JP6623518B2 - Distance measuring system and distance measuring method - Google Patents

Distance measuring system and distance measuring method Download PDF

Info

Publication number
JP6623518B2
JP6623518B2 JP2015006613A JP2015006613A JP6623518B2 JP 6623518 B2 JP6623518 B2 JP 6623518B2 JP 2015006613 A JP2015006613 A JP 2015006613A JP 2015006613 A JP2015006613 A JP 2015006613A JP 6623518 B2 JP6623518 B2 JP 6623518B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic field
distance
concave portion
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015006613A
Other languages
Japanese (ja)
Other versions
JP2016133336A (en
Inventor
隆 鬼本
隆 鬼本
裕太 片岡
裕太 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015006613A priority Critical patent/JP6623518B2/en
Priority to CN201620026135.XU priority patent/CN205373622U/en
Publication of JP2016133336A publication Critical patent/JP2016133336A/en
Application granted granted Critical
Publication of JP6623518B2 publication Critical patent/JP6623518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、所定の接離方向に相対移動可能な第1部材及び第2部材間の距離を測定する距離測定システム及び距離測定方法に関する。   The present invention relates to a distance measurement system and a distance measurement method for measuring a distance between a first member and a second member that are relatively movable in a predetermined contact / separation direction.

従来、測定対象との距離を永久磁石の磁気によって測定可能な非接触型の距離計が知られている(特許文献1参照)。   2. Description of the Related Art Conventionally, a non-contact type distance meter capable of measuring a distance to a measurement target by magnetism of a permanent magnet is known (see Patent Document 1).

特許文献1に記載の距離計は、測定対象を通過する磁束を発生させる永久磁石と、永久磁石と測定対象との間に配置された磁気センサと、磁気センサから測定対象までの距離の変化量を磁気センサで検出された磁束密度の変化量から算出する距離算出回路とを備えて構成されている。磁気センサは、円柱状に形成されたコアと、コアに巻装された検出コイルからなり、距離算出回路は、検出コイルの両端出力電圧の正負の波高値に基づいて磁気センサから測定対象までの距離の変化量を算出する。   The range finder described in Patent Literature 1 includes a permanent magnet that generates a magnetic flux passing through a measurement target, a magnetic sensor disposed between the permanent magnet and the measurement target, and a change amount of a distance from the magnetic sensor to the measurement target. And a distance calculation circuit that calculates the distance from the change amount of the magnetic flux density detected by the magnetic sensor. The magnetic sensor includes a core formed in a cylindrical shape, and a detection coil wound on the core.The distance calculation circuit performs a measurement from the magnetic sensor to the measurement target based on the positive and negative peak values of the output voltage at both ends of the detection coil. Calculate the amount of change in distance.

特開平3−243801号公報JP-A-3-243801

特許文献1に記載の距離計では、永久磁石と測定対象との間に磁気センサが配置されるので、永久磁石と測定対象との間が大きくあいてしまう。このため、測定対象を通過する磁束を大きくすることができず、磁気センサから測定対象までの距離の変化量に対する磁気センサにおける磁束密度の変化量の割合が小さいため、磁気センサから測定対象までの距離の精度向上が難しかった。   In the distance meter described in Patent Literature 1, since the magnetic sensor is disposed between the permanent magnet and the measurement target, there is a large gap between the permanent magnet and the measurement target. For this reason, the magnetic flux passing through the measurement target cannot be increased, and the ratio of the change amount of the magnetic flux density in the magnetic sensor to the change amount of the distance from the magnetic sensor to the measurement target is small. It was difficult to improve the distance accuracy.

また、例えば永久磁石の大きさを大きくすれば、測定対象を通過する磁束を増大させることができるが、この場合には、設置スペースの大型化と高コスト化を招来してしまう。   Further, for example, if the size of the permanent magnet is increased, the magnetic flux passing through the object to be measured can be increased, but in this case, the installation space is increased and the cost is increased.

そこで、本発明は、永久磁石を大型化しなくとも、距離の測定精度を向上させることが可能な距離測定システム及び距離測定方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a distance measuring system and a distance measuring method capable of improving distance measuring accuracy without increasing the size of a permanent magnet.

本発明は、上記課題を解決することを目的として、所定の接離方向に相対移動可能な第1部材及び第2部材間の距離を測定する距離測定システムであって、前記第1部材に形成された凹部に一部が嵌合する永久磁石と、前記第2部材に固定され、前記永久磁石により発生する磁界の強度を検出する磁界センサとを備え、前記第1部材は、軟磁性体からなり、前記凹部が前記第2部材に向かって開口し、前記永久磁石は、それ自体の磁力によって前記第1部材に固定され、かつ前記凹部への嵌合により前記離接方向に対して交差する方向への移動が規制される、距離測定システムを提供する。   An object of the present invention is to provide a distance measuring system for measuring a distance between a first member and a second member which are relatively movable in a predetermined contact / separation direction for solving the above-mentioned problem. A permanent magnet partially fitted in the formed concave portion, and a magnetic field sensor fixed to the second member and detecting the intensity of a magnetic field generated by the permanent magnet, wherein the first member is formed of a soft magnetic material. The recess is opened toward the second member, the permanent magnet is fixed to the first member by its own magnetic force, and intersects the disengagement direction by fitting into the recess. Provided is a distance measurement system in which movement in a direction is regulated.

また、本発明は、上記課題を解決することを目的として、所定の接離方向に相対移動可能な第1部材及び第2部材間の距離を測定する距離測定方法であって、前記第1部材に前記第2部材に向かって開口する凹部を形成し、前記凹部に一部が嵌合するように永久磁石を配置し、前記永久磁石により発生する磁界の強度を検出する磁界センサを前記第2部材に配置し、前記第1部材は、前記永久磁石の磁路の一部を構成する軟磁性体からなり、前記永久磁石は、それ自体の磁力によって前記第1部材に固定され、かつ前記凹部への嵌合により前記離接方向に対して交差する方向への移動が規制され、前記磁界センサによって検出される磁界の強度に基づいて前記第1部材及び前記第2部材間の距離を測定する、距離測定方法を提供する。   Further, the present invention is directed to a distance measuring method for measuring a distance between a first member and a second member which are relatively movable in a predetermined contact / separation direction for the purpose of solving the above-mentioned problem. A concave portion that opens toward the second member, a permanent magnet is disposed so as to partially fit in the concave portion, and a magnetic field sensor that detects the intensity of a magnetic field generated by the permanent magnet is provided in the second member. Disposed on a member, the first member is made of a soft magnetic material constituting a part of a magnetic path of the permanent magnet, the permanent magnet is fixed to the first member by its own magnetic force, and the concave portion The movement in the direction intersecting the disengagement direction is restricted by the fitting to the first member, and the distance between the first member and the second member is measured based on the strength of the magnetic field detected by the magnetic field sensor. To provide a distance measurement method.

