does not contain any lead in any of the metal substrate, porous layer and resin composition, and is excellent in sliding characteristics under high surface pressure and creep resistance as described above. Resin bearings can be suitably used in fields where cracks and chips are likely to occur, or in automotive parts and household appliance parts.

複層軸受の断面を示す写真である。It is a photograph which shows the cross section of a multilayer bearing. スラスト型摩擦摩耗試験機の概要を示す図である。It is a figure which shows the outline | summary of a thrust type | mold friction abrasion tester.

本発明の複層軸受の一例を図1に示す。図1は複層軸受の断面を示す写真である。複層軸受1は、金属基材2の表面に多孔質層を形成し、この多孔質層中に樹脂組成物4が含浸被覆された三層構造体となっている。金属基材2、多孔質層および樹脂組成物4の何れにも鉛類を含まない。含浸被覆面が摺動面となり、高面圧下での摺動特性に優れた複層軸受1が得られる。多孔質層は、多角形状の軟質金属粉末3の焼結層である。球状の軟質金属粉末からなる焼結層と比較して含浸被覆された樹脂組成物4のアンカー効果が優れる。このため、多孔質層に対する樹脂組成物4の密着性に優れる。また、摺動する相手材に対する耐摩耗性にも優れる。   An example of the multilayer bearing of the present invention is shown in FIG. FIG. 1 is a photograph showing a cross section of a multilayer bearing. The multilayer bearing 1 has a three-layer structure in which a porous layer is formed on the surface of a metal substrate 2 and the porous layer is impregnated with a resin composition 4. None of the metal substrate 2, the porous layer, and the resin composition 4 contains lead. The impregnated coated surface becomes a sliding surface, and a multilayer bearing 1 having excellent sliding characteristics under high surface pressure is obtained. The porous layer is a sintered layer of the polygonal soft metal powder 3. The anchor effect of the resin composition 4 impregnated and coated is superior to that of a sintered layer made of a spherical soft metal powder. For this reason, it is excellent in the adhesiveness of the resin composition 4 with respect to a porous layer. Moreover, it is excellent also in the abrasion resistance with respect to the other material which slides.

優れた摩擦摩耗特性を有する焼結層を得るために、上記軟質金属粉末は、平均粒子径10〜200μmの粉末であることが好ましい。軟質金属粉末の平均粒子径が10μm未満であると樹脂組成物のアンカー効果が低下し、200μmをこえると相手材に対する耐摩耗性が低下する。また、上記軟質金属粉末としては、摩擦摩耗特性に優れることから、銅−錫合金粉末を用いることが好ましい。   In order to obtain a sintered layer having excellent frictional wear characteristics, the soft metal powder is preferably a powder having an average particle size of 10 to 200 μm. When the average particle diameter of the soft metal powder is less than 10 μm, the anchor effect of the resin composition is lowered, and when it exceeds 200 μm, the wear resistance against the counterpart material is lowered. Moreover, as the soft metal powder, it is preferable to use a copper-tin alloy powder because of its excellent frictional wear characteristics.

金属基材2としては、鋼(SPCC等の構造用圧延鋼等)あるいは鋼以外の金属、例えばステンレス鋼または青銅などの銅系合金等を使用できる。また、金属基材2の表面には、多孔質層との密着性強化のため、多孔質層と同等のメッキを施すことが好ましい。運転時に異常摩耗が発生した場合でも、焼き付きを未然に防止するため、金属基材2を鋼板とし、多孔質層の軟質金属粉末を上記鋼板よりも軟質の軟質金属(例えば、銅−錫合金粉末)とすることが好ましい。   As the metal substrate 2, steel (structural rolled steel such as SPCC) or a metal other than steel, for example, a copper alloy such as stainless steel or bronze can be used. The surface of the metal substrate 2 is preferably subjected to plating equivalent to that of the porous layer in order to enhance adhesion with the porous layer. Even if abnormal wear occurs during operation, in order to prevent seizure in advance, the metal substrate 2 is a steel plate, and the soft metal powder of the porous layer is a soft metal softer than the steel plate (for example, copper-tin alloy powder) ) Is preferable.

