JP6617229B2 - Oxazoline dispersants for carbon materials and carbon composite materials using them - Google Patents

Oxazoline dispersants for carbon materials and carbon composite materials using them Download PDF

Info

Publication number
JP6617229B2
JP6617229B2 JP2019502033A JP2019502033A JP6617229B2 JP 6617229 B2 JP6617229 B2 JP 6617229B2 JP 2019502033 A JP2019502033 A JP 2019502033A JP 2019502033 A JP2019502033 A JP 2019502033A JP 6617229 B2 JP6617229 B2 JP 6617229B2
Authority
JP
Japan
Prior art keywords
carbon
carbon material
materials
copolymer
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019502033A
Other languages
Japanese (ja)
Other versions
JPWO2018168867A1 (en
Inventor
明理 平田
明理 平田
学士 丸山
学士 丸山
晃哉 後藤
晃哉 後藤
辰宏 高橋
辰宏 高橋
雅彦 瀧
雅彦 瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
KJ Chemicals Corp
Original Assignee
Yamagata University NUC
KJ Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63522291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6617229(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yamagata University NUC, KJ Chemicals Corp filed Critical Yamagata University NUC
Publication of JPWO2018168867A1 publication Critical patent/JPWO2018168867A1/en
Application granted granted Critical
Publication of JP6617229B2 publication Critical patent/JP6617229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/27Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of alkylpolyalkylene glycol esters of unsaturated carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、炭素材料用分散促進剤、接着性向上剤、繊維状炭素材料用集束剤、これらに修飾された表面修飾炭素材料及び炭素複合材料に関する。   The present invention relates to a dispersion accelerator for carbon materials, an adhesion improver, a sizing agent for fibrous carbon materials, a surface-modified carbon material and a carbon composite material modified to these.

多くの炭素材料は一般に炭素原子から構成される材料をいい、炭素原子の結合様式および集合様式により様々な形態や機能を示し、中でも、黒鉛、フラーレン、カーボンナノチューブ、カーボンナノホーン、カーボンナノブラシ、フラーレン、グラフェン、炭素繊維(カーボンファイバー)、活性炭、ダイヤモンドライクカーボン、カーボンブラックなどが古くから注目され、補強材料(航空機、自動車、スポーツ用品、タイヤ)、触媒担体、電極材(乾電池、燃料電池)、分子篩膜、浄水用吸着材、消臭材、化粧品、シャンプー、フェイスマスク、表面コート、電磁波遮蔽材料、放熱材料、医薬品(吸着剤)として幅広く応用されている。   Many carbon materials are generally composed of carbon atoms, and show various forms and functions depending on the bonding mode and aggregation mode of carbon atoms. Among them, graphite, fullerene, carbon nanotube, carbon nanohorn, carbon nanobrush, fullerene , Graphene, carbon fiber (carbon fiber), activated carbon, diamond-like carbon, carbon black, etc. have been attracting attention for a long time, reinforcing materials (aircraft, automobiles, sports equipment, tires), catalyst carriers, electrode materials (dry cells, fuel cells), Widely used as molecular sieve membranes, adsorbents for water purification, deodorants, cosmetics, shampoos, face masks, surface coats, electromagnetic shielding materials, heat dissipation materials, pharmaceuticals (adsorbents).

炭素材料は炭素原子の6員環構造からなり、極性を持たないため、汎用材料に対する濡れ性や分散性が悪く、マトリックス樹脂との接着性が不十分のため、従来から様々な物理的、化学的方法により表面親水化処理などを行ってきた。例えば、炭素繊維において、表面にアミノ基を導入することによりエポキシ樹脂との接着性が向上され(非特許文献1)、また、表面にサイジング剤としてエポキシ樹脂と1,3−フェニレンビス−2−オキサゾリンを付着させることにより毛羽立ちを防止できたことが報告され(特許文献1)、さらに、ポリオキシアルキレン基とアミド基又はシアノ基からならアクリル樹脂及び水性媒体を含有する繊維集束剤が報告された(特許文献2)。一方、黒鉛粒子において、直接フッ素処理により表面にはイオン的な炭素とフッ素の結合が形成され、水に対する分散安定性が著しく向上された(非特許文献2)。また、ダイヤモンドの粉末、微細粒子を用いて、高温における強酸処理や過酸化水素存在下の紫外線照射などにより、表面に水酸基などの含酸素官能基が導入され、水、アルコールなどの汎用溶媒中に安定に分散できるダイヤモンドの製造方法が開示された(特許文献3、4)。   Since carbon materials have a 6-membered ring structure of carbon atoms and are not polar, they have poor wettability and dispersibility for general-purpose materials and have insufficient adhesion to matrix resins. Surface hydrophilization treatment has been carried out by conventional methods. For example, in carbon fiber, by introducing an amino group on the surface, the adhesiveness with the epoxy resin is improved (Non-patent Document 1), and the epoxy resin and 1,3-phenylenebis-2-2 are used as a sizing agent on the surface. It was reported that fuzzing could be prevented by attaching oxazoline (Patent Document 1), and further, a fiber sizing agent containing an acrylic resin and an aqueous medium was reported from a polyoxyalkylene group and an amide group or cyano group. (Patent Document 2). On the other hand, in the graphite particles, ionic carbon-fluorine bonds were formed on the surface by direct fluorine treatment, and the dispersion stability in water was significantly improved (Non-patent Document 2). In addition, oxygen-containing functional groups such as hydroxyl groups are introduced to the surface by using strong acid treatment at high temperatures or ultraviolet irradiation in the presence of hydrogen peroxide using diamond powder and fine particles, and in general solvents such as water and alcohol. A method for producing a diamond that can be stably dispersed has been disclosed (Patent Documents 3 and 4).

また、カーボンナノチューブ(CNT)は、直径数〜数十nm、長さ数〜数百μmの繊維状構造を有し、代表的なナノサイズ炭素材料として近年盛んに研究されている。CNTのアスペクトが非常に大きいため、優れた電気的、熱的、機械的特性を示す反面、非常に絡まりやすく、汎用樹脂系や金属系に対しては勿論のこと、同類の炭素系マトリックスに対しても、濡れ性、界面密着性や接着性などが悪く、CNTの特性を活かした高性能な複合材料は未だに得られていない。   Carbon nanotubes (CNT) have a fibrous structure with a diameter of several to several tens of nanometers and a length of several to several hundreds of micrometers, and have been actively studied as a typical nano-sized carbon material in recent years. CNT has a very large aspect, so it exhibits excellent electrical, thermal and mechanical properties, but it is very easy to get entangled, and not only for general-purpose resin and metal, but also for similar carbon matrix However, wettability, interfacial adhesion and adhesion are poor, and a high-performance composite material utilizing the characteristics of CNTs has not yet been obtained.

高機能性複合材料を開発するため、CNTの表面改質について、幾つかの技術が開示されている。非特許文献3では、真空高温(1400℃)状態でケイ素を昇華、CNT表面に蒸着させ、高温反応でSiC層をCNT表面に形成し、濡れ性の改善によって母材となる合金密着させる方法を提案した。また、非特許文献4では、CNTに対して熱処理(2000℃)してから、過酸化水素水と紫外線を用いて表面処理を行い、その後ポリカーボネートを母材とした樹脂複合材料を作製し、樹脂の機械的強度を向上させる方法を提案した。しかし、これらのCNT表面改質方法は真空や超高温条件下で実施するため、特殊な装置が必要となり、設備の面からもコストの面からも、工業的な製造方法であるとは言えない。   In order to develop a highly functional composite material, several techniques have been disclosed for surface modification of CNTs. Non-Patent Document 3 describes a method in which silicon is sublimated in a vacuum high temperature (1400 ° C.) state, vapor-deposited on the CNT surface, a SiC layer is formed on the CNT surface by a high temperature reaction, and an alloy serving as a base material is adhered by improving wettability. Proposed. In Non-Patent Document 4, heat treatment (2000 ° C.) is performed on CNTs, surface treatment is performed using hydrogen peroxide and ultraviolet rays, and then a resin composite material using polycarbonate as a base material is produced. A method to improve the mechanical strength of the steel was proposed. However, since these CNT surface modification methods are performed under vacuum or ultra-high temperature conditions, special equipment is required, and it cannot be said that they are industrial production methods from the viewpoint of equipment and cost. .

一方、CNTを特に処理せず、CNTと複合する樹脂を特別仕様にする技術も提案された。特許文献5では、第1工程において、オキサゾリン基を側鎖に有する重合体、熱可塑性樹脂と変性熱可塑性樹脂とを、二軸押出機により180℃で10分間溶融混練させ、フィラー分散用樹脂組成物を得た。第2工程において、フィラーであるCNTと第一工程で得たフィラー分散用樹脂組成物とを、再度二軸押出機により180℃で10分間の溶融混練を行い、導電性を示す熱可塑性樹脂の複合体を取得したことが開示された。この方法は特定の熱可塑性樹脂に有効であるが、高融点や熱分解性熱可塑性樹脂やオキサゾリン基を側鎖に有する重合体又は変性熱可塑性樹脂と相溶しない熱可塑性樹脂、熱硬化性樹脂、金属系材料、炭素材料などにおいて、溶融混練ができないので、フィラー分散用樹脂組成物を取得できず、CNTとの複合化は期待されるほどにはいたっていない。   On the other hand, a technique has been proposed in which CNT is not particularly treated, and the resin combined with CNT has a special specification. In Patent Document 5, in the first step, a polymer having an oxazoline group in the side chain, a thermoplastic resin and a modified thermoplastic resin are melt-kneaded at 180 ° C. for 10 minutes by a twin-screw extruder, and a resin composition for filler dispersion is obtained. I got a thing. In the second step, the filler-dispersed resin composition obtained in the first step and the CNT filler are melt-kneaded again at 180 ° C. for 10 minutes using a twin-screw extruder to obtain a thermoplastic resin exhibiting conductivity. It has been disclosed that a complex has been obtained. This method is effective for a specific thermoplastic resin, but is not compatible with a high melting point or heat decomposable thermoplastic resin, a polymer having an oxazoline group in the side chain or a modified thermoplastic resin, or a thermosetting resin. In addition, since metal-based materials, carbon materials, and the like cannot be melt-kneaded, a filler-dispersing resin composition cannot be obtained, and the composite with CNT is not as expected.

炭素、2000、No.195、336−340Carbon, 2000, No. 195, 336-340 日本化学会誌、1993、No.6、746−751The Chemical Society of Japan, 1993, No. 6, 746-751 長野県工技センター研報、2006、No.1、M10−M15Nagano Prefectural Institute of Technology, 2006, No. 1, M10-M15 2013年度精密工学会春季大会学術講演会講演論文集、659−660Proc. Of the 2013 JSPE Spring Conference, 659-660

特開平5−132874号公報JP-A-5-132874 特開2014−152428号公報JP 2014-152428 A 特開平9−025110号公報Japanese Patent Laid-Open No. 9-025110 特開2012−046378号公報JP 2012-046378 A 特開2014−149164号公報JP 2014-149164 A

本発明は、特殊な分散や表面処理の技術、設備を要さず、炭素材料本来の特性を損なうことがなく、簡便な方法で各種炭素材料の表面に親水性、接着性を付与できる分散促進剤、接着性向上剤、繊維状炭素材料の集束剤を提供し、また当該接着性向上剤を用いて表面が改質された炭素材料(表面修飾炭素材料)を提供することを課題とする。当該接着性向上剤及び表面修飾炭素材料は、工業的手段により高収率で製造することができ、またこれらを用いて、各種固形材料と反応させることにより特異性能を有する好適な炭素複合材料を供することを課題とする。   The present invention does not require special dispersion and surface treatment techniques and equipment, and does not impair the original characteristics of the carbon material, and can facilitate imparting hydrophilicity and adhesion to the surface of various carbon materials by a simple method. It is an object of the present invention to provide a sizing agent, an adhesion improver, and a sizing agent for a fibrous carbon material, and to provide a carbon material (surface modified carbon material) whose surface is modified using the adhesion improver. The adhesion improver and the surface-modified carbon material can be produced in high yield by industrial means, and by using these, a suitable carbon composite material having specific performance can be obtained by reacting with various solid materials. The subject is to provide.

本発明者らは、これらの課題を解決するために鋭意検討を行った結果、2−オキサゾリン系モノマー(a)と低Tg(ガラス転移温度)ビニル系モノマー(b)を構成単位として含有する共重合体が炭素材料の他種材料への分散促進や、炭素材料の表面接着性向上、繊維状炭素材料の集束性付与に特異な性能を示すことを見出した。また、当該共重合体からなる接着性向上剤を用いて各種炭素材料と反応させることによって、接着性の付与された表面修飾炭素材料を取得することができた。さらに、接着性向上剤と表面修飾炭素材料を用いて汎用の炭素材料や熱可塑性樹脂などと反応させ、機械的特性に優れ、良好な耐熱性、耐摩耗性、放熱性と導電性を有する炭素複合材料を得ることができ、上記課題を解決し、本発明に至った。   As a result of intensive studies to solve these problems, the present inventors have found that a co-polymer containing 2-oxazoline monomer (a) and low Tg (glass transition temperature) vinyl monomer (b) as constituent units. It has been found that the polymer exhibits unique properties for promoting the dispersion of carbon materials into other types of materials, improving the surface adhesion of carbon materials, and imparting the convergence of fibrous carbon materials. Moreover, the surface modification carbon material to which adhesiveness was provided was able to be acquired by making it react with various carbon materials using the adhesive improvement agent which consists of the said copolymer. Furthermore, carbon with excellent mechanical properties, good heat resistance, wear resistance, heat dissipation, and conductivity by reacting with general-purpose carbon materials and thermoplastic resins using adhesion improvers and surface-modified carbon materials A composite material can be obtained, and the above problems have been solved and the present invention has been achieved.

すなわち、本発明は、
(1)2−オキサゾリン系モノマー(a)5〜98モル%と、ホモポリマーのガラス転移温度(Tg)が−100〜80℃を有するビニル系モノマー(b)2〜95モル%を構成単位として含有する共重合体(A)、
(2)ホモポリマーのガラス転移温度(Tg)が−100〜80℃を有するビニル系モノマー(b)はアルコキシ(ポリ)アルキレングリコール(メタ)アクリレートであることを特徴とする前記(1)に記載の共重合体(A)、
(3)前記(1)又は(2)に記載の共重合体(A)が水中に分散させてなる水分散液、
(4)前記(1)又は(2)に記載の共重合体(A)を用いる炭素材料用分散促進剤、
(5)炭素材料はカーボンナノチューブである前記(4)に記載の炭素材料用分散促進剤、
(6)前記(1)又は(2)に記載の共重合体(A)を用いる炭素材料用接着性向上剤、
(7)前記(6)に記載の接着性向上剤により表面修飾されたことを特徴とする表面修飾炭素材料、
(8)表面に接着性向上剤を0.1〜100mg/m含有することを特徴とする前記(7)に記載の表面修飾炭素材料、
(9)前記(1)又は(2)に記載の共重合体(A)を用いる繊維状炭素材料用集束剤、
(10)前記(2)に記載の水分散液中で炭素材料を含浸させた後加熱することを特徴とする表面修飾炭素材料の製造方法、
(11)前記(7)又は(8)に記載の表面修飾炭素材料と固形材料からなる炭素複合材料であって、かつ、固形材料にはカルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミド基からなる群から選べる1種以上の官能基を有し、これらの官能基のオキサゾリン基と反応してなる化学結合を表面修飾炭素材料と固形材料の間に存在することを特徴とする炭素複合材料、
(12)固形材料は炭素材料であることを特徴とする前記(11)に記載の炭素複合材料、
(13)固形材料は熱可塑性樹脂であることを特徴とする前記(11)に記載の炭素複合材料、
(14)固形材料は炭素材料及び熱可塑性樹脂であることを特徴とする前記(11)に記載の炭素複合材料
を提供するものである。
That is, the present invention
(1) 2-oxazoline monomer (a) 5 to 98 mol% and vinyl monomer (b) 2 to 95 mol% having a glass transition temperature (Tg) of the homopolymer of −100 to 80 ° C. as structural units Containing copolymer (A),
(2) The vinyl monomer (b) having a glass transition temperature (Tg) of the homopolymer of −100 to 80 ° C. is an alkoxy (poly) alkylene glycol (meth) acrylate, described in (1) above A copolymer (A) of
(3) An aqueous dispersion in which the copolymer (A) according to (1) or (2) is dispersed in water,
(4) A dispersion accelerator for carbon material using the copolymer (A) according to (1) or (2),
(5) The carbon material dispersion accelerator according to (4), wherein the carbon material is a carbon nanotube,
(6) An adhesion improver for a carbon material using the copolymer (A) according to (1) or (2),
(7) A surface-modified carbon material that is surface-modified with the adhesion improver according to (6),
(8) The surface-modified carbon material according to (7) above, which contains 0.1 to 100 mg / m 2 of an adhesion improver on the surface,
(9) A sizing agent for a fibrous carbon material using the copolymer (A) according to (1) or (2),
(10) A method for producing a surface-modified carbon material, which is heated after impregnating the carbon material in the aqueous dispersion according to (2),
(11) A carbon composite material comprising the surface-modified carbon material according to (7) or (8) and a solid material, and the solid material includes a carboxyl group, a phenolic hydroxyl group, an acid anhydride functional group, an epoxy Having at least one functional group selected from the group consisting of a group, a thiol group, an amine group and an amide group, and a chemical bond formed by reacting with the oxazoline group of these functional groups between the surface-modified carbon material and the solid material Carbon composite material, characterized by
(12) The carbon composite material according to (11), wherein the solid material is a carbon material,
(13) The carbon composite material according to (11), wherein the solid material is a thermoplastic resin,
(14) The carbon composite material according to (11), wherein the solid material is a carbon material and a thermoplastic resin.