本発明に係る距離測定システム及び距離測定方法によれば、永久磁石を大型化しなくとも、距離の測定精度を向上させることが可能となる。   ADVANTAGE OF THE INVENTION According to the distance measuring system and the distance measuring method which concern on this invention, it becomes possible to improve distance measuring accuracy, without enlarging a permanent magnet.

(a)は、本実施の形態に係る距離測定システムの構成例を示す分解斜視図であり、(b)は、この距離測定システムに用いられる磁界センサを示す斜視図である。(A) is an exploded perspective view showing a configuration example of a distance measurement system according to the present embodiment, and (b) is a perspective view showing a magnetic field sensor used in the distance measurement system. 第1部材の凹部の周辺部、及び凹部に嵌合固定された永久磁石を示す断面図である。FIG. 4 is a cross-sectional view illustrating a peripheral portion of a concave portion of the first member and a permanent magnet fitted and fixed in the concave portion. (a)及び(b)は、距離測定システムの動作を説明するために示す説明図である。(A) And (b) is explanatory drawing shown in order to demonstrate operation | movement of a distance measuring system. (a)〜(e)は、この永久磁石の凹部への嵌合割合が、1.0(100%)、0.5(50%)、0.25(25%)、0.1(10%)、及び0(0%)の各場合における永久磁石から放射される磁力線を模式的に示す模式図である。(A) to (e) show that the fitting ratio of the permanent magnet to the recess is 1.0 (100%), 0.5 (50%), 0.25 (25%), 0.1 (10%). %) And 0 (0%) in each case. 第1部材11と第2部材12との間の距離と、磁界センサによって検出される磁界の強度との関係を示すグラフである。4 is a graph showing a relationship between a distance between a first member 11 and a second member 12 and a strength of a magnetic field detected by a magnetic field sensor.

[実施の形態]
以下、図1乃至図5を参照し、本発明の実施の形態に係る距離測定システム、及びこの距離測定システムを用いた距離測定方法について説明する。
[Embodiment]
Hereinafter, a distance measuring system according to an embodiment of the present invention and a distance measuring method using the distance measuring system will be described with reference to FIGS.

図1(a)は、本実施の形態に係る距離測定システムの構成例を示す分解斜視図である。図1(b)は、この距離測定システムに用いられる磁界センサを示す斜視図である。   FIG. 1A is an exploded perspective view illustrating a configuration example of a distance measurement system according to the present embodiment. FIG. 1B is a perspective view showing a magnetic field sensor used in the distance measuring system.

この距離測定システム1は、所定の接離方向に相対移動可能な第1部材11及び第2部材12を備え、これら第1部材11と第2部材12との間の距離を非接触で測定可能である。本実施の形態では、第2部材12が図略のフレーム等の固定部材に固定され、第1部材11が第2部材12に対して移動する移動体である場合について説明する。また、この距離測定システム1は、例えば第2部材12に対して第1部材11が最も接近した最接近位置から20mm以内の範囲における第1部材11の位置を測定する近距離測定に好適に用いることができる。   The distance measuring system 1 includes a first member 11 and a second member 12 which can relatively move in a predetermined contact / separation direction, and can measure a distance between the first member 11 and the second member 12 in a non-contact manner. It is. In the present embodiment, a case will be described in which the second member 12 is fixed to a fixed member such as a frame (not shown) and the first member 11 is a moving body that moves with respect to the second member 12. Further, the distance measurement system 1 is suitably used, for example, for a short distance measurement for measuring the position of the first member 11 within a range of 20 mm or less from the closest position where the first member 11 comes closest to the second member 12. be able to.

距離測定システム1は、第1部材11に形成された凹部110に一部が嵌合する永久磁石2と、第2部材12に固定され、永久磁石2により発生する磁界の強度を検出する磁界センサ3と、磁界センサ3による磁界の強度の検出結果に基づいて第1部材11と第2部材12との間の距離を演算により求める演算部(後述)とを備えて構成される。また、この距離測定システム1は、永久磁石2の周辺温度が100℃以上となる環境下で使用される。すなわち、永久磁石2は、温度が100℃以上となる空間内に配置される。   The distance measurement system 1 includes a permanent magnet 2 partially fitted in a concave portion 110 formed in a first member 11, and a magnetic field sensor fixed to the second member 12 and detecting the intensity of a magnetic field generated by the permanent magnet 2. 3 and a calculation unit (described later) for calculating the distance between the first member 11 and the second member 12 based on the detection result of the magnetic field strength by the magnetic field sensor 3. The distance measuring system 1 is used in an environment where the temperature around the permanent magnet 2 is 100 ° C. or higher. That is, the permanent magnet 2 is arranged in a space where the temperature is 100 ° C. or higher.

第1部材11は、第2部材12からの距離の測定対象となる移動体であり、図略の移動力発生機構からの移動力を受けて第2部材12に対して進退移動する。第1部材11には、第2部材12に対向する対向面11aの一部に、この対向面11aに対して垂直な方向に窪んで形成された凹部110が形成されている。本実施の形態では、この凹部110の内部空間が円柱状であり、第2部材12に向かって開口している。   The first member 11 is a moving body whose distance from the second member 12 is to be measured, and moves forward and backward with respect to the second member 12 by receiving a moving force from a moving force generating mechanism (not shown). The first member 11 has a recess 110 formed in a part of the facing surface 11a facing the second member 12 so as to be depressed in a direction perpendicular to the facing surface 11a. In the present embodiment, the internal space of the concave portion 110 has a columnar shape, and opens toward the second member 12.

また、第1部材11は、永久磁石2の磁路の一部を構成する軟磁性体からなる。この軟磁性体として、具体的には、鉄系金属やマルテンサイト系又はフェライト系のステンレスを用いることができる。   The first member 11 is made of a soft magnetic material that forms a part of the magnetic path of the permanent magnet 2. As the soft magnetic material, specifically, an iron-based metal, a martensite-based or a ferrite-based stainless steel can be used.

以下の説明では、第1部材11が第2部材12に対して直線運動する場合について説明するが、これに限らず、第1部材11が図略の支持軸を中心として揺動(所定の角度範囲で回転動作すること)可能に支持されていてもよい。この場合には、距離測定システム1により、第1部材11の揺動に伴って変化する凹部110の位置と第2部材12との間の距離を測定することが可能である。   In the following description, the case where the first member 11 linearly moves with respect to the second member 12 will be described. However, the present invention is not limited to this, and the first member 11 swings around a support shaft (not shown) (a predetermined angle). (Rotating in a range). In this case, the distance measurement system 1 can measure the distance between the position of the concave portion 110 that changes with the swing of the first member 11 and the second member 12.