樹脂組成物4は、少なくとも、PTFE樹脂と、炭素繊維と、カルシウム化合物とを含む。以下、樹脂組成物4について詳細に説明する。   The resin composition 4 includes at least a PTFE resin, carbon fibers, and a calcium compound. Hereinafter, the resin composition 4 will be described in detail.

樹脂組成物4のベース樹脂となるPTFE樹脂は、−(CF2−CF2)n−で表される一般のPTFE樹脂を用いることができ、また、一般のPTFE樹脂にパーフルオロアルキルエーテル基(−C2p−O−)(pは1−4の整数)あるいはポリフルオロアルキル基(H(CF2−)(qは1−20の整数)などを導入した変性PTFE樹脂も使用できる。上記の変性PTFE樹脂は、耐圧縮特性が一般のPTFE樹脂より優れているため、好適に使用できる。なお、一般のPTFE樹脂と変性PTFE樹脂を併用してもよい。 PTFE resin as a base resin of the resin composition 4, - (CF 2 -CF 2) n- in can be used ordinary PTFE resin represented, also generally of PTFE resin perfluoroalkyl ether group ( -C p F 2p -O -) ( p is 1-4 integer) or polyfluoroalkyl group (H (CF 2) q - ) (q is also used modified PTFE resin obtained by introducing such as an integer) of 1-20 it can. The modified PTFE resin can be suitably used because it has better compression resistance than general PTFE resin. A general PTFE resin and a modified PTFE resin may be used in combination.

これらのPTFE樹脂および変性PTFE樹脂は、一般的なモールディングパウダーを得る懸濁重合法、ファインパウダーを得る乳化重合法のいずれを採用してもよいが、数平均分子量(Mn)は約50万から1000万が好ましく、さらに限定すれば50万から300万が好ましい。PTFE樹脂の市販品としては、テフロン(登録商標)7J(三井・デュポンフロロケミカル社製)を、変性PTFE樹脂の市販品としては、テフロン(登録商標)TG70J(三井・デュポンフロロケミカル社製)、ポリフロンM111、ポリフロンM112(ダイキン工業社製)、ホスタフロンTFM1600、ホスタフロンTFM1700(ヘキスト社製)等を例示できる。   These PTFE resins and modified PTFE resins may employ either a suspension polymerization method for obtaining a general molding powder or an emulsion polymerization method for obtaining a fine powder, but the number average molecular weight (Mn) is from about 500,000. 10 million is preferable, and further limited to 500,000 to 3 million. As a commercial product of PTFE resin, Teflon (registered trademark) 7J (manufactured by Mitsui DuPont Fluoro Chemical Co.) is used, and as a commercial product of modified PTFE resin, Teflon (registered trademark) TG70J (manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.), Polyflon M111, Polyflon M112 (manufactured by Daikin Industries), Hostaflon TFM1600, Hostaflon TFM1700 (Hoechst) and the like can be exemplified.

樹脂組成物4に用いる炭素繊維4aは、該樹脂組成物を補強できるものであればよく、ピッチ系あるいはPAN系のいずれでも用いることができる。炭素繊維の繊維長は10〜1000μmの短繊維であることが好ましく、さらに好ましくは平均繊維長として50〜300μmである。繊維径はφ20μm以下、好ましくは、φ7〜φ15μmであり、アスペクト比は5〜80、好ましくは20〜50である。この特性を有する炭素繊維であると、含浸被覆樹脂への補強効果に優れ、耐摩耗特性、耐クリープ特性に優れる。また、糸種は特に限定しないが、2000℃焼成、あるいはそれ以上の温度での処理品(黒鉛化品)より1000℃焼成品(炭化品)の方が好ましい。なお、焼成温度については低弾性を狙った低温焼成品あるいは高弾性を狙った高温焼成品も使用できる。   The carbon fiber 4a used for the resin composition 4 may be any carbon fiber 4a that can reinforce the resin composition, and can be either pitch-based or PAN-based. The fiber length of the carbon fiber is preferably a short fiber of 10 to 1000 μm, and more preferably an average fiber length of 50 to 300 μm. The fiber diameter is φ20 μm or less, preferably φ7 to φ15 μm, and the aspect ratio is 5 to 80, preferably 20 to 50. A carbon fiber having this characteristic is excellent in the reinforcing effect on the impregnated coating resin, and is excellent in wear resistance and creep resistance. The yarn type is not particularly limited, but a 1000 ° C. fired product (carbonized product) is preferable to a 2000 ° C. fired product or a treated product (graphitized product) at a temperature higher than that. Regarding the firing temperature, a low-temperature fired product aiming at low elasticity or a high-temperature fired product aiming at high elasticity can be used.