本発明の共重合体(A)は、2−オキサゾリン系モノマー(a)5〜98モル%とホモポリマーのガラス転移温度(Tg)が−100〜80℃を有するビニル系モノマー(b)2〜95モル%を構成単位として含有する。(a)と(b)の含有量はこの範囲内であれば、得られる共重合体(A)は、2−オキサゾリン系モノマーのホモポリマー、Tgが−100〜80℃を有するビニル系モノマーのホモポリマー、およびこれらのホモポリマーの混合物(ブレンドポリマー)に比べ、炭素材料の分散促進剤としても接着性向上剤としても、また繊維状炭素材料の集束剤としても、特異的な効果が確認された。ポリマーの組成や構造は、当該特異効果との因果関係について、不明であるが、本発明の(a)と(b)が部分的にブロック状に配列された方がより効果が高いと発明者らが推測している。   The copolymer (A) of the present invention comprises a vinyl monomer (b) 2 having a 2-oxazoline monomer (a) 5 to 98 mol% and a homopolymer glass transition temperature (Tg) of −100 to 80 ° C. 95 mol% is contained as a structural unit. If the contents of (a) and (b) are within this range, the resulting copolymer (A) is a homopolymer of a 2-oxazoline monomer, a vinyl monomer having a Tg of −100 to 80 ° C. Compared to homopolymers and mixtures of these homopolymers (blend polymers), specific effects were confirmed both as a dispersion promoter for carbon materials, as an adhesion improver, and as a sizing agent for fibrous carbon materials. It was. The composition and structure of the polymer are unclear as to the causal relationship with the specific effect, but the inventor believes that the effect is higher when the (a) and (b) of the present invention are partially arranged in blocks. Guess.

本発明の共重合体(A)は、低Tg(−100℃〜80℃)ビニル系モノマー由来の柔軟性及び、炭素材料表面のカルボン酸又はフェノール性水酸基と反応性の高いオキサゾリン基を有し、CNT等アスペクトの大きい炭素材料においても、水や有機溶媒、可塑性樹脂中に容易に分散でき、かつ、再凝集が抑制され、安定的な分散状態を保つことができる。また、繊維状炭素材料に対して優れる集束性を提供できる。   The copolymer (A) of the present invention has flexibility derived from a low Tg (-100 ° C to 80 ° C) vinyl monomer and an oxazoline group highly reactive with a carboxylic acid or a phenolic hydroxyl group on the surface of a carbon material. Even a carbon material having a large aspect such as CNT can be easily dispersed in water, an organic solvent, or a plastic resin, and re-aggregation is suppressed, so that a stable dispersed state can be maintained. In addition, excellent convergence can be provided for the fibrous carbon material.

本発明の共重合体(A)を接着性向上剤として用いて、各種炭素材料と温和な条件下で反応させることによって、炭素材料の表面に接着性向上剤が均一に覆われ、かつ、脱離しない表面修飾炭素材料を工業的な手法で簡便に製造することができる。また、得られた表面修飾炭素材料において、表面に未反応のオキサゾリン基を有するため、多種の固形材料、例えば、同種又は異種の炭素材料、オキサゾリン基と反応できるカルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミドからなる群から選べる1種以上の官能基を有する固形の熱可塑性樹脂と反応させることにより、炭素材料と樹脂材料の特性を融合した特異性能を有する炭素複合材料を容易に取得することができる。   By using the copolymer (A) of the present invention as an adhesion improver and reacting with various carbon materials under mild conditions, the adhesion improver is uniformly covered on the surface of the carbon material, and the carbon material is removed. A surface-modified carbon material that is not separated can be easily produced by an industrial technique. In addition, since the surface-modified carbon material obtained has an unreacted oxazoline group on the surface, various solid materials, for example, the same or different carbon materials, carboxyl groups that can react with oxazoline groups, phenolic hydroxyl groups, acid anhydrides Specific properties that combine the characteristics of carbon and resin materials by reacting with a solid thermoplastic resin having one or more functional groups selected from the group consisting of functional groups, epoxy groups, thiol groups, amine groups and amides It is possible to easily obtain a carbon composite material having.

以下、本発明を詳細に説明する。
本発明の共重合体(A)は、2−オキサゾリン系モノマー(a)とTgが−100〜70℃のビニル系モノマー(b)を構成単位として含有することが特徴である。ビニル系モノマー(b)は低Tgであり、高い柔軟性を有するため、炭素材料の有機系や無機系の液体又は固体の他種材料中への分散を促進する効果を示し、また、オキサゾリン基は炭素材料表面のカルボン酸又はフェノール性水酸基と高い反応性を有するため、一旦分散された炭素材料の再凝集を防止できるため、安定的な分散効果を提供できる。共重合体(A)は、(a)と(b)を特定の配合比で含有すること、即ち、(a)は5〜98モル%、(b)は2〜95モル%を含有することが好ましい。(a)の含有量は5モル%未満であれば、CNT等アスペクトが非常に大きい炭素材料において、分散後の再凝集が十分に抑制できない恐れがあり、また、接着性向上剤に用いる場合は、炭素材料の表面を全面的かつ均一に覆うことが困難であるため、十分な接着性向上効果が得られない恐れがある。一方、(a)の含有量は98モル%を超える場合、(b)の含有量は相対的低減し、分散し切れない部分が残存する可能性があった。(b)の含有量は2モル%以上であれば、各種炭素材料においても良好な分散状態が形成され、また(b)の含有量は95モル%を超えると、反応性オキサゾリン基の含有量が十分に確保できず、分散安定性や接着性向上効果、炭素繊維の集束効果が満足できなくなる問題がある。本発明のコポリマー、及びそれから得られる分散促進剤、接着性向上剤と繊維状炭素材料の集束剤は、(a)のオキサゾリン基の反応性による再凝集抑制効果、接着性向上効果と、(b)の低Tgによる柔軟性とのバランスが取れているため、優れた分散性、分散安定性、接着性向上性及び集束効果が最大限に発揮できていると考えられる。また、共重合体(A)が、炭素材料の表面に均一に配置するだけではなく、化学反応により形成される化学結合を介して炭素材料と強く接合し、炭素材料の表面に親水性と反応性を同時に付与されているため、炭素材料の表面に容易に付着し、かつ、半永久的に脱離しないことが、本発明の接着性向上剤として提供できる最も特異的な効果である。
Hereinafter, the present invention will be described in detail.
The copolymer (A) of the present invention is characterized by containing a 2-oxazoline monomer (a) and a vinyl monomer (b) having a Tg of −100 to 70 ° C. as constituent units. Since the vinyl monomer (b) has a low Tg and high flexibility, it exhibits the effect of promoting the dispersion of the carbon material in organic or inorganic liquids or solids in other types of materials, and has an oxazoline group. Has a high reactivity with the carboxylic acid or phenolic hydroxyl group on the surface of the carbon material, and can prevent re-aggregation of the carbon material once dispersed, thereby providing a stable dispersion effect. The copolymer (A) contains (a) and (b) at a specific blending ratio, that is, (a) contains 5 to 98 mol% and (b) contains 2 to 95 mol%. Is preferred. If the content of (a) is less than 5 mol%, there is a risk that reaggregation after dispersion may not be sufficiently suppressed in a carbon material having a very large aspect such as CNT, and when used as an adhesion improver. Since it is difficult to cover the entire surface of the carbon material uniformly and uniformly, there is a possibility that a sufficient effect of improving adhesiveness cannot be obtained. On the other hand, when the content of (a) exceeds 98 mol%, the content of (b) is relatively reduced, and there is a possibility that a portion that cannot be completely dispersed remains. If the content of (b) is 2 mol% or more, a good dispersion state is formed also in various carbon materials, and if the content of (b) exceeds 95 mol%, the content of reactive oxazoline groups Cannot be sufficiently ensured, and there is a problem that the dispersion stability and adhesion improving effect and the carbon fiber focusing effect cannot be satisfied. The copolymer of the present invention, and the dispersion accelerator, adhesion improver and sizing agent of the fibrous carbon material obtained therefrom are the reaggregation suppressing effect and the adhesion improving effect due to the reactivity of the oxazoline group of (a), (b) Therefore, it is considered that excellent dispersibility, dispersion stability, adhesion improvement, and focusing effect can be maximized. In addition, the copolymer (A) is not only uniformly arranged on the surface of the carbon material, but also strongly bonded to the carbon material through a chemical bond formed by a chemical reaction, and reacts with the hydrophilicity on the surface of the carbon material. Therefore, the most specific effect that can be provided as the adhesion improver of the present invention is that it easily adheres to the surface of the carbon material and does not leave semipermanently.

2−オキサゾリン系モノマー(a)は、2−ビニル−2−オキサゾリン、4−メチル−2−ビニル−2−オキサゾリン、5−メチル−2−ビニル−2−オキサゾリン、4−エチル−2−ビニル−2−オキサゾリン、5−エチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリン、4,4−ジエチル−2−ビニル−2−オキサゾリン、4,5−ジメチル−2−ビニル−2−オキサゾリン、4,5−ジエチル−2−ビニル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、4−メチル−2−イソプロペニル−2−オキサゾリン、5−メチル−2−イソプロペニル−2−オキサゾリン、4−エチル−2−イソプロペニル−2−オキサゾリン、5−エチル−2−イソプロペニル−2−オキサゾリン、4,4−ジメチル−2−イソプロペニル−2−オキサゾリン、4,4−ジエチル−2−イソプロペニル−2−オキサゾリン、4,5−ジメチル−2−イソプロペニル−2−オキサゾリン、4,5−ジエチル−2−イソプロペニル−2−オキサゾリンからなる群から選べる1種以上のモノマーである。また、これらの2−オキサゾリン系モノマーの中では、カルボキシル基、フェノール性水酸基、酸無水物基、チオール基などの官能基と高い反応性を有する2−ビニル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、5−メチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリンが好ましく、さらに2−ビニル−2−オキサゾリンと2−イソプロペニル−2−オキサゾリンが最も好ましい。   2-Oxazoline monomers (a) are 2-vinyl-2-oxazoline, 4-methyl-2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4-ethyl-2-vinyl- 2-oxazoline, 5-ethyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4,4-diethyl-2-vinyl-2-oxazoline, 4,5-dimethyl- 2-vinyl-2-oxazoline, 4,5-diethyl-2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 4-methyl-2-isopropenyl-2-oxazoline, 5-methyl-2- Isopropenyl-2-oxazoline, 4-ethyl-2-isopropenyl-2-oxazoline, 5-ethyl-2-isopropenyl-2-oxazoline, 4 4-dimethyl-2-isopropenyl-2-oxazoline, 4,4-diethyl-2-isopropenyl-2-oxazoline, 4,5-dimethyl-2-isopropenyl-2-oxazoline, 4,5-diethyl-2 -One or more monomers selected from the group consisting of isopropenyl-2-oxazoline. Among these 2-oxazoline monomers, 2-vinyl-2-oxazoline, 2-isopropenyl- having high reactivity with functional groups such as a carboxyl group, a phenolic hydroxyl group, an acid anhydride group, and a thiol group. 2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, and 4,4-dimethyl-2-vinyl-2-oxazoline are preferable, and 2-vinyl-2-oxazoline and 2-isopropenyl-2-oxazoline are more preferable. Most preferred.

低Tgビニル系モノマー(b)は、ホモポリマーのガラス転移温度(Tg)が−100〜70℃を有するビニル系モノマーであり、具体的には、アクリル酸メチル(Tg:8℃)、アクリル酸エチル(Tg:−22℃)、アクリル酸ブチル(Tg:−54℃)、アクリル酸2−エチルヘキシル(Tg:−70℃)、アクリル酸オクチル(Tg:−65℃)、アクリル酸ノニル(Tg:−58℃)、アクリル酸ドデシル(Tg:−3℃)、アクリル酸シクロヘキシル(Tg:15℃)、2−ヒドロキシ−3−フェノキシプロピルアクリレート(Tg:17℃)、メタクリル酸エチル(Tg:65℃)、メタクリル酸nブチル(Tg:20℃)、メタクリル酸イソブチル(Tg:48℃)、メタクリル酸2−エチルヘキシル(Tg:−10℃)メタクリル酸オクチル(Tg:−20℃)、メタクリル酸ドデシル(Tg:−65℃)、メタクリル酸シクロヘキシル(Tg:66℃)などの(メタ)アクリル酸アルキルエステル、アクリル酸2−ヒドロキシエチル(Tg:−15℃)、アクリル酸2−ヒドロキシプロピル(Tg:−7℃)、アクリル酸4−ヒドロキシブチル(Tg:−40℃)、メタクリル酸2−ヒドロキシエチル(Tg:55℃)、1,4−シクロヘキサンジメタノールモノアクリレート(Tg:18℃)などの(メタ)アクリル酸ヒドロキシアルキル、メトキシエチルアクリレート(Tg:−50℃)、エトキシエチルアクリレート(Tg:−50℃)、メトキシブチルアクリレート(Tg:−56℃)、3?メトキシプロピルアクリレート(Tg:−75℃)、ブトキシエチルアクリレート(Tg:−40℃以下)、フェノキシジエチレングリコールアクリレート(Tg:−25℃)、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、ブトキシポリエチレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール(メタ)アクリレート、ラウロキシポリエチレングリコール(メタ)アクリレート、ステアロキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、オクトキシポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレートなどのオキシアルキレン基含有モノマーやアルコキシ(ポリ)アルコキシグリコール(メタ)アクリレート、メチルビニルエーテル(Tg:−31℃)、エチルビニルエーテル(Tg:−43℃)、プロピルビニルエーテル(Tg:−49℃)、ブチルビニルエーテル(Tg:−55℃)、イソブチルビニルエーテル(Tg:−19℃)、2−エチルヘキシルビニルエーテル(Tg:−66℃)およびドデシルビニルエーテル(Tg:−62℃)などのアルキルビニルエーテルが挙げられる。これらは、単独であるいは2種以上を組み合わせて使用することができる。   The low Tg vinyl monomer (b) is a vinyl monomer having a glass transition temperature (Tg) of -100 to 70 ° C., specifically, methyl acrylate (Tg: 8 ° C.), acrylic acid. Ethyl (Tg: -22 ° C), butyl acrylate (Tg: -54 ° C), 2-ethylhexyl acrylate (Tg: -70 ° C), octyl acrylate (Tg: -65 ° C), nonyl acrylate (Tg: -58 ° C), dodecyl acrylate (Tg: -3 ° C), cyclohexyl acrylate (Tg: 15 ° C), 2-hydroxy-3-phenoxypropyl acrylate (Tg: 17 ° C), ethyl methacrylate (Tg: 65 ° C) ), N-butyl methacrylate (Tg: 20 ° C.), isobutyl methacrylate (Tg: 48 ° C.), 2-ethylhexyl methacrylate (Tg: −10 ° C.) (Meth) acrylic acid alkyl esters such as octyl crylate (Tg: -20 ° C), dodecyl methacrylate (Tg: -65 ° C), cyclohexyl methacrylate (Tg: 66 ° C), 2-hydroxyethyl acrylate (Tg: -15 ° C), 2-hydroxypropyl acrylate (Tg: -7 ° C), 4-hydroxybutyl acrylate (Tg: -40 ° C), 2-hydroxyethyl methacrylate (Tg: 55 ° C), 1,4- Hydroxyalkyl (meth) acrylate such as cyclohexanedimethanol monoacrylate (Tg: 18 ° C), methoxyethyl acrylate (Tg: -50 ° C), ethoxyethyl acrylate (Tg: -50 ° C), methoxybutyl acrylate (Tg:- 56 ° C), 3-methoxypropyl acrylate (Tg: -75 ° C), butoxy Tyl acrylate (Tg: -40 ° C or lower), phenoxydiethylene glycol acrylate (Tg: -25 ° C), methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, butoxypolyethylene glycol (meth) acrylate, octoxypolyethylene glycol (Meth) acrylate, lauroxy polyethylene glycol (meth) acrylate, stearoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol-polypropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, Nonylphenoxypolypropylene glycol (meth) acrylate Oxyalkylene group-containing monomers such as Nylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxyethylene glycol-polypropylene glycol (meth) acrylate, octoxypolyethylene glycol-polypropylene glycol (meth) acrylate, and alkoxy (poly) alkoxy glycol ( (Meth) acrylate, methyl vinyl ether (Tg: −31 ° C.), ethyl vinyl ether (Tg: −43 ° C.), propyl vinyl ether (Tg: −49 ° C.), butyl vinyl ether (Tg: −55 ° C.), isobutyl vinyl ether (Tg: − 19 ° C.), alkyl vinyl ethers such as 2-ethylhexyl vinyl ether (Tg: −66 ° C.) and dodecyl vinyl ether (Tg: −62 ° C.). These can be used alone or in combination of two or more.

また、これらの低Tgビニル系モノマー(b)の中では、得られる共重合体(A)が水中に分散させることにより水分散液を製造する場合は、水溶性と親水性のものが好ましい。ここで言う水分散液は、共重合体(A)が水に溶解してなる水溶液及び/又は水に分散されてなる分散液である。   Among these low Tg vinyl monomers (b), water-soluble and hydrophilic ones are preferred when an aqueous dispersion is produced by dispersing the resulting copolymer (A) in water. The aqueous dispersion mentioned here is an aqueous solution in which the copolymer (A) is dissolved in water and / or a dispersion in which the copolymer (A) is dispersed in water.

2−オキサゾリン系モノマー(a)と低Tgビニル系モノマー(b)の共重合方法は、特に限定されるものではなく、公知のラジカル重合法により実施可能である。例えば、アルコール、酢酸エチルなどの有機溶媒中や水中の溶液重合、懸濁重合、乳化重合、塊状重合法などが挙げられる。有機溶媒中の溶液重合法を採用する場合、重合溶媒としては、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルアルコール、エチルアルコールなどの単独もしくは混合で用いることができる。   The copolymerization method of the 2-oxazoline monomer (a) and the low Tg vinyl monomer (b) is not particularly limited, and can be carried out by a known radical polymerization method. Examples thereof include solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization in an organic solvent such as alcohol and ethyl acetate. When the solution polymerization method in an organic solvent is employed, as a polymerization solvent, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl alcohol, ethyl alcohol, or the like can be used alone or in combination.

共重合に用いる重合開始剤としては、アゾ系、有機過酸化物系、無機過酸化物系、レドックス系など一般的に知られている重合開始剤が挙げられる。重合開始剤の使用量としては、通常重合性単量体成分総量に対して0.001〜10モル%程度である。また、連鎖移動剤による分子量の調整など通常のラジカル重合技術が適用される。   Examples of the polymerization initiator used for the copolymerization include generally known polymerization initiators such as azo, organic peroxide, inorganic peroxide, and redox. As the usage-amount of a polymerization initiator, it is about 0.001-10 mol% normally with respect to the polymerizable monomer component total amount. Further, a normal radical polymerization technique such as adjustment of molecular weight by a chain transfer agent is applied.