永久磁石2は、サマリウムコバルト磁石又はネオジム磁石である。サマリウムコバルト磁石は、サマコバ磁石とも称され、サマリウム(Sm)及びコバルト(Co)を主成分とする希土類磁石である。ネオジム磁石は、ネオジム(Nd)、鉄(Fe)、及びホウ素(B)を主成分とする希土類磁石である。サマリウムコバルト磁石及びネオジム磁石は、例えばフェライト磁石に比較して高い残留磁束密度を得ることができ、本実施の形態では、永久磁石2の残留磁束密度が1.0T(テスラ)以上である。なお、防錆等のため、これらの磁石の表面にニッケル等をメッキしてもよい。   The permanent magnet 2 is a samarium cobalt magnet or a neodymium magnet. The samarium-cobalt magnet is also referred to as a samarium magnet and is a rare-earth magnet containing samarium (Sm) and cobalt (Co) as main components. The neodymium magnet is a rare earth magnet mainly containing neodymium (Nd), iron (Fe), and boron (B). The samarium cobalt magnet and the neodymium magnet can obtain a higher residual magnetic flux density than, for example, a ferrite magnet. In the present embodiment, the residual magnetic flux density of the permanent magnet 2 is 1.0 T (tesla) or more. In addition, nickel or the like may be plated on the surface of these magnets for rust prevention or the like.

本実施の形態では、永久磁石2が円柱状であり、その中心軸線c方向に一対の磁極(N極及びS極)が並んで形成されている。永久磁石2は、一対の磁極の並び方向に沿う中心軸線c方向の一端部21が第1部材11の凹部110に嵌合する。この一端部21とは反対側の他端部22における永久磁石2の端面2bは、第2部材12に対向する。   In the present embodiment, the permanent magnet 2 has a columnar shape, and a pair of magnetic poles (N pole and S pole) are formed side by side in the direction of the central axis c. One end 21 of the permanent magnet 2 in the direction of the center axis c along the direction in which the pair of magnetic poles are arranged is fitted into the recess 110 of the first member 11. The end face 2 b of the permanent magnet 2 at the other end 22 opposite to the one end 21 faces the second member 12.

本実施の形態では、第2部材12がモールド樹脂からなり、このモールド樹脂に磁界センサ3がインサート成型されている。本実施の形態では、第2部材12が四角柱状であるが、第2部材12は、磁界センサ3を固定することが可能な非磁性体であればよく、その材質や形状は、様々なものを用いることが可能である。   In the present embodiment, the second member 12 is made of a molding resin, and the magnetic field sensor 3 is insert-molded in the molding resin. In the present embodiment, the second member 12 has a quadrangular prism shape. However, the second member 12 may be any non-magnetic material that can fix the magnetic field sensor 3, and its material and shape are various. Can be used.

本実施の形態では、磁界センサ3がホールICであり、ホール効果を利用して磁界の強度を電気信号に変換するホール素子を樹脂やセラミック等の絶縁体によって封止してなる本体部30と、本体部30から導出された第1乃至第3のリード線31〜33とを有している。第1のリード線31は電源線であり、第2のリード線32は信号線であり、第3のリード線33はグランド線である。本体部30は、永久磁石2の中心軸線cに沿った磁界の強度を検出可能な位置及び向きに配置されている。磁界センサ3は、磁界の強度に応じた電気信号を第2のリード線32から出力する。   In the present embodiment, the magnetic field sensor 3 is a Hall IC, and a main body 30 in which a Hall element for converting the intensity of a magnetic field into an electric signal using the Hall effect is sealed with an insulator such as resin or ceramic. , And first to third lead wires 31 to 33 derived from the main body 30. The first lead 31 is a power supply line, the second lead 32 is a signal line, and the third lead 33 is a ground line. The main body 30 is arranged in a position and a direction in which the strength of the magnetic field along the central axis c of the permanent magnet 2 can be detected. The magnetic field sensor 3 outputs an electric signal from the second lead wire 32 according to the strength of the magnetic field.

図2は、第1部材11の凹部110の周辺部、及び凹部110に一端部21が嵌合して固定された永久磁石2を、その中心軸線cを含む断面において示す断面図である。   FIG. 2 is a cross-sectional view showing the periphery of the concave portion 110 of the first member 11 and the permanent magnet 2 in which one end 21 is fitted and fixed to the concave portion 110 in a cross section including the central axis c.

永久磁石2の一端部21における端面2aは、凹部110の底面110aに面接触している。そして、永久磁石2は、それ自体の磁力によって第1部材11に固定されている。すなわち、永久磁石2は、接着剤等の固定手段を用いることなく、永久磁石2自身が持つ吸着力によって、第1部材11に固定されている。   The end surface 2 a of the one end 21 of the permanent magnet 2 is in surface contact with the bottom surface 110 a of the recess 110. The permanent magnet 2 is fixed to the first member 11 by its own magnetic force. That is, the permanent magnet 2 is fixed to the first member 11 by the attraction force of the permanent magnet 2 itself without using fixing means such as an adhesive.

また、永久磁石2は、凹部110への嵌合により、第2部材12との離接方向に対して交差する方向への移動が規制されている。図2では、この離接方向を矢印Aで示している。本実施の形態では、この離接方向が永久磁石2の中心軸線cと平行である。   Further, the movement of the permanent magnet 2 in the direction intersecting with the direction of separation and contact with the second member 12 is restricted by fitting into the recess 110. In FIG. 2, the direction of contact and separation is indicated by an arrow A. In the present embodiment, this direction of contact is parallel to the central axis c of the permanent magnet 2.

図2に示すように、永久磁石2の直径をDとし、第1部材11の凹部110の内径をDとすると、凹部110の内径Dは、永久磁石2の直径Dよりも僅かに大きく、この径差ΔD(ΔD=D−D)は、例えば0.5mmである。また、凹部110の深さ、すなわち凹部110における永久磁石2の嵌合深さをDとすると、この深さDは、径差ΔDよりも深い。つまり、永久磁石2の直径D、凹部110の内径D、凹部110における永久磁石2の嵌合深さDは、下記の関係式(1)を満たしている。
−D<D・・・(1)
これにより、第1部材11に振動や衝撃が加わった場合でも、永久磁石2が凹部110から離脱してしまうことが抑制される。
As shown in FIG. 2, assuming that the diameter of the permanent magnet 2 is D 1 and the inside diameter of the recess 110 of the first member 11 is D 2 , the inside diameter D 2 of the recess 110 is slightly smaller than the diameter D 1 of the permanent magnet 2. The diameter difference ΔD (ΔD = D 2 −D 1 ) is, for example, 0.5 mm. The depth of the recess 110, i.e. the fitting depth of the permanent magnet 2 in the recess 110 when the D 3, the depth D 3 is deeper than the diameter difference [Delta] D. That is, the diameter D 1 of the permanent magnet 2, the inner diameter D 2 of the recess 110, and the fitting depth D 3 of the permanent magnet 2 in the recess 110 satisfy the following relational expression (1).
D 2 −D 1 <D 3 (1)
Thereby, even when vibration or impact is applied to the first member 11, the permanent magnet 2 is prevented from detaching from the recess 110.