炭素繊維の市販品としては、ピッチ系として、クレハ社製:クレカミルドM101S、M101F、M101T、M107S、M1007S、M201S、M207S、大阪ガスケミカル社製:ドナカーボ・ミルドS241、S244、SG241、SG244を、PAN系として、東邦テナックス社製:テナックスHTA−CMF0160−0H、CMF0070−0Hが挙げられる。   As a commercial product of carbon fiber, as a pitch system, Kureha Co., Ltd .: Crecamill M101S, M101F, M101T, M107S, M1007S, M201S, M207S, Osaka Gas Chemical Co., Ltd .: Donakabo Mildo S241, S244, SG241, SG244, PAN Examples of the system include Tenax HTA-CMF0160-0H and CMF0070-0H manufactured by Toho Tenax Co., Ltd.

炭素繊維の配合割合は、樹脂組成物全体に対して15〜20体積%であることが好ましい。炭素繊維の配合量が20体積%をこえると成形性に問題が生じる場合がある。炭素繊維の配合量が15体積%未満であると補強効果に乏しく、十分な耐クリープ性、耐摩耗性が得られないおそれがある。   The blending ratio of the carbon fiber is preferably 15 to 20% by volume with respect to the entire resin composition. If the amount of carbon fiber exceeds 20% by volume, there may be a problem in moldability. If the blending amount of the carbon fiber is less than 15% by volume, the reinforcing effect is poor and sufficient creep resistance and wear resistance may not be obtained.

樹脂組成物4に用いるカルシウム化合物は、ケイ酸カルシウム(ウォラストナイト)、炭酸カルシウム、リン酸カルシウム、硫酸カルシウム等が例示でき、針状、粉末状(球形、楕円形、立方形等の粒状)、板状、のいずれでも使用できる。これらの中で、耐摩耗性効果が高い、平均粒子径5〜50μmの硫酸カルシウム粉末が好ましい。   Examples of the calcium compound used in the resin composition 4 include calcium silicate (wollastonite), calcium carbonate, calcium phosphate, calcium sulfate, and the like, needle-like, powdery (spherical, elliptical, cubic, etc.), plate Can be used. Among these, calcium sulfate powder having a high wear resistance effect and an average particle diameter of 5 to 50 μm is preferable.

カルシウム化合物の配合割合は、樹脂組成物全体に対して3〜15体積%であることが好ましい。カルシウム化合物が15体積%をこえると相手材がアルミニウム合金等の軟質材の場合に相手部材を摩耗損傷するおそれがあり、3体積%未満であると耐摩耗性効果が十分に発現しない。   The blending ratio of the calcium compound is preferably 3 to 15% by volume with respect to the entire resin composition. If the calcium compound exceeds 15% by volume, the mating member may be abraded and damaged when the mating material is a soft material such as an aluminum alloy.

樹脂組成物4には、PPS樹脂を配合することが好ましい。PTFE樹脂にPPS樹脂を配合することによって、PTFE樹脂の欠点であった耐摩耗性、耐クリープ特性が改善できる。この場合のPPS樹脂の配合割合は、樹脂組成物全体に対して3〜15体積%であることが好ましい。PPS樹脂が15体積%をこえると高荷重下で摩擦係数が上昇し、初期トルクの増大および摩擦による発熱量の増大等の不具合が生じるおそれがある。3体積%未満であると上記改善効果が十分に発揮できない。   The resin composition 4 is preferably blended with a PPS resin. By blending the PPS resin with the PTFE resin, the wear resistance and creep resistance, which were the disadvantages of the PTFE resin, can be improved. In this case, the blending ratio of the PPS resin is preferably 3 to 15% by volume with respect to the entire resin composition. If the PPS resin exceeds 15% by volume, the friction coefficient increases under a high load, which may cause problems such as an increase in initial torque and an increase in heat generation due to friction. If the amount is less than 3% by volume, the above improvement effect cannot be sufficiently exhibited.