また、2−オキサゾリン系モノマー(a)と低Tgビニル系モノマー(b)が構成単位として、他の共重合可能なビニル系単量体との多元共重合することもできる。他の共重合可能なビニル系単量体としては、炭素鎖1〜12のアルキル基を有する(メタ)アクリレート、炭素鎖1〜12のアルキル基を有するN−アルキル(メタ)アクリルアミド、同じ又は異なる二つの炭素鎖1〜12のアルキル基を有するN,N−ジアルキル(メタ)アクリルアミド、芳香族置換基を有する(メタ)アクリレート又は(メタ)アクリルアミド、ヒドロキシアルキル(C1〜12)(メタ)アクリレート又は(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリル酸等が挙げられる。これらの共重合可能なビニル系単量体が単独でもよく、2種以上混合使用しても良く、配合される各種他の共重合可能なビニル系単量体のモル分率の合計は、30モル%以下であることが好ましい。   Further, the 2-oxazoline monomer (a) and the low Tg vinyl monomer (b) can be subjected to multi-component copolymerization with other copolymerizable vinyl monomers as constituent units. Other copolymerizable vinyl monomers include (meth) acrylates having an alkyl group having 1 to 12 carbon chains, N-alkyl (meth) acrylamides having an alkyl group having 1 to 12 carbon chains, the same or different N, N-dialkyl (meth) acrylamide having two carbon chain 1-12 alkyl groups, (meth) acrylate or (meth) acrylamide having an aromatic substituent, hydroxyalkyl (C1-12) (meth) acrylate or (Meth) acrylamide, (meth) acrylonitrile, (meth) acrylic acid and the like can be mentioned. These copolymerizable vinyl monomers may be used alone or in combination of two or more. The total molar fraction of various other copolymerizable vinyl monomers to be blended is 30 It is preferable that it is below mol%.

本発明の共重合体(A)の分子量は重量平均で1,000〜500,000である。また、好ましくは1,500〜100,000、さらに好ましくは2,000〜80,000である。重量平均分子量が1,000未満であると、CNTなど難分散炭素材料の初期分散不良が発生する場合があり、接着性向上剤としても炭素材料表面への不均一付着が起こりやすくなり、また、繊維状炭素材料の集束剤としても十分に満足できる効果を達成しない場合があり、好ましくない。一方、重量平均分子量が500,000を越えると、液体分散剤に溶解、分散させてなる共重合体溶液や分散液の粘度が著しく上昇し、結果は炭素材料の分散性も表面接着性も低下する傾向があった。   The molecular weight of the copolymer (A) of the present invention is 1,000 to 500,000 on a weight average basis. Moreover, Preferably it is 1,500-100,000, More preferably, it is 2,000-80,000. When the weight average molecular weight is less than 1,000, initial dispersion failure of a hardly dispersible carbon material such as CNT may occur, and uneven adhesion to the carbon material surface is likely to occur as an adhesion improver, As a sizing agent for a fibrous carbon material, a sufficiently satisfactory effect may not be achieved, which is not preferable. On the other hand, when the weight average molecular weight exceeds 500,000, the viscosity of the copolymer solution or dispersion obtained by dissolving and dispersing in the liquid dispersant is remarkably increased, and as a result, the dispersibility and surface adhesion of the carbon material are lowered. There was a tendency to.

本発明の共重合体(A)のガラス転移温度(Tg)が−80〜75℃である。また、好ましくは−70〜70℃、さらに好ましくは−50〜65℃である。Tgが−80℃未満であると、共重合体(A)の強度が著しく低下して接着性向上剤としての使用に適さないことがあり、一方、Tgが75℃を超えると、共重合体(A)の柔軟性が不十分で摩擦などにより炭素材料の表面から剥離し易くなり、また集束剤として集束した炭素繊維が硬くなり、加工性が低下する場合があり、さらに熱可塑性樹脂などと炭素複合材料を形成する際に樹脂との親和性が不十分で、得られる複合材料の機械的強度が満足できず、好ましくない。   The glass transition temperature (Tg) of the copolymer (A) of the present invention is −80 to 75 ° C. Moreover, Preferably it is -70-70 degreeC, More preferably, it is -50-65 degreeC. If the Tg is less than -80 ° C, the strength of the copolymer (A) may be significantly reduced and may not be suitable for use as an adhesion improver. On the other hand, if the Tg exceeds 75 ° C, the copolymer The flexibility of (A) is insufficient and it is easy to peel off from the surface of the carbon material due to friction or the like, and the carbon fiber bundled as a sizing agent may become hard and workability may be lowered. When the carbon composite material is formed, the affinity with the resin is insufficient, and the mechanical strength of the resulting composite material cannot be satisfied, which is not preferable.

共重合体(A)のガラス転移温度(Tg)は、公知である下記のFox式に基づいて計算された値である。共重合体(A)が、モノマー1、モノマー2、・・・、モノマーnのn種類のモノマー成分から構成される場合、
1/Tg=W1/Tg1+W2/Tg2+・・・+Wn/Tgn
(式中、Tgは共重合体(A)のガラス転移温度(単位:K)、Tgi(i=1、2、・・・n)はモノマーiがホモポリマーを形成した際のガラス転移温度(単位:K)、Wi(i=1、2、・・・n)はモノマーiの全モノマー成分中の重量(質量)分率を表す。)
なお、本発明において、「ホモポリマーを形成した際のガラス転移温度」とは、「当該モノマーの単独重合体のガラス転移温度」を意味する。
The glass transition temperature (Tg) of the copolymer (A) is a value calculated based on the well-known Fox formula below. When the copolymer (A) is composed of n types of monomer components of monomer 1, monomer 2, ..., monomer n,
1 / Tg = W1 / Tg1 + W2 / Tg2 + ... + Wn / Tgn
(In the formula, Tg is the glass transition temperature (unit: K) of the copolymer (A), and Tgi (i = 1, 2,... N) is the glass transition temperature when the monomer i forms a homopolymer ( (Unit: K), Wi (i = 1, 2,..., N) represents a weight (mass) fraction of all monomer components of monomer i.)
In the present invention, “glass transition temperature when homopolymer is formed” means “glass transition temperature of homopolymer of the monomer”.

本発明に用いられる炭素材料は、主に炭素だけから構成されている材料(カーボン材料)であり、大きく炭素繊維とナノ炭素材料に分けることができる。また、炭素繊維としてポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系と植物由来原料系のものが挙げられ、ナノ炭素材料としてはフラーレン類、カーボンナノチューブ(CNT)類、気相成長炭素繊維(ナノファイバ)類、グラフェン、グラファイト、炭素ナノ粒子、ダイヤモンド、人工ダイヤモンド、ナノダイヤモンド粒子、黒鉛、その他のナノ炭素などが挙げられる。中でも、PAN系炭素繊維は単位重量当たりの強度、弾性率に優れ、製造量が多いので、繊維系としてより好ましく、CNTはナノメートルレベルで構造を制御でき、新規機能材料として安価に工業的なレベルで製造できるようになったため、ナノ系炭素材料として好ましい。また、これらの炭素材料を市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を出させるための処理を行ってから使用してもよい。   The carbon material used in the present invention is a material mainly composed of carbon (carbon material), and can be broadly divided into carbon fibers and nanocarbon materials. Examples of carbon fibers include polyacrylonitrile (PAN), pitch, rayon, and plant-derived materials. Nanocarbon materials include fullerenes, carbon nanotubes (CNT), vapor-grown carbon fibers (nano Fiber), graphene, graphite, carbon nanoparticles, diamond, artificial diamond, nanodiamond particles, graphite, and other nanocarbons. Among them, PAN-based carbon fiber is more preferable as a fiber system because it is excellent in strength per unit weight and elastic modulus and has a large production amount, and CNT can control the structure at the nanometer level, and is inexpensive and industrially useful as a new functional material. Since it can be manufactured at a level, it is preferable as a nano-based carbon material. Moreover, even if these carbon materials are used as they are on the market, they may be used after a treatment for producing a large number of carboxyl groups and phenolic hydroxyl groups on the surface by a treatment method such as oxidation.

本発明に用いられる炭素材料はそれぞれの目的に応じて単独で使用してもよいし、2種類以上併用してもよい。また、これらの炭素材料は通常市販品のまま使用可能であるが、水や溶媒による洗浄、CNT同士の絡まり合いを解くためのビーズミル分散処理や超音波分散処理などの物理的な分散処理を実施してからの使用がより好ましい。   The carbon materials used in the present invention may be used singly or in combination of two or more according to their respective purposes. In addition, these carbon materials can be used as they are on the market, but physical dispersion treatments such as washing with water and solvents, bead mill dispersion treatment and ultrasonic dispersion treatment for entanglement of CNTs are implemented. The use after that is more preferable.

本発明に用いられる炭素材料の分散剤として、室温(25℃)において液体である有機溶媒類と水が好ましい。溶媒としては、メタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノーn−ブチルエーテル、エチレングリコールモノメチルエーテル等のエーテル類、テトラヒドロフラン(THF)、トルエン、キシレン、クロロホルム、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、N,N−ジメチルホルムアミド(DMF)、N−メチルアセトアミド、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、シクロヘキサン、アルコキシ−N,N−ジアルキルプロパンアミド、多価アルコール、シリコーンオイル、陽イオン性、陰イオン性、両イオン性又は非イオン性の界面活性剤類など幅広く用いることができる。また、これらのいずれか1種または複数の溶媒の組み合わせ、水溶性の有機溶媒と水からなる任意配合比の混合物としてもよい。   As the dispersant for the carbon material used in the present invention, organic solvents and water that are liquid at room temperature (25 ° C.) are preferable. Solvents include alcohols such as methanol, ethanol, isopropyl alcohol (IPA) and butanol, ketones such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone, esters such as ethyl acetate, propyl acetate and butyl acetate, ethylene glycol Ethers such as monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-butyl ether, ethylene glycol monomethyl ether, tetrahydrofuran (THF), toluene, xylene, chloroform, N-methylpyrrolidone (NMP), N-methylformamide (NMF), N, N-dimethylformamide (DMF), N-methylacetamide, dimethylacetamide (DMAc), dimethyl sulfoxide (DMS) ), Cyclohexane, alkoxy -N, N-dialkyl propanamide, polyhydric alcohols, silicone oils, cationic, anionic, can be used widely, such as zwitterionic or non-ionic surfactants. Moreover, it is good also as a mixture of arbitrary combination ratios which consist of a combination of any one or more of these, or a water-soluble organic solvent and water.

上記溶媒類分散剤において、特にNMP、NMF、DMF、DMSO、「KJCMPA」(3−メトキシ−N,N−ジメチルプロパンアミド、「KJCMPA」はKJケミカルズ株式会社の登録商標である)などの分子中に窒素原子又は硫黄原子を有する親水性溶媒が、本発明の共重合体(A)との相互作用が強く、それによりCNT等の炭素材料の再凝集を防止する効果を有し、安定的な分散液を形成されやすいので、好ましい。さらに、水を分散剤として用いる場合は、廃棄する有機溶剤を有しないため、環境に優しいメリットがあった。その際に、本願発明の共重合体(A)を分散促進剤として添加することによって、水中に分散され難い炭素材料の分散性が改善され、環境に優しい炭素材料の分散液を容易に取得することができる。   In the above solvent dispersant, especially in molecules such as NMP, NMF, DMF, DMSO, “KJCMPA” (3-methoxy-N, N-dimethylpropanamide, “KJCMPA” is a registered trademark of KJ Chemicals Co., Ltd.) A hydrophilic solvent having a nitrogen atom or a sulfur atom in the above has a strong interaction with the copolymer (A) of the present invention, thereby having an effect of preventing reaggregation of a carbon material such as CNT, and is stable. Since a dispersion liquid is easy to be formed, it is preferable. Further, when water is used as a dispersant, there is an environmentally friendly merit because it does not have an organic solvent to be discarded. At that time, by adding the copolymer (A) of the present invention as a dispersion accelerator, the dispersibility of the carbon material that is difficult to disperse in water is improved, and an environmentally friendly dispersion of the carbon material is easily obtained. be able to.

本発明の共重合体(A)は、炭素材料用分散促進剤、接着性向上剤、繊維状炭素材料用集束剤としての配合量が炭素材料及び分散剤の種類、形態、サイズ、前処理の有無と方法などによって大きく変動するが、分散剤に対して0.01〜20質量%、かつ、炭素材料に対して0.1〜100mg/mであることが好ましい。また、特に難分散の大きいアスペクトを有する炭素繊維(CF)やカーボンナノチューブ(CNT)において、分散剤に対して0.01〜10質量%、かつ、炭素材料に対して0.1〜80mg/mであることがより好ましい。The copolymer (A) of the present invention has a blending amount as a carbon material dispersion accelerator, an adhesion improver, and a sizing agent for a fibrous carbon material. Although it varies greatly depending on the presence and absence and the method, it is preferably 0.01 to 20% by mass with respect to the dispersant and 0.1 to 100 mg / m 2 with respect to the carbon material. Further, in carbon fibers (CF) and carbon nanotubes (CNT) having a particularly difficult dispersion aspect, 0.01 to 10% by mass with respect to the dispersant and 0.1 to 80 mg / m with respect to the carbon material. 2 is more preferable.

共重合体(A)の配合量は分散剤に対して0.01質量%未満であれば、炭素材料の種類と濃度によって、十分に分散できない問題が発生する恐れがあり、また、均一な分散液が得られても、その後分散液を用いて固形材料に炭素材料を接着させる際に、接着性向上剤としての効果が十分に提供できず、均一かつ高強度の炭素材料接着層を得られない可能性があり、或いは、繊維状炭素材料の集束剤として用いられる場合に、繊維の毛羽立ちや糸切れ現象が発生することがあり、満足できる集束効果が得られない恐れがあった。一方、共重合体(A)の配合量は分散剤に対して20質量%を超えると、炭素材料の分散促進効果が高く、均一な分散液の形成には問題がないが、接着性向上剤や繊維状炭素繊維として用いる場合、高濃度のため、物性のバラツキが発生しやすくなり、好ましくない。   If the blending amount of the copolymer (A) is less than 0.01% by mass with respect to the dispersant, there may be a problem in that it cannot be sufficiently dispersed depending on the type and concentration of the carbon material. Even when the liquid is obtained, when the carbon material is subsequently adhered to the solid material using the dispersion, the effect as an adhesion improver cannot be sufficiently provided, and a uniform and high strength carbon material adhesion layer can be obtained. There is a possibility that there is no possibility, or when used as a sizing agent for a fibrous carbon material, fiber fluffing or yarn breakage may occur, and there is a possibility that a satisfactory sizing effect cannot be obtained. On the other hand, when the blending amount of the copolymer (A) exceeds 20% by mass with respect to the dispersant, the effect of promoting the dispersion of the carbon material is high and there is no problem in forming a uniform dispersion, but the adhesion improver When it is used as a fibrous carbon fiber, it is not preferable because the concentration is high and the physical properties are likely to vary.

本発明において、得られた炭素材料の分散液を用いて、固形材料に炭素材料を接着させることができ、また、繊維状炭素材料を集束させることができる。さらに、接着性向上剤や集束剤として共重合体(A)の配合量は炭素材料に対して0.1〜100mg/mである場合、炭素材料が均一かつ高強度で固形物に接着させることができ、または均一に炭素繊維を覆うことができ、好ましい。In the present invention, the carbon material can be adhered to the solid material by using the obtained carbon material dispersion, and the fibrous carbon material can be focused. Furthermore, when the blending amount of the copolymer (A) as an adhesion improver or a sizing agent is 0.1 to 100 mg / m 2 with respect to the carbon material, the carbon material is adhered uniformly and with high strength to a solid material. Or can uniformly cover the carbon fiber, which is preferable.

本発明の炭素材料用分散促進剤、炭素材料用接着性向上剤および繊維状炭素材料用集束剤が、ともに共重合体(A)を含有することが特徴である。それらに含有する共重合体(A)は同一組成、構造であってもよく、また異なる組成や構造であってもよく、1種または2種以上を混合して使用することができる。さらに、コストが低い及び工程管理されやすい観点から分散促進剤であると同時に接着性向上剤、繊維状炭素材料用集束剤であることが好ましい。   The dispersion promoter for carbon materials, the adhesion improver for carbon materials, and the sizing agent for fibrous carbon materials of the present invention are all characterized by containing a copolymer (A). The copolymers (A) contained therein may have the same composition and structure, or may have different compositions and structures, and can be used alone or in combination. Further, from the viewpoint of low cost and easy process control, it is preferably a dispersion accelerator and at the same time, an adhesion improver and a sizing agent for fibrous carbon materials.

本発明の表面修飾炭素材料の製造方法は分散促進剤並びに接着向上剤、繊維状炭素材料用集束剤(以下分散促進剤等と略する)の種類および炭素材料と接着性向上剤、集束剤との反応方式によって大きく二つに分けることができる。一つは、共重合体(A)からなる接着性向上剤又は集束剤を液体媒体中で炭素材料の表面に接触させながら加熱する方法であり、もう一つは接着性向上剤又は集束剤を液体媒体中炭素材料の表面に接触させた後加熱する方法である。具体的には、(1)溶剤や水などの液体系分散剤、共重合体(A)からなる分散促進剤及びCNTなどの炭素材料を混合させ、加熱しながら炭素材料を分散させ、同時に炭素材料の表面に共重合体(A)を接着させ、表面修飾炭素材料を製造する方法;(2)上記(1)で得られた炭素材料分散液から炭素材料に共重合体(A)が付着した複合体を取り出し、加熱により表面修飾炭素材料を製造する方法が挙げられる。   The method for producing a surface-modified carbon material according to the present invention includes a dispersion accelerator, an adhesion improver, a type of sizing agent for fibrous carbon material (hereinafter abbreviated as a dispersion accelerator, etc.), a carbon material, an adhesion improver, and a sizing agent. It can be roughly divided into two types according to the reaction method. One is a method in which an adhesion improver or sizing agent comprising a copolymer (A) is heated in contact with the surface of a carbon material in a liquid medium, and the other is an adhesion improver or sizing agent. It is the method of heating after making it contact the surface of the carbon material in a liquid medium. Specifically, (1) a liquid dispersant such as a solvent or water, a dispersion accelerator composed of the copolymer (A), and a carbon material such as CNT are mixed, and the carbon material is dispersed while heating, and at the same time, carbon A method of producing a surface-modified carbon material by adhering the copolymer (A) to the surface of the material; (2) The copolymer (A) is attached to the carbon material from the carbon material dispersion obtained in (1) above. A method of taking out the composite and producing a surface-modified carbon material by heating can be mentioned.