なお、凹部110における永久磁石2の嵌合深さDは、0.5mm以上であることが望ましい。この嵌合深さDが0.5mm未満であると、例えば第1部材11に振動や衝撃が加わったときに、永久磁石2が凹部110の側面110bを乗り越え、永久磁石2の位置ずれが発生しやすくなるためである。 Incidentally, the fitting depth D 3 of the permanent magnet 2 in the recess 110 is desirably 0.5mm or more. When the fitting depth D 3 is less than 0.5 mm, for example, when a vibration or shock is applied to the first member 11, over the side surface 110b of the recess 110 the permanent magnet 2, the positional deviation of the permanent magnet 2 This is because it easily occurs.

またさらに、永久磁石2の中心軸線c方向の厚みをtとすると、この厚みtは、永久磁石2の直径Dよりも小さい(t<D)。すなわち、永久磁石2は、扁平な円柱状に形成されている。これにより、永久磁石2の中心軸線c方向の厚みtが永久磁石2の直径Dよりも大きい場合に比較して、永久磁石2の一端部21における端面2aが凹部110の底面110aに対して傾き、永久磁石2が倒れてしまうことが抑制される。 Furthermore, when the thickness of the central axis c direction of the permanent magnet 2 and t, the thickness t is smaller than the diameter D 1 of the permanent magnet 2 (t <D 1). That is, the permanent magnet 2 is formed in a flat cylindrical shape. As a result, the end face 2 a at the one end 21 of the permanent magnet 2 is smaller than the bottom face 110 a of the recess 110 as compared with the case where the thickness t of the permanent magnet 2 in the direction of the central axis c is larger than the diameter D 1 of the permanent magnet 2. The inclination and the falling of the permanent magnet 2 are suppressed.

また、永久磁石2の中心軸線c方向の全長(厚みt)に対する凹部110に嵌合した部分の長さ(嵌合深さD)の割合を嵌合割合R(R=D/t)とすると、この嵌合割合Rは、0.1〜0.5であることが望ましい。すなわち、本実施の形態では、永久磁石2の中心軸線c方向の全長に対する凹部110に嵌合した部分の長さの割合が10〜50%(10%以上50%以下)である。この割合が10%未満であると、凹部110から永久磁石2が抜け出しやすくなるので好ましくない。また、この割合が50%を超えると、永久磁石2の磁界が磁界センサ3に到達しにくくなるので好ましくない。 The ratio of the length (fitting depth D 3 ) of the portion fitted to the concave portion 110 to the total length (thickness t) of the permanent magnet 2 in the direction of the central axis c is defined as a fitting ratio R (R = D 3 / t). Then, the fitting ratio R is desirably 0.1 to 0.5. That is, in the present embodiment, the ratio of the length of the portion fitted to the concave portion 110 to the entire length of the permanent magnet 2 in the direction of the central axis c is 10 to 50% (10% or more and 50% or less). If this ratio is less than 10%, the permanent magnet 2 tends to slip out of the recess 110, which is not preferable. On the other hand, if this ratio exceeds 50%, the magnetic field of the permanent magnet 2 becomes difficult to reach the magnetic field sensor 3, which is not preferable.

なお、図2では、永久磁石2の厚みtが3mm、嵌合深さDが0.75mmであり、嵌合割合Rが0.25(25%)である場合について例示している。 In FIG. 2, the thickness t of the permanent magnet 2 is 3 mm, fitting depth D 3 is 0.75 mm, it is illustrated for the case the fitting ratio R is 0.25 (25%).

図3(a)及び(b)は、距離測定システム1の動作を説明するために示す説明図である。図3(b)では、第1部材11と第2部材12との間の距離Lが、図3(a)に示す状態における第1部材11と第2部材12との間の距離Lよりも小さい状態を図示している。 FIGS. 3A and 3B are explanatory diagrams illustrating the operation of the distance measurement system 1. FIG. In FIG. 3B, the distance L 2 between the first member 11 and the second member 12 is equal to the distance L 1 between the first member 11 and the second member 12 in the state shown in FIG. It shows a smaller state.

また、図3(a)及び(b)では、第2部材12の内部における磁界センサ3、及び磁界センサ3に接続されるケーブル4を実線で示し、永久磁石2の磁界を示す磁力線を二点鎖線で示している。磁界センサ3は、ケーブル4によって演算部5に接続されている。   3A and 3B, the magnetic field sensor 3 inside the second member 12 and the cable 4 connected to the magnetic field sensor 3 are indicated by solid lines, and two lines of magnetic force indicating the magnetic field of the permanent magnet 2 are shown. This is indicated by a chain line. The magnetic field sensor 3 is connected to the calculation unit 5 by a cable 4.

永久磁石2は、一端部21にS極が、他端部22にN極が、それぞれ形成されている。他端部22における端面2bから放射された磁力線は、湾曲して第1部材11に入射する。また、一端部21における端面2aから放射された磁力線の一部は、磁界センサ3の本体部30に鎖交する。   The permanent magnet 2 has an S pole at one end 21 and an N pole at the other end 22. The lines of magnetic force radiated from the end face 2b at the other end 22 are curved and enter the first member 11. Further, a part of the magnetic force lines emitted from the end face 2 a at the one end 21 is linked to the main body 30 of the magnetic field sensor 3.

ケーブル4は、第1乃至第3の電線41〜43と、第1乃至第3の電線41〜43を一括して被覆するシース40とを有している。第1乃至第3の電線41〜43は、それぞれが芯線を絶縁被覆してなる絶縁電線であり、第1の電線41の芯線が磁界センサ3の第1のリード線31に、第2の電線42の芯線が磁界センサ3の第2のリード線32に、第3の電線43の芯線が磁界センサ3の第3のリード線33に、それぞれ接続されている。   The cable 4 includes first to third electric wires 41 to 43 and a sheath 40 for covering the first to third electric wires 41 to 43 collectively. The first to third electric wires 41 to 43 are insulated electric wires each having a core wire insulated and coated. The core wire of the first electric wire 41 is connected to the first lead wire 31 of the magnetic field sensor 3 and the second electric wire is connected to the first electric wire 41. The core of 42 is connected to the second lead 32 of the magnetic field sensor 3, and the core of the third electric wire 43 is connected to the third lead 33 of the magnetic sensor 3.