樹脂組成物4のベース樹脂となるPTFE樹脂の配合割合は、上記各配合物の配合量の残部である。上述の各原材料を溶媒に溶解あるいは分散させてディスパージョン液等とし、このディスパージョン液等を撹拌することによりペースト状にした後、多孔質層に含浸させて、溶媒を除去することにより、含浸被覆樹脂4が得られる。市販のPTFE樹脂ディスパージョンとして、PTFEディスパージョン31−JR(三井・デュポンフロロケミカル社製)が例示できる。   The blending ratio of the PTFE resin serving as the base resin of the resin composition 4 is the balance of the blending amount of each of the above blends. Dissolve or disperse each of the above-mentioned raw materials in a solvent to form a dispersion liquid, etc., and after stirring the dispersion liquid, etc. to make a paste, impregnate the porous layer and remove the solvent to impregnate A coating resin 4 is obtained. An example of a commercially available PTFE resin dispersion is PTFE dispersion 31-JR (Mitsui / DuPont Fluoro Chemical).

本発明の複層軸受は、上記構成とすることで、金属基材、多孔質層および樹脂組成物の何れにも鉛類を全く含まずに、高面圧下での摺動特性に優れる。   The multi-layer bearing of the present invention has excellent sliding characteristics under high surface pressure without containing any lead in any of the metal substrate, the porous layer, and the resin composition by adopting the above configuration.

各実施例および各比較例に用いた焼結粉末および樹脂組成物の配合材料を以下に示す。なお、平均粒子径はレーザー解析法による測定値である。
銅−錫合金粉末:多角形状品および球状品(両者とも平均粒子径30〜80μm)
樹脂組成物の配合材料
(1)PTFE樹脂:三井・デュポンフロロケミカル社製PTFE−31JR
(2)PPS樹脂:東ソー社製B160
(3)炭素繊維 1:クレハ社製クレカミルドM101S(繊維長100μm、繊維径14.5μm)
(4)炭素繊維 2:東邦テナックス社製テナックスHTA−CMF0160−0H(繊維長160μm、繊維径7μm)
(5)硫酸カルシウム粉末:ノリタケ社製D−101A(平均粒子径24μm)
(6)ホウ酸アルミニウム粉末:四国化成工業社製アルボライトPC08(平均粒子径8μm)
(7)硫酸カルシウムウィスカ:大日精化工業社製(平均繊維長50〜60μm)
The compounding materials of the sintered powder and the resin composition used in each example and each comparative example are shown below. The average particle diameter is a value measured by a laser analysis method.
Copper-tin alloy powder: polygonal and spherical products (both have an average particle size of 30 to 80 μm)
Compounding material of resin composition (1) PTFE resin: Mitsui-Dupont Fluoro Chemical Company PTFE-31JR
(2) PPS resin: B160 manufactured by Tosoh Corporation
(3) Carbon fiber 1: Kureha Co., Ltd. Kurekamildo M101S (fiber length 100 μm, fiber diameter 14.5 μm)
(4) Carbon fiber 2: Tenax HTA-CMF0160-0H manufactured by Toho Tenax Co., Ltd. (fiber length 160 μm, fiber diameter 7 μm)
(5) Calcium sulfate powder: Noritake D-101A (average particle size 24 μm)
(6) Aluminum borate powder: Albolite PC08 (average particle size 8 μm) manufactured by Shikoku Kasei Kogyo Co., Ltd.
(7) Calcium sulfate whisker: manufactured by Dainichi Seika Kogyo Co., Ltd. (average fiber length: 50-60 μm)