上記(1)の表面修飾炭素材料の製造方法において、分散剤等として高沸点かつ熱的安定性が高く、オキサゾリン基と反応性を有しない溶媒を用いることができる。炭素材料の分散と表面修飾を同時にさせるため、分散工程の温度は、炭素材料の種類と共重合体(A)の組成、構造によって変動するが、40〜200℃であることが好ましく、60〜180℃であることがより好ましい。温度が40℃より低い場合、分散時間が長くなるか接着や修飾させる反応が十分に進行できない可能性があり、一方、温度が200℃より高い場合、炭素材料の塊が生成したり、沈降したりと安定な分散液を取得することが困難であった。また、この方法では炭素材料の分散と、共重合体(A)との接着や修飾させる反応が同時進行のため、混合効果を有する攪拌装置や、超音波洗浄機、ビーズミル分散機などを用いることがより好ましい。分散方法、装置及び温度により所要の処理時間が変わるが、10分〜10時間であることが好ましい。さらに、得られた表面修飾炭素材料は、分散液中に分散したまま次の工程に用いてもよく、分散液から取り出し、ウェート状または乾燥させてから使用することができる。   In the method for producing a surface-modified carbon material according to (1), a solvent having a high boiling point and high thermal stability and having no reactivity with an oxazoline group can be used as a dispersant or the like. In order to simultaneously disperse the carbon material and modify the surface, the temperature of the dispersion step varies depending on the type of carbon material and the composition and structure of the copolymer (A), but is preferably 40 to 200 ° C., 60 to It is more preferable that it is 180 degreeC. When the temperature is lower than 40 ° C., the dispersion time may be prolonged or the reaction for adhesion or modification may not proceed sufficiently. On the other hand, when the temperature is higher than 200 ° C., a lump of carbon material is generated or settled. It was difficult to obtain a stable dispersion. In this method, since the carbon material dispersion and the reaction for adhering to or modifying the copolymer (A) proceed at the same time, a stirrer having a mixing effect, an ultrasonic cleaner, a bead mill disperser, or the like is used. Is more preferable. The required treatment time varies depending on the dispersion method, apparatus and temperature, but it is preferably 10 minutes to 10 hours. Furthermore, the obtained surface-modified carbon material may be used in the next step while being dispersed in the dispersion, and can be used after being taken out from the dispersion and weighted or dried.

上記(2)の表面修飾炭素材料の製造方法において、分散剤等として低沸点溶媒や水、熱的不安定またオキサゾリン基と反応する溶媒に適用される。分散工程において、温度が−20〜40℃、処理時間が10分〜10時間であることが好ましい。また、上記各種分散装置を用いることがより好ましい。その後、表面に共重合体(A)を付着した炭素材料を、分散液から取り出し、加熱により乾燥させながら、炭素材料表面のカルボン酸基やフェノール性水酸基などを共重合体(A)のオキサゾリン基と反応させ、表面修飾炭素材料を取得できる。また、長繊維状やペレット状の炭素繊維、微粒子状のカーボンブラック等の非ナノ系材料において、分散剤による高分散状態に調製され難い場合、分散剤、共重合体(A)及び炭素材料の均一な混合液を調製した後、共重合体(A)を付着した炭素材料を混合液から取り出し、乾燥、加熱処理(焼成)することによって表面修飾炭素材料を取得することができる。共重合体(A)を付着した炭素材料と分散剤の分離方法はろ過、膜分離、透析、遠心分離など1種または2種以上の方法の組み合わせにより行うことができる。   In the method for producing a surface-modified carbon material of (2) above, the present invention is applied to a low-boiling solvent, water, a thermally unstable or solvent that reacts with an oxazoline group as a dispersant. In the dispersing step, it is preferable that the temperature is -20 to 40 ° C and the treatment time is 10 minutes to 10 hours. Moreover, it is more preferable to use the above various dispersing devices. Thereafter, the carbon material with the copolymer (A) attached to the surface is taken out of the dispersion and dried by heating, and the carboxylic acid group or phenolic hydroxyl group on the surface of the carbon material is converted into the oxazoline group of the copolymer (A). To obtain a surface-modified carbon material. In addition, in a non-nano-based material such as long-fiber or pellet-like carbon fiber or fine-particle carbon black, it is difficult to prepare a highly dispersed state with a dispersant, the dispersant, copolymer (A), and carbon material After preparing a uniform mixed solution, the surface-modified carbon material can be obtained by taking out the carbon material to which the copolymer (A) is attached from the mixed solution, drying and heating (baking). The carbon material to which the copolymer (A) is attached can be separated from the dispersant by one or a combination of two or more methods such as filtration, membrane separation, dialysis, and centrifugation.

焼成工程の温度は40〜240℃であり、60〜220℃が好ましく、80〜200℃がより好ましい。焼成温度が40℃未満であれば、オキサゾリン基の構造によって反応性の低いものが十分に反応できない可能性があり、また、焼成温度が240℃を超えると、共重合体(A)の熱分解や酸化などが起こりやすい問題があり、好ましくない。この方法で製造される表面修飾炭素材料は固形物であり、固形状のまま使用するか、分散剤に再分散してから使用することができる。   The temperature of a baking process is 40-240 degreeC, 60-220 degreeC is preferable and 80-200 degreeC is more preferable. If the calcination temperature is less than 40 ° C., there is a possibility that those having low reactivity cannot react sufficiently due to the structure of the oxazoline group, and if the calcination temperature exceeds 240 ° C., thermal decomposition of the copolymer (A) And oxidation are likely to occur, which is not preferable. The surface-modified carbon material produced by this method is a solid and can be used as it is or after being redispersed in a dispersant.

本発明の炭素複合材料は表面修飾炭素材料と固形材料との反応で得られるものである。ここでいう固形材料は、室温において固体であって、かつ、オキサゾリン基と反応性を有する官能基、例えば、カルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミド基からなる群から選べる1種以上の官能基を有することが特徴である。これらの官能基が表面修飾炭素材料の表面に有するオキサゾリン基と反応し、生成した化学結合は表面修飾炭素材料と固形材料の間に存在し、架橋剤や連結剤の効果が提供される。   The carbon composite material of the present invention is obtained by a reaction between a surface-modified carbon material and a solid material. The solid material referred to here is a functional group that is solid at room temperature and has reactivity with the oxazoline group, such as a carboxyl group, a phenolic hydroxyl group, an acid anhydride functional group, an epoxy group, a thiol group, and an amine group. It is characterized by having at least one functional group selected from the group consisting of amide groups. These functional groups react with the oxazoline group on the surface of the surface-modified carbon material, and the generated chemical bond exists between the surface-modified carbon material and the solid material, thereby providing the effect of a crosslinking agent or a linking agent.

本発明に用いられる固形材料は熱可塑性樹脂、成形可能な低分子量熱硬化性樹脂、炭素材料などが挙げられる。これらの固形材料は単独で使用しても混合して使用してもよい。固形材料の種類、構造、物性と用途によって、表面修飾炭素材料との配合比が変動するが、例えば熱可塑性樹脂や低分子量熱硬化性樹脂の補強、帯電防止性付与、耐熱性向上などの用途であれば、熱可塑性樹脂に対して0.01〜80質量%、好ましく0.05〜70質量%の表面修飾炭素材料を配合することができる。また、表面修飾炭素材料の高濃度品をマスターバッチとして薄めて使用することでより均一な炭素複合材料が得られやすいため、好ましい。一方、炭素材料の表面コーティング、表面改質、表面修飾などの用途であれば、炭素材料に対して0.001〜20質量%、好ましく0.005〜10質量%の表面修飾炭素材料を配合することができる。   Examples of the solid material used in the present invention include thermoplastic resins, moldable low molecular weight thermosetting resins, and carbon materials. These solid materials may be used alone or in combination. The compounding ratio with the surface-modified carbon material varies depending on the type, structure, physical properties and application of the solid material.For example, applications such as reinforcement of thermoplastic resins and low molecular weight thermosetting resins, addition of antistatic properties, improvement of heat resistance, etc. If so, 0.01 to 80% by mass, preferably 0.05 to 70% by mass of the surface-modified carbon material can be blended with respect to the thermoplastic resin. Moreover, since a more uniform carbon composite material is easy to be obtained by diluting and using a high concentration product of a surface-modified carbon material as a master batch, it is preferable. On the other hand, in the case of applications such as surface coating, surface modification, and surface modification of a carbon material, 0.001 to 20% by mass, preferably 0.005 to 10% by mass of a surface modified carbon material is added to the carbon material. be able to.

熱可塑性樹脂としてポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン類、ナイロン6(PA6、ナイロン66(PA66)等のポリアミド類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類、ポリウレタン類、アクリル樹脂類、ABS(アクリロニトリルブタジエンスチレン)樹脂類、ポリスチレン(PS)、熱可塑性ポリイミド、ポリカーボネート類及びこれら汎用樹脂のカルボン酸や無水マレイン酸変性樹脂等の熱可塑性樹脂が挙げられる。また、低分子量熱硬化性樹脂としてはフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、シリコン樹脂が挙げられる。これらの樹脂は1種に限らず、複数の種類を組み合わせて使用することができる。   Polyolefins such as polyethylene (PE) and polypropylene (PP) as thermoplastic resins, polyamides such as nylon 6 (PA6, nylon 66 (PA66), polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), Examples include polyurethanes, acrylic resins, ABS (acrylonitrile butadiene styrene) resins, polystyrene (PS), thermoplastic polyimide, polycarbonates, and thermoplastic resins such as carboxylic acid and maleic anhydride modified resins of these general-purpose resins. Examples of the low molecular weight thermosetting resin include phenol resin, epoxy resin, polyimide resin, melamine resin, urea resin, unsaturated polyester resin, diallyl phthalate resin, polyurethane resin, and silicon resin. Et resin is not limited to one, may be used in combination of plural kinds.

炭素材料として、炭素繊維(CF)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、グラフェン、グラファイト、天然又は合成ダイヤモンドなどが挙げられる。中には、CF、CNT、CNF、ダイヤモンド粒子や粉末が各分野で幅広く使用されており、市販品を入手しやすいため、好ましい。これらの炭素材料は1種に限らず、複数の種類を組み合わせて使用することができる。また、これらの炭素材料を市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を出させるための処理を行ってから使用してもよい。   Examples of the carbon material include carbon fiber (CF), carbon nanotube (CNT), carbon nanofiber (CNF), graphene, graphite, natural or synthetic diamond. Among them, CF, CNT, CNF, diamond particles and powders are widely used in various fields, and it is preferable because commercially available products are easily available. These carbon materials are not limited to one type, and a plurality of types can be used in combination. Moreover, even if these carbon materials are used as they are on the market, they may be used after a treatment for producing a large number of carboxyl groups and phenolic hydroxyl groups on the surface by a treatment method such as oxidation.

また、得られる熱可塑性樹脂を主成分とする熱可塑性樹脂系炭素複合材料と、炭素材料又は炭素材料を主成分とする炭素系炭素複合材料とを反応させることや、炭素材料を主成分とする炭素系炭素複合材料と熱可塑性樹脂とを反応させることにより、強度も靭性も改善された新型の炭素複合材料を製造することができる。新型炭素複合材料の加工性、成形性を十分に確保する観点から、熱可塑性樹脂又は熱可塑性樹脂系炭素複合材料に対して、炭素材料又は炭素系炭素複合材料の配合比は80質量%以下であることが好ましい。   In addition, the obtained thermoplastic resin-based carbon composite material having a thermoplastic resin as a main component and a carbon material or a carbon-based carbon composite material having a carbon material as a main component are reacted, or the carbon material is a main component. By reacting the carbon-based carbon composite material with the thermoplastic resin, a new carbon composite material with improved strength and toughness can be produced. From the viewpoint of sufficiently ensuring the workability and moldability of the new carbon composite material, the compounding ratio of the carbon material or the carbon-based carbon composite material is 80% by mass or less with respect to the thermoplastic resin or the thermoplastic resin-based carbon composite material. Preferably there is.

炭素複合材の製造方法は、主成分の構造によって大きく溶液浸漬法と溶融混練法に分けられる。浸漬法において、前記の炭素材料の分散剤として用いられる各種の有機溶媒類や水が同様に使用することができる。また、炭素材料と表面修飾炭素材料とを反応させ、炭素複合材の製造方法も前記同様大きく二つに分けることができる。一つは、表面修飾炭素材料を液体媒体中に分散させ、得られた分散液中に炭素材料を一定の滞留時間で浸漬させ、そのまま炭素材料の表面と表面修飾炭素材料の表面を接触させ、摺り合わせながら加熱する方法であり、もう一つは炭素材料の表面と表面修飾炭素材料の表面を接触させた後、分散液から取り出して加熱する方法である。また、炭素材料と表面修飾炭素材料との反応は表面修飾炭素材料の表面に保有するオキサゾリン基と炭素材料表面に有するカルボキシル基やフェノール性水酸基とを反応させることであって、前記同様の装置を用いて、同様な条件(反応温度、反応時間など)で反応を行うことができる。   The method for producing a carbon composite material is roughly divided into a solution immersion method and a melt-kneading method depending on the structure of the main component. In the dipping method, various organic solvents and water used as a dispersant for the carbon material can be used as well. Moreover, the carbon material and the surface-modified carbon material can be reacted, and the method for producing the carbon composite can be roughly divided into two as described above. One is to disperse the surface-modified carbon material in a liquid medium, immerse the carbon material in the obtained dispersion liquid for a certain residence time, and directly contact the surface of the carbon material and the surface of the surface-modified carbon material, The other is a method of heating while rubbing, and the other is a method in which the surface of the carbon material and the surface of the surface-modified carbon material are brought into contact with each other and then taken out from the dispersion and heated. The reaction between the carbon material and the surface-modified carbon material is to react the oxazoline group possessed on the surface of the surface-modified carbon material with the carboxyl group or phenolic hydroxyl group possessed on the surface of the carbon material. The reaction can be carried out under similar conditions (reaction temperature, reaction time, etc.).

前記の溶融混練による炭素複合材料を製造する方法において、熱可塑性樹脂、熱可塑性樹脂を主成分とする熱可塑性樹脂系炭素複合材料、表面修飾炭素材料と炭素材料を主成分とする炭素系炭素複合材料が共に室温で固体であり、所定配合比でドライブレンドした後、溶融押出機などを用い、加熱しながら溶融混練により反応を行うことがある。混練押出温度は樹脂の種類によって大きく変わるが、150〜280℃の範囲内であれば、樹脂の融解、炭素材料との反応が共に十分に進行し、かつ、製造される炭素複合材料の熱分解を防止することができるので、好ましい。また、押し出し基中に滞留時間について、同様に反応性及び分解抑制のバランス取りの観点から、0.1〜30分であることが好ましい。   In the above-mentioned method for producing a carbon composite material by melt kneading, a thermoplastic resin, a thermoplastic resin-based carbon composite material mainly composed of a thermoplastic resin, a carbon-based carbon composite mainly composed of a surface-modified carbon material and a carbon material Both materials are solid at room temperature, and after dry blending at a predetermined blending ratio, a reaction may be performed by melt kneading while heating using a melt extruder or the like. The kneading extrusion temperature varies greatly depending on the type of resin, but if it is within the range of 150 to 280 ° C., both the melting of the resin and the reaction with the carbon material proceed sufficiently, and the carbon composite material to be produced is thermally decomposed. Can be prevented, which is preferable. Moreover, it is preferable that it is 0.1 to 30 minutes about the residence time in an extrusion group from a viewpoint of balance of reactivity and decomposition suppression similarly.

また、溶融混練等の熱的処理、加工にも用いられる熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン類、ナイロン6(PA6、ナイロン66(PA66)等のポリアミド類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類、ポリウレタン類、アクリル樹脂類、ABS(アクリロニトリルブタジエンスチレン)樹脂類、ポリスチレン(PS)、ポリカーボネート類及びこれら汎用樹脂のカルボン酸や無水マレイン酸変性樹脂等の熱可塑性樹脂が挙げられる。炭素材料の高強度、高柔軟性、耐熱性、導電性等の特性を十分に活用できるように、本発明の表面修飾炭素材料の表面に有するオキサゾリン基と反応可能な変性PPやポリエステル類がより好ましい。これらの樹脂は1種に限らず、複数の種類を組み合わせて使用することができる。   Further, as thermoplastic resins used for thermal treatment such as melt kneading and processing, polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon 6 (PA6, nylon 66 (PA66), Polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyurethanes, acrylic resins, ABS (acrylonitrile butadiene styrene) resins, polystyrene (PS), polycarbonates and carboxylic acids and maleic anhydrides of these general-purpose resins And thermoplastic resins such as acid-modified resins, etc. Oxazoline on the surface of the surface-modified carbon material of the present invention so that the properties of the carbon material such as high strength, high flexibility, heat resistance, and conductivity can be fully utilized. Modified PP and polyesters that can react with groups Preferred. These resins not limited to one type may be used in combination of plural kinds.

さらに、作業上便益性の観点から、高濃度のマスターバッチを使用することが好ましい。この場合、表面修飾炭素材料のマスターバッチを先に調製、ペレット化成形してから、各種樹脂や熱可塑性樹脂を主成分とする熱可塑性樹脂系炭素複合材料と混練することもよい。   Furthermore, it is preferable to use a high-concentration masterbatch from the viewpoint of work convenience. In this case, a master batch of a surface-modified carbon material may be first prepared and pelletized and then kneaded with a thermoplastic resin-based carbon composite material mainly containing various resins and thermoplastic resins.

溶融混練工程で用いられる溶融混練機としては、公知の溶融混練機が例示され、バンバリーミキサー、プラストミル、ブラベンダープラストグラフ、一軸押出機、二軸押出機等が挙げられる。フィラーを良好に分散させ、ポリオレフィン樹脂組成物の耐熱性や剛性を向上させるという観点から、一軸押出機又は二軸押出機により溶融混練することが好ましく、特に二軸押出機が好ましい。   Examples of the melt-kneader used in the melt-kneading step include known melt-kneaders, such as a Banbury mixer, a plast mill, a Brabender plastograph, a single screw extruder, a twin screw extruder, and the like. From the viewpoint of satisfactorily dispersing the filler and improving the heat resistance and rigidity of the polyolefin resin composition, it is preferably melt-kneaded by a single screw extruder or a twin screw extruder, and particularly preferably a twin screw extruder.