第1部材11が第2部材12に接近すると、磁界センサ3によって検出される磁界の強度が強くなり、第1部材11が第2部材12から離間すると、磁界センサ3によって検出される磁界の強度が弱くなる。演算部5は、磁界センサ3によって検出される磁界の強度に基づいて、第1部材11及び第2部材12間の距離を演算によって測定する。   When the first member 11 approaches the second member 12, the intensity of the magnetic field detected by the magnetic field sensor 3 increases, and when the first member 11 separates from the second member 12, the intensity of the magnetic field detected by the magnetic field sensor 3 increases. Becomes weaker. The calculation unit 5 calculates the distance between the first member 11 and the second member 12 by calculation based on the strength of the magnetic field detected by the magnetic field sensor 3.

演算部5は、例えばCPU(中央演算処理装置)と、ROMやRAM等によって構成される記憶素子と、ケーブル4の第2の電線42によって伝送される磁界センサ3の出力信号をアナログ−デジタル変換するAD変換素子とを有して構成され、記憶素子には、磁界センサ3によって検出される磁界の強度と第1部材11と第2部材12との間の距離との関係を示す関係情報が記憶されている。CPUは、磁界センサ3によって検出され、AD変換素子でデジタル変換された磁界の強度を示す数値情報に基づいて記憶素子に記憶された関係情報を参照し、第1部材11及び第2部材12間の距離を演算によって求める。   The arithmetic unit 5 converts the output signal of the magnetic field sensor 3 transmitted by the second electric wire 42 of the cable 4 from analog to digital, for example, a CPU (Central Processing Unit), a storage element such as a ROM or a RAM, and the like. The storage element stores relationship information indicating the relationship between the strength of the magnetic field detected by the magnetic field sensor 3 and the distance between the first member 11 and the second member 12. It is remembered. The CPU refers to the relation information stored in the storage element based on the numerical information indicating the strength of the magnetic field detected by the magnetic field sensor 3 and digitally converted by the AD conversion element, and determines the relationship between the first member 11 and the second member 12. Is obtained by calculation.

(永久磁石2の嵌合割合Rについての考察)
次に、永久磁石2の中心軸線c方向の全長(厚みt)に対する凹部110に嵌合した部分の長さ(嵌合深さD)の割合である嵌合割合Rの好適な範囲について、図4及び図5を参照して説明する。
(Consideration of fitting ratio R of permanent magnet 2)
Next, a preferred range of the fitting ratio R, which is a ratio of the length (fitting depth D 3 ) of the portion fitted to the concave portion 110 to the total length (thickness t) of the permanent magnet 2 in the direction of the central axis c, This will be described with reference to FIGS.

図4(a)〜(e)は、この嵌合割合Rが、1.0(100%)、0.5(50%)、0.25(25%)、0.1(10%)、及び0(0%)の各場合における永久磁石2から放射される磁力線を模式的に示す模式図であり、図5は、これら各場合における第1部材11と第2部材12との間の距離Lと、磁界センサ3によって検出される磁界強度Bとの関係を示すグラフである。図4(a)〜(e)において、永久磁石2の中心軸線cに沿った方向における永久磁石2のN極側の端面2bと第2部材12との間の距離は一定である。   FIGS. 4A to 4E show that the fitting ratio R is 1.0 (100%), 0.5 (50%), 0.25 (25%), 0.1 (10%), FIG. 5 is a schematic diagram schematically showing lines of magnetic force radiated from the permanent magnet 2 in each case of FIG. 5 and 0 (0%). FIG. 5 is a diagram showing the distance between the first member 11 and the second member 12 in each case. 6 is a graph showing a relationship between L and a magnetic field intensity B detected by the magnetic field sensor 3. 4A to 4E, the distance between the end surface 2b on the N pole side of the permanent magnet 2 and the second member 12 in the direction along the central axis c of the permanent magnet 2 is constant.

図4(a)〜(e)に示すように、嵌合割合Rが小さいほど、永久磁石2から放射される磁力線が永久磁石2の中心軸線cに沿って大きく延び、磁界センサ3によって検出される磁界の強度が強くなる。また、第1部材11と第2部材12との間の距離は、第1部材11の移動に伴う磁界センサ3で検出される磁界の強度の変化量が大きいほど、精度よく求めることができる。すなわち、図5から明らかなように、嵌合割合Rが小さいほど、第1部材11と第2部材12との間の距離Lの変化に応じて磁界センサ3によって検出される磁界強度Bが大きく変化し、第1部材11と第2部材12との間の距離Lの検出精度を高めることが可能となる。   As shown in FIGS. 4A to 4E, as the fitting ratio R is smaller, the lines of magnetic force radiated from the permanent magnet 2 extend significantly along the central axis c of the permanent magnet 2 and are detected by the magnetic field sensor 3. The magnetic field strength increases. Further, the distance between the first member 11 and the second member 12 can be determined with higher accuracy as the change in the strength of the magnetic field detected by the magnetic field sensor 3 accompanying the movement of the first member 11 increases. That is, as is clear from FIG. 5, the smaller the fitting ratio R, the larger the magnetic field intensity B detected by the magnetic field sensor 3 according to the change in the distance L between the first member 11 and the second member 12. Therefore, the detection accuracy of the distance L between the first member 11 and the second member 12 can be increased.

ただし、永久磁石2が凹部110に嵌合されないと、すなわち嵌合深さDがゼロであると、永久磁石2が第1部材11に対して滑ることにより永久磁石2の位置ずれが発生してしまい、第1部材11と第2部材12との間の距離を正確に測定できなくなる。また、永久磁石2が凹部110に嵌合されていても、嵌合割合Rが小さすぎると、永久磁石2が倒れやすくなってしまう。そこで、本実施の形態では、嵌合割合Rを0.1〜0.5(10〜50%)とすることで、永久磁石2の位置ずれ及び倒れの防止と、第1部材11と第2部材12との間の距離の測定精度向上との両立を図っているのである。 However, when the permanent magnet 2 is not fitted in the recess 110, i.e. the fitting depth D 3 is zero, the positional deviation of the permanent magnet 2 is generated by the permanent magnet 2 slides relative to the first member 11 As a result, the distance between the first member 11 and the second member 12 cannot be measured accurately. Further, even if the permanent magnet 2 is fitted in the recess 110, if the fitting ratio R is too small, the permanent magnet 2 tends to fall. Therefore, in the present embodiment, by setting the fitting ratio R to be 0.1 to 0.5 (10 to 50%), it is possible to prevent the displacement and the fall of the permanent magnet 2 and to prevent the permanent magnet 2 from falling. This is to improve the measurement accuracy of the distance to the member 12.

