JP7428985B2 - Laminates and composites containing carbon materials - Google Patents

Laminates and composites containing carbon materials Download PDF

Info

Publication number
JP7428985B2
JP7428985B2 JP2019235321A JP2019235321A JP7428985B2 JP 7428985 B2 JP7428985 B2 JP 7428985B2 JP 2019235321 A JP2019235321 A JP 2019235321A JP 2019235321 A JP2019235321 A JP 2019235321A JP 7428985 B2 JP7428985 B2 JP 7428985B2
Authority
JP
Japan
Prior art keywords
carbon
laminate
adhesive
group
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019235321A
Other languages
Japanese (ja)
Other versions
JP2020105514A (en
Inventor
晃哉 後藤
辰宏 高橋
明理 平田
学士 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
KJ Chemicals Corp
Original Assignee
Yamagata University NUC
KJ Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, KJ Chemicals Corp filed Critical Yamagata University NUC
Publication of JP2020105514A publication Critical patent/JP2020105514A/en
Application granted granted Critical
Publication of JP7428985B2 publication Critical patent/JP7428985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、炭素材料用の接着剤、該接着剤を介して積層されてなる炭素材料積層体、炭素材料とセラミックスの積層体、炭素材料と金属の積層体、炭層材料と樹脂の複合体、及びこれらの積層体、複合体を含有するレジンボンド、ソーワイヤーなどの成形品に関する。 The present invention relates to adhesives for carbon materials, carbon material laminates laminated via the adhesive, laminates of carbon materials and ceramics, laminates of carbon materials and metals, composites of carbon layer materials and resins, and molded products such as resin bonds and saw wires containing these laminates and composites.

炭素材料は一般に炭素原子から構成される材料をいい、炭素原子の結合様式および集合様式により様々な形態や機能を示し、中でも、黒鉛、フラーレン、カーボンナノチューブ、カーボンナノホーン、カーボンナノブラシ、グラフェン、炭素繊維(カーボンファイバー)、活性炭、ダイヤモンドライクカーボン、カーボンブラックなどが古くから注目され、補強材料(航空機、自動車、スポーツ用品、タイヤ)、触媒担体、電極材(乾電池、燃料電池)、分子篩膜、浄水用吸着材、消臭材、化粧品、シャンプー、フェイスマスク、表面コート、電磁波遮蔽材料、放熱材料、医薬品(吸着剤)として幅広く応用されている。 Carbon materials generally refer to materials composed of carbon atoms, and exhibit various forms and functions depending on the bonding and aggregation modes of carbon atoms. Among them, carbon materials include graphite, fullerene, carbon nanotubes, carbon nanohorns, carbon nanobrushes, graphene, and carbon. Fibers (carbon fiber), activated carbon, diamond-like carbon, carbon black, etc. have been attracting attention for a long time, and are used as reinforcing materials (aircraft, automobiles, sporting goods, tires), catalyst carriers, electrode materials (dry batteries, fuel cells), molecular sieve membranes, and water purification. It is widely used as adsorbents, deodorants, cosmetics, shampoos, face masks, surface coatings, electromagnetic shielding materials, heat dissipation materials, and pharmaceuticals (adsorbents).

炭素材料は炭素原子の6員環構造からなり、極性を持たないため、汎用材料に対する濡れ性や分散性が悪く、マトリックス樹脂との接着性が不十分のため、従来から様々な物理的、化学的方法により表面親水化処理などを行ってきた。例えば、炭素繊維において、表面にサイジング剤としてエポキシ樹脂と1,3-フェニレンビス-2-オキサゾリンを付着させることにより毛羽立ちを防止できたことが報告され(特許文献1)、また、ポリオキシアルキレン基とアミド基或いはシアノ基からならアクリル樹脂及び水性媒体を含有する繊維集束剤が報告された(特許文献2)。ダイヤモンドの粉末、微細粒子において、高温における強酸処理や過酸化水素存在下の紫外線照射などにより、表面に水酸基などの含酸素官能基を導入し、水、アルコールなどの汎用溶媒中に安定に分散できるダイヤモンドの製造方法が開示された(特許文献3、4)。 Carbon materials consist of a 6-membered ring structure of carbon atoms and have no polarity, so they have poor wettability and dispersibility in general-purpose materials, and have insufficient adhesion with matrix resins. We have carried out surface hydrophilic treatment using conventional methods. For example, it has been reported that fluffing of carbon fibers can be prevented by attaching epoxy resin and 1,3-phenylenebis-2-oxazoline as sizing agents to the surface (Patent Document 1); A fiber sizing agent containing an acrylic resin and an aqueous medium has been reported (Patent Document 2). Diamond powder and fine particles can be stably dispersed in general-purpose solvents such as water and alcohol by introducing oxygen-containing functional groups such as hydroxyl groups onto the surface of diamond powders and fine particles through strong acid treatment at high temperatures or UV irradiation in the presence of hydrogen peroxide. A method for manufacturing diamond has been disclosed (Patent Documents 3 and 4).

一方、カーボンナノチューブ(CNT)は代表的なナノサイズ炭素材料として電気的、熱的、機械的特性に優れるが、直径数~数十nm、長さ数~数百μmの繊維状構造を有するため、アスペクトが非常に大きく、非常に絡まりやすい欠点があった。また、汎用樹脂系や金属系、無機系に対しては勿論のこと、同類の炭素系マトリックスに対しても、濡れ性、密着性や接着性などが悪く、CNTの特性を活かした高性能な複合材料の開発に当たって、CNT表面の物理的、化学的処理や、分散剤による分散液調整などの研究が盛んに行われている。 On the other hand, carbon nanotubes (CNTs) are a typical nano-sized carbon material with excellent electrical, thermal, and mechanical properties, but they have a fibrous structure with a diameter of several to several tens of nanometers and a length of several to several hundred micrometers. , the aspect ratio was very large and the problem was that it was very easy to get tangled. In addition, CNTs have poor wettability, adhesion, and adhesion not only to general-purpose resins, metals, and inorganic matrices, but also to similar carbon-based matrices. In the development of composite materials, research is actively being conducted on physical and chemical treatments of CNT surfaces, and dispersion adjustment using dispersants.

特許文献5は、リチウムイオン二次電池の電極に用いられる金属製の集電基板に対する密着性を持たせるため、側鎖にオキサゾリン基を有するポリマーからなるCNTの分散剤、該分散剤、CNTと溶媒から調製されたCNTの分散液などを報告した。特許文献6は、オキサゾリン系モノマーと含窒素複素環系モノマーの重合体からなるCNTの分散促進剤と接着性向上剤、該分散促進剤とCNT及び水やアルコールなどの分散剤から調製されたCNTの分散液などを報告した。また、特許文献7は、オキサゾリン系モノマーと70℃以下のガラス転移温度を有するビニル系モノマーの重合体からなるCNTの分散促進剤と接着性向上剤、繊維状炭素材料用集束剤、及び該分散促進剤とCNT及び水や有機溶剤などの分散剤から調製されたCNTの分散液などを報告した。これらの先行技術のいずれにおいても、オキサゾリン系ポリマーを用いたCNTの分散液を調製することをスタートとし、その後、特許文献5では、得られたCNTの分散液を集電基板上に塗布、加熱乾燥させ、集電基板と活物質層の間に介在する導電性結着層を形成させた。特許文献6と7では、得られたCNTの分散液を加熱、分散剤を除去し、オキサゾリン系ポリマーで表面修飾されたCNTを製造した。 Patent Document 5 discloses a CNT dispersant made of a polymer having an oxazoline group in a side chain, the dispersant, CNTs and A dispersion of CNT prepared from a solvent was reported. Patent Document 6 discloses a CNT dispersion promoter and an adhesion improver made of a polymer of an oxazoline monomer and a nitrogen-containing heterocyclic monomer, and a CNT prepared from the dispersion promoter, CNTs, and a dispersant such as water or alcohol. reported on dispersion liquids, etc. Further, Patent Document 7 discloses a CNT dispersion accelerator and adhesion improver made of a polymer of an oxazoline monomer and a vinyl monomer having a glass transition temperature of 70°C or less, a sizing agent for fibrous carbon materials, and the dispersion. A CNT dispersion prepared from a promoter, CNT, and a dispersant such as water or an organic solvent was reported. In all of these prior arts, the starting point is to prepare a CNT dispersion using an oxazoline polymer, and then, in Patent Document 5, the obtained CNT dispersion is coated on a current collecting substrate and heated. It was dried to form a conductive binding layer interposed between the current collecting substrate and the active material layer. In Patent Documents 6 and 7, CNTs surface-modified with an oxazoline polymer were produced by heating the obtained CNT dispersion and removing the dispersant.

しかし、これらの従来技術では、CNTとその表面に修飾されたポリマーが一体となっているため、一体として各分野に用いられなければならない。勿論のことであるが、修飾されたポリマーの量と均一さはCNT表面のカルボキシル基やフェノール基の数、密度及び修飾用ポリマーの分子量、官能基の当量など多数の因子に左右され、CNTの分散ができたとしても、CNTの表面状態が均一になり難い欠点があった。特に、ポリマーに有する官能基の反応性が高いほど、ポリマーの分子量が高いほど、CNT表面の修飾膜が厚くなりやすく、CNT本来の電気伝導性、熱伝導性などの特性が発揮できなくなる問題があった。 However, in these conventional techniques, since the CNT and the polymer modified on its surface are integrated, they must be used as an integrated unit in various fields. Of course, the amount and uniformity of the modified polymer depends on many factors such as the number and density of carboxyl groups and phenolic groups on the CNT surface, the molecular weight of the modifying polymer, and the equivalent weight of the functional group. Even if dispersion was possible, there was a drawback that it was difficult to make the surface condition of the CNTs uniform. In particular, the higher the reactivity of the functional groups in the polymer and the higher the molecular weight of the polymer, the thicker the modification film on the CNT surface tends to become, leading to the problem that the CNT's original properties such as electrical conductivity and thermal conductivity cannot be exhibited. there were.

このような観点から、CNTなどの炭素材料を特に表面処理も表面修飾もせず、容易に金属材料、炭素材料、樹脂材料など様々な有機系、無機系材料と接着できる、炭素材料用接着剤の開発が望まれている。 From this perspective, we are developing an adhesive for carbon materials that can easily bond carbon materials such as CNTs to various organic and inorganic materials such as metal materials, carbon materials, and resin materials without any particular surface treatment or surface modification. Development is desired.

特開平5-132874号公報Japanese Patent Application Publication No. 5-132874 特開2014-152428号公報Japanese Patent Application Publication No. 2014-152428 特開平9-025110号公報Japanese Patent Application Publication No. 9-025110 特開2012-046378号公報JP2012-046378A WO2015/029949号公報WO2015/029949 publication 特開2018-24788号公報JP2018-24788A WO2018/168867号公報WO2018/168867 publication

本発明は、特殊な表面処理を要さず、炭素材料本来の特性を損なうことがなく、接着剤を用いることだけでCNTなどの炭素材料を容易に各種有機材料、無機系材料と接着できる、炭素材料用接着剤を提供し、また当該接着剤を介して接着して得られる炭素材料を有する積層体、複合体を提供することを課題とする。さらに、当該接着剤を用いて、炭素材料を有する積層体、複合体の工業的製造方法を提供することを課題とする。 The present invention enables carbon materials such as CNTs to be easily bonded to various organic materials and inorganic materials simply by using an adhesive, without requiring special surface treatment and without impairing the original properties of carbon materials. It is an object of the present invention to provide an adhesive for carbon materials, and also to provide a laminate or a composite having carbon materials obtained by bonding via the adhesive. Furthermore, it is an object of the present invention to provide an industrial method for manufacturing laminates and composites having carbon materials using the adhesive.

本発明者らは、これらの課題を解決するために鋭意検討を行った結果、活性水素と反応する官能基を有するビニルモノマーから重合してなる重合体が炭素材料及び各種有機材料、無機材料に対して優れる密着性と強力な接着性を有することを見出した。また、該接着剤を用いて炭素材料と各種有機、無機材料を接着させることにより、炭素材料を有する積層体と複合体を取得することができた。さらに、該接着剤を介した炭素材料の積層体、複合体を容易に製造する方法を見出すことができ、上記課題を解決し、本発明に至った。 As a result of intensive studies to solve these problems, the present inventors found that a polymer obtained by polymerizing a vinyl monomer having a functional group that reacts with active hydrogen can be used as a carbon material, various organic materials, and inorganic materials. It has been found that it has excellent adhesion and strong adhesion. In addition, by bonding the carbon material and various organic and inorganic materials using the adhesive, it was possible to obtain a laminate and a composite containing the carbon material. Furthermore, we were able to find a method for easily producing a laminate or composite of carbon materials using the adhesive, and the above problems were solved, leading to the present invention.