本発明の炭素複合材料の用途としては、溶融押出法で製造されたものにおいて、射出成形用材料、押出成形用材料、プレス成形用材料、ブロー成形用材料、フィルム成形用材料等が挙げられる。特に、好ましくは剛性や耐衝撃性が必要とされる用途であり、例えば自動車用材料や家電用材料が挙げられる。   Examples of the use of the carbon composite material of the present invention include materials for injection molding, materials for extrusion molding, materials for press molding, materials for blow molding, materials for film molding and the like in those manufactured by the melt extrusion method. In particular, it is preferably an application that requires rigidity and impact resistance, and examples thereof include materials for automobiles and materials for household appliances.

本発明の炭素複合材料の成形は通常のCFRP(炭素繊維で強化されたプラスチック)に用いられる様々な成型方法も適用する。例えば、湿式成型法として、成形型に炭素繊維等の強化材を予めチャージさせ、樹脂を刷毛やローラーで含浸、脱泡しながら所定の厚さまで積層する成形方法(ハンドレイアップ法)、ロービングに樹脂を含浸させ、回転する芯金(マンドレル)にテンションを掛け、所定の角度で連続して巻きつける成形方法(フィラメントワインディング法)、キャビコア型でプリフォームしたチョップドストランドとマトリクスを冷プレス加圧する成形方法(コールドプレス法)、プリフォーム(補強材のみで形成された予備成形体)を成形型に配置し、型を閉じマトリクスを注入して硬化させる成形方法(RTM法)が挙げられ、乾式成形として、片型(主にコア型)に中間基材を配置し、周辺を機密にして真空吸引を行い、130〜250℃加熱する成形方法(オートクレーブ法)、主に筒型形状に適したシートワインディング法、チョップドストランドに樹脂を含浸させ、両面をジンシートで被覆させた中間基材を成形型にチャージし、加熱加圧する成形方法(SMC法)、チョップドストランドとマトリクスを混練した中間基材を塊状(団子状)にして、圧縮成形する成形方法(BMC法)、キャビコア型で加熱加圧する成形方法(ホットプレス法)、スタンパプルシート法などが挙げられ、さらにRFI(Resin Film Infusion)法、CPM(Compression Press Molding)法などが挙げられる。   The molding of the carbon composite material of the present invention also applies various molding methods used for ordinary CFRP (plastic reinforced with carbon fiber). For example, as a wet molding method, a molding method (hand lay-up method) in which a reinforcing material such as carbon fiber is charged in advance in a mold and the resin is impregnated with a brush or roller and laminated to a predetermined thickness while defoaming (hand layup method), roving Molding method (filament winding method) in which resin is impregnated, tension is applied to a rotating core bar (mandrel), and is continuously wound at a predetermined angle (mold winding method), and chopped strand preformed with a cavity core mold and matrix are pressed by cold press The method (cold press method) and the molding method (RTM method) in which a preform (preliminary molded body formed only with a reinforcing material) is placed in a mold, the mold is closed and a matrix is injected and cured (dry method) are mentioned. As above, arrange the intermediate base material in one type (mainly core type), keep the periphery secret and perform vacuum suction, and heat at 130-250 ° C Molding method (autoclave method), sheet winding method suitable mainly for cylindrical shape, molding method in which an intermediate base material impregnated with resin in chopped strands and coated on both sides with gin sheet is charged to the mold and heated and pressurized ( SMC method), a molding method (BMC method) in which an intermediate base material kneaded with chopped strands and a matrix is made into a lump (ball shape), a molding method (hot press method) in which heat and pressure is applied with a cavity core mold, a stamped sheet The RFI (Resin Film Infusion) method, the CPM (Compression Press Molding) method, etc. are mentioned.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下において、部及び%はそれぞれ重量部及び重量%を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples. In the following, parts and% indicate parts by weight and% by weight, respectively.

実施例及び比較例に用いた材料は以下の通りである。また、製造元、精製方法などを特に記載していないものは市販品である。
《2−オキサゾリン系モノマー(a)》
VOZO:2−ビニル−2−オキサゾリン(ホモポリマーのTg:108℃)
MVOZO:5−メチル−2−ビニル−2−オキサゾリン
IPOZO:2−イソプロペニル−2−オキサゾリン
DMVOZO:4,4’−ジメチル−2−ビニル−2−オキサゾリン
《低Tgビニル系モノマー(b)》
MTG−A:メトキシトリエチレングルコールアクリレート(共栄社化学製、ホモポリマーのTg:−50℃)
M−20G:メトキシジエチレングルコールアクリレート(新中村化学製、ホモポリマーのTg:−51℃)
M−40G:メトキシポリエチレングリコール400メタクリレート(EO 4mol)(新中村化学製、ホモポリマーのTg:−67℃)
AM−90G:メトキシポリエチレングリコール400アクリレート(EO 9mol)(新中村化学製、ホモポリマーのTg:−71℃)
M−90G:メトキシポリエチレングリコール400メタクリレート(EO 9mol)(新中村化学製、ホモポリマーのTg:−69℃)
M−230G:メトキシポリエチレングリコール400メタクリレート(EO 23mol)(新中村化学製、ホモポリマーのTg:−52℃)
《その他ビニル系モノマー(c)》
「DMAA」:ジメチルアクリルアミド(KJケミカルズ製、登録商標「DMAA」)
「DEAA」:ジエチルアクリルアミド(KJケミカルズ製、登録商標「DEAA」)
《炭素材料》
CNT:カーボンナノチューブ(Nanocyl社製、NC−7000、直径11nm、クロロホルムで洗浄して、乾燥させた。)
B−CNT:ビーズミル処理CNT(ビーズミル処理:N−メチルピロリドン 39.8g、CNT 0.8gとビーズ(ジルコニア製Φ0.5mm)160gを湿式ビーズミル装置(アイメックス社製RMB−08)のベッセル内に加え、1000rpmで1.5時間攪拌することによってビーズミル処理を行った。その後、溶液を1Lのビーカーにビーズごと全て入れ、イオン交換水を加えて軽く振り、上澄みを取り出していくことで上澄み中に浮遊するカーボンナノチューブと底に沈降するジルコニアビーズを分けた。この操作を何度も繰り返し、カーボンナノチューブとジルコニアビーズを完全に分けた後、上澄みをろ過し、80℃で4h真空乾燥させ、黒色粉末としてビーズミル処理カーボンナノチューブ(B−CNT)を得た。)
VGCF:カーボンナノファイバー(昭和電工株式会社製のVGCF−H、直径150nm、クロロホルムで洗浄して、乾燥させた。)
CF1:炭素繊維(東レ株式会社製、PAN系CF、商品名「トレカ糸T700 12K」、直径7μm)アセトンで洗浄して、乾燥させた。
CF2:CF1を5mmのチョップを切り、アセトンで洗浄して、乾燥させた。
《汎用樹脂》
PP:ポリプロピレン樹脂(日本ポリプロ株式会社製、MA3)
PMP:無水マレイン酸変性ポリプロピレン(三洋化成工業株式会社製、ユーメックス1010)
PA:ポリメチルペンテン樹脂(三井化学株式会社製、TPX MX002)
PMA:酸変性ポリメチルペンテン樹脂(三井化学株式会社製、TPX MM−101B)
《その他》
AIBN:アゾビスブチロニトリル(和光純薬、試薬)
NMP:N−メチルピロリドン
EtOH:エチルアルコール
DMF:N,N−ジメチルホルムアミド
「KJCMPA」:3−メトキシ−N,N−ジメチルプロパンアミド(KJケミカルズ株式会社製、登録商標「KJCMPA」)
The materials used in Examples and Comparative Examples are as follows. In addition, those that do not particularly describe the manufacturer, purification method, etc. are commercially available products.
<< 2-oxazoline monomer (a) >>
VOZO: 2-vinyl-2-oxazoline (Tg of homopolymer: 108 ° C.)
MVOZO: 5-methyl-2-vinyl-2-oxazoline IPOZO: 2-isopropenyl-2-oxazoline DMVOZO: 4,4′-dimethyl-2-vinyl-2-oxazoline << low Tg vinyl monomer (b) >>
MTG-A: Methoxytriethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., homopolymer Tg: −50 ° C.)
M-20G: Methoxydiethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., homopolymer Tg: −51 ° C.)
M-40G: Methoxypolyethylene glycol 400 methacrylate (EO 4 mol) (manufactured by Shin-Nakamura Chemical, Tg of homopolymer: -67 ° C)
AM-90G: Methoxypolyethylene glycol 400 acrylate (EO 9 mol) (manufactured by Shin-Nakamura Chemical, Tg of homopolymer: -71 ° C.)
M-90G: Methoxypolyethylene glycol 400 methacrylate (EO 9 mol) (manufactured by Shin-Nakamura Chemical, Tg of homopolymer: −69 ° C.)
M-230G: Methoxypolyethylene glycol 400 methacrylate (EO 23 mol) (manufactured by Shin-Nakamura Chemical, Tg of homopolymer: −52 ° C.)
<< Other vinyl monomers (c) >>
“DMAA”: dimethylacrylamide (manufactured by KJ Chemicals, registered trademark “DMAA”)
"DEAA": Diethylacrylamide (manufactured by KJ Chemicals, registered trademark "DEAA")
《Carbon material》
CNT: Carbon nanotube (Nanocyl, NC-7000, diameter 11 nm, washed with chloroform and dried)
B-CNT: Bead mill treatment CNT (bead mill treatment: 39.8 g of N-methylpyrrolidone, 0.8 g of CNT and 160 g of beads (Zirconia φ0.5 mm) were added into a vessel of a wet bead mill apparatus (IMB RMB-08). Then, the beads were milled by stirring at 1000 rpm for 1.5 hours, and then all the beads were put in a 1 L beaker, ion-exchanged water was added and shaken lightly, and the supernatant was removed to float in the supernatant. This process was repeated many times to completely separate the carbon nanotubes and zirconia beads, and the supernatant was filtered and vacuum-dried at 80 ° C. for 4 hours to obtain a black powder. A bead mill-treated carbon nanotube (B-CNT) was obtained.)
VGCF: Carbon nanofiber (VGCF-H manufactured by Showa Denko KK, diameter 150 nm, washed with chloroform and dried)
CF1: Carbon fiber (manufactured by Toray Industries, Inc., PAN-based CF, trade name “TORAYCA Yarn T700 12K”, diameter 7 μm) Washed with acetone and dried.
CF2: CF1 was cut into 5 mm chops, washed with acetone and dried.
<General-purpose resin>
PP: Polypropylene resin (Nippon Polypro Co., Ltd., MA3)
PMP: maleic anhydride modified polypropylene (manufactured by Sanyo Chemical Industries, Ltd., Umex 1010)
PA: Polymethylpentene resin (manufactured by Mitsui Chemicals, TPX MX002)
PMA: acid-modified polymethylpentene resin (manufactured by Mitsui Chemicals, TPX MM-101B)
<Others>
AIBN: Azobisbutyronitrile (Wako Pure Chemicals, Reagents)
NMP: N-methylpyrrolidone EtOH: ethyl alcohol DMF: N, N-dimethylformamide “KJCMPA”: 3-methoxy-N, N-dimethylpropanamide (registered trademark “KJCMPA” manufactured by KJ Chemicals)

実施例及び比較例における各種物性の測定方法と評価方法は以下の通りである。
《分散性》:
作製した炭素材料分散液の分散状態を光学顕微鏡(HiROX社製、デジタル光学顕微鏡パワーハイスコープKH−2700)により観察を行い、黒色率を算出し、分散性を数値として4段階で評価した。なお、観察用サンプルの作製と黒色率の算出方法は下記通りである。
サンプル作製:分散液5μLを取り、ホールスライドガラスに1滴を滴下し、溶液の流動が収まった時点で顕微鏡観察を行い、写真を撮影する。
黒色率算出:任意の点10ヶ所における光学顕微鏡画像を白黒画像し(図1)、計算式1に準じて黒色率を算出した(画像の拡大倍率は100倍である)。黒色率が低いほど、分散性が良い。
計算式1
黒色率(%)=黒色ピクセルの数/(黒色ピクセルの数+白色ピクセルの数)×100%
◎:黒色率が5%未満
○:黒色率が5%以上、且つ10%未満
△:黒色率が10%以上、且つ15%未満
×:黒色率が15%以上
《分散安定性(貯蔵安定性)》:
作製した炭素材料分散液を用い、25℃で90日間静置し、その後の状態を光学顕微鏡により観察を行い、黒色率を算出し、分散性を数値として前記同様4段階で評価した。
The measurement methods and evaluation methods for various physical properties in Examples and Comparative Examples are as follows.
<< Dispersibility >>
The dispersion state of the produced carbon material dispersion was observed with an optical microscope (manufactured by HiROX, digital optical microscope power high scope KH-2700), the black ratio was calculated, and the dispersibility was evaluated in four stages. In addition, preparation of the sample for observation and the calculation method of a black rate are as follows.
Sample preparation: Take 5 μL of the dispersion, drop 1 drop on the hole slide glass, and when the flow of the solution stops, perform microscopic observation and take a photograph.
Black rate calculation: An optical microscope image at 10 arbitrary points was converted into a black and white image (FIG. 1), and the black rate was calculated according to the calculation formula 1 (the magnification of the image is 100 times). The lower the black rate, the better the dispersibility.
Formula 1
Black rate (%) = number of black pixels / (number of black pixels + number of white pixels) × 100%
A: Black ratio is less than 5% B: Black ratio is 5% or more and less than 10% Δ: Black ratio is 10% or more and less than 15% X: Black ratio is 15% or more << Dispersion stability (storage stability) ) >>:
Using the produced carbon material dispersion, it was allowed to stand at 25 ° C. for 90 days, the subsequent state was observed with an optical microscope, the black rate was calculated, and the dispersibility was evaluated in four steps as described above.

《共重合(A)の合成》
合成実施例1
撹拌装置、温度計、冷却器及び乾燥窒素導入管を備えた容量500mLの反応容器にVOZO 36g(371mmol)、AM−90G 58g(128mmol)、アゾビスイソブチロニトリル(AIBN)0.8g(5mmol)、酢酸エチル220mLを仕込んで、乾燥窒素気流下、反応液を30℃で60分攪拌した後、70℃で12時間重合反応を行った。反応終了後、室温に戻し、粘性のある反応液をヘキサン(約2L)に注ぎ、淡黄色沈殿物を得た。その後、上澄みを廃棄し、ヘキサンで2回沈殿物を洗浄した後、40℃で3時間真空乾燥を行い、淡黄色粘稠な液状の生成物87.5gを得た(収率=92.1%)。
該生成物は、赤外線吸収スペクトル(IR)により、VOZO由来のオキサゾリン基に特有な吸収(1660cm−1)とAM−90G由来のエステル基に特有な吸収(1730cm−1)が検出され、また、これらのモノマー由来のビニル基の吸収(1635〜1640cm−1)が検出されず、共重合体(A−1)の生成を確認した。共重合体の組成がH−NMR(CDCl)分析により、VOZO由来ユニット/AM−90G由来ユニット=3.0/1.0と確認し、共重合体(A−1)のTgは−26℃と算出した。さらに、該共重合体の重量平均分子量(Mw)がGPC法(標準ポリスチレン)により分析し、20,670であることを確認した。共重合体(A−1)のH−NMR(CDCl)チャートを図2に示す。
<< Synthesis of Copolymerization (A) >>
Synthesis Example 1
VOZO 36 g (371 mmol), AM-90G 58 g (128 mmol), azobisisobutyronitrile (AIBN) 0.8 g (5 mmol) in a 500 mL reaction vessel equipped with a stirrer, thermometer, condenser and dry nitrogen introduction tube. ), 220 mL of ethyl acetate was charged, and the reaction solution was stirred at 30 ° C. for 60 minutes under a dry nitrogen stream, and then polymerization reaction was performed at 70 ° C. for 12 hours. After completion of the reaction, the temperature was returned to room temperature, and the viscous reaction solution was poured into hexane (about 2 L) to obtain a pale yellow precipitate. Thereafter, the supernatant was discarded, and the precipitate was washed twice with hexane, followed by vacuum drying at 40 ° C. for 3 hours to obtain 87.5 g of a light yellow viscous liquid product (yield = 92.1). %).
From the infrared absorption spectrum (IR) of the product, an absorption peculiar to the oxazoline group derived from VOZO (1660 cm −1 ) and an absorption peculiar to the ester group derived from AM-90G (1730 cm −1 ) are detected. Absorption of vinyl groups derived from these monomers (1635 to 1640 cm −1 ) was not detected, confirming the production of copolymer (A-1). The composition of the copolymer was confirmed by 1 H-NMR (CDCl 3 ) analysis to be VOZO-derived unit / AM-90G-derived unit = 3.0 / 1.0, and the Tg of the copolymer (A-1) was − It calculated as 26 degreeC. Furthermore, the weight average molecular weight (Mw) of the copolymer was analyzed by GPC method (standard polystyrene) and confirmed to be 20,670. A 1 H-NMR (CDCl 3 ) chart of the copolymer (A-1) is shown in FIG.

合成実施例2〜10と合成比較例1〜4
合成実施例1と同様に、2−オキサゾリン系モノマー(a)と低Tgビニル系モノマー(b)、その他の共重合可能なビニル系単量体(c)及びAIBNを表1に示す所定の量を用い、合成実施例2〜10と合成比較例1〜4の重合を行い、得られた重合物を合成実施例1と同様に精製し、それぞれのポリマー(A−2〜A−10とP−1〜P−4)を淡黄色粘稠な液状から固体状の生成物として取得した。合成実施例1と同様に、ポリマーA−2〜A−10とポリマーP−1〜P−4の同定(IR)、Tg分析、分子量測定(GPC)、組成比算出(H−NMR)を行い、表1に示した。
Synthesis Examples 2 to 10 and Synthesis Comparative Examples 1 to 4
As in Synthesis Example 1, 2-oxazoline monomer (a) and low Tg vinyl monomer (b), other copolymerizable vinyl monomers (c), and AIBN in predetermined amounts shown in Table 1 Polymerization of Synthesis Examples 2 to 10 and Synthesis Comparative Examples 1 to 4 was performed, and the obtained polymer was purified in the same manner as in Synthesis Example 1. The respective polymers (A-2 to A-10 and P -1 to P-4) were obtained as a solid product from a pale yellow viscous liquid. As in Synthesis Example 1, the identification (IR), Tg analysis, molecular weight measurement (GPC), and composition ratio calculation ( 1 H-NMR) of the polymers A-2 to A-10 and the polymers P-1 to P-4 were performed. The results are shown in Table 1.

表1に示すように、得られた共重合体の組成比は重合反応に仕込んだモノマーのモル比と少々異なっている。即ち、2−オキサゾリン系モノマー(a)が仕込みより多めに共重合体に入っていることが確認できる。これは低Tgのビニル系モノマー(b)よりも、モノマー(a)の方が重合の際にラジカルへの反応性が高いためと考えられ、得られた共重合体(A)は、モノマー(a)と(b)のランダム配列中に部分的なブロック構造を有することが示唆され、このような特異な構造を有するため、炭素材料に優れる分散促進効果や接着性向上効果等を提供できると本発明者らが推測している。   As shown in Table 1, the composition ratio of the obtained copolymer is slightly different from the molar ratio of the monomers charged in the polymerization reaction. That is, it can be confirmed that the 2-oxazoline monomer (a) is contained in the copolymer more than charged. This is presumably because the monomer (a) is more reactive to radicals during polymerization than the low Tg vinyl monomer (b), and the resulting copolymer (A) contains monomer ( It is suggested that the random arrangement of a) and (b) has a partial block structure, and since it has such a unique structure, it is possible to provide a dispersion promoting effect and an adhesion improving effect that are superior to carbon materials. The present inventors presume.

《炭素材料分散液の作製》
分散実施例1〜16、分散比較例1〜8
共重合体と分散剤とを表2に示す割合で混合し、バス型超音波装置(ELMA社製、S30)を用いて、25℃で30分処理し、混合溶液を得た。表2に示す所定量の炭素材料を混合溶液に加え、バス型超音波装置を用いて、25℃で120分処理し、炭素材料分散液を作製した。得られた分散液の分散性と分散安定性を前記方法で評価し、結果を表2に示す。また、分散実施例2と5(分散液2と5)と分散比較例1〜3(分散比較液1〜3)の分散液調製直後の光学顕微鏡写真を図3に示す。
<< Production of carbon material dispersion >>
Dispersion Examples 1-16, Dispersion Comparative Examples 1-8
The copolymer and the dispersant were mixed at a ratio shown in Table 2, and treated at 25 ° C. for 30 minutes using a bath-type ultrasonic device (EL30, S30) to obtain a mixed solution. A predetermined amount of the carbon material shown in Table 2 was added to the mixed solution and treated at 25 ° C. for 120 minutes using a bath-type ultrasonic device to prepare a carbon material dispersion. The dispersibility and dispersion stability of the resulting dispersion were evaluated by the above methods, and the results are shown in Table 2. Moreover, the optical microscope photograph immediately after preparation of the dispersion liquid of dispersion Examples 2 and 5 (dispersion liquids 2 and 5) and dispersion comparison examples 1 to 3 (dispersion comparison liquids 1 to 3) is shown in FIG.

分散実施例と分散比較例の結果から、分散促進剤を含有しない場合(分散比較例1と5)、また低Tgビニル系モノマー(b)のホモポリマー(分散比較例3)を用いた場合、炭素材料が水或いは有機溶媒系分散剤中に均一に分散することができなかった。一方、2−オキサゾリン系モノマー(a)のホモポリマー(分散比較例2)、2−オキサゾリン系モノマー(a)の含有量は5モル%未満であるコポリマー(分散比較例4)や、2−オキサゾリン系モノマー(a)の含有量は98モル%を超えるコポリマー(分散比較例7)及びこれらのホモポリマー、コポリマーの混合物用いた場合(分散比較例6と8)、炭素材料が均一に分散できないか、再凝集が起こりやすく、安定的な分散液を得られなかった。即ち、本発明で提案したモノマー(a)とモノマー(b)かるなる特定組成の共重合体を分散促進剤として用いた場合のみは、分散性と分散安定性が満足でき、均一かつ安定的な分散液を取得することができた。   From the results of the dispersion examples and the dispersion comparison examples, when a dispersion accelerator is not contained (dispersion comparison examples 1 and 5), or when a low Tg vinyl monomer (b) homopolymer (dispersion comparison example 3) is used, The carbon material could not be uniformly dispersed in water or an organic solvent-based dispersant. On the other hand, a homopolymer of 2-oxazoline monomer (a) (dispersion comparative example 2), a copolymer (dispersion comparative example 4) having a content of 2-oxazoline monomer (a) of less than 5 mol%, and 2-oxazoline When the content of the monomer (a) exceeds 98 mol% (dispersion comparative example 7), and homopolymers and mixtures of these copolymers (dispersion comparative examples 6 and 8), can the carbon material be dispersed uniformly? Re-aggregation was likely to occur, and a stable dispersion could not be obtained. That is, only when the copolymer of the specific composition consisting of the monomer (a) and the monomer (b) proposed in the present invention is used as a dispersion accelerator, the dispersibility and the dispersion stability can be satisfied, and it is uniform and stable. A dispersion could be obtained.

《表面修飾炭素材料の作製》
1.同時加熱方式
本発明の共重合体(A)は炭素材料の分散促進剤として用いられる同時に炭素材料の接着性向上剤、繊維状炭素材料の集束剤として用いることができる。この際に、液体媒体中に共重合体(A)からなる分散促進剤兼接着性向上剤が炭素材料の分散を促進させ、その後炭素材料の表面に接触させながら加熱することによって、共重合体(A)のオキサゾリン基が炭素材料表面のカルボキシル基やフェノール性水酸基と反応し、共重合体(A)が化学結合を介して炭素材料の表面に固定され、表面修飾された炭素材料を製造することができる。
<Production of surface-modified carbon material>
1. Simultaneous Heating Method The copolymer (A) of the present invention can be used as a carbon material dispersion accelerator and simultaneously as an adhesion improver for carbon materials and as a sizing agent for fibrous carbon materials. At this time, the dispersion accelerator / adhesion improver made of the copolymer (A) in the liquid medium promotes the dispersion of the carbon material, and then is heated while being in contact with the surface of the carbon material. The oxazoline group of (A) reacts with a carboxyl group or phenolic hydroxyl group on the surface of the carbon material, and the copolymer (A) is fixed to the surface of the carbon material through a chemical bond, thereby producing a surface-modified carbon material. be able to.

表面修飾炭素材料作製の実施例1(修飾実施例1)
前記の分散実施例1で得られた分散液をフラスコに移して、攪拌しながら100℃で1時間加熱した。その後減圧エバポレーションにより分散剤を除去し、ラボシェイカー(200rpm、15分/1回)を用い、エタノールで2回洗浄を行い、未反応の共重合体(A)を除去した。洗浄後の固形物を真空下で乾燥させ、固体粉末状の表面修飾CNT(AC−1)を取得した。得られたAC−1約5mgを用い、熱重量分析装置(Q−600、TA INSTRUMENT)により計量し、窒素雰囲気下で常温より10℃/分で600℃まで昇温し、熱重量減少からAC−1の表面に接着した共重合体(A)の付着量は5.24%と算出した。さらに、CNTの物性値(密度2g/cm、直径11nm)に基づき、その表面積当たりの共重合体付着量は0.300mg/mであることを確認した。
Example 1 of surface-modified carbon material production (Modification Example 1)
The dispersion obtained in Dispersion Example 1 was transferred to a flask and heated at 100 ° C. for 1 hour with stirring. Thereafter, the dispersant was removed by reduced pressure evaporation, and washing was performed twice with ethanol using a lab shaker (200 rpm, 15 minutes / once) to remove the unreacted copolymer (A). The solid after washing was dried under vacuum to obtain solid powdered surface modified CNT (AC-1). About 5 mg of the obtained AC-1 was weighed with a thermogravimetric analyzer (Q-600, TA INSTRUMENT) and heated from room temperature to 600 ° C. at a temperature of 10 ° C./minute in a nitrogen atmosphere. The adhesion amount of the copolymer (A) adhered to the surface of -1 was calculated to be 5.24%. Furthermore, based on the physical property values (density 2 g / cm 3 , diameter 11 nm) of CNTs, it was confirmed that the copolymer adhesion amount per surface area was 0.300 mg / m 2 .

表面修飾炭素材料作製の実施例2〜8及び比較例1〜6(修飾実施例2〜8と修飾比較例1〜6)
修飾実施例1と同様に前記の各分散実施例で得られた分散液を用い、表面修飾炭素材料の作製を行い、固体粉末状の表面修飾CNT(AC−2〜8)を取得した。また、各分散比較例で調製した混合液を用いて、修飾実施例1と同様な操作で粉末状固形物として、PC−1〜6を得た。同様に熱重量分析により炭素材料表面に接着した重合体等を定量し、算出結果を表3に示す。
Examples 2 to 8 and Comparative Examples 1 to 6 for producing surface-modified carbon materials (Modified Examples 2 to 8 and Modified Comparative Examples 1 to 6)
In the same manner as in Modification Example 1, using the dispersion obtained in each of the above dispersion examples, a surface-modified carbon material was prepared, and solid powdery surface-modified CNTs (AC-2 to 8) were obtained. Moreover, PC-1 to 6 were obtained as a powdery solid by the same operation as in Modification Example 1 using the mixed solution prepared in each dispersion comparative example. Similarly, polymers attached to the surface of the carbon material were quantified by thermogravimetric analysis, and the calculation results are shown in Table 3.

表面修飾炭素材料作製の実施例9〜12及び比較例7〜9(修飾実施例9〜12と修飾比較例7〜9)
共重合体(A)と分散剤(溶媒)を表4に示す割合で混合し、バス型超音波装置(ELMA社製、S30)を用いて、25℃で30分処理し、共重合体の溶液を得た。表4に示す所定量の炭素材料(CF、1mm〜2cmに適宜に切断したもの)を溶液中に加え、表4に示す所定条件(温度と時間)において加熱を行った。その後、得られた固形物をろ過し、ラボシェイカー(200rpm、15分/1回)を用い、エタノールで2回洗浄を行い、洗浄後の固形物を真空下で乾燥させ、固体粉末状の表面修飾炭素材料(AC−9〜12)を取得した。得られたAC−9〜12各3mgを用い、同様に熱重量分析により表面に接着した共重合体(A)の付着量を算出した。さらに、CFの物性値(密度2g/cm3、直径7μm)に基づき、その表面積当たりの共重合体付着量を算出し、表4に示す。
また、修飾実施例9と同様に、修飾比較例7〜9の作製を表4に示す条件に準じて行い、粉末状固形物としてPC−7〜9を取得した。同様に、熱重量分析によりPC−7〜9の表面積当たりの重合体付着量を算出し、表4に示す。
Examples 9 to 12 and Comparative Examples 7 to 9 for producing surface-modified carbon materials (Modified Examples 9 to 12 and Modified Comparative Examples 7 to 9)
The copolymer (A) and the dispersant (solvent) were mixed in the ratio shown in Table 4, and treated with a bath-type ultrasonic device (ELMA, S30) at 25 ° C. for 30 minutes. A solution was obtained. A predetermined amount of carbon material (CF, appropriately cut to 1 mm to 2 cm) shown in Table 4 was added to the solution, and heating was performed under predetermined conditions (temperature and time) shown in Table 4. Thereafter, the obtained solid is filtered, washed with ethanol twice using a lab shaker (200 rpm, 15 minutes / once), and the washed solid is dried under vacuum to obtain a solid powdery surface. The modified carbon material (AC-9-12) was obtained. Using 3 mg each of the obtained AC-9 to 12, the adhesion amount of the copolymer (A) adhered to the surface was similarly calculated by thermogravimetric analysis. Further, based on the physical properties of CF (density 2 g / cm 3, diameter 7 μm), the amount of copolymer adhering per surface area was calculated and shown in Table 4.
Moreover, similarly to the modification example 9, preparation of the modification comparative examples 7-9 was performed according to the conditions shown in Table 4, and PC-7-9 was acquired as a powdery solid substance. Similarly, the polymer adhesion amount per surface area of PC-7 to 9 was calculated by thermogravimetric analysis and is shown in Table 4.

2.後加熱方式
本発明の共重合体(A)は炭素材料の接着性向上剤、繊維状炭素材料の集束剤として用いる場合、液体媒体(有機溶剤又は水)中に共重合体(A)を溶解させた後炭素材料を加え、炭素材料の表面に共重合体(A)を付着させ、その後、共重合体(A)付着の炭素材料を溶液から取り出し、加熱することによって、共重合体(A)のオキサゾリン基が炭素材料表面のカルボキシル基やフェノール性水酸基と反応し、共重合体(A)が化学結合を介して炭素材料の表面に固定され、表面修飾された炭素材料が製造される。特に、低沸点やオキサゾリン基と反応性を有する溶媒を使用する場合、或いは大きいサイズ炭素材料の分散液を調製困難な場合において、この方法により表面修飾炭素材料を簡便に製造することができる。
2. Post-heating method The copolymer (A) of the present invention dissolves the copolymer (A) in a liquid medium (organic solvent or water) when used as an adhesion improver for carbon materials and a sizing agent for fibrous carbon materials. After the carbon material is added, the copolymer (A) is attached to the surface of the carbon material, and then the carbon material attached to the copolymer (A) is taken out of the solution and heated to produce the copolymer (A ) Reacts with a carboxyl group or a phenolic hydroxyl group on the surface of the carbon material, and the copolymer (A) is fixed to the surface of the carbon material through a chemical bond to produce a surface-modified carbon material. In particular, when a solvent having a low boiling point or reactivity with an oxazoline group is used, or when it is difficult to prepare a dispersion of a large size carbon material, the surface-modified carbon material can be easily produced by this method.

表面修飾炭素材料作製の実施例13〜15及び比較例10(修飾実施例13〜15と修飾比較例10)
表4に示す共重合体溶液に所定量の炭素材料(CF、1mm〜2cmに適宜に切断したもの)を加え、バス型超音波装置により25℃で30分を処理した。その後、固形物をろ過して、表4に示す所定条件で加熱処理(焼成)を行い、同様にエタノール洗浄を2回実施し、洗浄後の固形物を乾燥させ、固体粉末状の表面修飾炭素材料(AC−13)を取得した。
また、表4に示す共重合体溶液に長さ3mに裁断した炭素材料(CF 3m)を1mm/秒の速度で幅300mmの共重合体溶液槽を通過させ、表4に示す所定条件で加熱処理(焼成)を行い、その後、同幅のエタノール槽を2回(2mm/秒)通過させ、洗浄後の繊維状固形物を乾燥し、固体繊維状の表面修飾炭素材料(AC−14、15)を取得した。
さらに、修飾実施例13と同様に、修飾比較例10の調製を表4の条件に準じて行い、粉末状固形物としてPC−10を取得した。同様に、熱重量分析によりPC−10の表面面積当たりの重合体付着量を算出し、表4に示す。
Examples 13 to 15 and Comparative Example 10 for producing surface-modified carbon materials (Modified Examples 13 to 15 and Modified Comparative Example 10)
A predetermined amount of a carbon material (CF, appropriately cut to 1 mm to 2 cm) was added to the copolymer solution shown in Table 4, and treated at 25 ° C. for 30 minutes with a bath-type ultrasonic device. Thereafter, the solid material is filtered and subjected to heat treatment (firing) under the predetermined conditions shown in Table 4. Similarly, ethanol washing is performed twice, the washed solid material is dried, and solid powdery surface-modified carbon is obtained. Material (AC-13) was obtained.
In addition, a carbon material (CF 3 m) cut to a length of 3 m was passed through the copolymer solution shown in Table 4 through a copolymer solution tank having a width of 300 mm at a speed of 1 mm / second, and heated under predetermined conditions shown in Table 4 Treatment (baking) is performed, and then the ethanol bath having the same width is passed twice (2 mm / second), the washed fibrous solid is dried, and the solid fibrous surface-modified carbon material (AC-14, 15) ).
Further, as in Modification Example 13, Preparation of Modification Comparative Example 10 was performed according to the conditions in Table 4 to obtain PC-10 as a powdery solid. Similarly, the polymer adhesion amount per surface area of PC-10 was calculated by thermogravimetric analysis, and is shown in Table 4.

繊維状炭素材料集束剤評価の実施例1(集束実施例1)
長さ6cmに裁断した炭素材料CF1を共重合体(A−1)の水溶液(濃度1重量%)に漬けて、室温で5分間を含浸させた後、0.03mm/秒の速度で水溶液から引き上げ、100℃に設定した真空乾燥機に入れ、真空下で1時間の熱処理を行い、サイジングCF束(SAC−1)を得た。得られたSAC−1約3mgを用い、同様に熱重量分析により繊維束に接着した共重合体の重量は0.72と算出し、CF1の物性値(重量%表面面積当たりの量を算出し、CF1の物性値(密度2g/cm、直径7μm)に基づき、その表面積当たりの共重合体付着量は25.94mg/mであることを確認した。
また、集束実施例1と同様に、水、ホモポリマー(P−1)の1重量%水溶液、ホモポリマー(P−2)の1重量%水溶液を用いてCF1を処理し、集束比較例1〜3のサイジングCF束(SPC−0、SPC−1とSPC−2)を得た。目視観察により、SPC−0に多く見られた毛羽立ちがSAC−1とSPC−1、SPC−2に全く発生しなかった。また、硬くなったSPC−1に対してSAC−1とSPC−2の方が、柔らかさを有し、手触りに優れ、加工されやすいことが分かった。それぞれの写真を図4に示す。
Example 1 of evaluation of sizing agent for fibrous carbon material (Bundling example 1)
Carbon material CF1 cut to a length of 6 cm is dipped in an aqueous solution of copolymer (A-1) (concentration 1% by weight), impregnated for 5 minutes at room temperature, and then removed from the aqueous solution at a rate of 0.03 mm / second. The sizing CF bundle (SAC-1) was obtained by pulling up and placing in a vacuum dryer set at 100 ° C. and performing heat treatment for 1 hour under vacuum. Using about 3 mg of the obtained SAC-1, similarly, the weight of the copolymer adhered to the fiber bundle by thermogravimetric analysis was calculated to be 0.72, and the physical property value of CF1 (the amount per surface area by weight% was calculated). Based on the physical property values of CF1 (density 2 g / cm 3 , diameter 7 μm), it was confirmed that the copolymer adhesion amount per surface area was 25.94 mg / m 2 .
Similarly to the focusing example 1, CF1 was treated with water, a 1% by weight aqueous solution of homopolymer (P-1), and a 1% by weight aqueous solution of homopolymer (P-2). 3 sizing CF bundles (SPC-0, SPC-1 and SPC-2) were obtained. As a result of visual observation, fluffing frequently observed in SPC-0 did not occur in SAC-1, SPC-1, and SPC-2. Moreover, it turned out that SAC-1 and SPC-2 have softness with respect to SPC-1 which became hard, are excellent in touch, and are easy to process. Each photograph is shown in FIG.

《炭素複合材料の作製と評価》
本発明の表面修飾炭素材料を用いて、表面に接着されている共重合体中の未反応のオキサゾリン基を利用し、固形材料である炭素材料、熱可塑性樹脂或いはこれらの混合物とさらに反応させることにより下記3タイプの炭素複合材料を製造することができる。
(1)炭素材料と表面修飾炭素材料からなる炭素複合材料(炭素/共重合体/炭素)
このタイプの複合材料は表面修飾炭素材料の製造と同様に、液体媒体中で炭素材料と表面修飾炭素材料と接触させながら加熱により反応させるという同時加熱方法、又は、液体媒体中で炭素材料と表面修飾炭素材料と接触させた後加熱により反応させるという後加熱方法が挙げられる。
(2)熱可塑性樹脂と表面修飾炭素材料からなる炭素複合材料(樹脂/共重合体/炭素)
このタイプの複合材料は表面修飾炭素材料と汎用樹脂をドライブレンドし、溶融押出機などにより樹脂が溶融状態で表面修飾炭素材料と接触させながら反応するという溶融混練方法により製造することができる。この方法は得られる炭素複合材料を直接形成できるので、好ましい。
(3)熱可塑性樹脂、炭素材料及び表面修飾炭素材料からなる炭素複合材料(樹脂/炭素/共重合体/炭素)
このタイプの炭素複合材料は、表面修飾炭素材料と炭素材料及び汎用樹脂をドライブレンドしてから溶融混練で反応させて製造することができ、また、上記(1)で得られた「炭素/共重合体/炭素」タイプの炭素複合材料を汎用樹脂と溶融混練させることにより製造することもできる。
<Production and evaluation of carbon composite materials>
Using the surface-modified carbon material of the present invention, the unreacted oxazoline group in the copolymer adhered to the surface is used to further react with a carbon material, a thermoplastic resin, or a mixture thereof, which is a solid material. Thus, the following three types of carbon composite materials can be produced.
(1) Carbon composite material (carbon / copolymer / carbon) composed of carbon material and surface-modified carbon material
This type of composite material, like the production of surface-modified carbon materials, is a simultaneous heating method in which a carbon material and a surface-modified carbon material are contacted with each other in a liquid medium by heating, or a carbon material and a surface in a liquid medium. There is a post-heating method in which the reaction is performed by heating after contacting with the modified carbon material.
(2) Carbon composite material (resin / copolymer / carbon) composed of thermoplastic resin and surface-modified carbon material
This type of composite material can be manufactured by a melt-kneading method in which a surface-modified carbon material and a general-purpose resin are dry-blended and the resin reacts in contact with the surface-modified carbon material in a molten state by a melt extruder or the like. This method is preferred because the resulting carbon composite can be formed directly.
(3) Carbon composite material (resin / carbon / copolymer / carbon) composed of thermoplastic resin, carbon material and surface-modified carbon material
This type of carbon composite material can be manufactured by dry blending a surface-modified carbon material, a carbon material, and a general-purpose resin and then reacting them by melt-kneading. In addition, the “carbon / co-polymer” obtained in (1) above can be used. It can also be produced by melting and kneading a polymer / carbon type carbon composite material with a general-purpose resin.

炭素複合材料作製の実施例1(複合実施例1)
100mLのスクリュー管に分散実施例1で得られた分散液1 20gと5mmに裁断したチョップ状炭素繊維CF2 1gを投入し、蓋を閉じ、室温でラボシェイカーを用いて、200rpmの速度で60分間振動させた。その後、50μmメッシュのろ過装置で処理後のCF2を取り出し、80℃で2時間を加熱させ、さらに40℃、真空下で2時間を乾燥させ、固形状の炭素複合材料(CAC−1)を取得した。また、得られたCAC−1をラボシェイカー(200rpm、15分/1回)により、エタノールで2回洗浄を行い、洗浄後の固形物を真空下で乾燥させ、炭素複合材料CAC−1のエタノール洗浄品を取得した。未処理裁断品CF2の表面状態、炭素複合材料CAC−1及びそのエタノール洗浄品の表面状態を走査型電子顕微鏡(FE−SEM、JEOLJIS−6700F)により観察を行い、それぞれの写真を図5に示す。
Carbon composite material production example 1 (composite example 1)
Disperse 20 g of dispersion 1 obtained in dispersion example 1 and 1 g of chopped carbon fiber CF2 cut to 5 mm into a 100 mL screw tube, close the lid, and use a lab shaker at room temperature for 60 minutes at a speed of 200 rpm. Vibrated. Then, CF2 after the treatment is taken out with a 50 μm mesh filtration device, heated at 80 ° C. for 2 hours, and further dried at 40 ° C. under vacuum for 2 hours to obtain a solid carbon composite material (CAC-1) did. In addition, the obtained CAC-1 was washed twice with ethanol using a lab shaker (200 rpm, 15 minutes / once), and the solid after the washing was dried under vacuum to obtain the ethanol of the carbon composite material CAC-1. Acquired cleaning products. The surface state of the untreated cut product CF2 and the surface state of the carbon composite material CAC-1 and its ethanol-cleaned product were observed with a scanning electron microscope (FE-SEM, JEOL JIS-6700F), and respective photographs are shown in FIG. .

炭素複合材料作製の実施例2、3(複合実施例2、3)
表面修飾炭素材料作製の実施例1で得られた表面修飾炭素材料AC−1、CF2とNMPを重量比1:10:89で計量し、バス型超音波装置により25℃で30分を処理した。その後混合液を150℃で0.5時間加熱し、得られた黒色固形物をろ過で分離し、ラボシェイカー(200rpm、15分/1回)を用いて、エタノールで2回洗浄を行い、洗浄後の固形物を真空下で乾燥させ、固形状の炭素複合材料(CAC−2)を取得した。複合実施例1と同様にエタノール洗浄を行い、CAC−2の洗浄品を取得した。
また、超音波処理後の上記混合液を加熱せず、ろ過により固形物を分離し、180℃で0.2時間加熱し、固形状の炭素複合材料(CAC−3)を取得した。上記同様にエタノール洗浄を行い、CAC−3の洗浄品を取得した。CAC−2、CAC−3及びそれらの洗浄品の表面状態を走査型電子顕微鏡により観察を行い、写真を図6に示す。
Examples 2 and 3 for producing carbon composite materials (Composite Examples 2 and 3)
Surface-modified carbon material AC-1, CF2 and NMP obtained in Example 1 for producing surface-modified carbon material were weighed at a weight ratio of 1:10:89, and treated for 30 minutes at 25 ° C. with a bath-type ultrasonic device. . Thereafter, the mixture is heated at 150 ° C. for 0.5 hours, and the resulting black solid is separated by filtration, and washed twice with ethanol using a lab shaker (200 rpm, 15 minutes / once). The subsequent solid was dried under vacuum to obtain a solid carbon composite material (CAC-2). Washing with ethanol was performed in the same manner as in Composite Example 1 to obtain a CAC-2 washed product.
Moreover, the solid mixture after ultrasonication was not heated, but the solid was separated by filtration and heated at 180 ° C. for 0.2 hours to obtain a solid carbon composite material (CAC-3). In the same manner as above, ethanol washing was performed to obtain a CAC-3 washed product. The surface states of CAC-2, CAC-3 and their cleaned products were observed with a scanning electron microscope, and the photograph is shown in FIG.

炭素複合材料作製の実施例4、5(複合実施例4、5)
表面修飾炭素材料AC−1とNMPを重量比2:98で計量し、バス型超音波装置により25℃で30分を処理した。その後混合液を150℃まで加熱し、長さ3mに裁断した炭素材料(CF1 3m)を0.5mm/秒の速度で幅300mmの当該混合液を充填した槽を通過させ、同幅のエタノール槽を2回(2mm/秒)通過させ、洗浄後の繊維状固形物を乾燥し、固体繊維状の炭素複合材料(CAC−4)を取得した。
また、上記超音波処理後の混合液を加熱せず、長さ3mに裁断した炭素材料(CF1 3m)を1mm/秒の速度で幅300mmの当該混合液を充填した槽を通過させ、200℃で0.1時間を加熱により焼成を行い、同幅のエタノール槽を2回(2mm/秒)通過させ、洗浄後の繊維状固形物を乾燥し、固体繊維状の炭素複合材料(CAC−5)を取得した。
Examples 4 and 5 (Composite Examples 4 and 5) for producing carbon composite materials
The surface-modified carbon material AC-1 and NMP were weighed at a weight ratio of 2:98, and treated for 30 minutes at 25 ° C. with a bath-type ultrasonic device. Thereafter, the mixed liquid is heated to 150 ° C., and a carbon material (CF1 3 m) cut to a length of 3 m is passed through a tank filled with the mixed liquid having a width of 300 mm at a speed of 0.5 mm / second, and the ethanol tank having the same width is passed. Was passed twice (2 mm / second), and the washed fibrous solid was dried to obtain a solid fibrous carbon composite material (CAC-4).
Further, without heating the mixed solution after the ultrasonic treatment, a carbon material (CF1 3 m) cut to a length of 3 m was passed through a tank filled with the mixed solution having a width of 300 mm at a speed of 1 mm / second, and 200 ° C. Baked by heating for 0.1 hour, passed through an ethanol bath of the same width twice (2 mm / sec), dried the fibrous solid after washing, and solid fibrous carbon composite material (CAC-5) ).

炭素複合材料作製の実施例6〜9(複合実施例6〜9)
表面修飾炭素材料作製の実施例2で得られた表面修飾炭素材料AC−2と、表面修飾炭素材料作製の実施例3で得られた表面修飾炭素材料AC−3を用い、表5に示す所定条件に基づき、実施例6〜9を行い、固形状の炭素複合材料(CAC−6〜9)を取得した。
Examples 6 to 9 for producing carbon composite materials (composite examples 6 to 9)
Using the surface-modified carbon material AC-2 obtained in Example 2 for producing the surface-modified carbon material and the surface-modified carbon material AC-3 obtained in Example 3 for producing the surface-modified carbon material, the predetermined conditions shown in Table 5 were used. Based on the conditions, Examples 6 to 9 were performed to obtain a solid carbon composite material (CAC-6 to 9).

炭素複合材料作製の比較例1〜4(複合比較例1〜4)
炭素複合材料作製の実施例4の手順を準じ、表5に示す条件により比較例1を行い、繊維状の炭素複合材料(CPC−1)を取得した。また、炭素複合材料作製の実施例2,3の手順を準じ、表5に示す条件により比較例2〜4を行い、固形状の炭素複合材料(CPC−2〜4)を取得した。なお、CPC−4は共重合体などの分散促進剤や接着性向上性を一切介せず、CNTとCFが直接付着させたものである。また、複合実施例1と同様にエタノール洗浄を行い、CPC−1〜4の洗浄品を取得した。CPC−1、CPC−2及びそれらの洗浄品の表面状態を走査型電子顕微鏡により観察を行い、写真を図7に示す。
Comparative examples 1 to 4 for producing carbon composite materials (composite comparative examples 1 to 4)
In accordance with the procedure of Example 4 for producing the carbon composite material, Comparative Example 1 was performed under the conditions shown in Table 5 to obtain a fibrous carbon composite material (CPC-1). Further, in accordance with the procedures of Examples 2 and 3 for producing the carbon composite material, Comparative Examples 2 to 4 were performed under the conditions shown in Table 5 to obtain solid carbon composite materials (CPC-2 to 4). CPC-4 is obtained by directly attaching CNT and CF without using any dispersion accelerator such as a copolymer or improving adhesiveness. Moreover, the ethanol washing | cleaning was performed similarly to the composite example 1, and the washing | cleaning goods of CPC-1-4 were acquired. The surface states of CPC-1, CPC-2 and their washed products were observed with a scanning electron microscope, and the photograph is shown in FIG.

図5〜7の結果から、本発明の共重合体(A)を介して形成された炭素複合材料が、CFの表面にCNTがしっかり被覆していることが明らかである。また、本発明の炭素複合材料は同時加熱や後加熱など多種多様な方法で製造することが可能であり、共重合体(A)に有するオキサゾリン基は反応性が高く、形成された化学結合が強く、CNTやCFなど炭素材料と室温で接触するだけでも十分に付着し、さらに加熱により強い化学結合を形成され、洗浄しても表面に付着された分のみ除去され、化学接合によりCFの表面にCNTを均一に固着されたことを確認できた。また、2−オキサゾリン系モノマー(a)のホモポリマーを用いた場合、CNTがCF表面に部分的に固着したが、付着できない個所や塊状部分が多く存在し、CF表面におけるCNTの均一な付着膜を取得することができなかった。さらに、低Tgビニル系モノマー(b)のホモポリマーを用いた場合は、洗浄前にCF表面に多少付着したCNTとポリマーが、洗浄によって完全に取れてしまい、原系(未処理のCF2)と同様に表面にCNTの付着も接着も確認されず、CFとCNTの複合体を得られないことが分かった。   From the results of FIGS. 5 to 7, it is clear that the carbon composite material formed through the copolymer (A) of the present invention has the CNT firmly coated on the CF surface. In addition, the carbon composite material of the present invention can be produced by various methods such as simultaneous heating and post-heating, and the oxazoline group in the copolymer (A) has high reactivity, and the formed chemical bond is Strong, even if it comes into contact with carbon materials such as CNT and CF only at room temperature, it forms a strong chemical bond by heating, and even if it is washed, it removes only the amount attached to the surface. It was confirmed that the CNTs were uniformly fixed to each other. In addition, when a homopolymer of 2-oxazoline monomer (a) is used, CNTs are partially fixed on the CF surface, but there are many places and lumps that cannot be attached, and the CNT uniform adhesion film on the CF surface Could not get. Further, when the homopolymer of the low Tg vinyl monomer (b) is used, the CNT and the polymer slightly adhered to the CF surface before washing are completely removed by washing, and the original system (untreated CF2) Similarly, neither CNT adhesion nor adhesion was confirmed on the surface, and it was found that a composite of CF and CNT could not be obtained.

樹脂複合材料作製の実施例1〜8(樹脂複合実施例1〜8)および比較例1〜6(樹脂複合比較例1〜6)
汎用樹脂としてPP、PMP、PAとPMAを用いて、本発明の表面修飾炭素材料(共重合体/炭素)、炭素複合材料(炭素/共重合体/炭素)とを、表6に示す組成でドライブレンドし、バッチ式二軸混練機(東洋精機株式化社製のラボプラストミルμ)を用いて、表6に示す所定条件により溶融混練を行い、樹脂/表面修飾炭素材料、樹脂/炭素複合材料及び樹脂/表面修飾炭素材料/炭素複合材料から構成される樹脂と炭素の複合材料1〜8(以下樹脂複合材料と略する。)を作製した。得られた樹脂複合材料をホットプレス機(東洋精機株式会社製のminiTEST PRESS−10)を用いて、厚さ200μmのフィルムを作製し(成形温度235℃、圧力5MPaを2分の加圧した後に1分で急冷させ、プレスフィルムを作製した。)、得られたプレスフィルムを長さ35mm、幅2.5mmのダンベル試験片を打ち抜き、チャック間15mmで引張試験機(東洋精機株式会社製万能試験機)に固定し、10mm/minの速度で引張試験を行った。各実施例、比較例において、5枚の試験片の引張強度の平均値を取り、表6に示す。
Examples 1 to 8 (resin composite examples 1 to 8) and comparative examples 1 to 6 (resin composite comparative examples 1 to 6) for producing a resin composite material
Using PP, PMP, PA and PMA as general-purpose resins, the surface-modified carbon material (copolymer / carbon) and carbon composite material (carbon / copolymer / carbon) of the present invention have the compositions shown in Table 6. Dry blended and melt-kneaded under the predetermined conditions shown in Table 6 using a batch-type twin-screw kneader (Laboplast Mill μ manufactured by Toyo Seiki Co., Ltd.), resin / surface modified carbon material, resin / carbon composite Resins and carbon composite materials 1 to 8 (hereinafter abbreviated as resin composite materials) composed of materials and resin / surface modified carbon material / carbon composite material were produced. Using the obtained resin composite material, a hot-press machine (miniTEST PRESS-10 manufactured by Toyo Seiki Co., Ltd.) was used to produce a 200 μm-thick film (molding temperature 235 ° C., pressure 5 MPa after pressurizing for 2 minutes) A press film was prepared by rapid cooling in 1 minute.) A dumbbell test piece having a length of 35 mm and a width of 2.5 mm was punched out from the obtained press film, and a tensile tester (universal test manufactured by Toyo Seiki Co., Ltd.) with 15 mm between chucks. The tensile test was performed at a speed of 10 mm / min. In each Example and Comparative Example, the average value of the tensile strength of five test pieces is taken and shown in Table 6.

表6の結果から、本発明の共重合体(A)を介して形成された樹脂複合材料が、CF又はCNTの表面に共重合体で修飾され(樹脂/表面修飾炭素材料、樹脂/炭素複合材料)、ポリオレフィン系汎用樹脂やそれらの酸変性樹脂に対する接着性が向上されたため、得られた樹脂複合物の機械的強度が向上した。また、樹脂/表面修飾炭素材料/炭素複合材料を汎用樹脂に添加する場合、CNTとCF両者の補強効果により、樹脂複合材料の機械的強度がより一層向上したことが確認された。一方、本発明の共重合体に修飾されてないB−CNTや低Tgのビニル系モノマー(b)のホモポリマーを用いた場合、樹脂と炭素材料の分散性や接着性を付与できないため、樹脂に対する強度の向上が確認されなかった。また、2−オキサゾリン系モノマー(a)のホモポリマー、本発明に指定された共重合体組成比の範囲外のポリマーにおいて、それらの配合による分散性、接着性の向上効果は低いため、樹脂に対する強度の向上が極めて低かった。特にCFとCNT間に何も有しない場合には、接着性付与や補強効果が全く示されなかった。   From the results of Table 6, the resin composite material formed through the copolymer (A) of the present invention was modified with a copolymer on the surface of CF or CNT (resin / surface modified carbon material, resin / carbon composite). Material), the adhesion to polyolefin general-purpose resins and their acid-modified resins was improved, and the mechanical strength of the resulting resin composite was improved. In addition, when the resin / surface-modified carbon material / carbon composite material was added to the general-purpose resin, it was confirmed that the mechanical strength of the resin composite material was further improved by the reinforcing effect of both CNT and CF. On the other hand, when a homopolymer of B-CNT or a low Tg vinyl monomer (b) that is not modified by the copolymer of the present invention is used, the resin cannot disperse and adhere to the carbon material. No improvement in strength was confirmed. In addition, in the homopolymer of 2-oxazoline monomer (a) and the polymer outside the range of the copolymer composition ratio specified in the present invention, the effect of improving dispersibility and adhesiveness due to their blending is low. The improvement in strength was extremely low. In particular, when nothing was present between CF and CNT, adhesion imparting and reinforcing effects were not shown at all.

樹脂複合材料作製の実施例9(樹脂複合実施例9)および比較例7(樹脂複合比較例7)
合成実施例で得られた共重合体A−1 0.1gを99.9gの水に溶かして、濃度0.1重量%のポリマーA−1の水溶液を調製した。同様に合成比較例1で得られた2−オキサゾリン系モノマー(a)のホモポリマーP−1の水溶液を調製した。10cmに切断したCF1の束2本を作製し、A−1とP−1のポリマー溶液中にそれぞれCF1の束を入れ、5分間含浸させることによりサイジング処理を施した。その後、100℃で1時間の真空乾燥を行い、サイジング処理済の繊維COPA−1とCOPP−1を取得した。
汎用樹脂としてPP 5gを計量し、200℃に加熱したホットプレス機で5MPaの圧力を掛け、厚さ0.5mm程度のフィルムを作製した。2枚のPPプレスフィルムの用い、繊維COPA−1、COPP−4の上下に置き、ホットプレス機にて200℃、5MPaの圧力を10秒間保持し、樹脂含浸複合材料COPA−1−PPとCOPP−1−PPを得、目視によりCF束への樹脂含浸性を観察した。
Resin composite material production example 9 (resin composite example 9) and comparative example 7 (resin composite comparative example 7)
0.1 g of copolymer A-1 obtained in the synthesis example was dissolved in 99.9 g of water to prepare an aqueous solution of polymer A-1 having a concentration of 0.1% by weight. Similarly, an aqueous solution of the homopolymer P-1 of 2-oxazoline monomer (a) obtained in Synthesis Comparative Example 1 was prepared. Two bundles of CF1 cut to 10 cm were prepared, and the bundles of CF1 were put into the polymer solutions of A-1 and P-1, respectively, and impregnated for 5 minutes to perform sizing treatment. Thereafter, vacuum drying was performed at 100 ° C. for 1 hour to obtain sizing-treated fibers COPA-1 and COPP-1.
As a general-purpose resin, 5 g of PP was weighed, and a pressure of 5 MPa was applied with a hot press machine heated to 200 ° C. to produce a film having a thickness of about 0.5 mm. Using two PP press films, placed above and below the fibers COPA-1 and COPP-4, and held at 200 ° C. and a pressure of 5 MPa for 10 seconds with a hot press machine, resin impregnated composite materials COPA-1-PP and COPP -1-PP was obtained, and the resin impregnation into the CF bundle was visually observed.

図8に樹脂含浸複合材料COPA−1−PPとCOPP−1−PPの写真及ぶ拡大写真を示す。本発明のコポリマーA−1は低Tgであるため、PP樹脂との親和性、接着性が高く、繊維束中に樹脂が均一に浸透し、繊維の表面に樹脂が密着し、繊維が程よく解されており、即ち、樹脂含浸性に優れた繊維束を取得した。一方、ホモポリマーP−1はTgが高く(108℃)、処理した繊維が硬いため、PP樹脂との親和性、密着性が低く、含浸性が悪かった。   FIG. 8 shows photographs and enlarged photographs of the resin-impregnated composite materials COPA-1-PP and COPP-1-PP. Since the copolymer A-1 of the present invention has a low Tg, it has high affinity with PP resin and high adhesiveness, the resin uniformly penetrates into the fiber bundle, the resin adheres to the surface of the fiber, and the fiber is moderately dissolved. That is, a fiber bundle excellent in resin impregnation property was obtained. On the other hand, the homopolymer P-1 had a high Tg (108 ° C.) and the treated fiber was hard, so the affinity and adhesion with the PP resin were low, and the impregnation property was poor.

分散性評価用の写真 (a)光学顕微鏡画像、(b)白黒画像Photo for dispersibility evaluation (a) Optical microscope image, (b) Black and white image 共重合体A−1のH−NMRチャート 1 H-NMR chart of copolymer A-1 分散実施例と分散比較例の分散液調製直後の写真 (a)分散実施例2、(b)分散実施例5、(c)分散比較例1、(d)分散比較例2、(e)分散比較例3(A) Dispersion Example 2, (b) Dispersion Example 5, (c) Dispersion Comparison Example 1, (d) Dispersion Comparison Example 2, (e) Dispersion Comparative Example 3 集束実施例と集束比較例の処理後の写真 (a)集束実施例1(SC−1)、(b)集束比較例1(PC−0)、集束比較例2(PC−1)Photograph after processing of focusing example and focusing comparison example (a) Focusing example 1 (SC-1), (b) Focusing comparison example 1 (PC-0), Focusing comparison example 2 (PC-1) 炭素複合材料実施例1のSEM写真 (a)未処理裁断品CF2の表面写真、(b)炭素複合材料CAC−1の表面写真、(c)炭素複合材料CAC−1洗浄品の表面写真SEM photograph of carbon composite material Example 1 (a) Surface photograph of untreated cut product CF2, (b) Surface photograph of carbon composite material CAC-1, (c) Surface photograph of carbon composite material CAC-1 washed product 炭素複合材料実施例2と3のSEM写真 (a)炭素複合材料CAC−2洗浄前の表面写真、(b)炭素複合材料CAC−2洗浄品の表面写真、(c)炭素複合材料CAC−3洗浄前の表面写真、(d)炭素複合材料CAC−3洗浄品の表面写真SEM photographs of carbon composite materials Examples 2 and 3 (a) Surface photograph before cleaning of carbon composite material CAC-2, (b) Surface photograph of carbon composite material CAC-2 cleaned product, (c) Carbon composite material CAC-3 Surface photograph before cleaning, (d) Surface photograph of carbon composite CAC-3 cleaned product 炭素複合材料比較例1と2のSEM写真 (a)CPC−1洗浄前の表面写真、(b)CPC−1洗浄品の表面写真、(c)CPC−2洗浄前の表面写真、(d)炭素複合材料CPC−2洗浄品の表面写真SEM photographs of carbon composite material comparative examples 1 and 2 (a) Surface photograph before CPC-1 cleaning, (b) Surface photograph of CPC-1 cleaned article, (c) Surface photograph before CPC-2 cleaning, (d) Surface photograph of carbon composite material CPC-2 washed product 樹脂含浸複合材料のSEM写真 (a)COPA−1−PPの写真、(b)COPA−1−PPの拡大写真、(c)COPP−1−PPの写真SEM photograph of resin-impregnated composite material (a) Photograph of COPA-1-PP, (b) Enlarged photograph of COPA-1-PP, (c) Photograph of COPP-1-PP

本発明の共重合体が炭素材料の他種材料への分散促進や、炭素材料の表面接着性向上、繊維状炭素材料の集束性改善などの特異な性能を示し、それを含有する炭素材料の分散促進剤、接着性向上剤、集束剤、サイジング剤などは、特殊な分散や表面処理の技術、設備を要さず、炭素材料本来の特性を損なうことがなく、簡便な方法で各種炭素材料の表面に親水性、接着性を付与できる。また当該接着性向上剤を用いて表面が改質された炭素材料(表面修飾炭素材料)は、工業的手段により簡便に製造することができ、それを用いて各種固形材料と反応させることにより特異性能を有する好適な炭素複合材料を供することができる。本発明で得られた各種炭素複合材料は、ポリオレフィンなど汎用熱可塑性樹脂やエポキシ系、ポリイミド系などの熱硬化性樹脂に配合することによって、複合樹脂の機械的特性を高く維持しながら、熱的特性、耐衝撃性と剛性を顕著に向上させることが期待でき、各産業分野において、各種エンジニアリングプラスチックとして、特にバンパー、インパネ、コンソールボックス、ルーフシート、パネル表装材、電装部品などの自動車・輸送機器関連内外装部品、家電、家具、雑貨などの日用品関連製品、医療材料の成型品、食品容器、食品包装、一般包装などの包装材料、電線やケーブルなどの被覆用材料、建築・土木、文具・事務用品などの産業資材、各種ポリマーアロイの相溶化剤あるいは接着剤用とうして好適である。   The copolymer of the present invention exhibits unique properties such as promoting dispersion of carbon materials into other types of materials, improving the surface adhesion of carbon materials, and improving the convergence of fibrous carbon materials. Dispersion accelerators, adhesion improvers, bundling agents, sizing agents, etc. do not require special dispersion and surface treatment techniques and equipment, and do not impair the original properties of carbon materials, and various carbon materials can be used in a simple manner. Hydrophilicity and adhesiveness can be imparted to the surface of the film. Carbon materials whose surfaces have been modified using the adhesion improver (surface-modified carbon materials) can be easily produced by industrial means, and are made unique by reacting with various solid materials using them. A suitable carbon composite material having performance can be provided. Various carbon composite materials obtained by the present invention are blended with general-purpose thermoplastic resins such as polyolefins and thermosetting resins such as epoxy and polyimide, while maintaining high mechanical properties of the composite resin, It can be expected to significantly improve characteristics, impact resistance and rigidity. In various industrial fields, various engineering plastics, especially bumpers, instrument panels, console boxes, roof sheets, panel covers, electrical components, etc. Related products such as interior / exterior parts, household appliances, furniture, miscellaneous goods, molded products of medical materials, food containers, food packaging, packaging materials such as general packaging, coating materials such as electric wires and cables, architecture / civil engineering, stationery / It is suitable for industrial materials such as office supplies, compatibilizers or adhesives for various polymer alloys.

Claims (6)

2−オキサゾリン系モノマー(a)5〜98モル%と、ホモポリマーのガラス転移温度(Tg)が−100〜70℃を有するビニル系モノマー(b)2〜95モル%を構成単位として含有する共重合体(A)を用いる炭素材料用接着性向上剤であって、共重合体(A)のTgが−80〜75℃であることを特徴とする炭素材料用接着性向上剤。 A co-polymer containing 2 to 95 mol% of 2-oxazoline monomer (a) and 2 to 95 mol% of vinyl monomer (b) having a glass transition temperature (Tg) of the homopolymer of −100 to 70 ° C. as structural units. A carbon material adhesion improver using a polymer (A), wherein the copolymer (A) has a Tg of -80 to 75 ° C. 請求項に記載の接着性向上剤により表面修飾されたことを特徴とする表面修飾炭素材料。 A surface-modified carbon material that is surface-modified with the adhesion improver according to claim 1 . 表面に接着性向上剤を0.1〜100mg/m含有することを特徴とする請求項に記載の表面修飾炭素材料。 The surface-modified carbon material according to claim 2 , wherein the surface contains 0.1 to 100 mg / m 2 of an adhesion improver. 2−オキサゾリン系モノマー(a)5〜98モル%と、ホモポリマーのガラス転移温度(Tg)が−100〜70℃を有するビニル系モノマー(b)2〜95モル%を構成単位として含有する共重合体(A)を水中に分散させてなる水分散液を用い、水分散液中で炭素材料を含浸させた後加熱することを特徴とする表面修飾炭素材料の製造方法。 A co-polymer containing 2 to 95 mol% of 2-oxazoline monomer (a) and 2 to 95 mol% of vinyl monomer (b) having a glass transition temperature (Tg) of the homopolymer of −100 to 70 ° C. as structural units. A method for producing a surface-modified carbon material, characterized by using an aqueous dispersion obtained by dispersing the polymer (A) in water, impregnating the carbon material in the aqueous dispersion and then heating. 請求項又はに記載の表面修飾炭素材料と固形材料からなる炭素複合材料であって、かつ、固形材料が炭素材料であり、固形材料にはカルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミド基からなる群から選べる1種以上の官能基を有し、これらの官能基のオキサゾリン基と反応してなる化学結合を表面修飾炭素材料と固形材料の間に存在することを特徴とする炭素複合材料。 A carbon composite material consisting of a surface-modified carbon material and a solid material according to claim 2 or 3, and a solid material is a carbon material, the solid material a carboxyl group, a phenolic hydroxyl group, an acid anhydride functional group , Having one or more functional groups selected from the group consisting of epoxy groups, thiol groups, amine groups and amide groups, and chemical bonds formed by reaction with oxazoline groups of these functional groups between surface-modified carbon materials and solid materials Carbon composite material characterized by being in between. 請求項又はに記載の表面修飾炭素材料と固形材料からなる炭素複合材料であって、かつ、固形材料が炭素材料及び熱可塑性樹脂であり、固形材料にはカルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミド基からなる群から選べる1種以上の官能基を有し、これらの官能基のオキサゾリン基と反応してなる化学結合を表面修飾炭素材料と固形材料の間に存在することを特徴とする炭素複合材料。
A carbon composite material comprising the surface-modified carbon material according to claim 2 or 3 and a solid material , wherein the solid material is a carbon material and a thermoplastic resin, and the solid material includes a carboxyl group, a phenolic hydroxyl group, an acid Surface-modified carbon materials that have one or more functional groups selected from the group consisting of anhydride functional groups, epoxy groups, thiol groups, amine groups and amide groups, and react with oxazoline groups of these functional groups A carbon composite material that exists between a solid material and a solid material.
JP2019502033A 2017-03-15 2018-03-13 Oxazoline dispersants for carbon materials and carbon composite materials using them Active JP6617229B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017049785 2017-03-15
JP2017049785 2017-03-15
PCT/JP2018/009780 WO2018168867A1 (en) 2017-03-15 2018-03-13 Oxazoline-based dispersants for carbon materials, and carbon composite materials in which same are used

Publications (2)

Publication Number Publication Date
JPWO2018168867A1 JPWO2018168867A1 (en) 2019-06-27
JP6617229B2 true JP6617229B2 (en) 2019-12-11

Family

ID=63522291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502033A Active JP6617229B2 (en) 2017-03-15 2018-03-13 Oxazoline dispersants for carbon materials and carbon composite materials using them

Country Status (3)

Country Link
JP (1) JP6617229B2 (en)
TW (1) TWI753133B (en)
WO (1) WO2018168867A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428985B2 (en) * 2018-12-26 2024-02-07 Kjケミカルズ株式会社 Laminates and composites containing carbon materials
JP6806964B1 (en) * 2019-12-25 2021-01-06 ダイセルミライズ株式会社 Carbon fiber reinforced resin composition
JPWO2022163358A1 (en) * 2021-01-29 2022-08-04

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222512B2 (en) * 1991-11-11 2001-10-29 三菱レイヨン株式会社 Sizing agent for carbon fiber
JP4907442B2 (en) * 2006-09-04 2012-03-28 株式会社日本触媒 Aqueous resin composition
KR101939154B1 (en) * 2013-08-27 2019-01-16 닛산 가가쿠 가부시키가이샤 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP2017203236A (en) * 2016-05-13 2017-11-16 株式会社日本触媒 Reinforcement fiber sizing agent
JP6805415B2 (en) * 2016-08-10 2020-12-23 Kjケミカルズ株式会社 Adhesive improver for carbon materials and composite materials using it

Also Published As

Publication number Publication date
TW201841959A (en) 2018-12-01
JPWO2018168867A1 (en) 2019-06-27
TWI753133B (en) 2022-01-21
WO2018168867A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
Yang et al. Enhancement of stiffness, strength, ductility and toughness of poly (ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes
Jin et al. Recent advances in carbon-nanotube-based epoxy composites
JP6617229B2 (en) Oxazoline dispersants for carbon materials and carbon composite materials using them
Zhu et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites
Jin et al. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess
McClory et al. Polymer/carbon nanotube composites
Che et al. Epoxy composite fibers reinforced with aligned single-walled carbon nanotubes functionalized with generation 0− 2 dendritic poly (amidoamine)
JP2009197359A (en) Reinforcing fiber, and fiber-reinforced composite material
Gupta et al. Rheologic and mechanical properties of multiwalled carbon nanotubes-reinforced poly (trimethylene terephthalate) composites
JP2012149170A (en) Carbon fiber-reinforced polyolefin-based resin composite material and method for producing the same
Doagou-Rad et al. Influence of processing conditions on the mechanical behavior of MWCNT reinforced thermoplastic nanocomposites
Mozaffarinasab et al. Surface modification of carbon nanotubes by a bifunctional amine silane; effects on physical/mechanical/thermal properties of epoxy nanocomposite
JP6076484B2 (en) Thermoplastic polymer bonded with carbon nanomaterial and method for producing the same
Choi et al. Fabrication of MA-EPDM grafted MWCNTs by reactive extrusion for enhanced interfacial adhesion and mechanical properties of PP/MA-EPDM composite
JP6805415B2 (en) Adhesive improver for carbon materials and composite materials using it
JP5989914B2 (en) Carbon nanomaterial-containing resin composition and plastic molded article
Duan et al. Nano‐AlN functionalization by silane modification for the preparation of covalent‐integrated epoxy/poly (ether imide) nanocomposites
JP7428985B2 (en) Laminates and composites containing carbon materials
Park et al. Surface modification of carbon nanotubes for high-performance polymer composites
JP2018145245A (en) Carbon fiber composite material
KR20130036114A (en) A method for preparing carbon nano tube reinforced polypropylene
Kumar et al. Elastic modulus behavior of multi-walled carbon nano-tubes/polyurethane composites using nano-indentation techniques
JP2007245517A (en) Resin mass and its manufacturing method
Kim et al. Preparation and characterization of poly [(butylene succinate)‐co‐(butylene adipate)]/carbon nanotube‐coated silk fiber composites
JP2011006511A (en) Nanocomposite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190304

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R150 Certificate of patent or registration of utility model

Ref document number: 6617229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250