(実施の形態の作用及び効果)
以上説明した実施の形態によれば、以下のような作用及び効果が得られる。
(Operation and Effect of Embodiment)
According to the embodiment described above, the following operations and effects can be obtained.

(1)永久磁石2は、測定対象である第1部材11に固定され、第1部材11と共に第2部材12に対して移動するので、第1部材11の移動に伴って変化する磁界強度の変化を、第2部材12に固定された磁界センサ3によって直接的に検出することができる。これにより、第1部材11の移動に伴う磁界センサ3によって検出される磁界強度の変化量を大きくすることができ、第1部材11と第2部材12との間の距離の測定精度を高めることが可能となる。 (1) Since the permanent magnet 2 is fixed to the first member 11 to be measured and moves with respect to the second member 12 together with the first member 11, the strength of the magnetic field intensity that changes with the movement of the first member 11 The change can be directly detected by the magnetic field sensor 3 fixed to the second member 12. Thereby, the amount of change in the magnetic field intensity detected by the magnetic field sensor 3 accompanying the movement of the first member 11 can be increased, and the measurement accuracy of the distance between the first member 11 and the second member 12 can be improved. Becomes possible.

(2)永久磁石2は、それ自体の磁力によって第1部材11に固定されているので、接着剤等の固定手段を設けることなく、永久磁石2の固定を行うことができる。これにより、永久磁石2を第1部材11に取り付ける際の工数を削減することができると共に、例えば100℃を超える高温環境においても、接着剤の接着強度の低下等を懸念することなく、永久磁石2を第1部材11に安定的に固定しておくことが可能となる。 (2) Since the permanent magnet 2 is fixed to the first member 11 by its own magnetic force, the permanent magnet 2 can be fixed without providing fixing means such as an adhesive. Accordingly, the number of steps for attaching the permanent magnet 2 to the first member 11 can be reduced, and even in a high temperature environment exceeding, for example, 100 ° C., the permanent magnet 2 can be mounted without concern about a decrease in the adhesive strength of the adhesive. 2 can be stably fixed to the first member 11.

(3)永久磁石2は、第1部材11の凹部110に嵌合されるので、第1部材11に対する位置ずれや倒れを防止することができる。 (3) Since the permanent magnet 2 is fitted into the concave portion 110 of the first member 11, it is possible to prevent the position shift and the falling of the permanent magnet 2 with respect to the first member 11.

(4)永久磁石2の中心軸線c方向の全長(厚みt)に対する凹部110に嵌合した部分の長さ(嵌合深さD)の割合である嵌合割合Rを0.1〜0.5(10〜50%)としたので、永久磁石2の位置ずれ及び倒れの防止と、第1部材11と第2部材12との間の距離の測定精度向上とを両立させることができる。 (4) The fitting ratio R, which is the ratio of the length (fitting depth D 3 ) of the portion fitted to the recess 110 to the total length (thickness t) of the permanent magnet 2 in the direction of the central axis c, is 0.1 to 0. .5 (10 to 50%), it is possible to achieve both the prevention of the displacement and the fall of the permanent magnet 2 and the improvement of the measurement accuracy of the distance between the first member 11 and the second member 12.

(5)永久磁石2としてサマリウムコバルト磁石又はネオジム磁石を用いることにより、永久磁石2をフェライト磁石とした場合に比較して高い吸着力を得ることができ、第1部材11が振動又は衝撃を受けても、永久磁石2が第1部材11に対して傾いたり離脱してしまうことを抑制することができる。 (5) By using a samarium-cobalt magnet or a neodymium magnet as the permanent magnet 2, a higher attraction force can be obtained as compared with a case where the permanent magnet 2 is a ferrite magnet, and the first member 11 receives vibration or impact. However, it is possible to suppress the permanent magnet 2 from being inclined or detached from the first member 11.

(6)永久磁石2の残留磁束密度を1.0T以上とすることにより、第1部材11への永久磁石2の固定をより確実にすることができる。 (6) By setting the residual magnetic flux density of the permanent magnet 2 to 1.0 T or more, it is possible to more reliably fix the permanent magnet 2 to the first member 11.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of Embodiment)
Next, technical ideas grasped from the embodiments described above will be described with reference to the reference numerals and the like in the embodiments. However, each reference sign in the following description does not limit the constituent elements in the claims to members specifically shown in the embodiments.

[1]所定の接離方向に相対移動可能な第1部材(11)及び第2部材(12)間の距離を測定する距離測定システム(1)であって、前記第1部材(11)に形成された凹部(110)に一部が嵌合する永久磁石(2)と、前記第2部材(12)に固定され、前記永久磁石(2)により発生する磁界の強度を検出する磁界センサ(3)とを備え、前記第1部材(11)は、軟磁性体からなり、前記凹部(110)が前記第2部材(12)に向かって開口し、前記永久磁石(2)は、それ自体の磁力によって前記第1部材(11)に固定され、かつ前記凹部(110)への嵌合により前記離接方向に対して交差する方向への移動が規制される、距離測定システム(1)。 [1] A distance measuring system (1) for measuring a distance between a first member (11) and a second member (12) relatively movable in a predetermined contact / separation direction, wherein the first member (11) A permanent magnet (2) partially fitted in the formed recess (110); and a magnetic field sensor (2) fixed to the second member (12) and detecting the intensity of a magnetic field generated by the permanent magnet (2). 3), wherein the first member (11) is made of a soft magnetic material, the recess (110) opens toward the second member (12), and the permanent magnet (2) is The distance measuring system (1), which is fixed to the first member (11) by the magnetic force of (1), and is restricted from moving in a direction intersecting with the direction of separation by fitting into the recess (110).

[2]前記永久磁石(2)は、一対の磁極の並び方向に沿う中心軸線(C)方向の一端部(21)が前記凹部(110)に嵌合し、前記永久磁石(2)の中心軸線(C)方向の全長に対する前記凹部(110)に嵌合した部分の長さの割合が10〜50%である、前記[1]に記載の距離測定システム(1)。 [2] One end (21) of the permanent magnet (2) in the direction of the center axis (C) along the arrangement direction of the pair of magnetic poles is fitted into the recess (110), and the center of the permanent magnet (2) is formed. The distance measuring system (1) according to [1], wherein a ratio of a length of the portion fitted to the concave portion (110) to an entire length in the direction of the axis (C) is 10 to 50%.