実施例1〜実施例4および比較例1〜比較例3
SPCC鋼板を脱脂した後、銅メッキを行ない、この鋼板の表面に多角状または球状の銅−錫合金粉末(#100メッシュをパスし、#200メッシュでオンするもの)を散布した。銅−錫合金粉末が一様に散布された鋼板を加熱・加圧することにより均一な層厚の多孔質層を形成した。この多孔質層上に、表1に示す配合割合(単位は体積%)に調整したPTFE樹脂組成物のディスパージョンを塗布し、乾燥炉中で溶媒を蒸発させ、加熱・加圧により樹脂組成物成分を多孔質層に含浸被覆した複層軸受の板材試験片を得た。
Examples 1 to 4 and Comparative Examples 1 to 3
After degreasing the SPCC steel plate, copper plating was performed, and a polygonal or spherical copper-tin alloy powder (which passes # 100 mesh and turned on with # 200 mesh) was sprayed on the surface of this steel plate. A steel plate on which the copper-tin alloy powder was uniformly dispersed was heated and pressurized to form a porous layer having a uniform layer thickness. On this porous layer, a dispersion of PTFE resin composition adjusted to the blending ratio (unit: volume%) shown in Table 1 was applied, the solvent was evaporated in a drying furnace, and the resin composition was heated and pressurized. A plate material test piece of a multilayer bearing in which the porous layer was impregnated with the component was obtained.

このようにして得られた複層軸受の板材試験片を以下に示すスラスト型摩擦摩耗試験に供し、動摩擦係数、摩耗量を測定した。測定結果を表1に併記する。   The plate material test piece of the multilayer bearing thus obtained was subjected to the thrust type frictional wear test shown below, and the dynamic friction coefficient and the amount of wear were measured. The measurement results are also shown in Table 1.

<スラスト型摩擦摩耗試験>
スラスト型摩擦摩耗試験に用いるスラスト型摩擦摩耗試験機の概要を図2に示す。スラスト型摩擦摩耗試験機は、荷重8による押圧力が印加され相手材5(SUJ2製 Φ13シュー)に対して板材試験片6を所定の条件で回転させ動摩擦係数、摩耗量を測定する試験装置である。試験条件は、無潤滑条件においては速度100m/min、面圧2.0MPa、試験時間1時間、油中条件においては速度100m/min、面圧6.0MPa、試験時間1時間にて供試し、試験終了直前の動摩擦係数、摩耗量を測定した。油中条件では油槽7にPAGオイルを油温度100℃で満たした。
<Thrust type frictional wear test>
An outline of a thrust type frictional wear tester used in the thrust type frictional wear test is shown in FIG. The thrust type friction and wear tester is a test device that measures the dynamic friction coefficient and the amount of wear by applying a pressing force with a load 8 and rotating the plate material test piece 6 against a mating material 5 (Φ13 shoe made of SUJ2) under predetermined conditions. is there. The test conditions were as follows: unlubricated conditions, speed 100 m / min, surface pressure 2.0 MPa, test time 1 hour; oil conditions, speed 100 m / min, surface pressure 6.0 MPa, test time 1 hour, The dynamic friction coefficient and the amount of wear immediately before the end of the test were measured. Under oil conditions, the oil tank 7 was filled with PAG oil at an oil temperature of 100 ° C.

表1の結果から明らかなとおり、本発明の複層軸受(実施例)は、高面圧下で、無潤滑、油潤滑のいずれの条件においても、低摩擦性を維持しつつ、耐摩耗性にも優れていた。これに対して、球状の銅−錫合金粉末を用いた比較例1、2では、耐摩耗性に劣っていた。また、カルシウム化合物を含まない比較例3は、耐摩耗性に劣り、無潤滑条件では摩擦特性も劣っていた。   As is clear from the results in Table 1, the multi-layer bearing of the present invention (Example) has high wear resistance while maintaining low friction under both high-pressure and no-lubrication and oil-lubricating conditions. Was also excellent. On the other hand, Comparative Examples 1 and 2 using spherical copper-tin alloy powder were inferior in wear resistance. Moreover, the comparative example 3 which does not contain a calcium compound was inferior to abrasion resistance, and the friction characteristic was also inferior in unlubricated conditions.