すなわち、本発明は、
(1)活性水素と反応する官能基を有するビニルモノマー(A)を重合してなる重合体(B)を含有する、炭素材料(C)の接着に用いられる反応性接着剤(D)、
(2)ビニルモノマー(A)の官能基は、オキサゾリン基、グリシジル基、イソシアネート基、カルボジイミド基から選択される1種以上の官能基であることを特徴とする前記(1)に記載の接着剤(D)、
(3)重合体(B)を構成するビニルモノマー(A)由来の構成単位は10mol%以上であることを特徴とする前記(1)又は(2)に記載の接着剤(D)、
(4)重合体(B)のガラス転移温度は80℃以上であることを特徴とする前記(1)~(3)のいずれか一項に記載の接着材(D)、
(5)重合体(B)を構成するオキサゾリン基を有するビニルモノマー(A)由来の構成単位は90mol%を超えることを特徴とする前記(1)~(4)のいずれか一項に記載の接着剤(D)、
(6)炭素材料(C)は炭素繊維(CF)、グラファイト、ダイヤモンド(DM)、ダイヤモンドライクカーボン(DLC)、カーボンブラック(CB)、ナノカーボンファイバー(CNF)、カーボンナノチューブ(CNT)、グラフェン、フラーレンから選択される1種以上の材料であることを特徴とする前記(1)~(5)のいずれか一項に記載の接着剤(D)、
(7)前記(1)~(6)のいずれか一項に記載の接着剤(D)を介し、炭素材料(C)が積層されてなる炭素材料積層体(E)、
(8)前記(1)~(6)のいずれか一項に記載の接着剤(D)を介し、炭素材料(C)とセラミックスが積層されてなる炭素/セラミックス積層体(F)、
(9)前記(1)~(6)のいずれか一項に記載の接着剤(D)を介し、炭素材料(C)と金属が積層されてなる炭素/金属積層体(G)、
(10)前記(1)~(6)のいずれか一項に記載の接着剤(D)を介し、炭素材料(C)と樹脂材料を複合してなる炭素/樹脂複合体(H)、
(11)前記(7)に記載の炭素材料積層体(E)は、炭素繊維(CF)と、カーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)とが、接着剤(D)を介して積層して得られる炭素材料積層体であって、かつ、CF表面のCNF及び/又はCNTの被覆率は10%以上であることを特徴とする(CNF,CNT)/CFの炭素材料積層体(E1)、
(12)前記(7)に記載の炭素材料積層体(E)は、ダイヤモンド粒子と、カーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)とが、接着剤(D)を介して積層して得られる炭素材料積層体であって、かつ、ダイヤモンド粒子表面のCNT被覆率は10%以上であることを特徴とする(CNF,CNT)/ダイヤモンドの炭素材料積層体(E2)、
(13)前記(8)に記載の炭素/セラミックス積層体(F)は、セラミックスと、カーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)とが、接着剤(D)を介して積層して得られる炭素/セラミックス積層体であって、かつ、セラミックス表面のCNT被覆率は10%以上であることを特徴とする炭素/セラミックス積層体、
(14)前記(9)に記載の炭素/金属積層体(G)は、金属と、カーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)とが、接着剤(D)を介して積層して得られる炭素/金属積層体であって、かつ、金属表面のCNT被覆率は10%以上であることを特徴とする炭素/金属積層体、
(15)前記(12)に記載の(CNF,CNT)/ダイヤモンドの積層体(E2)を含有することを特徴とするレジンボンド砥石、
(16)前記(12)に記載の(CNF,CNT)/ダイヤモンドの積層体(E2)を含有することを特徴とするソーワイヤー、
(17)基材である炭素材料(C)の表面に前記(1)~(5)のいずれか一項に記載の接着剤(D)を接触させ、基材と接着剤の間に化学結合により接着層を形成してから、同一又は異なる炭素材料を接着層に接触させ、化学結合により接着させることを特徴とする炭素材料積層体(E)の製造方法、
(18)基材は炭素繊維(CF)、ダイヤモンド(DM)、ダイヤモンドライクカーボン(DLC)、カーボンナノファイバー(CNF)から選択される1種以上の材料であって、接着させる炭素材料はカーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)であることを特徴である前記(17)に記載の炭素材料積層体(E)の製造方法、
(19)基材であるセラミックスの表面に前記(1)~(5)のいずれか一項に記載の接着剤(D)を接触させ、基材と接着剤の間に化学結合により接着層を形成してから、炭素材料(C)を接着層に接触させ、化学結合により接着させることを特徴とする炭素/セラミックス積層体(F)の製造方法、
(20)基材はセラミックスであって、接着させる炭素材料はカーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)であることを特徴である前記(19)に記載の炭素/セラミックス積層体(F)の製造方法、
(21)樹脂材料に前記(1)~(5)のいずれか一項に記載の接着剤(D)を混ぜ込んでから、炭素材料(C)と複合させることを特徴とする炭素/樹脂複合体(H)の製造方法、
(22)炭素材料が炭素繊維(CF)、カーボンナノファイバー(CNF)、カーボンナノチューブ(CNT)から選択される1種以上の材料であることを特徴とする前記(21)に記載の炭素/樹脂複合体(H)の製造方法
を提供するものである。
That is, the present invention
(1) A reactive adhesive (D) used for bonding a carbon material (C), containing a polymer (B) obtained by polymerizing a vinyl monomer (A) having a functional group that reacts with active hydrogen;
(2) The adhesive according to (1) above, wherein the functional group of the vinyl monomer (A) is one or more functional groups selected from an oxazoline group, a glycidyl group, an isocyanate group, and a carbodiimide group. (D),
(3) The adhesive (D) according to (1) or (2) above, wherein the constituent units derived from the vinyl monomer (A) constituting the polymer (B) are 10 mol% or more;
(4) The adhesive (D) according to any one of (1) to (3) above, wherein the polymer (B) has a glass transition temperature of 80° C. or higher;
(5) The polymer (B) according to any one of (1) to (4) above, wherein the structural unit derived from the vinyl monomer (A) having an oxazoline group exceeds 90 mol%. Adhesive (D),
(6) Carbon materials (C) include carbon fiber (CF), graphite, diamond (DM), diamond-like carbon (DLC), carbon black (CB), nanocarbon fiber (CNF), carbon nanotube (CNT), graphene, The adhesive (D) according to any one of (1) to (5) above, characterized in that it is one or more materials selected from fullerenes,
(7) a carbon material laminate (E) in which carbon materials (C) are laminated via the adhesive (D) according to any one of (1) to (6);
(8) A carbon/ceramic laminate (F) formed by laminating a carbon material (C) and ceramics via the adhesive (D) according to any one of (1) to (6) above;
(9) A carbon/metal laminate (G) formed by laminating a carbon material (C) and a metal via the adhesive (D) according to any one of (1) to (6) above,
(10) A carbon/resin composite (H) formed by combining a carbon material (C) and a resin material via the adhesive (D) according to any one of (1) to (6) above,
(11) In the carbon material laminate (E) described in (7) above, carbon fibers (CF), carbon nanofibers (CNF) and/or carbon nanotubes (CNT) are bonded together via an adhesive (D). (CNF, CNT)/CF carbon material laminate obtained by laminating the carbon material laminate, characterized in that the coverage of CNF and/or CNT on the CF surface is 10% or more. (E1),
(12) The carbon material laminate (E) described in (7) above is a carbon material laminate (E) in which diamond particles and carbon nanofibers (CNF) and/or carbon nanotubes (CNT) are laminated via an adhesive (D). (CNF, CNT)/diamond carbon material laminate (E2), characterized in that the CNT coverage rate on the surface of the diamond particles is 10% or more;
(13) The carbon/ceramic laminate (F) described in (8) above is a structure in which ceramics and carbon nanofibers (CNF) and/or carbon nanotubes (CNT) are laminated via an adhesive (D). A carbon/ceramic laminate obtained by a carbon/ceramic laminate, characterized in that the CNT coverage on the ceramic surface is 10% or more,
(14) The carbon/metal laminate (G) described in (9) above is a carbon/metal laminate (G) in which a metal and carbon nanofibers (CNF) and/or carbon nanotubes (CNT) are laminated via an adhesive (D). a carbon/metal laminate obtained by a carbon/metal laminate, the carbon/metal laminate having a CNT coverage rate of 10% or more on the metal surface;
(15) A resin bonded grindstone containing the (CNF, CNT)/diamond laminate (E2) described in (12) above;
(16) A saw wire containing the (CNF, CNT)/diamond laminate (E2) according to (12) above;
(17) Bringing the adhesive (D) according to any one of the above (1) to (5) into contact with the surface of the carbon material (C) that is the base material to form a chemical bond between the base material and the adhesive. A method for producing a carbon material laminate (E), characterized in that after forming an adhesive layer, the same or different carbon material is brought into contact with the adhesive layer and bonded by chemical bonding,
(18) The base material is one or more materials selected from carbon fiber (CF), diamond (DM), diamond-like carbon (DLC), and carbon nanofiber (CNF), and the carbon material to be bonded is carbon nanotube. (CNT), carbon nanofiber (CNF), the method for producing a carbon material laminate (E) according to (17) above,
(19) The adhesive (D) according to any one of (1) to (5) above is brought into contact with the surface of the ceramic base material, and an adhesive layer is formed between the base material and the adhesive by chemical bonding. A method for producing a carbon/ceramic laminate (F), which comprises forming the carbon material (C), then bringing the carbon material (C) into contact with the adhesive layer and adhering it by chemical bonding;
(20) The carbon/ceramic laminate according to (19) above, wherein the base material is ceramic, and the carbon material to be bonded is carbon nanofiber (CNF) and/or carbon nanotube (CNT). F) manufacturing method,
(21) A carbon/resin composite characterized in that the adhesive (D) according to any one of the above (1) to (5) is mixed into a resin material and then composited with a carbon material (C). method for producing body (H);
(22) The carbon/resin described in (21) above, wherein the carbon material is one or more materials selected from carbon fibers (CF), carbon nanofibers (CNF), and carbon nanotubes (CNT). A method for producing composite (H) is provided.

本発明の接着剤(D)は、活性水素と反応する官能基を有するビニルモノマー(A)を重合してなる重合体(B)を含有する、炭素材料(C)の接着に用いられる反応性接着剤であって、該接着剤を介して炭素材料同士や炭素材料と樹脂などの有機材料、セラミックス、金属などの無機材料とを接着することによって複合体、積層体などの成形品を取得することができる。また、薄い接着層を形成することが可能であるため、炭素材料本来の機械的に強度、熱伝導性や電気伝導性などの特性を損なうことがなく、高性能の積層体、複合体を容易に製造することができる。 The adhesive (D) of the present invention contains a polymer (B) obtained by polymerizing a vinyl monomer (A) having a functional group that reacts with active hydrogen, and has a reactive property used for adhesion of a carbon material (C). An adhesive for obtaining molded products such as composites and laminates by bonding carbon materials to each other, carbon materials to organic materials such as resins, and inorganic materials such as ceramics and metals through the adhesive. be able to. In addition, since it is possible to form a thin adhesive layer, it is possible to easily create high-performance laminates and composites without impairing the inherent properties of carbon materials such as mechanical strength, thermal conductivity, and electrical conductivity. can be manufactured.

以下、本発明を詳細に説明する。
本発明に用いられるビニルモノマー(A)は活性水素と反応する官能基を有するビニルモノマーである。本発明でいう活性水素とは、炭素材料の表面に有するカルボキシル基やフェノール性水酸基の活性水素のことである。また、ビニルモノマー(A)が有する官能基は、通常の温度、圧力、触媒存在下などの反応条件において、これらの活性水素と反応できる官能基であれば、特に限定することはない。例えば、アミン基、アルコール基、酸無水物、グリシジル基、イソシアネート基、オキソゾリン基、カルボジイミド基などが挙げられる。このうち、グリシジル基、イソシアネート基、カルボジイミド基とオキソゾリン基が活性水素との反応性が高く、好ましい。なかでも、オキサゾリン基が最も高い反応性を有し、且つ、活性水素との付加反応は副生成物を発生しないため、特に好ましい。
The present invention will be explained in detail below.
The vinyl monomer (A) used in the present invention is a vinyl monomer having a functional group that reacts with active hydrogen. The active hydrogen referred to in the present invention refers to the active hydrogen of a carboxyl group or phenolic hydroxyl group that is present on the surface of a carbon material. Further, the functional group that the vinyl monomer (A) has is not particularly limited as long as it is a functional group that can react with these active hydrogens under normal reaction conditions such as temperature, pressure, and presence of a catalyst. Examples include amine groups, alcohol groups, acid anhydrides, glycidyl groups, isocyanate groups, oxozoline groups, and carbodiimide groups. Among these, a glycidyl group, an isocyanate group, a carbodiimide group, and an oxozoline group are preferred because they have high reactivity with active hydrogen. Among these, oxazoline groups are particularly preferred because they have the highest reactivity and addition reactions with active hydrogen do not generate by-products.

グリシジル基を有するビニルモノマー(A1)としては、グリシジル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテルなどのグリシジル基を有する(メタ)アクリレート系モノマー、N-グリシジル(メタ)アクリルアミド、N−メチル−N−グリシジル(メタ)アクリルアミド、N−エチル−N−(メタ)グリシジルアクリルアミドなどのグリシジル基を有する(メタ)アクリルアミド系モノマー、アリルグリシジルエーテル、トリアルコキシシリルモノグリシジルエーテル、トリシクロデカンジメタノールモノアリルエーテルモノグリシジルエーテル、トリシクロデカンジメタノールのトリアルコキシシリルモノグリシジルエーテルなどのグリシジル基とアリル基を有するモノマーなど等が挙げられる。このうち、工業品を入手しやすく、共重合性がよい観点から、グリシジルメタクリレートとグリシジルアクリレートが好ましい。これらグリシジル基を有するビニルモノマーは、1種類に限らず、複数の種類を組み合わせて使用してもよい。 Examples of the vinyl monomer (A1) having a glycidyl group include glycidyl (meth)acrylate, (meth)acrylate monomers having a glycidyl group such as 4−hydroxybutyl (meth)acrylate glycidyl ether, and N-glycidyl (meth)acrylamide. , N−methyl−N−glycidyl (meth)acrylamide, N−ethyl−N−(meth)glycidyl acrylamide, and other (meth)acrylamide-based monomers having a glycidyl group. , allylglycidyl ether, trialkoxysilyl monoglycidyl ether, tricyclodecane dimethanol monoallyl ether monoglycidyl ether, tricyclodecane dimethanol trialkoxysilyl monoglycidyl ether, and other monomers having a glycidyl group and an allyl group. It will be done. Among these, glycidyl methacrylate and glycidyl acrylate are preferred from the viewpoint of easy availability of industrial products and good copolymerizability. These glycidyl group-containing vinyl monomers are not limited to one type, and a plurality of types may be used in combination.

イソシアネート基を有するビニルモノマー(A2)としては、2-イソシアネートエチル(メタ)アクリレート、3-イソシアネートプロピル(メタ)アクリレート、2-イソシアネート1-メチルエチル(メタ)アクリレート、3-(メタ)アクリロイルオキシフェニルイソシアネート、3-イソシアネート2-メチルブチル(メタ)アクリレート、4-(メタ)アクリロイルオキシフェニルイソシアネート、3-(メタ)アクリロイルオキシフェニルイソシアネート、2-(メタ)アクリロイルオキシフェニルイソシアネート、3,5-ビス(メタ)アクリロイルオキシエチル)フェニルイソシアネート、2,4-ビス((メタ)アクリロイルオキシ)フェニルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート、(メタ)アクリロイルイソシアネート等が挙げられる。このうち、工業品を入手しやすく、共重合性がよい観点から、2-イソシアネートエチルアクリレートと2-イソシアネートエチルメタクリレートが好ましい。これらイソシアネート基を有するビニルモノマーは、1種類に限らず、複数の種類を組み合わせて使用してもよい。 As the vinyl monomer (A2) having an isocyanate group, 2-isocyanate ethyl (meth)acrylate, 3-isocyanate propyl (meth)acrylate, 2-isocyanate 1-methylethyl (meth)acrylate, 3-(meth)acryloyloxyphenyl Isocyanate, 3-isocyanate 2-methylbutyl (meth)acrylate, 4-(meth)acryloyloxyphenyl isocyanate, 3-(meth)acryloyloxyphenyl isocyanate, 2-(meth)acryloyloxyphenyl isocyanate, 3,5-bis(meth) ) acryloyloxyethyl) phenyl isocyanate, 2,4-bis((meth)acryloyloxy) phenyl isocyanate, 1,1-bis((meth)acryloyloxymethyl)ethyl isocyanate, 1,1-bis((meth)acryloyloxy) Examples include methyl)ethyl isocyanate and (meth)acryloyl isocyanate. Among these, 2-isocyanate ethyl acrylate and 2-isocyanate ethyl methacrylate are preferred from the viewpoint of easy availability of industrial products and good copolymerizability. These isocyanate group-containing vinyl monomers are not limited to one type, and a plurality of types may be used in combination.

オキサゾリン基を有するビニルモノマー(A3)としては、2-ビニル-2-オキサゾリン、4-メチル-2-ビニル-2-オキサゾリン、5-メチル-2-ビニル-2-オキサゾリン、4-エチル-2-ビニル-2-オキサゾリン、5-エチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-2-オキサゾリン、4,4-ジエチル-2-ビニル-2-オキサゾリン、4,5-ジメチル-2-ビニル-2-オキサゾリン、4,5-ジエチル-2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、4-メチル-2-イソプロペニル-2-オキサゾリン、5-メチル-2-イソプロペニル-2-オキサゾリン、4-エチル-2-イソプロペニル-2-オキサゾリン、5-エチル-2-イソプロペニル-2-オキサゾリン、4,4-ジメチル-2-イソプロペニル-2-オキサゾリン、4,4-ジエチル-2-イソプロペニル-2-オキサゾリン、4,5-ジメチル-2-イソプロペニル-2-オキサゾリン、4,5-ジエチル-2-イソプロペニル-2-オキサゾリン等が挙げられる。この内、カルボキシル基、フェノール性水酸基と高い反応性を有する観点から、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、5-メチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-2-オキサゾリンが好ましく、なかでも、2-ビニル-2-オキサゾリンと2-イソプロペニル-2-オキサゾリンが特に好ましい。これらオキサゾリン基を有するビニルモノマーは、1種類に限らず、複数の種類を組み合わせて使用してもよい。 Examples of the vinyl monomer (A3) having an oxazoline group include 2-vinyl-2-oxazoline, 4-methyl-2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4-ethyl-2- Vinyl-2-oxazoline, 5-ethyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4,4-diethyl-2-vinyl-2-oxazoline, 4,5- Dimethyl-2-vinyl-2-oxazoline, 4,5-diethyl-2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 4-methyl-2-isopropenyl-2-oxazoline, 5-methyl- 2-isopropenyl-2-oxazoline, 4-ethyl-2-isopropenyl-2-oxazoline, 5-ethyl-2-isopropenyl-2-oxazoline, 4,4-dimethyl-2-isopropenyl-2-oxazoline, Examples include 4,4-diethyl-2-isopropenyl-2-oxazoline, 4,5-dimethyl-2-isopropenyl-2-oxazoline, and 4,5-diethyl-2-isopropenyl-2-oxazoline. Among these, from the viewpoint of having high reactivity with carboxyl groups and phenolic hydroxyl groups, 2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4 -dimethyl-2-vinyl-2-oxazoline is preferred, and 2-vinyl-2-oxazoline and 2-isopropenyl-2-oxazoline are particularly preferred. These vinyl monomers having an oxazoline group are not limited to one type, and a plurality of types may be used in combination.

これらのビニルモノマー(A)は1種単独でもよく、異なる官能基のもの2種以上を組み合わせて使用することができる。 These vinyl monomers (A) may be used alone or in combination of two or more types having different functional groups.

本発明に用いられる重合体(B)は、ビニルモノマー(A)由来の構成単位を10mol%以上含有することが好ましい。(A)の含有量が10mol%以上であれば、得られた重合体(B)には、炭素材料及びそれ以外の有機材料、無機材料と反応できる官能基を十分に有し、重合体(B)を含有する本発明の接着剤(D)がこれらの材料を強力に接着することができるため、好ましい。 The polymer (B) used in the present invention preferably contains 10 mol % or more of constitutional units derived from the vinyl monomer (A). If the content of (A) is 10 mol% or more, the obtained polymer (B) has sufficient functional groups that can react with carbon materials and other organic materials and inorganic materials, and the polymer ( The adhesive (D) of the present invention containing B) is preferred because it can strongly bond these materials.

本発明に用いられる重合体(B)は、オキサゾリン基を有するビニルモノマー(A3)由来の構成単位を90mol%超えて含有することが好ましい。A3が90mol%を超えて含有されていれば、重合体(B)に含まれるオキサゾリン基の密度が高く、Bが低分子量化することが可能となり、それによって本発明の接着剤(D)から薄くて強力な接着層を形成することができる。また、同様な観点から、A3の含有量は95mol%以上であることがより好ましく、A3の含有量は100mol%(ホモポリマー)であることが特に好ましい。 The polymer (B) used in the present invention preferably contains more than 90 mol% of constitutional units derived from the vinyl monomer (A3) having an oxazoline group. If A3 is contained in an amount exceeding 90 mol%, the density of oxazoline groups contained in the polymer (B) is high, and it becomes possible to reduce the molecular weight of B, thereby making it possible to reduce the molecular weight of the adhesive (D) of the present invention. A thin and strong adhesive layer can be formed. Moreover, from the same viewpoint, the content of A3 is more preferably 95 mol% or more, and the content of A3 is particularly preferably 100 mol% (homopolymer).

本発明に用いられる重合体(B)は、ガラス転移温度(Tg)が80℃以上であることが好ましい。Tgが80℃以上を有する場合、重合体(B)を含有する本発明の接着剤(D)が炭素材料及びそれ以外の有機材料、無機材料の表面に薄く、均一な接着層を形成できるという特異的な効果が確認された。重合体(B)のTgは、当該特異効果との因果関係について、明確ではないが、本発明の重合体(B)は、炭素材料、有機材料或いは無機材料の表面のカルボキシル基やフェノール基と反応する際、80℃以上の温度であると反応が速く進行することが確認されており、重合体(B)のTgが80℃以上であると、反応時適度な柔軟性が有するため、基材の表面に均一に分散され、反応終了後、基材が冷却されると同時に接着層が基材の表面に均一に分散された状態で固定され、薄くて、均一な接着層を取得することができるためと発明者らは推測している。一方、Tgが80℃未満の重合体では、反応終了後、基材が冷却される際に接着層が官能基の数により団子状や塊状態に凝集する可能性がある。 The polymer (B) used in the present invention preferably has a glass transition temperature (Tg) of 80°C or higher. When Tg is 80°C or higher, the adhesive (D) of the present invention containing the polymer (B) can form a thin and uniform adhesive layer on the surface of carbon materials and other organic and inorganic materials. A specific effect was confirmed. Although it is not clear whether the Tg of the polymer (B) has a causal relationship with the specific effect, the polymer (B) of the present invention can interact with carboxyl groups or phenol groups on the surface of carbon materials, organic materials, or inorganic materials. It has been confirmed that the reaction proceeds quickly when the temperature is 80°C or higher, and if the Tg of the polymer (B) is 80°C or higher, it has appropriate flexibility during the reaction, so the group The adhesive layer is uniformly distributed on the surface of the material, and after the reaction is completed, the adhesive layer is fixed in a uniformly distributed state on the surface of the base material as soon as the base material is cooled, thereby obtaining a thin and uniform adhesive layer. The inventors speculate that this is because it is possible to On the other hand, in the case of a polymer having a Tg of less than 80° C., when the substrate is cooled after the completion of the reaction, there is a possibility that the adhesive layer will aggregate into a lump or lump shape depending on the number of functional groups.

本発明に用いられる重合体(B)の重合方法は、特に限定されるものではなく、公知のラジカル重合法により合成可能である。例えば、アルコール、酢酸エチルなどの有機溶媒中や水中の溶液重合、懸濁重合、乳化重合、塊状重合法などが挙げられる。有機溶媒中の溶液重合法を採用する場合、重合溶媒としては、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルアルコール、エチルアルコールなどの単独もしくは混合の溶媒を用いることができる。 The method for polymerizing the polymer (B) used in the present invention is not particularly limited, and it can be synthesized by a known radical polymerization method. Examples include solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization in organic solvents such as alcohol and ethyl acetate, or in water. When a solution polymerization method in an organic solvent is employed, the polymerization solvent may be toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl alcohol, ethyl alcohol, etc. alone or in combination.

重合体(B)の重合に用いる重合開始剤としては、アゾ系、有機過酸化物系、無機過酸化物系、レドックス系など一般的に知られている重合開始剤が挙げられる。重合開始剤の使用量としては、通常、重合性単量体成分総量に対して0.001~10mol%程度である。また、連鎖移動剤による分子量の調整など通常のラジカル重合技術が適用される。 Examples of the polymerization initiator used in the polymerization of the polymer (B) include commonly known polymerization initiators such as azo type, organic peroxide type, inorganic peroxide type, and redox type. The amount of the polymerization initiator used is usually about 0.001 to 10 mol% based on the total amount of polymerizable monomer components. Further, ordinary radical polymerization techniques such as adjustment of molecular weight using a chain transfer agent can be applied.

重合体(B)を構成するモノマーとしてビニルモノマー(A)のみでもよいが、他の共重合可能なビニル系単量体を用いることができる。他の共重合可能なビニル系単量体としては、炭素鎖1~12のアルキル基を有する(メタ)アクリレート、炭素鎖1~12のアルキル基を有するN-アルキル(メタ)アクリルアミド、同じ又は異なる二つの炭素鎖1~12のアルキル基を有するN,N-ジアルキル(メタ)アクリルアミド、芳香族置換基を有する(メタ)アクリレート又は(メタ)アクリルアミド、ヒドロキシアルキル(C1~12)(メタ)アクリレート又は(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリル酸等が挙げられる。これらの共重合可能なビニル系単量体は単独でもよく、2種以上を混合使用しても良い。 The vinyl monomer (A) alone may be used as the monomer constituting the polymer (B), but other copolymerizable vinyl monomers may also be used. Other copolymerizable vinyl monomers include (meth)acrylates having alkyl groups with 1 to 12 carbon chains, N-alkyl (meth)acrylamides having alkyl groups with 1 to 12 carbon chains, the same or different N,N-dialkyl (meth)acrylamides with two carbon chain 1-12 alkyl groups, (meth)acrylates or (meth)acrylamides with aromatic substituents, hydroxyalkyl (C1-12) (meth)acrylates or Examples include (meth)acrylamide, (meth)acrylonitrile, (meth)acrylic acid, and the like. These copolymerizable vinyl monomers may be used alone or in combination of two or more.

本発明に用いられる重合体(B)の重量平均分子量は500~200,000である。また、好ましくは1,000~100,000、さらに好ましくは2,000~60,000である。重量平均分子量が500未満であると、重合されてないモノマーが多く存在し(残存モノマー)、接着剤(D)に配合した際に、十分な接着力が得られない可能性があり、好ましくない。一方、重量平均分子量が200,000を越えると、重合体(B)の接着剤(D)の中の配合量にもよるが、炭素材料、有機材料、無機材料の表面に形成される接着層が厚くなったり、不均一になったりすることがあり、好ましくない。 The weight average molecular weight of the polymer (B) used in the present invention is 500 to 200,000. Further, it is preferably 1,000 to 100,000, more preferably 2,000 to 60,000. If the weight average molecular weight is less than 500, there will be a large amount of unpolymerized monomer (residual monomer), and when it is blended into the adhesive (D), it may not be possible to obtain sufficient adhesive strength, which is undesirable. . On the other hand, if the weight average molecular weight exceeds 200,000, an adhesive layer may be formed on the surface of the carbon material, organic material, or inorganic material, depending on the amount of the polymer (B) in the adhesive (D). This is not desirable as it may become thick or uneven.

本発明の接着剤(D)は、必須な構成成分として重合体(B)を10質量%以上配合することが好ましい。重合体(B)が10質量%未満の場合、Bに有する官能基の量と品種によって、得られる接着剤(E)の接着力が不十分となる恐れがあり、好ましくない。 The adhesive (D) of the present invention preferably contains 10% by mass or more of the polymer (B) as an essential component. If the polymer (B) is less than 10% by mass, the resulting adhesive (E) may have insufficient adhesive strength depending on the amount and type of functional groups contained in B, which is not preferable.

本発明に用いられる炭素材料(C)は、主に炭素だけから構成されている材料(カーボン材料)であり、具体的には炭素繊維(CF)、グラファイト、ダイヤモンド(DM)、ダイヤモンドライクカーボン(DLC)、カーボンブラック(CB)、ナノカーボンファイバー(CNF)、カーボンナノチューブ(CNT)、グラフェン、フラーレンから選択される1種以上の材料である。また、炭素繊維(CF)としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系と植物由来原料系のものが挙げられ、カーボンナノチューブ(CNT)としては、単層カーボンナノチューブ(SWCNT)、二層カーボンナノチューブ(DWCNT)、多層カーボンナノチューブ(MWCNT)、カップ積層型カーボンナノチューブ(CSCNTs)が挙げられる。なかでも、PAN系炭素繊維が単位重量当たりの強度、弾性率に優れ、製造量が多いので、繊維系炭素材料としてより好ましく、CNTがナノメートルレベルで構造を制御でき、新規機能材料として安価に工業的なレベルで製造できるようになったため、ナノ系炭素材料として好ましい。また、これらの炭素材料は市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を配置させるための処理を行ってから使用してもよい。 The carbon material (C) used in the present invention is a material (carbon material) mainly composed of only carbon, and specifically includes carbon fiber (CF), graphite, diamond (DM), diamond-like carbon ( DLC), carbon black (CB), nanocarbon fiber (CNF), carbon nanotube (CNT), graphene, and fullerene. Carbon fibers (CF) include polyacrylonitrile (PAN), pitch, rayon, and plant-based materials, and carbon nanotubes (CNT) include single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (SWCNT), Examples include wall carbon nanotubes (DWCNTs), multiwall carbon nanotubes (MWCNTs), and cup stacked carbon nanotubes (CSCNTs). Among these, PAN-based carbon fibers are more preferable as fibrous carbon materials because they have excellent strength and elastic modulus per unit weight and can be produced in large quantities, while CNTs can control the structure at the nanometer level and are inexpensive as new functional materials. Since it can now be manufactured at an industrial level, it is preferred as a nano-based carbon material. Further, these carbon materials may be used as they are as commercially available products, or may be used after being subjected to a treatment such as oxidation to arrange many carboxyl groups or phenolic hydroxyl groups on the surface.

本発明に用いられる炭素材料(C)はそれぞれの目的に応じて単独で使用してもよいし、2種類以上を併用してもよい。また、これらの炭素材料は通常の市販品のままでも使用可能であるが、水や溶媒による洗浄、CNT同士の絡まり合いを解くためのビーズミル分散処理や超音波分散処理などの物理的な分散処理を実施してからの使用がより好ましい。 The carbon material (C) used in the present invention may be used alone or in combination of two or more types depending on the purpose. In addition, although these carbon materials can be used as ordinary commercially available products, they may be washed with water or a solvent, or may be subjected to physical dispersion treatment such as bead mill dispersion treatment or ultrasonic dispersion treatment to disentangle the CNTs. It is more preferable to use it after carrying out.

本発明の炭素材料を用いた各種積層体(E,F,G,)は、同一の炭素材料又は異なる炭素材料により形成される炭素材料積層体(E)、炭素材料とセラミックスにより形成される炭素/セラミックス積層体(F)、炭素材料と金属など無機材料による形成される炭素/金属積層体(G)などの炭素/無機材料積層体、炭素材料と炭素材料以外の有機材料による形成される炭素/有機材料積層体などが挙げられる。また、炭素材料積層体(E)は、炭素繊維(CF)、グラファイト、ダイヤモンド(DM)、ダイヤモンドライクカーボン(DLC)、カーボンブラック(CB)、ナノカーボンファイバー(CNF)、カーボンナノチューブ(CNT)、グラフェン、フラーレンから任意に選択される2種以上の材料を積層して形成することができる。このうち、特に炭素繊維とカーボンナノファイバー、炭素繊維とナノダイヤモンド粒子、炭素繊維とカーボンナノチューブ、カーボンナノファイバーとカーボンナノチューブ、ダイヤモンド粒子とカーボンナノチューブなどから形成される炭素材料積層体は、異なる大きさの炭素材料の組み合わせにより、お互いに物性上の欠点が補修され、特徴が維持またはさらに伸ばされ、異種炭素材料の相互作用により従来にない特異な効果が期待できるため、より好ましい。 Various laminates (E, F, G,) using carbon materials of the present invention are carbon material laminates (E) formed of the same carbon material or different carbon materials, carbon material laminates (E) formed of carbon materials and ceramics, /Ceramics laminate (F), carbon/metal laminate (G) formed of carbon material and inorganic material such as metal, carbon/inorganic material laminate, carbon formed of carbon material and organic material other than carbon material /organic material laminate, etc. In addition, the carbon material laminate (E) includes carbon fiber (CF), graphite, diamond (DM), diamond-like carbon (DLC), carbon black (CB), nanocarbon fiber (CNF), carbon nanotube (CNT), It can be formed by laminating two or more materials arbitrarily selected from graphene and fullerene. Among these, carbon material laminates formed from carbon fibers and carbon nanofibers, carbon fibers and nanodiamond particles, carbon fibers and carbon nanotubes, carbon nanofibers and carbon nanotubes, diamond particles and carbon nanotubes, etc. have different sizes. This combination of carbon materials is more preferable because defects in physical properties can be repaired, characteristics can be maintained or further enhanced, and unique effects not seen before can be expected due to the interaction of different types of carbon materials.

本発明の炭素材料を用いた各種積層体は、接着剤(D)を介して形成されるものである。積層方法は、特に限定されるものではなく、一般的に積層材料両方或いは片方の表面に接着剤を塗布して接着させる方法により実施可能であるが、本発明は基材(被接着体)と積層材(接着体)の形状が異なったり、表面面積が大きく違ったりする場合があるため、基材の表面に接着剤を接触させ、基材と接着剤の間に化学結合により接着層を形成してから、積層材とさらに接触させ、積層材と接着層に有する接着剤の間に化学結合により接着させるという製造方法が好ましい。 Various laminates using the carbon material of the present invention are formed using an adhesive (D). The lamination method is not particularly limited, and can generally be carried out by applying an adhesive to the surfaces of both or one of the laminated materials and adhering them. Since the shape of the laminated material (adhesive) may differ or the surface area may differ greatly, the adhesive is brought into contact with the surface of the base material and an adhesive layer is formed between the base material and the adhesive through chemical bonding. A preferred manufacturing method is to further contact the laminated material and bond the laminated material and the adhesive in the adhesive layer by chemical bonding.

本発明に用いられる基材は炭素材料、無機材料、金属材料などの材料である。また、基材の表面に活性水素を有することが好ましく、その活性水素はカルボキシル基、フェノール性水酸基であることが特に好ましい。基材表面に有する官能基の量は、基材の材質、表面の形状などによって、必要最低量は変わってくるが、カルボキシル基とフェノール性水酸基の合計で0.1μmol/g以上であることが好ましい。また、0.5μmol/g以上であることがより好ましく、1.0μmol/g以上であることが最も好ましい。本発明に用いられる基材は、1種に限らず、複数の種類を組み合わせて使用することができる。また、市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を配置させるための処理を行ってから使用してもよい。 The base material used in the present invention is a carbon material, an inorganic material, a metal material, or the like. Further, it is preferable to have active hydrogen on the surface of the base material, and it is particularly preferable that the active hydrogen is a carboxyl group or a phenolic hydroxyl group. The required minimum amount of functional groups on the surface of the base material varies depending on the material of the base material, the shape of the surface, etc., but the total amount of carboxyl groups and phenolic hydroxyl groups should be 0.1 μmol/g or more. preferable. Moreover, it is more preferable that it is 0.5 micromol/g or more, and it is most preferable that it is 1.0 micromol/g or more. The base material used in the present invention is not limited to one type, and multiple types can be used in combination. In addition, it may be used as a commercially available product, or it may be used after being subjected to a treatment such as oxidation to arrange many carboxyl groups or phenolic hydroxyl groups on the surface.

本発明に用いられる積層材は炭素材料であり、また、ナノサイズ炭素材料の優れた電気伝導性、熱伝導性と機械的強度などの特性を積層体に導入するため、積層材は、ナノサイズの炭素材料であることが好ましい。具体的にはナノサイズのダイヤモンドとダイヤモンドライクカーボン、カーボンナノファイバー、カーボンナノチューブ、グラフェン、フラーレンなどが挙げられる。中でも、アスペクト比の大きなカーボンナノファイバーとカーボンナノチューブが、柔らかく強靭な機械的性質を有するため、特に好ましい。積層材の表面にも活性水素を有することが好ましく、その活性水素はカルボキシル基、フェノール性水酸基であることが特に好ましい。積層材表面に有する官能基の量は、積層材の材質、表面の形状などによって、必要最低量が変わってくるが、カルボキシル基とフェノール性水酸基の合計で0.1μmol/g以上であることが好ましい。また、0.5μmol/g以上であることがより好ましく、1.0μmol/g以上であることが最も好ましい。本発明に用いられる積層材は、1種に限らず、複数の種類を組み合わせて使用することができる。また、市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を配置させるための処理を行ってから使用してもよい。 The laminate material used in the present invention is a carbon material, and in order to introduce the properties of nano-sized carbon materials such as excellent electrical conductivity, thermal conductivity and mechanical strength into the laminate material, the laminate material is made of nano-sized carbon material. It is preferable that it is a carbon material. Specific examples include nano-sized diamonds, diamond-like carbon, carbon nanofibers, carbon nanotubes, graphene, and fullerene. Among these, carbon nanofibers and carbon nanotubes with a large aspect ratio are particularly preferable because they have soft and strong mechanical properties. It is preferable that the surface of the laminate also contains active hydrogen, and the active hydrogen is particularly preferably a carboxyl group or a phenolic hydroxyl group. The required minimum amount of functional groups on the surface of the laminated material varies depending on the material of the laminated material, the shape of the surface, etc., but the total amount of carboxyl groups and phenolic hydroxyl groups should be 0.1 μmol/g or more. preferable. Moreover, it is more preferable that it is 0.5 micromol/g or more, and it is most preferable that it is 1.0 micromol/g or more. The laminated material used in the present invention is not limited to one type, and a plurality of types can be used in combination. In addition, it may be used as a commercially available product, or it may be used after being subjected to a treatment such as oxidation to arrange many carboxyl groups or phenolic hydroxyl groups on the surface.

積層材はアスペクト比が非常に大きいカーボンナノチューブなどである場合、非常に絡まりやすいため、水や有機溶媒中で分散させてから使用することが好ましい。カーボンナノチューブなどの炭素材料の分散剤としては、室温(25℃)において液体である有機溶媒類と水が好ましい。溶媒としては、メタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノーn-ブチルエーテル、エチレングリコールモノメチルエーテル等のエーテル類、テトラヒドロフラン(THF)、トルエン、キシレン、クロロホルム、N-メチルピロリドン(NMP)、N-メチルホルムアミド(NMF)、N,N-ジメチルホルムアミド(DMF)、N-メチルアセトアミド、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、シクロヘキサン、アルコキシ-N,N-ジアルキルプロパンアミド、多価アルコール、シリコーンオイル、陽イオン性、陰イオン性、両イオン性又は非イオン性の界面活性剤類など、幅広く用いることができる。また、これらはいずれか1種を単独で使用してもよいし、複数の溶媒を組み合わせてもよく、水溶性の有機溶媒と水からなる任意配合比の混合物として用いてもよい。 When the laminated material is carbon nanotubes or the like having a very large aspect ratio, it is very easy to get entangled, so it is preferable to use the material after dispersing it in water or an organic solvent. As a dispersant for carbon materials such as carbon nanotubes, organic solvents that are liquid at room temperature (25° C.) and water are preferable. Examples of solvents include alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone, esters such as ethyl acetate, propyl acetate, butyl acetate, and ethylene glycol. Ethers such as monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono n-butyl ether, ethylene glycol monomethyl ether, tetrahydrofuran (THF), toluene, xylene, chloroform, N-methylpyrrolidone (NMP), N-methylformamide (NMF), N,N-dimethylformamide (DMF), N-methylacetamide, dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), cyclohexane, alkoxy-N,N-dialkylpropanamide, polyhydric alcohol, silicone oil, A wide variety of surfactants can be used, including cationic, anionic, amphoteric or nonionic surfactants. Further, any one of these solvents may be used alone, a plurality of solvents may be combined, or a mixture of a water-soluble organic solvent and water in an arbitrary blending ratio may be used.

上記溶媒類の分散剤において、特にNMP、NMF、DMF、DMSO、「KJCMPA」(3-メトキシ-N,N-ジメチルプロパンアミド、「KJCMPA」はKJケミカルズ株式会社の登録商標である。)などの分子中に窒素原子又は硫黄原子を有する親水性溶媒が、炭素材料の表面に有する官能基との相互作用が強く、それによりCNTなどの炭素材料の再凝集を防止する効果を有し、安定的な分散液を形成されやすいので、好ましい。さらに、水を分散剤として用いる場合は、廃棄する有機溶剤を有しないため、環境に優しいメリットがある。 In particular, dispersants for the above solvents include NMP, NMF, DMF, DMSO, "KJCMPA" (3-methoxy-N,N-dimethylpropanamide, "KJCMPA" is a registered trademark of KJ Chemicals Co., Ltd.), etc. Hydrophilic solvents that have nitrogen or sulfur atoms in their molecules have a strong interaction with the functional groups on the surface of carbon materials, which has the effect of preventing re-aggregation of carbon materials such as CNTs, making them stable. This is preferable because it facilitates the formation of a dispersion liquid. Furthermore, when water is used as a dispersant, there is no organic solvent to be disposed of, which has the advantage of being environmentally friendly.

本発明の炭層材料を含有する積層体の製造方法は、基材の表面に接着剤を接触させ、基材と接着剤の間に化学結合により接着層を形成してから、積層材をさらに接触させ、積層材と接着層に有する接着剤の間の化学結合により接着させる方法である。基材の表面と接着剤とを接触させる方法は、接着剤の分子量、状態によって異なる。接着剤は作業温度において液体である場合、接着剤を基材の表面に薄く塗布する方法、液状又はワックス状の接着剤中に繊維状の炭素材料を通させる方法、粒子状の炭素材料を浸漬させる方法が挙げられる。また、接着剤が固体である場合は勿論、液体である場合も、接着剤の溶液を調製して用いることが好ましい。溶液状態の接着剤が、極めて薄い濃度で基材の表面に接触することにより、薄い接着剤層を形成することが可能であるため、好ましい。 The method for manufacturing a laminate containing a carbon layer material of the present invention involves contacting the surface of a base material with an adhesive, forming an adhesive layer between the base material and the adhesive by chemical bonding, and then further contacting the laminate material. In this method, the laminated material and the adhesive in the adhesive layer are bonded by chemical bonding. The method of bringing the surface of the base material into contact with the adhesive varies depending on the molecular weight and condition of the adhesive. If the adhesive is liquid at the working temperature, there are two methods: applying a thin layer of the adhesive to the surface of the substrate, passing a fibrous carbon material through a liquid or waxy adhesive, and dipping particulate carbon material into the adhesive. One example is how to do it. Furthermore, whether the adhesive is solid or liquid, it is preferable to prepare and use a solution of the adhesive. An adhesive in a solution state is preferable because it can form a thin adhesive layer by contacting the surface of the substrate at an extremely low concentration.

基材と接着剤との反応は、基材の材質によって大きく変わることがないが、基材の形状、サイズにより適宜、適切な反応方式を選択することができる。反応方式は大きく二つに分けることができ、一つは、接着剤を液体媒体中で基材の表面に接触させながら加熱する方法であり、もう一つは接着剤を液体媒体中で基材の表面に接触させた後加熱する方法である。具体的には、
(1)接着剤を水や有機溶媒中に溶解させ、接着剤溶液を調製する。得られた溶液を所定の温度に加熱し、繊維状の基材を所定の速度で接着剤溶液に通過させ、基材表面のカルボキシル基などの官能基に有する活性水素と接着剤のオキサゾリンなどの官能基を反応させ、基材の表面に薄く且つ均一な接着層を形成させる。また、粒子状の基材を所定温度に加熱した接着剤溶液中に加えるか、粒子状の基材に加熱された接着剤溶液を掛け流すかにより基材表面のカルボキシル基などの官能基に有する活性水素と接着剤のオキサゾリンなどの官能基を反応させ、基材の表面に薄く且つ均一な接着層を形成させる。
(2)室温又は低温で上記(1)の作業を行い、基材の表面に接着剤を接触させる。その後、所定温度に加熱し、溶媒を除去させながら、基材表面のカルボキシル基などの官能基に有する活性水素と接着剤のオキサゾリンなどの官能基を反応させ、基材の表面に薄く且つ均一な接着層を形成させる。
The reaction between the base material and the adhesive does not vary greatly depending on the material of the base material, but an appropriate reaction method can be selected depending on the shape and size of the base material. Reaction methods can be broadly divided into two types: one is to heat the adhesive while it is in contact with the surface of the base material in a liquid medium, and the other is to heat the adhesive while it is in contact with the surface of the base material in a liquid medium. This is a method in which the material is brought into contact with the surface of the material and then heated. in particular,
(1) Dissolve the adhesive in water or an organic solvent to prepare an adhesive solution. The obtained solution is heated to a predetermined temperature, and the fibrous base material is passed through the adhesive solution at a predetermined speed, and the active hydrogen contained in the functional groups such as carboxyl groups on the surface of the base material is combined with the oxazoline etc. of the adhesive. The functional groups are reacted to form a thin and uniform adhesive layer on the surface of the substrate. In addition, by adding a particulate base material to an adhesive solution heated to a predetermined temperature, or by pouring a heated adhesive solution onto a particulate base material, it is possible to add functional groups such as carboxyl groups on the surface of the base material. Active hydrogen reacts with functional groups such as oxazoline in the adhesive to form a thin and uniform adhesive layer on the surface of the base material.
(2) Perform the operation in (1) above at room temperature or low temperature to bring the adhesive into contact with the surface of the base material. Thereafter, while heating to a predetermined temperature and removing the solvent, the active hydrogen contained in the functional groups such as carboxyl groups on the surface of the base material is reacted with the functional groups such as oxazoline of the adhesive, and a thin and uniform coating is applied to the surface of the base material. Form an adhesive layer.

上記(1)の製造方法において、溶媒としては、高沸点かつ熱的安定性が高く、接着剤を溶解可能で且つ接着剤と反応性を有しない溶媒を用いることができる。反応温度は、基材の種類、接着剤の組成、構造によって変動するが、40~200℃であることが好ましく、60~180℃であることがより好ましい。温度が40℃より低い場合、反応の所要時間が長くなるか反応が十分に進行できない可能性があり、一方、温度が200℃より高い場合、かなり高沸点の溶媒を用いる必要があり、反応後の溶媒を容易に除去できない問題がある。 In the manufacturing method of (1) above, a solvent that has a high boiling point and high thermal stability, can dissolve the adhesive, and does not have reactivity with the adhesive can be used. The reaction temperature varies depending on the type of substrate and the composition and structure of the adhesive, but is preferably 40 to 200°C, more preferably 60 to 180°C. If the temperature is lower than 40°C, the reaction time may be longer or the reaction may not proceed sufficiently, while if the temperature is higher than 200°C, it may be necessary to use a solvent with a fairly high boiling point, and the There is a problem that the solvent cannot be easily removed.

上記(2)の製造方法において、溶媒としては、水や低沸点溶媒、熱的不安定溶媒、また接着剤と反応する溶媒が適用される。接触処理の温度は-20~40℃であることが好ましく、その後の反応温度は40~240℃であり、60~220℃が好ましく、80~200℃がより好ましい。反応温度が40℃未満であれば、接着剤の構造によって反応性の低いものが十分に反応できない可能性があり、また、反応温度が240℃を超えると、接着剤の熱分解や酸化などが起こりやすい問題があり、好ましくない。 In the manufacturing method (2) above, water, a low boiling point solvent, a thermally unstable solvent, or a solvent that reacts with the adhesive is used as the solvent. The contact treatment temperature is preferably -20 to 40°C, and the subsequent reaction temperature is 40 to 240°C, preferably 60 to 220°C, and more preferably 80 to 200°C. If the reaction temperature is less than 40°C, there is a possibility that less reactive substances may not react sufficiently depending on the structure of the adhesive, and if the reaction temperature exceeds 240°C, thermal decomposition or oxidation of the adhesive may occur. There are problems that are likely to occur and are not desirable.

本発明の積層材と、基材表面に接着された接着層との反応は、積層材の表面と接着層とを接触させ、積層材と接着層に有する接着剤との間に化学結合により接着させる方法である。積層材の表面と接着層を接触させる方法は、積層材の表面に接着層を有する基材の品種、形状、サイズ、及び積層材の品種、形状、サイズ、さらに接着剤の分子量、官能基数などによって適宜に調整することができるが、積層体が分散液ワックスな状態に調製してから基材上の接着層と接触させることが均一な積層体を取得できる観点から、好ましい。 The reaction between the laminated material of the present invention and the adhesive layer adhered to the surface of the base material is achieved by bringing the surface of the laminated material into contact with the adhesive layer, and creating a chemical bond between the laminated material and the adhesive in the adhesive layer. This is the way to do it. The method of bringing the surface of the laminated material into contact with the adhesive layer depends on the type, shape, and size of the base material that has the adhesive layer on the surface of the laminated material, the type, shape, and size of the laminated material, as well as the molecular weight, number of functional groups, etc. of the adhesive. However, it is preferable to prepare the laminate in the form of a dispersion wax and then bring it into contact with the adhesive layer on the base material, from the viewpoint of obtaining a uniform laminate.

本発明に用いられる積層材は、水や有機溶媒中に分散された分散液の状態であることがより好ましい。分散液を調製することができれば、その分散方法や分散に用いる装置及び分散温度、分散時間などの処理条件について、特に制限することがない。特に、ナノサイズの積層材において、分散処理中の切断防止の観点から、装置として攪拌装置、超音波洗浄機、ビーズミル分散機などを用いることが好ましい。 The laminate material used in the present invention is more preferably in the form of a dispersion liquid dispersed in water or an organic solvent. As long as a dispersion liquid can be prepared, there are no particular restrictions on the dispersion method, equipment used for dispersion, and processing conditions such as dispersion temperature and dispersion time. In particular, in nano-sized laminate materials, from the viewpoint of preventing breakage during dispersion treatment, it is preferable to use a stirring device, an ultrasonic cleaner, a bead mill disperser, or the like as the device.

積層材と接着剤との反応は、積層材と基材の形状、サイズにより適宜、適切な反応方式を選択することができる。反応方式は大きく二つに分けることができ、一つは、積層体を分散液又はワックス状に調製し、基材表面の接着層と接触させながら加熱する方法であり、もう一つは積層体を分散液又はワックス状に調製し、基材表面の接着層と接触させた後、加熱する方法である。具体的には、
(1)積層材を水や有機溶媒中に分散させ、積層材の分散液又はワックスを調製する。また、均一な積層体を得るため、濃度の低い積層材分散液が好ましい。得られた積層材分散液を所定の温度に加熱し、表面に接着層を有する繊維状基材を所定の速度で積層材分散液に通過させ、積層材の表面にカルボキシル基などの官能基と接着剤のオキサゾリンなどの官能基とを反応させ、基材の表面に接着層を介して積層材を接着させ、基材/接着層/積層材からなる積層体が形成される。また、表面に接着層を有する粒子状の基材を所定温度に加熱された積層材の分散液中に加えるか、表面に接着層を有する粒子状の基材に加熱された積層材分散液を掛け流すかにより積層材表面のカルボキシル基などの官能基と接着剤のオキサゾリンなどの官能基を反応させ、基材の表面に接着層を介して積層材を接着させ、基材/接着層/積層材からなる積層体が形成される。
(2)室温又は低温で上記(1)の作業を行い、積層材の表面に接着剤を接触させた後、所定温度に加熱し、水や溶媒を除去させながら、積層材表面のカルボキシル基などの官能基と接着剤のオキサゾリンなどの官能基とを反応させ、基材の表面に接着層を介して積層材を接着させ、基材/接着層/積層材からなる積層体が形成される。
For the reaction between the laminate and the adhesive, an appropriate reaction method can be selected depending on the shape and size of the laminate and the base material. The reaction method can be broadly divided into two types: one is to prepare the laminate in the form of a dispersion or wax, and heat it while bringing it into contact with the adhesive layer on the surface of the base material; This is a method in which the adhesive is prepared in the form of a dispersion or wax, brought into contact with the adhesive layer on the surface of the base material, and then heated. in particular,
(1) The laminate material is dispersed in water or an organic solvent to prepare a dispersion liquid or wax of the laminate material. Further, in order to obtain a uniform laminate, a laminate material dispersion liquid with a low concentration is preferable. The obtained laminate material dispersion is heated to a predetermined temperature, and a fibrous base material having an adhesive layer on the surface is passed through the laminate material dispersion at a predetermined speed to form functional groups such as carboxyl groups on the surface of the laminate. The adhesive is reacted with a functional group such as oxazoline, and the laminate material is adhered to the surface of the base material via the adhesive layer, thereby forming a laminate consisting of the base material/adhesive layer/laminate material. In addition, a particulate base material having an adhesive layer on the surface may be added to a dispersion of a laminate material heated to a predetermined temperature, or a particulate base material having an adhesive layer on the surface may be heated with a dispersion of a laminate material. The functional groups such as carboxyl groups on the surface of the laminate react with the functional groups such as oxazoline of the adhesive by pouring water onto the surface of the laminate, and the laminate is adhered to the surface of the base material via the adhesive layer, forming the base material/adhesive layer/laminated material. A laminate of materials is formed.
(2) After carrying out the work in (1) above at room temperature or low temperature to bring the adhesive into contact with the surface of the laminate, heat it to a predetermined temperature and remove water and solvent while removing the carboxyl groups on the surface of the laminate. The functional group of the adhesive is reacted with the functional group of the adhesive such as oxazoline, and the laminate material is adhered to the surface of the base material via the adhesive layer, thereby forming a laminate consisting of the base material/adhesive layer/laminate material.

上記(1)の製造方法において、溶媒としては、積層材に対する分散性が良く、高沸点で熱的安定性が高く、且つ積層材、基材及び接着剤とを反応しない溶媒を用いることができる。反応温度は、基材、積層材の種類、接着剤の組成、構造によって変動するが、40~200℃であることが好ましく、60~180℃であることがより好ましい。温度が40℃より低い場合、反応の所要時間が長くなるか反応が十分に進行できない可能性があり、一方、温度が200℃より高い場合、かなり高沸点の溶媒を用いる必要があり、反応後の溶媒を容易に除去できない問題がある。 In the manufacturing method of (1) above, the solvent may be a solvent that has good dispersibility in the laminate, has a high boiling point and high thermal stability, and does not react with the laminate, the base material, or the adhesive. . The reaction temperature varies depending on the substrate, the type of laminate, the composition and structure of the adhesive, but is preferably 40 to 200°C, more preferably 60 to 180°C. If the temperature is lower than 40°C, the reaction time may be longer or the reaction may not proceed sufficiently, while if the temperature is higher than 200°C, it may be necessary to use a solvent with a fairly high boiling point, and the There is a problem that the solvent cannot be easily removed.

上記(2)の製造方法において、溶媒としては、水や低沸点溶媒、熱的不安定溶媒、また積層材、基材及び接着剤と反応する溶媒が適用される。接触処理の温度は-20~40℃であることが好ましく、その後の反応温度は40~240℃であり、60~220℃が好ましく、80~200℃がより好ましい。反応温度が40℃未満であれば、接着剤の構造によって反応性の低いものが十分に反応できない可能性があり、また、反応温度が240℃を超えると、接着剤の熱分解や酸化などが起こりやすい問題があり、好ましくない。 In the manufacturing method (2) above, the solvent may be water, a low boiling point solvent, a thermally unstable solvent, or a solvent that reacts with the laminate, the base material, and the adhesive. The contact treatment temperature is preferably -20 to 40°C, and the subsequent reaction temperature is 40 to 240°C, preferably 60 to 220°C, and more preferably 80 to 200°C. If the reaction temperature is less than 40°C, there is a possibility that less reactive substances may not react sufficiently depending on the structure of the adhesive, and if the reaction temperature exceeds 240°C, thermal decomposition or oxidation of the adhesive may occur. There are problems that are likely to occur and are not desirable.

本発明に用いられる基材用と積層材用の分散剤としては、室温(25℃)において液体である有機溶媒類と水が好ましい。溶媒としては、メタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノーn-ブチルエーテル、エチレングリコールモノメチルエーテル等のエーテル類、テトラヒドロフラン(THF)、トルエン、キシレン、クロロホルム、N-メチルピロリドン(NMP)、N-メチルホルムアミド(NMF)、N,N-ジメチルホルムアミド(DMF)、N-メチルアセトアミド、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、シクロヘキサン、アルコキシ-N,N-ジアルキルプロパンアミド、多価アルコール、シリコーンオイル、陽イオン性、陰イオン性、両イオン性又は非イオン性の界面活性剤類など幅広く用いることができる。また、これらはいずれか1種を単独で使用してもよいし、複数の溶媒を組み合わせてもよく、水溶性の有機溶媒と水からなる任意配合比の混合物として用いてもよい。 As the dispersant for the base material and the laminate material used in the present invention, organic solvents and water that are liquid at room temperature (25° C.) are preferable. Examples of solvents include alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone, esters such as ethyl acetate, propyl acetate, butyl acetate, and ethylene glycol. Ethers such as monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono n-butyl ether, ethylene glycol monomethyl ether, tetrahydrofuran (THF), toluene, xylene, chloroform, N-methylpyrrolidone (NMP), N-methylformamide (NMF), N,N-dimethylformamide (DMF), N-methylacetamide, dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), cyclohexane, alkoxy-N,N-dialkylpropanamide, polyhydric alcohol, silicone oil, A wide variety of surfactants such as cationic, anionic, amphoteric or nonionic surfactants can be used. Further, any one of these solvents may be used alone, a plurality of solvents may be combined, or a mixture of a water-soluble organic solvent and water in an arbitrary blending ratio may be used.

上記溶媒類の分散剤において、特にNMP、NMF、DMF、DMSO、「KJCMPA」(3-メトキシ-N,N-ジメチルプロパンアミド、「KJCMPA」はKJケミカルズ株式会社の登録商標である)などの分子中に窒素原子又は硫黄原子を有する親水性溶媒が、本発明に用いられる基材と積層材との相互作用が強く、それによりCNT等のナノサイズの積層材の再凝集を防止する効果を有し、安定的な分散液を形成されやすいので、好ましい。さらに、水を分散剤として用いる場合は、廃棄する有機溶剤を有しないため、環境に優しいメリットがある。その際に、公知の分散促進剤やN-ビニルピロリドンのポリマーなどを添加することもできる。 In dispersants for the above solvents, molecules such as NMP, NMF, DMF, DMSO, and "KJCMPA" (3-methoxy-N,N-dimethylpropanamide, "KJCMPA" is a registered trademark of KJ Chemicals Co., Ltd.) are particularly useful. The hydrophilic solvent having a nitrogen atom or a sulfur atom has a strong interaction between the base material and the laminated material used in the present invention, and thereby has the effect of preventing re-aggregation of nano-sized laminated materials such as CNTs. However, it is preferable because a stable dispersion can be easily formed. Furthermore, when water is used as a dispersant, there is no organic solvent to be disposed of, which has the advantage of being environmentally friendly. At this time, known dispersion promoters, N-vinylpyrrolidone polymers, and the like may be added.

積層材分散液の濃度は、積層材の形状、サイズ、前処理の有無と処理方法、及び分散液の品種、分散促進剤の有無とそれらの配合量などによって大きく変動するが、積層材が分散剤に対して0.01~20質量%であることが好ましく、また、難分散で大きいアスペクトを有するCNT等の積層材においては、分散剤に対して0.01~10質量%であることがより好ましく、均一で薄く、且つ高被覆率の積層体を形成できる観点から、0.05~5質量%であることが特に好ましい。 The concentration of the laminate material dispersion varies greatly depending on the shape and size of the laminate, the presence or absence of pretreatment and the treatment method, the type of dispersion, the presence or absence of a dispersion accelerator, and the amount of these, but It is preferably 0.01 to 20% by mass based on the dispersing agent, and in the case of laminated materials such as CNTs that are difficult to disperse and have large aspect ratios, it is preferably 0.01 to 10% by mass based on the dispersing agent. More preferably, the content is particularly preferably from 0.05 to 5% by mass from the viewpoint of forming a laminate that is uniform, thin, and has a high coverage.

本発明の積層体は、接着剤を介して基材上に積層材を積層させて製造されるものであって、積層の回数は特に限定することはないが、基材表面上に接着される積層材の量を示す被覆率が、一回の積層過程において10%以上であることが好ましく、20%以上であることがより好ましい。また、積層作業の回数を増やしていくことにより、被覆率100%の積層体を容易に取得することができる。さらに、被覆率100%の積層体において、積層材表面のカルボキシル基などの官能基と接着剤のオキサゾリンなどの官能基を反応させることによって、継続的に積層していくことができ、積層材の厚みを好適に調整できる炭素材料の積層材を容易に製造することができ、各種用途、分野に好適に用いることができる。 The laminate of the present invention is manufactured by laminating a laminate material on a base material via an adhesive, and the number of laminations is not particularly limited, but the laminate material is adhered onto the surface of the base material. The coverage rate, which indicates the amount of laminated material, is preferably 10% or more, more preferably 20% or more in one lamination process. Furthermore, by increasing the number of lamination operations, a laminate with a coverage of 100% can be easily obtained. Furthermore, in a laminate with 100% coverage, continuous lamination is possible by reacting functional groups such as carboxyl groups on the surface of the laminate with functional groups such as oxazoline in the adhesive. A laminated material of carbon materials whose thickness can be suitably adjusted can be easily manufactured, and can be suitably used in various applications and fields.

本発明の複合体は、炭素材料と樹脂材料が接着剤を介して複合させてなるものである。複合材に用いられる樹脂材料は熱可塑性樹脂、成形可能な低分子量熱硬化性樹脂などが挙げられる。これらの樹脂材料は単独で使用しても混合して使用してもよい。樹脂材料の種類、構造、物性と用途によって、複合する炭素材料との配合比が変動するが、例えば熱可塑性樹脂や低分子量の熱硬化性樹脂の補強、帯電防止性付与、耐熱性向上などの用途であれば、熱可塑性樹脂に対して0.01%~20質量%、好ましく0.05%~10質量%の炭素材料を配合することができる。また、炭素材料の高濃度品をマスターバッチとして薄めて使用することにより均一な炭素/樹脂複合材料を得やすいため、好ましい。一方、樹脂材料の表面コーティング、表面改質、表面修飾などの用途であれば、炭素材料が樹脂材料の表面層に対して0.001%~10質量%、好ましく0.005%~5質量%を配合するのが好ましく、樹脂材料の表面に炭素材料の分散液を塗布するなどの成形方法を用いることができる。 The composite of the present invention is made by combining a carbon material and a resin material with an adhesive. Examples of resin materials used in the composite include thermoplastic resins and moldable low molecular weight thermosetting resins. These resin materials may be used alone or in combination. The blending ratio with the composite carbon material varies depending on the type, structure, physical properties, and purpose of the resin material, but for example, it can be used to reinforce thermoplastic resins or low-molecular-weight thermosetting resins, impart antistatic properties, improve heat resistance, etc. Depending on the intended use, carbon material can be blended in an amount of 0.01% to 20% by mass, preferably 0.05% to 10% by mass, based on the thermoplastic resin. Furthermore, it is preferable to dilute and use a highly concentrated carbon material as a masterbatch because it makes it easier to obtain a uniform carbon/resin composite material. On the other hand, for applications such as surface coating, surface modification, and surface modification of resin materials, the carbon material is 0.001% to 10% by mass, preferably 0.005% to 5% by mass, based on the surface layer of the resin material. It is preferable to mix the resin material, and a molding method such as applying a dispersion of the carbon material to the surface of the resin material can be used.

熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン類、ナイロン6(PA6、ナイロン66(PA66)等のポリアミド類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類、ポリウレタン類、アクリル樹脂類、ABS(アクリロニトリルブタジエンスチレン)樹脂類、ポリスチレン(PS)、ポリカーボネート類及びこれら汎用樹脂のカルボン酸や無水マレイン酸変性樹脂等の熱可塑性樹脂が挙げられる。また、低分子量の熱硬化性樹脂としてはフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、シリコン樹脂が挙げられる。これらの樹脂は1種に限らず、複数の種類を組み合わせて使用することができる。 Thermoplastic resins include polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon 6 (PA6) and nylon 66 (PA66), and polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Examples include thermoplastic resins such as polyurethanes, acrylic resins, ABS (acrylonitrile butadiene styrene) resins, polystyrene (PS), polycarbonates, and carboxylic acid or maleic anhydride modified resins of these general-purpose resins. Examples of molecular weight thermosetting resins include phenol resins, epoxy resins, polyimide resins, melamine resins, urea resins, unsaturated polyester resins, diallyl phthalate resins, polyurethane resins, and silicone resins.These resins are not limited to one type. , multiple types can be used in combination.

炭素/樹脂複合体(H)に用いられる炭素材料は、原則として前記の各種炭素材料が含まれる。このうち、炭素繊維(CF)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、天然又は合成ダイヤモンドなどが安価の市販品を入手しやすいため、好ましい。これらの炭素材料は1種に限らず、複数の種類を組み合わせて使用することができる。さらに、これらの炭素材料を市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を配置させるための処理を行ってから使用してもよい。 The carbon materials used for the carbon/resin composite (H) include, in principle, the various carbon materials described above. Among these, carbon fibers (CF), carbon nanotubes (CNT), carbon nanofibers (CNF), natural or synthetic diamonds, and the like are preferred because they are easily available as inexpensive commercial products. These carbon materials are not limited to one type, and a plurality of types can be used in combination. Further, these carbon materials may be used as commercially available products, or may be used after being subjected to treatment such as oxidation to arrange many carboxyl groups or phenolic hydroxyl groups on the surface.

得られる炭素/樹脂複合体は、熱可塑性樹脂を主成分とする熱可塑性樹脂系炭素/樹脂複合体と、熱硬化性樹脂を主成分とする熱硬化性樹脂系炭素/樹脂複合体と、炭素材料を主成分とする炭素系炭素/樹脂複合体とに分類することができ、これらの炭素/樹脂複合体をさらに複合反応させることにより、強度、伸度、靭性など様々な要求物性に対応できる新型の炭素/樹脂複合体を製造することができる。新型炭素/樹脂複合材料の加工性、成形性を十分に確保する観点から、熱可塑性樹脂系炭素/樹脂複合材料料は熱硬化性樹脂系炭素/樹脂複合体中の炭素材料の配合比は1質量%を超えることが好ましく、10質量%を超えることがより好ましい。 The obtained carbon/resin composite consists of a thermoplastic resin-based carbon/resin composite containing a thermoplastic resin as a main component, a thermosetting resin-based carbon/resin composite containing a thermosetting resin as a main component, and a carbon/resin composite containing a thermosetting resin as a main component. It can be classified into carbon-based carbon/resin composites whose main components are carbon-based materials, and by further subjecting these carbon/resin composites to complex reactions, various required physical properties such as strength, elongation, and toughness can be met. New types of carbon/resin composites can be produced. From the perspective of ensuring sufficient workability and moldability of the new carbon/resin composite material, the blending ratio of carbon material in the thermosetting resin carbon/resin composite material is 1. It is preferably more than 10% by mass, more preferably more than 10% by mass.

炭素/樹脂複合体(H)の製造方法は、主成分の構造、得られる複合体の用途によって大きく溶液浸漬法、溶融混練法と溶液反応法に分けられる。浸漬法においては、前記の積層材の分散液と同様に炭素材料(C)の分散液を調製した後、本発明の接着剤(D)により修飾された樹脂材料を当該分散液中に一定の滞留時間で浸漬させ、樹脂材料の表面に有する接着剤と炭素材料の表面とを接触させ、接触と同時に又は接触後に加熱することにより、樹脂材料と炭素材料が接着剤を介して複合体を形成される。また、本発明の接着剤(D)による樹脂材料の修飾加工は、接着剤と樹脂材料を共に溶媒に溶かして溶液中で反応させる方法や接着剤と樹脂材料を押出機による溶融混錬、押出等の公知の方法で実施することができる。取得する炭素/樹脂複合体は、主に熱硬化性樹脂の補強、帯電防止性付与、耐熱性向上などの表面改質に好適に用いられる。また、炭素材料と樹脂材料表面の接着剤との反応は前記同様な条件(反応温度、反応時間など)で反応を行うことができる。 Methods for producing carbon/resin composites (H) can be broadly divided into solution immersion methods, melt-kneading methods, and solution reaction methods, depending on the structure of the main component and the use of the resulting composite. In the dipping method, a dispersion of the carbon material (C) is prepared in the same manner as the dispersion of the laminate described above, and then a certain amount of the resin material modified with the adhesive (D) of the present invention is added to the dispersion. The adhesive on the surface of the resin material is brought into contact with the surface of the carbon material by immersion for a residence time, and the resin material and the carbon material form a composite via the adhesive by heating at the same time or after the contact. be done. In addition, modification processing of a resin material with the adhesive (D) of the present invention can be carried out by dissolving both the adhesive and the resin material in a solvent and reacting in the solution, or by melt-kneading or extrusion of the adhesive and the resin material using an extruder. It can be carried out by a known method such as. The obtained carbon/resin composite is suitably used mainly for surface modification such as reinforcing thermosetting resins, imparting antistatic properties, and improving heat resistance. Further, the reaction between the carbon material and the adhesive on the surface of the resin material can be carried out under the same conditions (reaction temperature, reaction time, etc.) as described above.

溶融混練により炭素/樹脂複合体(H)を製造する方法においては、熱可塑性樹脂、低分子量熱硬化性樹脂、接着剤及びその他の添加材と共に、室温で固体である場合、所定配合比でドライブレンドした後、溶融押出機などを用い、加熱しながら溶融混練により反応を行うことができる。また、室温で液体の材料を有する場合、混練押出機の液体注入口により加圧しながら定量に添加し、同様に溶融混練により反応を行うことができる。溶融混練の温度は樹脂の種類によって大きく変わるが、80~240℃の範囲内であれば、樹脂材料の末端或いは側鎖に有するカルボキシル基などの官能基と接着剤に有するオキサゾリン基などの官能基との反応が0.1~30分の混練工程で十分に反応を完結することができ、且つ、接着剤も樹脂材料も熱分解せず、目的に応じて様々な組成比で接着剤に改質された樹脂材料を好適に調製することができる。得られた改質された樹脂材料は、さらに炭素材料と所定配合比でドライブレンドした後、溶融押出機などを用い、加熱しながら溶融混練により反応を行うことができる。溶融混練の温度は100~280℃の範囲内であれば、改質された樹脂の融解、炭素材料との反応が共に十分に進行し、かつ、製造された炭素/樹脂複合体の成形材料の熱分解を防止することができるので、好ましい。押出機中の滞留時間は、同様に反応性及び分解抑制のバランス取りの観点から、0.1~30分であることが好ましい。さらに、溶融混練による炭素/樹脂複合体(H)の製造においては、成形品の用途、要求物性などにもよるが、熱可塑性樹脂や低分子量熱硬化性樹脂などの樹脂材料と接着剤、炭素材料を所定配合比でブレンドし、所定温度にて押出機により溶融混練を行うことができる。その場合の混練温度は、樹脂材料、接着剤と炭素材料の反応速度と分散効果総合的に考慮し、100~240℃の範囲内であることが好ましい。 In the method of producing a carbon/resin composite (H) by melt kneading, a thermoplastic resin, a low molecular weight thermosetting resin, an adhesive, and other additives, if solid at room temperature, are dried at a predetermined blending ratio. After blending, the reaction can be carried out by melt kneading while heating using a melt extruder or the like. Furthermore, when the material is liquid at room temperature, the reaction can be carried out by adding the material in a fixed amount while pressurizing it through the liquid inlet of the kneading extruder and similarly melting and kneading it. The melt-kneading temperature varies greatly depending on the type of resin, but if it is within the range of 80 to 240°C, it will melt the functional groups such as carboxyl groups on the terminal or side chains of the resin material and the oxazoline groups on the adhesive. The reaction can be fully completed in a kneading process of 0.1 to 30 minutes, and neither the adhesive nor the resin material decomposes thermally, and it can be converted into adhesives at various composition ratios depending on the purpose. A quality resin material can be suitably prepared. The obtained modified resin material can be further dry-blended with a carbon material at a predetermined blending ratio, and then reacted by melt-kneading while heating using a melt extruder or the like. If the melt-kneading temperature is within the range of 100 to 280°C, both the melting of the modified resin and the reaction with the carbon material will proceed sufficiently, and the molding material of the produced carbon/resin composite will remain stable. This is preferred because thermal decomposition can be prevented. Similarly, the residence time in the extruder is preferably 0.1 to 30 minutes from the viewpoint of balancing reactivity and suppression of decomposition. Furthermore, in the production of carbon/resin composites (H) by melt kneading, resin materials such as thermoplastic resins and low molecular weight thermosetting resins, adhesives, carbon The materials can be blended at a predetermined mixing ratio and melt-kneaded using an extruder at a predetermined temperature. In this case, the kneading temperature is preferably within the range of 100 to 240°C, taking into consideration the reaction rate and dispersion effect of the resin material, adhesive, and carbon material.

溶融混練等の熱的処理、加工に用いられる熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン類、ナイロン6(PA6、ナイロン66(PA66)等のポリアミド類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類、ポリウレタン類、アクリル樹脂類、ABS(アクリロニトリルブタジエンスチレン)樹脂類、ポリスチレン(PS)、ポリカーボネート類及びこれら汎用樹脂のカルボン酸や無水マレイン酸変性樹脂等の熱可塑性樹脂が挙げられる。炭素材料の高強度、高柔軟性、耐熱性、導電性等の特性を十分に活用できる観点から、PP、変性PP、ポリアミド、ポリエステル、ポリカーボンネートなどがより好ましい。これらの樹脂は1種に限らず、複数の種類を組み合わせて使用することができる。 Thermoplastic resins used for thermal processing and processing such as melt kneading include polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon 6 (PA6) and nylon 66 (PA66), and polyethylene terephthalate ( PET), polyesters such as polybutylene terephthalate (PBT), polyurethanes, acrylic resins, ABS (acrylonitrile butadiene styrene) resins, polystyrene (PS), polycarbonates, and carboxylic acid and maleic anhydride modified resins of these general-purpose resins. PP, modified PP, polyamide, polyester, polycarbonate, etc. are preferred from the viewpoint of fully utilizing the characteristics of carbon materials such as high strength, high flexibility, heat resistance, and conductivity. Preferably.These resins are not limited to one type, and a plurality of types can be used in combination.

さらに、作業上便益性の観点から、高濃度のマスターバッチを使用することが好ましい。この場合、接着剤と樹脂材料のマスターバッチ及び/又は炭素材料と樹脂材料のマスターバッチを先に調製、ペレット化成形してから、各種樹脂材料、炭素材料をさらに混練してもよい。 Furthermore, from the viewpoint of operational convenience, it is preferable to use a highly concentrated masterbatch. In this case, a masterbatch of an adhesive and a resin material and/or a masterbatch of a carbon material and a resin material may be prepared and pelletized in advance, and then various resin materials and carbon materials may be further kneaded.

溶融混練工程で用いられる溶融混練機としては、公知の溶融混練機が例示され、バンバリーミキサー、プラストミル、ブラベンダープラストグラフ、一軸押出機、二軸押出機等が挙げられる。フィラーを良好に分散させ、熱可塑性樹脂組成物の耐熱性や剛性を向上させるという観点から、一軸押出機又は二軸押出機により溶融混練することが好ましく、特に二軸押出機が好ましい。 Examples of the melt-kneading machine used in the melt-kneading step include known melt-kneading machines, such as a Banbury mixer, plastomill, Brabender plastograph, single-screw extruder, and twin-screw extruder. From the viewpoint of dispersing the filler well and improving the heat resistance and rigidity of the thermoplastic resin composition, melt-kneading is preferably performed using a single-screw extruder or a twin-screw extruder, and a twin-screw extruder is particularly preferred.

溶液反応法より炭素/樹脂複合体(H)を製造する方法は、熱可塑性樹脂、低分子量熱硬化性樹脂、接着剤とその他の添加材とを、所定の割合で溶媒に溶解又は分散させ、得られる混合溶液又は分散液を所定の温度に加熱させながら反応させる方法である。反応温度と反応時間は主に樹脂材料の構造、溶媒に対する溶解性などに左右されるため、十分に反応できれば、特に限定することがない。 A method for producing a carbon/resin composite (H) using a solution reaction method involves dissolving or dispersing a thermoplastic resin, a low molecular weight thermosetting resin, an adhesive, and other additives in a solvent in a predetermined ratio; This is a method of reacting the resulting mixed solution or dispersion while heating it to a predetermined temperature. Since the reaction temperature and reaction time mainly depend on the structure of the resin material, solubility in a solvent, etc., there are no particular limitations as long as the reaction can be carried out sufficiently.

炭素/樹脂複合体(H)の製造において、必要に応じて、一般に熱可塑性樹脂に添加される公知の添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、滑剤、顔料、帯電防止剤、難燃剤、中和剤、発泡剤、可塑剤、気泡防止剤等を適宜添加することができる。 In the production of the carbon/resin composite (H), known additives that are generally added to thermoplastic resins, such as antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, pigments, and antistatic agents, are added as necessary. A flame retardant, a neutralizing agent, a blowing agent, a plasticizer, an antifoaming agent, etc. can be added as appropriate.

本発明の炭素材料積層体(E)、炭素/セラミックス積層体(F)、炭素/金属積層体(G)、炭素/樹脂複合体(H)の用途としては、熱伝導性付与、電気伝導性付与、機械的強度改善、耐熱性、導電性、二次電池用電極、帯電防止性、耐久性向上などの様々な分野に好適に用いることができる。炭素材料としては、天然又は合成ダイヤモンド粒子及び/又はCNT、樹脂材料としてポリフェノールを用いた場合は、高性能のレジンボンド砥石とソーワイヤーを容易に製造することができる。また、溶融押出法で製造された炭素/樹脂複合体においては、射出成形用材料、押出成形用材料、プレス成形用材料、ブロー成形用材料、フィルム成形用材料等として用いられ、特に、剛性や耐衝撃性が必要とされる自動車用材料や家電用材料として好適に用いることができる。 The carbon material laminate (E), carbon/ceramics laminate (F), carbon/metal laminate (G), and carbon/resin composite (H) of the present invention are used to provide thermal conductivity and electrical conductivity. It can be suitably used in a variety of fields such as application, mechanical strength improvement, heat resistance, conductivity, secondary battery electrodes, antistatic properties, and durability improvement. When natural or synthetic diamond particles and/or CNT are used as the carbon material, and polyphenol is used as the resin material, high-performance resin bonded grindstones and saw wires can be easily manufactured. In addition, carbon/resin composites produced by melt extrusion are used as injection molding materials, extrusion molding materials, press molding materials, blow molding materials, film molding materials, etc. It can be suitably used as an automobile material or a home appliance material that requires impact resistance.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下において、部及び%はそれぞれ質量部及び質量%を示す。 EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples. In the following, parts and % indicate parts by mass and % by mass, respectively.

実施例及び比較例に用いた材料は以下の通りである。また、製造元、精製方法などを特に記載していないものは市販品である。
(1)グリシジル基を有するビニルモノマー(A1)
GMA:グリシジルメタクリレート
MGAM:N−メチル−N−グリシジルアクリルアミド(KJケミカルズ株式会社により製造され、登録商標は「Kohshylmer」である。)
(2)イソシアネート基を有するビニルモノマー(A2)
MOI:2-イソシアネートエチルメタクリレート
(3)オキサゾリン基を有するビニルモノマー(A3)
VOZO:2-ビニル-2-オキサゾリン
IPOZO:2-イソプロペニル-2-オキサゾリン
(これらのモノマーは、KJケミカルズ株式会社により製造され、登録商標は「Kohshylmer」である。)
(4)共重合に用いられるビニル系モノマー
「ACMO」:アクリロイルモルフォリン(KJケミカルズ株式会社の製品である。登録商標は「ACMO」と「Kohshylmer」である。)
AM-90G:メトキシポリエチレングリコール400アクリレート(EO 9mol)(新中村化学製)
NVP:N-ビニルピロリドン
SA:ステアリルアクリレート
(5)炭素材料
CF:炭素繊維(東レ株式会社製、PAN系CF、商品名「トレカ糸T700 12K」、直径7μm)アセトンで洗浄して、乾燥させた。表面に有する官能基の量=4×10-6(mol/m
CNT:カーボンナノチューブ(Nanocyl社製、NC7000、直径11nm、クロロホルムで洗浄して、乾燥させた。表面に有する官能基の量=7×10-6(mol/m
BCNT:ビーズミル処理CNT(ビーズミル処理:N-メチルピロリドン 39.8g、CNT 0.8gとビーズ(ジルコニア製Φ0.5mm)160gを湿式ビーズミル装置(アイメックス社製RMB-08)のベッセル内に加え、1000rpmで1.5時間攪拌することによってビーズミル処理を行った。その後、溶液を1Lのビーカーにビーズごと全て入れ、イオン交換水を加えて軽く振り、上澄みを取り出していくことで上澄み中に浮遊するカーボンナノチューブと底に沈降するジルコニアビーズを分けた。この操作を何度も繰り返し、カーボンナノチューブとジルコニアビーズを完全に分けた後、上澄みをろ過し、80℃で4h真空乾燥させ、黒色粉末としてビーズミル処理カーボンナノチューブ(BCNT)を得た。)
CSCNT:カップスタックカーボンナノチューブ(株式会社GSIクレオス社製、クロロホルムで洗浄して、乾燥させた。表面に有する官能基の量=1×10-5(mol/m))
DM75:ダイヤモンド、平均直径75μm(トラストウエル社製のTMD、未処理)
DM50:ダイヤモンド、平均直径50μm(トーメイダイヤ社製のIRV-3、未処理、表面に有する官能基の量=9×10-6(mol/m))。
DM10:ダイヤモンド、平均直径10μm(トーメイダイヤ社製のIRM-16、未処理)
BN:セラミックス(板状窒化ホウ素、未処理)
SCBN:セラミックス(トラストウエル社製の立方晶窒化ホウ素、未処理)
NMC:活物質(三元系の正極活物Li(NiMnCo)O2)
LCO:活物質(層状構造の二酸化コバルトリチウム)
Al板:アルミ箔(厚み20μm)
(6)汎用樹脂
PP:ポリプロピレン樹脂(日本ポリプロ株式会社製、MA3)
PMP:無水マレイン酸変性ポリプロピレン(三洋化成工業株式会社製、ユーメックス1010)
PA:ポリメチルペンテン樹脂(三井化学株式会社製、TPX MX002)
PMA:酸変性ポリメチルペンテン樹脂(三井化学株式会社製、TPX MM-101B)
PF:ポリフェノール樹脂(粉末)
(7)その他
AIBN:アゾビスブチロニトリル(和光純薬、試薬)
NMP:N-メチルピロリドン
EtOH:エチルアルコール
DMF:N,N-ジメチルホルムアミド
「KJCMPA」:3-メトキシ-N,N-ジメチルプロパンアミド(KJケミカルズ社製、登録商標「KJCMPA」)
The materials used in Examples and Comparative Examples are as follows. In addition, products that do not specify the manufacturer, purification method, etc. are commercially available products.
(1) Vinyl monomer having a glycidyl group (A1)
GMA: Glycidyl methacrylate MGAM: N−methyl−N−glycidyl acrylamide (manufactured by KJ Chemicals Co., Ltd., the registered trademark is "Kohsylmer").
(2) Vinyl monomer having isocyanate group (A2)
MOI: 2-Isocyanate ethyl methacrylate (3) Vinyl monomer with oxazoline group (A3)
VOZO: 2-vinyl-2-oxazoline IPOZO: 2-isopropenyl-2-oxazoline (These monomers are manufactured by KJ Chemicals Co., Ltd. and the registered trademark is "Kohsylmer".)
(4) Vinyl monomer “ACMO” used for copolymerization: Acryloylmorpholine (a product of KJ Chemicals Co., Ltd. The registered trademarks are “ACMO” and “Kohsylmer”).
AM-90G: Methoxypolyethylene glycol 400 acrylate (EO 9mol) (manufactured by Shin Nakamura Chemical)
NVP: N-vinylpyrrolidone SA: stearyl acrylate (5) Carbon material CF: Carbon fiber (manufactured by Toray Industries, Inc., PAN-based CF, trade name "Torayka Yarn T700 12K", diameter 7 μm) Washed with acetone and dried . Amount of functional groups on the surface = 4×10 −6 (mol/m 2 )
CNT: Carbon nanotube (manufactured by Nanocyl, NC7000, diameter 11 nm, washed with chloroform and dried. Amount of functional groups on the surface = 7 × 10 -6 (mol/m 2 )
BCNT: Bead mill treated CNT (bead mill treatment: 39.8 g of N-methylpyrrolidone, 0.8 g of CNT and 160 g of beads (zirconia Φ0.5 mm) were added to the vessel of a wet bead mill device (RMB-08 manufactured by Imex), and the mixture was heated at 1000 rpm. Bead milling was performed by stirring for 1.5 hours.Then, the solution was placed in a 1L beaker, including all the beads, and ion-exchanged water was added, shaken lightly, and the supernatant was taken out to remove the carbon suspended in the supernatant. The nanotubes and the zirconia beads settling at the bottom were separated. After repeating this operation many times to completely separate the carbon nanotubes and zirconia beads, the supernatant was filtered, vacuum dried at 80°C for 4 hours, and bead milled as a black powder. Carbon nanotubes (BCNT) were obtained.)
CSCNT: Cup stack carbon nanotube (manufactured by GSI Creos Co., Ltd., washed with chloroform and dried. Amount of functional groups on the surface = 1 × 10 -5 (mol/m 2 ))
DM75: Diamond, average diameter 75 μm (TMD manufactured by Trustwell, untreated)
DM50: Diamond, average diameter 50 μm (IRV-3 manufactured by Tomei Diamond Co., Ltd., untreated, amount of functional groups on the surface = 9×10 −6 (mol/m 2 )).
DM10: Diamond, average diameter 10 μm (IRM-16 manufactured by Tomei Diamond, untreated)
BN: Ceramics (plate-like boron nitride, untreated)
SCBN: Ceramics (cubic boron nitride manufactured by Trustwell, untreated)
NMC: Active material (ternary positive electrode active material Li(NiMnCo)O2)
LCO: Active material (layered structure of lithium cobalt dioxide)
Al plate: Aluminum foil (thickness 20μm)
(6) General-purpose resin PP: Polypropylene resin (manufactured by Japan Polypropylene Co., Ltd., MA3)
PMP: Maleic anhydride modified polypropylene (manufactured by Sanyo Chemical Industries, Ltd., Umex 1010)
PA: Polymethylpentene resin (manufactured by Mitsui Chemicals, Inc., TPX MX002)
PMA: Acid-modified polymethylpentene resin (manufactured by Mitsui Chemicals, Inc., TPX MM-101B)
PF: Polyphenol resin (powder)
(7) Other AIBN: Azobisbutyronitrile (Wako Pure Chemical, reagent)
NMP: N-methylpyrrolidone EtOH: Ethyl alcohol DMF: N,N-dimethylformamide "KJCMPA": 3-methoxy-N,N-dimethylpropanamide (manufactured by KJ Chemicals, registered trademark "KJCMPA")

実施例及び比較例における各種物性の測定方法と評価方法は以下の通りである。
(1)SEM測定:
各種基材の表面、積層体の表面をSEM装置(JEOL)により観察を行った。観察条件:印加電圧10kV、エミッション電流10μA、白金蒸着後のSEM観察。
(2)被覆率の算出方法
SEM画像を白黒2色化にし、炭素材料の被覆している箇所が白色、被覆していない箇所を黒色で表示し、被覆率(%)=(白色のピクセル数)/(測定領域全体のピクセル数)と算出した。
Measurement methods and evaluation methods for various physical properties in Examples and Comparative Examples are as follows.
(1) SEM measurement:
The surfaces of various base materials and the surface of the laminate were observed using a SEM device (JEOL). Observation conditions: applied voltage 10 kV, emission current 10 μA, SEM observation after platinum deposition.
(2) How to calculate coverage rate SEM image is converted to black and white, and areas covered with carbon material are shown in white and areas not covered are shown in black.Coverage rate (%) = (number of white pixels) )/(number of pixels in the entire measurement area).

重合体(B)の合成
合成実施例1(重合体(B1)の合成)
撹拌装置、温度計、冷却器及び乾燥窒素導入管を備えた容量500mLの反応容器にVOZO9.7g(100mmol)、「ACMO」 113.0g(850mmol)、AM-90G 22.7g(50mmol)、アゾビスイソブチロニトリル(AIBN)1.6g(10mmol)、酢酸エチル220mLを仕込んで、乾燥窒素気流下、反応液を30℃で60分攪拌した後、70℃で12時間重合反応を行った。反応終了後、室温に戻し、粘性のある反応液をヘキサン(約1L)に注ぎ、白色沈殿物を得た。その後、上澄みを廃棄し、ヘキサンで2回沈殿物を洗浄した後、40℃で3時間真空乾燥を行い、白色粉末状の生成物 132.5gを得た(収率=91.1%)。
該生成物は、赤外線吸収スペクトル(IR)により、VOZO由来のオキサゾリン基に特有な吸収(1660cm-1)、「ACMO」由来のアミド基に特有な吸収(1640cm-1)とAM-90G由来のエステル基に特有な吸収(1730cm-1)が検出され、また、これらのモノマー由来のビニル基の吸収(1620cm-1)は検出されず、重合体(B1)の生成を確認した。重合体(B1)のTgはDSC(島津製作所社製DSC-60Plus、昇温速度10℃/min)により測定し、83℃であった。重合体の重量平均分子量(Mw)はGPC法(島津製作所社製Prominence-I LC-2030C、標準ポリスチレン)により分析し、18,000であることを確認した。
Synthesis of Polymer (B) Synthesis Example 1 (Synthesis of Polymer (B1))
VOZO 9.7 g (100 mmol), "ACMO" 113.0 g (850 mmol), AM-90G 22.7 g (50 mmol), Azo 1.6 g (10 mmol) of bisisobutyronitrile (AIBN) and 220 mL of ethyl acetate were charged, and the reaction solution was stirred at 30°C for 60 minutes under a stream of dry nitrogen, and then a polymerization reaction was carried out at 70°C for 12 hours. After the reaction was completed, the temperature was returned to room temperature, and the viscous reaction solution was poured into hexane (about 1 L) to obtain a white precipitate. Thereafter, the supernatant was discarded, and the precipitate was washed twice with hexane, followed by vacuum drying at 40° C. for 3 hours to obtain 132.5 g of a white powder product (yield: 91.1%).
The infrared absorption spectrum (IR) of the product revealed that it had an absorption characteristic of the oxazoline group derived from VOZO (1660 cm -1 ), an absorption characteristic of the amide group derived from "ACMO" (1640 cm -1 ), and an absorption characteristic of the amide group derived from AM-90G. Absorption (1730 cm -1 ) characteristic of ester groups was detected, and absorption (1620 cm -1 ) of vinyl groups derived from these monomers was not detected, confirming the production of polymer (B1). The Tg of the polymer (B1) was measured by DSC (DSC-60Plus manufactured by Shimadzu Corporation, temperature increase rate 10°C/min) and was 83°C. The weight average molecular weight (Mw) of the polymer was analyzed by GPC method (Prominence-I LC-2030C manufactured by Shimadzu Corporation, standard polystyrene) and was confirmed to be 18,000.

合成実施例2~6(重合体B2~B6)と合成比較例1-2(重合体P1~P2)
合成実施例1と同様に、グリシジル基を有するビニルモノマー(A1)、イソシアネート基を有するビニルモノマー(A2)、オキサゾリン基を有するビニルモノマー(A3)、その他の共重合可能なビニル系単量体、及びAIBNを表1に示す所定の量を用い、合成実施例2~6と合成比較例1~2の重合を行い、得られた重合物を合成実施例1と同様に精製し、それぞれの重合体(B2~B6とP1~P2)を白色又は淡黄色粉末状の生成物として取得した。次いで、合成実施例1と同様に、重合体B2~B6とP1~P2の同定(IR)、Tg測定、分子量測定(GPC)を行い、収率と共に表1に示した。
Synthesis Examples 2 to 6 (Polymers B2 to B6) and Synthesis Comparative Example 1-2 (Polymers P1 to P2)
As in Synthesis Example 1, a vinyl monomer having a glycidyl group (A1), a vinyl monomer having an isocyanate group (A2), a vinyl monomer having an oxazoline group (A3), other copolymerizable vinyl monomers, and AIBN in the predetermined amounts shown in Table 1, polymerizations were carried out in Synthesis Examples 2 to 6 and Synthesis Comparative Examples 1 to 2, and the obtained polymers were purified in the same manner as in Synthesis Example 1. The combined products (B2-B6 and P1-P2) were obtained as a white or pale yellow powdered product. Next, in the same manner as in Synthesis Example 1, polymers B2 to B6 and P1 to P2 were identified (IR), Tg measurement, and molecular weight measurement (GPC), and the results are shown in Table 1 along with the yields.

炭素材料(C)分散液の調製
炭素材料と分散剤を表2に示す割合で混合し、バス型超音波装置(ELMA社製、S30)を用いて、30℃で30分間処理し、分散液1~11を得た。
Preparation of carbon material (C) dispersion The carbon material and dispersant were mixed in the proportions shown in Table 2, and treated at 30°C for 30 minutes using a bath-type ultrasonic device (manufactured by ELMA, S30) to form a dispersion. 1 to 11 were obtained.

炭素材料積層体(E)の製造
実施例1
本発明の重合体(B2)を100%含有する接着剤(D1)を用いて、10%のエタノール溶液を調製し、60℃を保つように加熱しながら、基材である長さ3mの炭素繊維(C1)を1mm/秒の速度で接着剤(D1)溶液槽に通過させた。その後、同様の速度でエタノールの槽に通過させ(洗浄)、80℃の熱風で3分間乾燥させ、表面に接着層を有する炭素繊維を得た。その後、得られた接着層を有する炭素繊維を前記と同様の速度で100℃に加熱した分散液1(BCNTのKJCMPA分散液)の槽を通過させた。その後、同様にエタノールにより洗浄を行い、160℃の熱風で3分間乾燥させ、CFとCNTの積層体(E1)を得た。BCNT/CF積層体のSEM写真を図1に示す。積層体E1の被覆率は24.8%であった。
Manufacturing Example 1 of carbon material laminate (E)
A 10% ethanol solution was prepared using the adhesive (D1) containing 100% of the polymer (B2) of the present invention, and while heating it to maintain the temperature at 60°C, The fiber (C1) was passed through the adhesive (D1) solution bath at a speed of 1 mm/sec. Thereafter, the carbon fibers were passed through an ethanol bath at the same speed (washing) and dried with hot air at 80° C. for 3 minutes to obtain carbon fibers having an adhesive layer on the surface. Thereafter, the obtained carbon fiber having the adhesive layer was passed through a bath of dispersion liquid 1 (KJCMPA dispersion liquid of BCNT) heated to 100° C. at the same speed as described above. Thereafter, it was similarly washed with ethanol and dried with hot air at 160°C for 3 minutes to obtain a CF and CNT laminate (E1). A SEM photograph of the BCNT/CF laminate is shown in FIG. The coverage of the laminate E1 was 24.8%.

炭素材料積層体(G)の製造
実施例2と比較例2
本発明の重合体(B3)を100%含有する接着剤(D2)を用いて、10%のエタノール溶液を調製した。Al板に25μLを滴下し、回転数1500rpm、4分間スピンコートした後、ホットプレートで120℃、10分間加熱した。接着剤にコーティングされたAl板をエタノール入りのビーカーに入れてラボシェーカーで200rpm、10分間攪拌により洗浄を行い、更にホットプレートで80℃、10分間加熱してエタノールを除去した(乾燥)。当該乾燥後Al板に分散液2(CNTの水分散液)を25μL滴下し、同様にスピンコートしホットプレートで120℃、10分間加熱した。その後、同様にエタノールで洗浄とホットプレートで乾燥を行い、CNTと金属の積層体(G1)を得た。また、最後のエタノール洗浄前後の積層体G1において、CNT被覆率を測定した(表3)。
Production Example 2 and Comparative Example 2 of carbon material laminate (G)
A 10% ethanol solution was prepared using an adhesive (D2) containing 100% of the polymer (B3) of the present invention. 25 μL of the solution was dropped onto an Al plate, spin-coated at 1500 rpm for 4 minutes, and then heated on a hot plate at 120° C. for 10 minutes. The Al plate coated with the adhesive was placed in a beaker containing ethanol, stirred for 10 minutes at 200 rpm using a lab shaker to clean it, and then heated on a hot plate at 80° C. for 10 minutes to remove the ethanol (drying). After drying, 25 μL of dispersion 2 (aqueous CNT dispersion) was dropped onto the Al plate, spin-coated in the same manner, and heated on a hot plate at 120° C. for 10 minutes. Thereafter, washing with ethanol and drying on a hot plate were performed in the same manner to obtain a CNT and metal laminate (G1). Furthermore, the CNT coverage was measured in the laminate G1 before and after the final ethanol washing (Table 3).

実施例2の接着剤(D2)の代わりに合成比較例1で得られた重合体(P1)(100%)を用いて、実施例2と同様にCNTと金属の積層体を作製した。但し、重合体(P1)にコーティングされたAl板をエタノールによる洗浄を行わなかった。最後のエタノール洗浄前後の積層体において、CNT被覆率を測定した(表3)。 A CNT and metal laminate was produced in the same manner as in Example 2, using the polymer (P1) (100%) obtained in Synthesis Comparative Example 1 instead of the adhesive (D2) in Example 2. However, the Al plate coated with the polymer (P1) was not washed with ethanol. CNT coverage was measured in the laminate before and after the final ethanol cleaning (Table 3).

実施例3~12と比較例3~4
基材として炭素繊維、ダイヤモンド、セラミックス、金属など、接着剤、積層材としてカーボンナノチューブ、ダイヤモンドなどを用いて、前記の同時加熱方法又は後加熱方法により炭素材料積層体(E)、炭素/セラミックス積層体(F)、炭素/金属積層体(G)、炭素/樹脂複合体(H)を製造した。原料、製造条件、製品の構成、被覆率などを表3に纏めて示す。また、基材及び積層体のSEM写真を図2~10に示す。
Examples 3 to 12 and Comparative Examples 3 to 4
Carbon material laminate (E), carbon/ceramic laminate by the above-mentioned simultaneous heating method or post-heating method using carbon fiber, diamond, ceramics, metal, etc. as the base material and carbon nanotube, diamond, etc. as the adhesive and laminate material. A carbon/metal laminate (G) and a carbon/resin composite (H) were manufactured. Table 3 summarizes the raw materials, manufacturing conditions, product composition, coverage rate, etc. Further, SEM photographs of the base material and the laminate are shown in FIGS. 2 to 10.

図1~10の結果から、本発明の重合体(B)を含有する接着剤(D)を介して形成された炭素積層体、(E)、炭素/セラミックス積層体(F)、炭素/金属積層体(G)、炭素/樹脂複合体(H)が、CF、DM、BN、SCBN、NMC、LCOとAlの表面にCNTやCSSNTがしっかり被覆していることが明らかである。本発明の各種炭素積層体、炭素/樹脂複合体は同時加熱や後加熱など多種多様な方法で製造することが可能である。また、重合体(B)に有するオキサゾリン基は反応性が高く、形成された化学結合が強く、CNTやCFなど炭素材料と室温で接触するだけでも十分に付着し、さらに加熱により強い化学結合を形成され、洗浄しても表面に付着された分のみ除去され、化学結合によりCFの表面にCNTを均一に固着されたことを確認できた。また、ガラス転移温度80℃以上を有するポリマーを含有する接着剤のほうが、薄く且つ均一な接着層が形成でき、さらに均一且つ高被覆率の積層体を取得することができる。一方、オキサゾリン基など官能基を有しないポリマーでは、炭素材料の表面に接着することができず、積層体が得られなかった。官能基の含有量が10%未満の場合、十分に満足できる接着剤及び積層体を取得することができなかった。また、これらの高機能の積層体や複合体が、本発明の製法方法でのみ得られることが確認された。特に官能基が高含有量なポリマー、オキサゾリン基を有するビニルモノマーのホモポリマーなどを用いた場合、薄く、均一、且つ強力な接着層が形成されるため、CNT等炭素材料の特有機能を最大限に発揮することができ、得られた各種積層体、複合体が様々の分野に好適に用いることができる。 From the results in FIGS. 1 to 10, a carbon laminate formed via an adhesive (D) containing the polymer (B) of the present invention, (E), a carbon/ceramic laminate (F), a carbon/metal It is clear that in the laminate (G) and carbon/resin composite (H), the surfaces of CF, DM, BN, SCBN, NMC, LCO, and Al are tightly coated with CNTs and CSSNTs. Various carbon laminates and carbon/resin composites of the present invention can be produced by various methods such as simultaneous heating and post-heating. In addition, the oxazoline group contained in the polymer (B) is highly reactive and the chemical bonds formed are strong, and it will adhere to carbon materials such as CNTs and CFs just by contacting them at room temperature, and furthermore, strong chemical bonds can be formed by heating. Even when the CNTs were formed and were washed, only the portions attached to the surface were removed, confirming that the CNTs were uniformly fixed to the surface of the CF by chemical bonding. Furthermore, an adhesive containing a polymer having a glass transition temperature of 80° C. or higher can form a thinner and more uniform adhesive layer, and can also provide a more uniform laminate with a higher coverage. On the other hand, polymers without functional groups such as oxazoline groups were unable to adhere to the surface of the carbon material, and a laminate could not be obtained. When the content of functional groups was less than 10%, a fully satisfactory adhesive and laminate could not be obtained. Furthermore, it was confirmed that these highly functional laminates and composites can be obtained only by the manufacturing method of the present invention. In particular, when using polymers with a high content of functional groups, homopolymers of vinyl monomers with oxazoline groups, etc., a thin, uniform, and strong adhesive layer is formed, maximizing the unique functions of carbon materials such as CNTs. The various laminates and composites obtained can be suitably used in various fields.

実施例13と比較例5~6
(1)CNT被覆ダイヤモンドの作製
ダイヤモンド粒子DM10と分散剤NMPから調製された分散液9 95質量部と、重合体(B2)を100%含有する接着剤(D1)5重量部とを反応容器に仕込んで、100℃で3時間撹拌を行い、その後重合体に被覆されたダイヤモンド粒子をろ過で取り出し、エタノールを1Lのゆっくりかけ流しにより洗浄を行った。洗浄後被覆ダイヤモンド粒子と分散液11 95質量部とを反応容器に仕込んで、100℃で3時間撹拌を行い、その後BCNTに被覆されたダイヤモンド粒子をろ過で取り出し、エタノールを1Lのゆっくりかけ流しにより洗浄を行った。BCNTによる被覆作業が5回行い、最後のエタノール洗浄後、80℃で1h加熱により乾燥を実施し、CNT被覆ダイヤモンドを得た。なお、CNT被覆率は41.0%であった。
Example 13 and Comparative Examples 5-6
(1) Preparation of CNT-coated diamond 95 parts by weight of dispersion 9 prepared from diamond particles DM10 and dispersant NMP and 5 parts by weight of adhesive (D1) containing 100% polymer (B2) are placed in a reaction vessel. The mixture was charged and stirred at 100° C. for 3 hours, and then the diamond particles coated with the polymer were removed by filtration and washed by slowly pouring 1 L of ethanol over them. After washing, the coated diamond particles and 95 parts by mass of dispersion liquid 11 were charged into a reaction vessel and stirred at 100°C for 3 hours.Then, the diamond particles coated with BCNT were removed by filtration, and 1 L of ethanol was slowly poured over them. Washed. The coating operation with BCNT was performed five times, and after the final ethanol washing, drying was performed by heating at 80° C. for 1 hour to obtain a CNT-coated diamond. Note that the CNT coverage rate was 41.0%.

(2)ワイヤーソーの作製
直径0.1mm、長さ50cmのピアノ線(ジャパンファインスチール)を用い、酸性溶液中に50℃3分間浸してエッチング処理を行った。処理後のピアノ線をダイヤモンド粒子とフェノール樹脂からなるスラリーにディップさせ、直径0.15mmの孔を通して引き上げることによりピアノ線にダイヤモンド粒子とフェノール樹脂のスラリーを塗布した。当該塗布後ピアノ線にヒートガンを用いて温風を2分間当てた後、オーブンで200℃、8時間加熱することによりダイヤモンドレジンボンドワイヤーソーを作製した。ダイヤモンド粒子としては、実施例13はCNT被覆ダイヤモンドを用い、比較例5と6は未処理ダイヤモンドDM10、Ni被覆ダイヤモンドをそれぞれ用いた。これらのダイヤモンドの表面状態は図11~13に示す。
(2) Preparation of wire saw A piano wire (Japan Fine Steel) with a diameter of 0.1 mm and a length of 50 cm was immersed in an acidic solution at 50° C. for 3 minutes for etching treatment. The treated piano wire was dipped in a slurry of diamond particles and phenolic resin, and the slurry of diamond particles and phenol resin was applied to the piano wire by pulling it up through a hole with a diameter of 0.15 mm. After applying the coating, hot air was applied to the piano wire using a heat gun for 2 minutes, and then heated in an oven at 200° C. for 8 hours to produce a diamond resin bond wire saw. As the diamond particles, Example 13 used CNT-coated diamond, and Comparative Examples 5 and 6 used untreated diamond DM10 and Ni-coated diamond, respectively. The surface conditions of these diamonds are shown in FIGS. 11-13.

(3)シリコンインゴットの切削試験
幅30cmの台座にワイヤーソーを張り、張力10Nになるように両端を固定し、シリコンインゴットまたはシリコンウエハーをワイヤーソーの中央部分にくるように固定した。台座をストローク幅150mm、速さ200mm/秒で往復させ、シリコンインゴットを15μm/秒の速さでワイヤーソーに押し込むことで15分間の切削を行った。切削後、シリコンインゴットの切り込み深さとシリコンウエハーの切削面の表面粗さを下記方法で評価し、結果を表4に示す。
(3) Cutting test of silicon ingot A wire saw was stretched on a pedestal with a width of 30 cm, both ends were fixed so that the tension was 10 N, and the silicon ingot or silicon wafer was fixed so as to be in the center of the wire saw. The pedestal was reciprocated at a stroke width of 150 mm and a speed of 200 mm/sec, and the silicon ingot was pushed into a wire saw at a speed of 15 μm/sec to perform cutting for 15 minutes. After cutting, the depth of cut of the silicon ingot and the surface roughness of the cut surface of the silicon wafer were evaluated by the following methods, and the results are shown in Table 4.

切り込み深さ
切削試験後、シリコンインゴットにできた切り込みを光学顕微鏡で撮影し、画像解析により切り込み深さ(mm)を測定した。なお、切り込み深さの値は、3回試験の平均値である。
Depth of cut After the cutting test, the cut made in the silicon ingot was photographed using an optical microscope, and the depth of cut (mm) was measured by image analysis. Note that the value of the cutting depth is the average value of three tests.

表面粗さ(Ra)
切削試験後、シリコンウエハーの切削面を白色干渉計で撮影し、画像解析することで表面粗さ(Ra)(μm)を測定した。なお、表面粗さ(Ra)の値は、3回試験の平均値である。
Surface roughness (Ra)
After the cutting test, the cut surface of the silicon wafer was photographed using a white interferometer, and the surface roughness (Ra) (μm) was measured by image analysis. Note that the value of surface roughness (Ra) is the average value of three tests.

表4の結果から明らかのように、CNT被覆ダイヤモンドレジンボンドワイヤーソーを用いる場合、シリコンインゴットの切り込みが深く、シリコンウエハーの表面粗さが低かった。 As is clear from the results in Table 4, when using the CNT-coated diamond resin bond wire saw, the silicon ingot was cut deeply and the surface roughness of the silicon wafer was low.

CNT/CF積層体の表面写真(実施例1)Surface photograph of CNT/CF laminate (Example 1) CNT/DM75積層体の表面写真(実施例3)Surface photograph of CNT/DM75 laminate (Example 3) CNT/DM50積層体の表面写真(実施例5)Surface photograph of CNT/DM50 laminate (Example 5) CNT/DM10積層体の表面写真(実施例6)Surface photograph of CNT/DM10 laminate (Example 6) CNT/BN積層体の表面写真(実施例7)Surface photograph of CNT/BN laminate (Example 7) CSCNT/DM50積層体の表面写真(実施例8)Surface photograph of CSCNT/DM50 laminate (Example 8) CNT/SCBN積層体の表面写真(実施例9)Surface photograph of CNT/SCBN laminate (Example 9) CNT/NMC積層体の表面写真(実施例10)Surface photograph of CNT/NMC laminate (Example 10) CNT/LCO積層体の表面写真(実施例11)Surface photograph of CNT/LCO laminate (Example 11) CFの表面写真(比較例1)CF surface photograph (Comparative Example 1) CNT被覆ダイヤモンドの表面状態(実施例13)Surface condition of CNT-coated diamond (Example 13) 未処理ダイヤモンドの表面状態(実施例13)Surface condition of untreated diamond (Example 13) Ni被覆ダイヤモンドの表面状態(実施例13)Surface condition of Ni-coated diamond (Example 13)

本発明の炭素材料用接着剤、該接着剤を介して得られる炭素積層体、炭素/セラミックス積層体、炭素/金属積層体、炭素/樹脂複合体は、特殊な分散や表面処理の技術、設備を要さず、炭素材料本来の特性を損なうことがなく、本発明の製造方法により簡便に製造することができる。本発明で得られた各種炭素積層体、炭素/樹脂複合体は、汎用樹脂などに対して電気伝導性、熱伝導性、機械的特性を付与でき、耐熱性、耐衝撃性、導電性などの特性を有する材料として、各産業分野において好適に用いることができる。さらに、各種エンジニアリングプラスチックとして、特にバンパー、インパネ、コンソールボックス、ルーフシート、パネル表装材、電装部品などの自動車・輸送機器関連内外装部品、家電、家具、雑貨などの日用品関連製品、医療材料の成型品、食品容器、食品包装、一般包装などの包装材料、電線やケーブルなどの被覆用材料、建築・土木、文具・事務用品などの産業資材、各種ポリマーアロイの相溶化剤あるいは接着剤用として好適である。
The adhesive for carbon materials of the present invention, the carbon laminate, carbon/ceramic laminate, carbon/metal laminate, and carbon/resin composite obtained using the adhesive are manufactured using special dispersion and surface treatment techniques and equipment. The carbon material can be easily manufactured by the manufacturing method of the present invention without requiring any process or deterioration of the original characteristics of the carbon material. The various carbon laminates and carbon/resin composites obtained by the present invention can impart electrical conductivity, thermal conductivity, and mechanical properties to general-purpose resins, and have excellent properties such as heat resistance, impact resistance, and electrical conductivity. It can be suitably used in various industrial fields as a material having characteristics. In addition, various engineering plastics are used for molding, especially interior and exterior parts related to automobiles and transportation equipment such as bumpers, instrument panels, console boxes, roof sheets, panel covering materials, and electrical components, daily necessities products such as home appliances, furniture, and miscellaneous goods, and medical materials. Suitable for packaging materials such as products, food containers, food packaging, general packaging, coating materials for electric wires and cables, industrial materials such as architecture and civil engineering, stationery and office supplies, and compatibilizers or adhesives for various polymer alloys. It is.

Claims (13)

活性水素と反応する官能基を有するビニルモノマー(A)を構成単位として含む重合体(B)を含有する接着剤(D)を介し、炭素材料(C)と、ダイヤモンド、ダイヤモンドライクカーボン、セラミックス、活物質からなる群より選択される1種以上の材料が積層されてなる積層体であって
炭素材料(C)は、カーボンナノチューブ、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カップ積層型カーボンナノチューブ、カーボンナノファイバー、グラフェン、フラーレン、ナノダイヤモンド、ナノダイヤモンドライクカーボンからなる群より選択される少なくとも1種のナノサイズ炭素材料である積層体。
A carbon material (C) and diamond, diamond-like carbon, ceramics, A laminate formed by laminating one or more materials selected from the group consisting of active materials ,
The carbon material (C) is selected from the group consisting of carbon nanotubes, single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, cup-stacked carbon nanotubes, carbon nanofibers, graphene, fullerene, nanodiamonds, and nanodiamond-like carbon. A laminate comprising at least one nano-sized carbon material .
炭素材料(C)は、カーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)であって、かつ、ダイヤモンド、ダイヤモンドライクカーボン、セラミックス、活物質からなる群より選択される1種以上の材料の表面に接着されるCNF及び/又はCNTの被覆率は10%以上である請求項1に記載の積層体。 The carbon material (C) is carbon nanofiber (CNF) and/or carbon nanotube (CNT), and is made of one or more materials selected from the group consisting of diamond, diamond-like carbon, ceramics, and active materials. The laminate according to claim 1, wherein the coverage of CNF and/or CNT bonded to the surface is 10% or more. 請求項に記載の積層体はカーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)とダイヤモンドの積層体であって、該積層体を含有することを特徴とするレジンボンド砥石。 3. A resin-bonded grindstone characterized in that the laminate according to claim 2 is a laminate of carbon nanofibers (CNF) and/or carbon nanotubes (CNT) and diamond, and contains the laminate. 請求項に記載の積層体はカーボンナノファイバー(CNF)及び/又はカーボンナノチューブ(CNT)とダイヤモンドの積層体であって、該積層体を含有することを特徴とするソーワイヤー。 The laminate according to claim 2 is a laminate of carbon nanofibers (CNF) and/or carbon nanotubes (CNT) and diamond, and a saw wire containing the laminate. ダイヤモンド、ダイヤモンドライクカーボン、セラミックス、活物質からなる群より選択される1種以上の材料の表面に活性水素と反応する官能基を有するビニルモノマー(A)を構成単位として含む重合体(B)を含有する接着剤(D)を接触させ、前記材料と接着剤の間に化学結合により接着層を形成してから、炭素材料(C)を接着層に接触させ、化学結合により接着させることを特徴とする積層体の製造方法であって
炭素材料(C)は、カーボンナノチューブ、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カップ積層型カーボンナノチューブ、カーボンナノファイバー、グラフェン、フラーレン、ナノダイヤモンド、ナノダイヤモンドライクカーボンからなる群より選択される少なくとも1種のナノサイズ炭素材料である積層体の製造方法。
A polymer (B) containing as a constituent unit a vinyl monomer (A) having a functional group that reacts with active hydrogen on the surface of one or more materials selected from the group consisting of diamond, diamond-like carbon, ceramics, and active materials. The carbon material (C) is brought into contact with the contained adhesive (D) to form an adhesive layer by chemical bonding between the material and the adhesive, and then the carbon material (C) is brought into contact with the adhesive layer and bonded by chemical bonding. A method for manufacturing a laminate comprising:
The carbon material (C) is selected from the group consisting of carbon nanotubes, single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, cup-stacked carbon nanotubes, carbon nanofibers, graphene, fullerene, nanodiamonds, and nanodiamond-like carbon. A method for producing a laminate made of at least one nano-sized carbon material .
活性水素と反応する官能基は、オキサゾリン基、グリシジル基、イソシアネート基、カルボジイミド基から選択される1種以上の官能基である請求項1に記載の積層体。The laminate according to claim 1, wherein the functional group that reacts with active hydrogen is one or more functional groups selected from an oxazoline group, a glycidyl group, an isocyanate group, and a carbodiimide group. 重合体(B)を構成するビニルモノマー(A)由来の構成単位は10mol%以上である請求項1に記載の積層体。The laminate according to claim 1, wherein the constituent units derived from the vinyl monomer (A) constituting the polymer (B) are 10 mol% or more. 重合体(B)のガラス転移温度(Tg)は80℃以上である請求項1に記載の積層体。The laminate according to claim 1, wherein the polymer (B) has a glass transition temperature (Tg) of 80°C or higher. 重合体(B)を構成するオキサゾリン基を有するビニルモノマー(A)由来の構成単位は90mol%を超える請求項1に記載の積層体。The laminate according to claim 1, wherein the structural unit derived from the vinyl monomer (A) having an oxazoline group constituting the polymer (B) exceeds 90 mol%. 活性水素と反応する官能基は、オキサゾリン基、グリシジル基、イソシアネート基、カルボジイミド基から選択される1種以上の官能基である請求項5に記載の積層体の製造方法。6. The method for producing a laminate according to claim 5, wherein the functional group that reacts with active hydrogen is one or more functional groups selected from an oxazoline group, a glycidyl group, an isocyanate group, and a carbodiimide group. 重合体(B)を構成するビニルモノマー(A)由来の構成単位は10mol%以上である請求項5に記載の積層体の製造方法。6. The method for producing a laminate according to claim 5, wherein the constituent units derived from the vinyl monomer (A) constituting the polymer (B) are 10 mol% or more. 重合体(B)のガラス転移温度(Tg)は80℃以上である請求項5に記載の積層体の製造方法。The method for producing a laminate according to claim 5, wherein the polymer (B) has a glass transition temperature (Tg) of 80°C or higher. 重合体(B)を構成するオキサゾリン基を有するビニルモノマー(A)由来の構成単位は90mol%を超える請求項5に記載の積層体の製造方法。6. The method for producing a laminate according to claim 5, wherein the structural unit derived from the vinyl monomer (A) having an oxazoline group constituting the polymer (B) exceeds 90 mol%.
JP2019235321A 2018-12-26 2019-12-25 Laminates and composites containing carbon materials Active JP7428985B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018243661 2018-12-26
JP2018243661 2018-12-26

Publications (2)

Publication Number Publication Date
JP2020105514A JP2020105514A (en) 2020-07-09
JP7428985B2 true JP7428985B2 (en) 2024-02-07

Family

ID=71448350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019235321A Active JP7428985B2 (en) 2018-12-26 2019-12-25 Laminates and composites containing carbon materials

Country Status (1)

Country Link
JP (1) JP7428985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040612A (en) * 2019-12-30 2020-04-21 烟台大学 Preparation method of carbon nano tube modified light-resistant waterborne polyurethane coating and adhesive

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156485A (en) 1999-11-25 2001-06-08 Tohoku Kako Kk Radio wave absorber and its manufacturing method
JP2002036091A (en) 2000-05-15 2002-02-05 Allied Material Corp Super-abrasive grain wire saw and manufacturing method
JP2006294525A (en) 2005-04-14 2006-10-26 National Institute For Materials Science Electron emission element, its manufacturing method and image display device using it
JP2009238996A (en) 2008-03-27 2009-10-15 Panasonic Corp Bond magnet
JP2009262443A (en) 2008-04-25 2009-11-12 Teijin Dupont Films Japan Ltd Film for in-mold transfer foil
WO2012066805A1 (en) 2010-11-19 2012-05-24 三菱電機株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
JP2016006770A (en) 2013-08-27 2016-01-14 日産化学工業株式会社 Conductive binding layer composition
JP2018024788A (en) 2016-08-10 2018-02-15 Kjケミカルズ株式会社 Adhesiveness improver for carbon material and composite material using the same
WO2018168867A1 (en) 2017-03-15 2018-09-20 Kjケミカルズ株式会社 Oxazoline-based dispersants for carbon materials, and carbon composite materials in which same are used

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644161B2 (en) * 1992-05-18 1997-08-25 株式会社日本触媒 Method for producing water-soluble polymer and water-soluble polymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156485A (en) 1999-11-25 2001-06-08 Tohoku Kako Kk Radio wave absorber and its manufacturing method
JP2002036091A (en) 2000-05-15 2002-02-05 Allied Material Corp Super-abrasive grain wire saw and manufacturing method
JP2006294525A (en) 2005-04-14 2006-10-26 National Institute For Materials Science Electron emission element, its manufacturing method and image display device using it
JP2009238996A (en) 2008-03-27 2009-10-15 Panasonic Corp Bond magnet
JP2009262443A (en) 2008-04-25 2009-11-12 Teijin Dupont Films Japan Ltd Film for in-mold transfer foil
WO2012066805A1 (en) 2010-11-19 2012-05-24 三菱電機株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
JP2016006770A (en) 2013-08-27 2016-01-14 日産化学工業株式会社 Conductive binding layer composition
JP2018024788A (en) 2016-08-10 2018-02-15 Kjケミカルズ株式会社 Adhesiveness improver for carbon material and composite material using the same
WO2018168867A1 (en) 2017-03-15 2018-09-20 Kjケミカルズ株式会社 Oxazoline-based dispersants for carbon materials, and carbon composite materials in which same are used

Also Published As

Publication number Publication date
JP2020105514A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
McNally et al. Polymer-carbon nanotube composites: Preparation, properties and applications
Zhu et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites
JP5389181B2 (en) Composition comprising propylene-olefin-copolymer wax and carbon nanotubes
US9284398B2 (en) Modified carbon nanotubes and their compatibility
EP3135369B1 (en) Use of dispersant,dispersion composition and fibrous sheet
JP5389180B2 (en) Composition comprising propylene-olefin-copolymer wax and carbon black
JP6201164B2 (en) Active energy ray-curable nanocarbon dispersion, method for producing the same, and active energy ray-curable coating agent using the same
WO2007066649A1 (en) Carbon nanotube-containing composition, composite body, and their production methods
WO2006028200A1 (en) Nanosubstance-containing composition, process for producing the same, and composite made with the same
KR20130102552A (en) Resin composite material and method for producing resin composite material
KR20120130749A (en) Fiber-reinforced thermoplastic resin composition, reinforcing fiber bundle, and process for production of fiber-reinforced thermoplastic resin composition
JPWO2012133303A1 (en) Resin composite material
TWI753133B (en) Oxazoline-based dispersants, etc. for carbon materials, and carbon composite materials using these
JP7428985B2 (en) Laminates and composites containing carbon materials
KR102240039B1 (en) Carbon Fiber Coated with Functionalized Carbon Nanotube and The Coating Method of The Same
WO2011027780A1 (en) Electrically conductive thermoplastic resin composition
JP6076484B2 (en) Thermoplastic polymer bonded with carbon nanomaterial and method for producing the same
WO2011158907A1 (en) Polyolefin resin composition and process for producing same
JP6805415B2 (en) Adhesive improver for carbon materials and composite materials using it
JP5989914B2 (en) Carbon nanomaterial-containing resin composition and plastic molded article
JP5016912B2 (en) Carbon nanotube-containing composition, process for producing the same, and coating film, cured film or composite obtained therefrom
WO2010123600A2 (en) Functionalized carbon nanostructures and compositions and materials formed therefrom
KR20110016298A (en) Polypropylene-graft-maleic anhydride/carbon nanotube nanocomposites with excellent thermal stability and electrical conductivity
JP5740163B2 (en) Filler-dispersing resin composition, thermoplastic resin composite composition containing filler, and method for producing the same
JP7262068B1 (en) Carbon material dispersion and its use

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240115

R150 Certificate of patent or registration of utility model

Ref document number: 7428985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150