[3]前記永久磁石(2)及び前記凹部(110)は共に円柱状であり、前記永久磁石(2)の直径をDとし、前記凹部(110)の内径をDとし、前記凹部(110)における前記永久磁石(2)の嵌合深さをDとしたとき、下記式を満たす、前記[1]又は[2]に記載の距離測定システム(1)。D−D<D [3] the permanent magnet (2) and the recess (110) are both cylindrical, the diameter of the permanent magnet (2) and D 1, the inner diameter of the recess (110) and D 2, the recess ( when the fitting depth of the permanent magnets (2) in 110) was D 3, satisfy the following formula, the distance measuring system according to [1] or [2] (1). D 2 −D 1 <D 3

[4]前記永久磁石(2)は、サマリウムコバルト磁石又はネオジム磁石である、前記[1]乃至[3]の何れか1つに記載の距離測定システム(1)。 [4] The distance measurement system (1) according to any one of [1] to [3], wherein the permanent magnet (2) is a samarium cobalt magnet or a neodymium magnet.

[5]前記永久磁石(2)の残留磁束密度が1.0T以上である、前記[1]乃至[4]の何れか1つに記載の距離測定システム(1)。 [5] The distance measurement system (1) according to any one of [1] to [4], wherein a residual magnetic flux density of the permanent magnet (2) is 1.0 T or more.

[6]前記永久磁石(2)は、温度が100℃以上となる空間内に配置される、前記[1]乃至[5]の何れか1つに記載の距離測定システム(1)。 [6] The distance measurement system (1) according to any one of [1] to [5], wherein the permanent magnet (2) is arranged in a space where the temperature is 100 ° C or higher.

[7]所定の接離方向に相対移動可能な第1部材(11)及び第2部材(12)間の距離を測定する距離測定方法であって、前記第1部材(11)に前記第2部材(12)に向かって開口する凹部(110)を形成し、前記凹部(110)に一部が嵌合するように永久磁石(2)を配置し、前記永久磁石(2)により発生する磁界の強度を検出する磁界センサ(3)を前記第2部材(12)に配置し、前記第1部材(11)は、前記永久磁石(2)の磁路の一部を構成する軟磁性体からなり、前記永久磁石(2)は、それ自体の磁力によって前記第1部材(11)に固定され、かつ前記凹部(110)への嵌合により前記離接方向に対して交差する方向への移動が規制され、前記磁界センサ(3)によって検出される磁界の強度に基づいて前記第1部材(11)及び前記第2部材(12)間の距離を測定する、距離測定方法。 [7] A distance measuring method for measuring a distance between a first member (11) and a second member (12) relatively movable in a predetermined contact / separation direction, wherein the first member (11) is provided with the second member. A recess (110) that opens toward the member (12) is formed, and a permanent magnet (2) is arranged so that a part thereof is fitted into the recess (110), and a magnetic field generated by the permanent magnet (2) A magnetic field sensor (3) for detecting the intensity of the magnetic field is disposed on the second member (12), and the first member (11) is formed of a soft magnetic material forming a part of a magnetic path of the permanent magnet (2). The permanent magnet (2) is fixed to the first member (11) by its own magnetic force, and moves in a direction intersecting with the separation / contact direction by fitting into the concave portion (110). Is regulated, based on the strength of the magnetic field detected by the magnetic field sensor (3). The distance between the first member (11) and said second member (12) is measured, the distance measuring method.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   The embodiments of the present invention have been described above, but the embodiments described above do not limit the invention according to the claims. Also, it should be noted that not all combinations of the features described in the embodiments are necessarily essential for solving the problem of the invention.

また、本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。例えば、上記実施の形態では、第2部材12が固定され、第1部材11が第2部材12に対して移動する場合について説明したが、これに限らず、第1部材11が機器のフレーム等の固定部材に固定され、第2部材12が第1部材11に対して移動するように距離測定システムを構成してもよい。   In addition, the present invention can be appropriately modified and implemented without departing from the spirit thereof. For example, in the above embodiment, the case where the second member 12 is fixed and the first member 11 moves with respect to the second member 12 has been described. The distance measurement system may be configured such that the second member 12 moves with respect to the first member 11 while being fixed to the fixing member.

1…距離測定システム
11…第1部材
110…凹部
12…第2部材
2…永久磁石
3…磁界センサ
DESCRIPTION OF SYMBOLS 1 ... Distance measuring system 11 ... First member 110 ... Recess 12 ... Second member 2 ... Permanent magnet 3 ... Magnetic field sensor

Claims (5)