本発明の複層軸受は、球状の軟質金属粉末の焼結層を有する複層軸受と比べて多孔質層と含浸被覆樹脂との密着性を向上させ、無潤滑、油潤滑双方において高面圧下で摺動特性に優れ、さらに耐クリープ特性が向上する。このため、樹脂製軸受では割れや欠けが生じやすい分野、あるいは自動車部品、家電部品分野に好適に利用できる。   The multi-layer bearing of the present invention improves the adhesion between the porous layer and the impregnated coating resin as compared with a multi-layer bearing having a sintered layer of spherical soft metal powder, and has high surface pressure in both non-lubricating and oil-lubricating Excellent sliding properties and improved creep resistance. For this reason, resin bearings can be suitably used in fields where cracks and chips are likely to occur, or in the fields of automobile parts and household appliance parts.

1 複層軸受
2 金属基材
3 軟質金属粉末
4 樹脂組成物
4a 炭素繊維
5 相手材
6 複層軸受試験片
7 油槽
8 荷重
DESCRIPTION OF SYMBOLS 1 Multi-layer bearing 2 Metal base material 3 Soft metal powder 4 Resin composition 4a Carbon fiber 5 Opposite material 6 Multi-layer bearing test piece 7 Oil tank 8 Load

Claims (10)

金属基材と、該金属基材の一方の表面に形成された多孔質層と、該多孔質層に含浸被覆された樹脂組成物とからなる複層軸受であって、
前記多孔質層は、多角形状の軟質金属粉末の焼結層であり
前記樹脂組成物は、ポリテトラフルオロエチレン樹脂と、炭素繊維と、カルシウム化合物とを含む樹脂組成物であることを特徴とする複層軸受。
A multi-layer bearing comprising a metal substrate, a porous layer formed on one surface of the metal substrate, and a resin composition impregnated and coated on the porous layer,
The porous layer is a sintered layer of polygonal soft metal powder, and the resin composition is a resin composition containing a polytetrafluoroethylene resin, carbon fibers, and a calcium compound. Multi-layer bearing.
前記軟質金属粉末が、平均粒子径10〜200μmの粉末であることを特徴とする請求項1記載の複層軸受。   2. The multilayer bearing according to claim 1, wherein the soft metal powder is a powder having an average particle diameter of 10 to 200 [mu] m. 前記軟質金属粉末が、銅−錫合金粉末であることを特徴とする請求項2記載の複層軸受。   The multilayer bearing according to claim 2, wherein the soft metal powder is a copper-tin alloy powder. 前記樹脂組成物全体に対して、前記炭素繊維の配合割合が15〜20体積%、前記カルシウム化合物の配合割合が3〜15体積%であることを特徴とする請求項1、請求項2または請求項3記載の複層軸受。   The blending ratio of the carbon fiber is 15 to 20% by volume and the blending ratio of the calcium compound is 3 to 15% by volume with respect to the entire resin composition. Item 4. The multilayer bearing according to item 3. 前記樹脂組成物が、ポリフェニレンサルファイド樹脂を含むことを特徴とする請求項1ないし請求項4のいずれか一項記載の複層軸受。   The multi-layer bearing according to any one of claims 1 to 4, wherein the resin composition contains a polyphenylene sulfide resin. 前記樹脂組成物全体に対して、前記炭素繊維の配合割合が15〜20体積%、前記カルシウム化合物の配合割合が3〜15体積%、前記ポリフェニレンサルファイド樹脂の配合割合が3〜15体積%であることを特徴とする請求項5記載の複層軸受。   The blending ratio of the carbon fiber is 15 to 20% by volume, the blending ratio of the calcium compound is 3 to 15% by volume, and the blending ratio of the polyphenylene sulfide resin is 3 to 15% by volume with respect to the entire resin composition. The multilayer bearing according to claim 5. 前記炭素繊維の平均繊維長が、50〜300μmであることを特徴とする請求項1ないし請求項6のいずれか一項記載の複層軸受。   The multilayer bearing according to any one of claims 1 to 6, wherein an average fiber length of the carbon fibers is 50 to 300 µm. 前記カルシウム化合物が、平均粒子径5〜50μmの粉末であることを特徴とする請求項1ないし請求項7のいずれか一項記載の複層軸受。   The multi-layer bearing according to claim 1, wherein the calcium compound is a powder having an average particle diameter of 5 to 50 μm. 前記カルシウム化合物が、硫酸カルシウム粉末であることを特徴とする請求項1ないし請求項8のいずれか一項記載の複層軸受。   The multilayer bearing according to claim 1, wherein the calcium compound is calcium sulfate powder. 前記複層軸受は、前記多孔質層の前記樹脂組成物が含浸被覆された側を内側として円筒状に曲げ加工されてなることを特徴とする請求項1ないし請求項9のいずれか一項記載の複層軸受。   10. The multi-layer bearing according to claim 1, wherein the multi-layer bearing is bent into a cylindrical shape with an inner side of the porous layer impregnated with the resin composition being coated. 11. Multi-layer bearing.
JP2009299142A 2009-12-29 2009-12-29 Multilayer bearing Pending JP2011137528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299142A JP2011137528A (en) 2009-12-29 2009-12-29 Multilayer bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299142A JP2011137528A (en) 2009-12-29 2009-12-29 Multilayer bearing

Publications (1)

Publication Number Publication Date
JP2011137528A true JP2011137528A (en) 2011-07-14

Family

ID=44349124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299142A Pending JP2011137528A (en) 2009-12-29 2009-12-29 Multilayer bearing

Country Status (1)

Country Link
JP (1) JP2011137528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194173A (en) * 2013-04-09 2013-07-10 吉林大学 Bionic-braking friction material and preparation method thereof
JP6323607B1 (en) * 2017-12-15 2018-05-16 千住金属工業株式会社 Sliding member and bearing
WO2019117244A1 (en) 2017-12-15 2019-06-20 千住金属工業株式会社 Sliding member and bearing
JP2019108980A (en) * 2017-12-15 2019-07-04 千住金属工業株式会社 Sliding member and bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194173A (en) * 2013-04-09 2013-07-10 吉林大学 Bionic-braking friction material and preparation method thereof
CN103194173B (en) * 2013-04-09 2014-07-16 吉林大学 Bionic-braking friction material and preparation method thereof
JP6323607B1 (en) * 2017-12-15 2018-05-16 千住金属工業株式会社 Sliding member and bearing
WO2019117244A1 (en) 2017-12-15 2019-06-20 千住金属工業株式会社 Sliding member and bearing
JP2019108980A (en) * 2017-12-15 2019-07-04 千住金属工業株式会社 Sliding member and bearing
US11261914B2 (en) * 2017-12-15 2022-03-01 Senju Metal Industry Co., Ltd. Sliding member and bearing

Similar Documents

Publication Publication Date Title
JP5342883B2 (en) Double layer bearing
JP4812823B2 (en) Multilayer bearing manufacturing method
JP5076276B2 (en) Multi-layer sliding member
US9970483B2 (en) Self-lubricating thermoplastic layers containing PTFE additive having a polymodal molecular weight
JP3679312B2 (en) Multi-layer sliding material
JP3045472B2 (en) Sliding member for thrust bearing
JP4825340B2 (en) Sliding layer material and multilayer material
US20160319867A1 (en) Plain bearing material and a plain bearing composite material, comprising zinc sulphide and barium sulphate
JP2018524440A (en) Functional coating forming composition having high releasability and low friction
US20150132498A1 (en) Metal-Backed Plain Bearing
JP2010159809A (en) Seat reclining device bearing bush, and seat reclining device
TW201627584A (en) Water-lubricated bearing material
JP6649695B2 (en) Multilayer sliding member and rack-and-pinion steering apparatus for automobile using the same
SK12492000A3 (en) Plain bearing
JPH01261514A (en) Sliding material
WO2018021122A1 (en) Sintered multilayer plate, multilayer sliding member using same and method for producing sintered multilayer plate
JP2011137528A (en) Multilayer bearing
US20050208313A1 (en) Plain bearing composite material
JP2002327750A (en) Multi-layered bearing
JP2000055054A (en) Combined layer bearing
JP3844206B2 (en) Sliding member
JP2015200339A (en) Slide member
JP6382679B2 (en) Manufacturing method of sliding member
JP2001132756A (en) Sliding member coated with resin and method of manufacturing the same
WO2021106274A1 (en) Resin material for sliding members, and sliding member