所定の接離方向に相対移動可能な第1部材及び第2部材間の距離を測定する距離測定システムであって、
前記第1部材に形成された凹部に一部が嵌合すると共に、温度が100℃以上となる空間内に配置される永久磁石と、
前記第2部材に固定され、前記永久磁石により発生する磁界の強度を検出する磁界センサとを備え、
前記第1部材は、軟磁性体からなり、前記凹部が前記第2部材に向かって開口し、
前記永久磁石は、一対の磁極の並び方向に沿う中心軸線方向の一端部における端面が前記凹部の底面に面接触するように嵌合し、接着剤を用いることなくそれ自体の磁力のみによって前記第1部材に固定され、かつ前記凹部への嵌合により前記接離方向に対して交差する方向への移動が規制され、
前記永久磁石の中心軸線方向の全長に対する前記凹部に嵌合した部分の長さの割合が10〜50%である、
距離測定システム。
A distance measuring system that measures a distance between a first member and a second member that are relatively movable in a predetermined contact / separation direction,
A permanent magnet that partially fits into the recess formed in the first member and is disposed in a space where the temperature is 100 ° C. or higher;
A magnetic field sensor fixed to the second member and detecting the intensity of a magnetic field generated by the permanent magnet,
The first member is made of a soft magnetic material, and the concave portion opens toward the second member,
The permanent magnet is fitted so that an end surface at one end in a central axis direction along a direction in which the pair of magnetic poles are arranged is in surface contact with the bottom surface of the concave portion, and the second magnet is formed only by its own magnetic force without using an adhesive. Is fixed to one member, and movement in a direction intersecting with the contact / separation direction is restricted by fitting into the concave portion ,
The ratio of the length of the portion fitted into the concave portion to the total length of the permanent magnet in the central axis direction is 10 to 50%.
Distance measurement system.
前記永久磁石及び前記凹部は共に円柱状であり、
前記永久磁石の直径をDとし、前記凹部の内径をDとし、前記凹部における前記永久磁石の嵌合深さをDとしたとき、下記式を満たす、
請求項に記載の距離測定システム。
−D<D
The permanent magnet and the recess are both cylindrical,
The diameter of the permanent magnet and D 1, the inner diameter of the recess and D 2, when the fitting depth of the permanent magnets in the concave portion was set to D 3, satisfy the following formula,
The distance measuring system according to claim 1 .
D 2 −D 1 <D 3
前記永久磁石は、サマリウムコバルト磁石又はネオジム磁石である、
請求項1又は2に記載の距離測定システム。
The permanent magnet is a samarium cobalt magnet or a neodymium magnet,
The distance measuring system according to claim 1 .
前記永久磁石の残留磁束密度が1.0T以上である、
請求項1乃至3の何れか1項に記載の距離測定システム。
The permanent magnet has a residual magnetic flux density of 1.0 T or more;
The distance measuring system according to claim 1 .
所定の接離方向に相対移動可能な第1部材及び第2部材間の距離を測定する距離測定方法であって、
前記第1部材に前記第2部材に向かって開口する凹部を形成し、
前記凹部に一部が嵌合すると共に、温度が100℃以上となる空間内に永久磁石を配置し、
前記永久磁石により発生する磁界の強度を検出する磁界センサを前記第2部材に配置し、
前記第1部材は、前記永久磁石の磁路の一部を構成する軟磁性体からなり、
前記永久磁石は、一対の磁極の並び方向に沿う中心軸線方向の一端部における端面が前記凹部の底面に面接触するように嵌合し、接着剤を用いることなくそれ自体の磁力のみによって前記第1部材に固定され、かつ前記凹部への嵌合により前記接離方向に対して交差する方向への移動が規制され、
前記永久磁石の中心軸線方向の全長に対する前記凹部に嵌合した部分の長さの割合が10〜50%であり、
前記磁界センサによって検出される磁界の強度に基づいて前記第1部材及び前記第2部材間の距離を測定する、
距離測定方法。
A distance measuring method for measuring a distance between a first member and a second member relatively movable in a predetermined contact / separation direction,
Forming a recess in the first member that opens toward the second member;
Along with a part fitted into the recess, a permanent magnet is arranged in a space where the temperature is 100 ° C. or higher,
A magnetic field sensor for detecting the intensity of the magnetic field generated by the permanent magnet is disposed on the second member,
The first member is made of a soft magnetic material constituting a part of a magnetic path of the permanent magnet,
The permanent magnet is fitted so that an end surface at one end in a central axis direction along a direction in which the pair of magnetic poles are arranged is in surface contact with the bottom surface of the concave portion, and the second magnet is formed only by its own magnetic force without using an adhesive. Is fixed to one member, and movement in a direction intersecting with the contact / separation direction is restricted by fitting into the concave portion,
A ratio of a length of the portion fitted to the concave portion to a total length of the permanent magnet in a central axis direction is 10 to 50%,
Measuring the distance between the first member and the second member based on the strength of the magnetic field detected by the magnetic field sensor,
Distance measurement method.
JP2015006613A 2015-01-16 2015-01-16 Distance measuring system and distance measuring method Expired - Fee Related JP6623518B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015006613A JP6623518B2 (en) 2015-01-16 2015-01-16 Distance measuring system and distance measuring method
CN201620026135.XU CN205373622U (en) 2015-01-16 2016-01-12 Range finding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015006613A JP6623518B2 (en) 2015-01-16 2015-01-16 Distance measuring system and distance measuring method

Publications (2)

Publication Number Publication Date
JP2016133336A JP2016133336A (en) 2016-07-25
JP6623518B2 true JP6623518B2 (en) 2019-12-25

Family

ID=56278199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015006613A Expired - Fee Related JP6623518B2 (en) 2015-01-16 2015-01-16 Distance measuring system and distance measuring method

Country Status (2)

Country Link
JP (1) JP6623518B2 (en)
CN (1) CN205373622U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759651A (en) * 2018-06-12 2018-11-06 中国大唐集团科学技术研究院有限公司华中分公司 The magnet mounting structure of magnet type clearance measurement system and clearance measurement system
SG10201908225YA (en) * 2018-09-13 2020-04-29 Alstom Transp Tech Derailment detection device and associated railway vehicle and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609690Y2 (en) * 1975-06-23 1985-04-05 ソニー株式会社 Measuring device
JPH03109142U (en) * 1990-02-21 1991-11-08
JPH0478583U (en) * 1990-11-17 1992-07-08
JPH0587187A (en) * 1991-09-24 1993-04-06 Fuji Elelctrochem Co Ltd Magnetic damper device
JP3626525B2 (en) * 1995-02-20 2005-03-09 株式会社豊田自動織機 Weft measurement and storage device in jet loom
JP2007248105A (en) * 2006-03-14 2007-09-27 Ntn Corp Bearing with rotation angle detector

Also Published As

Publication number Publication date
JP2016133336A (en) 2016-07-25
CN205373622U (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US11391601B2 (en) Arrangement, method and sensor for measuring an absolute angular position using a multi-pole magnet
JP5108176B2 (en) Magnetic sensitive probe position sensor
JP5853046B2 (en) Magnetic field measuring device
JP6301970B2 (en) Magnetic linear or rotary encoder
US7521922B2 (en) Linear position sensor
JP6116061B2 (en) Current sensor
EP2525193B1 (en) Magnetic proximity sensor
JP4993401B2 (en) Stress sensor
JP2005195481A (en) Magnetic linear position sensor
CN108351222B (en) Position detecting device
JP6623518B2 (en) Distance measuring system and distance measuring method
WO2013017794A3 (en) Compact positioning assembly comprising an actuator and a sensor built into the yoke of the actuator
JP2012119472A (en) Flexible magnet, manufacturing method of the flexible magnet, magnetic encoder, and actuator
JP2019020402A (en) Magnetic position sensing system, magnetic position sensing system manufacturing method, and rotor position estimation method
JP2016145721A (en) Distance measuring system and distance measuring method
JP2010112936A (en) Current sensor and magnetic detection method
EP3407077A1 (en) Magnetic detecting unit and stroke detecting device provided with same
CN105051483A (en) Position measurement using angled collectors
JP5151958B2 (en) POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME
KR101402331B1 (en) Linear displacement sensor and linear displacement detecting system using electromagnetic induction
JP2016151486A (en) Distance measurement device
JP3957675B2 (en) Linear step motor position measurement system
US20140035567A1 (en) Position sensor, in particular for determining the position of a rotor of a planar direct drive
DE50213062D1 (en) Ferraris-sensor
CN109687677B (en) Rotary transformer stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6623518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees