JP6615266B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP6615266B2
JP6615266B2 JP2018106971A JP2018106971A JP6615266B2 JP 6615266 B2 JP6615266 B2 JP 6615266B2 JP 2018106971 A JP2018106971 A JP 2018106971A JP 2018106971 A JP2018106971 A JP 2018106971A JP 6615266 B2 JP6615266 B2 JP 6615266B2
Authority
JP
Japan
Prior art keywords
rotor
stator
permanent magnet
rotor core
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018106971A
Other languages
Japanese (ja)
Other versions
JP2018157752A (en
Inventor
正文 坂本
重善 佐藤
俊輔 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2018106971A priority Critical patent/JP6615266B2/en
Publication of JP2018157752A publication Critical patent/JP2018157752A/en
Application granted granted Critical
Publication of JP6615266B2 publication Critical patent/JP6615266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は電動機や発電機等の永久磁石式回転子を有した回転電機に関する。   The present invention relates to a rotating electrical machine having a permanent magnet rotor such as an electric motor or a generator.

電動機や発電機である回転電機は、市場より軽薄短小化の要求が強く、また最近は地球温暖化対策として、省エネルギー化や高効率化の要求も増加してきている。これを実現するためには、固定子と回転子間のエアギャップの磁束密度を高くする必要がある。そのためには希土類磁石のような高磁気エネルギー磁石を回転子鉄心内部に埋め込んで使用する傾向にある。更に、安価であることも強い要求である。しかし希土類磁石の価格は年々高騰しており、安価に対応するには問題がある。一方回転電機は鉄損を減らして効率を高めるために珪素鋼鈑を軸方向に積層して固定子や回転子を形成する。その場合、一般に珪素鋼鈑積層方式の固定子や回転子は軸と垂直断面形状が軸方向に沿ったどの位置においても同一の断面形状となる2次元形状となる。また固定子や回転子の鉄心部を珪素鋼鈑の積層方式から軟磁性体鉄粉を樹脂皮膜でコーテングした状態で圧縮成形する所謂圧粉鉄心とすることも知られている。圧粉鉄心は鉄損の内の渦流損が珪素鋼鈑より小さく出来ることで、一部の高速回転電機に採用されている。しかし圧粉鉄心は珪素鋼鈑と比較して透磁率が劣るため、一般的には低速領域では高トルク化の妨げとなる。   Rotating electrical machines such as electric motors and generators are more demanding to be lighter, thinner and smaller than the market, and recently, demands for energy saving and higher efficiency are increasing as a countermeasure against global warming. In order to realize this, it is necessary to increase the magnetic flux density of the air gap between the stator and the rotor. For this purpose, high magnetic energy magnets such as rare earth magnets tend to be used by being embedded in the rotor core. Furthermore, it is a strong demand to be inexpensive. However, the price of rare earth magnets is increasing year by year, and there is a problem in dealing with low costs. On the other hand, a rotating electrical machine forms a stator and a rotor by laminating silicon steel plates in the axial direction in order to reduce iron loss and increase efficiency. In that case, a silicon steel sheet laminated stator or rotor generally has a two-dimensional shape in which the cross-sectional shape perpendicular to the shaft is the same cross-sectional shape at any position along the axial direction. It is also known that the core of the stator or rotor is a so-called dust core that is compression-molded in a state in which a soft magnetic iron powder is coated with a resin film from a lamination method of silicon steel plates. The dust core is used in some high-speed rotating electrical machines because the eddy current loss in the iron loss can be smaller than that of the silicon steel plate. However, the dust core is inferior in magnetic permeability as compared with a silicon steel plate, and generally hinders high torque in a low speed region.

電動モータドライブの基礎と応用、著者:百目鬼英雄、P131の図6−12、P134の図6−15、技術評論社。 一方、関係する従来技術として上記の参考文献がある。Basics and application of electric motor drive, author: Hideo Hyakume, P131 Fig. 6-12, P134 Fig. 6-15, Technical Review. On the other hand, there is the above-mentioned reference as related art.

回転電機はラジアルギャップ式とアキシャルギャップ式に大別される。
従来の一般的なラジアルギャップ式の回転電機で回転子に永久磁石を用いるブラシレスDC(以下BLDC)モータは永久磁石が作る界磁と電機子電流が作る回転磁界が常に直交するため、フレミングの左手則、所謂IBL則による最大トルクが得られるので、近年使用数量が増加してきている。BLDCモータには回転子構造により、磁石が回転子表面に露出したSPM(Surface Permanent Magnet)型と磁石が回転子鉄心内部に埋め込まれたIPM(Interior Permanent Magnet)型があり、後者は前記のIBL則によるトルクの他にレラクタンストルクも得られるため、高トルクが必要な用途には更に使用される。レラクタンストルクとは電磁石で鉄を吸引する力で発生するが、IPM型では永久磁石以外に鉄が回転子表面に露出するため、このトルクが活用できるものである。BLDCモータは一般に固定子鉄心を珪素鋼鈑で積層して構成し、安価と効率を重視する場合は巻き線に集中巻き方式を採用する。その理由はラジアル式の分布巻き方式ではトルク発生に寄与しないコイルエンド部が大きくなり銅損が増大し、効率が低下すること及び集中巻きでは巻き線がシンプルでスロットへの直接巻き込が可能となり、巻き線が安価となるためである。集中巻き方式の場合は実用的に構成すれば主に回転電機のコストの面から固定子のスロット数は4〜12に制約される。しかし集中巻き式は高調波磁束が発生し易すく、振動騒音が大きくなる欠点がある。特に低振動低騒音が要求される用途には、分布巻き方式も採用されている。
一方、軸方向にエアギャップを有するアキシャルギャップ式回転電機もあるが、エアギャップが平面対向のため面ブレ等の問題があるためラジアルギャップ式ほどエアギャップを小さく出来にくいことがあり、そのためにラジアルギャップ式と比較して、高効率化、高トルク化で劣る。そのため、扁平形状の電動機や起動停止をあまり行わないで定速回転重視の電動機等の特殊な用途以外はラジアルギャップ式より普及していない問題がある。
集中巻き方式のコイルエンドの軸方向高さは分布巻きに比べて小さいので銅損が減少して効率は高くなるが、更に効率を高めるには回転子との対向面積とならないでトルク発生に寄与しないコイルエンドの占める面積部もトルク発生のために活用が求められる。この解決策の一つに固定子巻き線部の極形状を軸方向あるいは回転周方向に飛び出させた所謂オーバーハングとした形状を圧粉鉄心で構成する手法がある。珪素鋼鈑の積層式ではこのオーバーハング構造は一般に困難あるいはコスト高となるため3次元に成形できる圧粉鉄心が有利となる。圧粉鉄心とは軟磁性鉄粉に少量の樹脂をバインダーと鉄粉をコーテングして、渦電流の絶縁のために混合して圧縮成形させたものである。圧粉鉄心は珪素鋼鈑積層式が2次元の単純形状であるのに対して3次元の複雑形状が可能で、更に鉄損の一部の渦電流損が少ない特長がある。上述した圧粉鉄心は磁束密度が珪素鋼鈑より小さいという短所があるが、オーバーハング形状では回転子との対向面積が増加するため高効率化に適したものと言える。
固定子磁極部の回転子との対向部をオーバーハング構造として回転子との対向面積を増加させる手段をとれば高トルク化を図ることが知られている。しかし固定子巻き線がオーバーハング部に邪魔されて巻き線作業が困難となる問題があった。
そこで本発明に係る回転電機は巻き線作業を従来と同じく容易にしながら、しかもエアギャップの磁束密度を安価な磁石の使用で高め、高トルクを発生させるものである。そして、圧粉鉄心を埋め込み磁石式の回転子に活用するものである。
Rotating electric machines are roughly classified into radial gap type and axial gap type.
A brushless DC (hereinafter referred to as BLDC) motor which uses a permanent magnet as a rotor in a conventional general radial gap type rotating electric machine always has a field generated by a permanent magnet orthogonal to a rotating magnetic field generated by an armature current. Since the maximum torque according to the so-called IBL law can be obtained, the quantity used has increased in recent years. BLDC motors are classified into SPM (Surface Permanent Magnet) type in which the magnet is exposed on the rotor surface and IPM (Internal Permanent Magnet) type in which the magnet is embedded inside the rotor core, and the latter is based on the IBL. Since reluctance torque can be obtained in addition to the torque according to the law, it is further used for applications that require high torque. The reluctance torque is generated by a force that attracts iron with an electromagnet. In the IPM type, iron is exposed on the rotor surface in addition to the permanent magnet, and this torque can be utilized. A BLDC motor is generally constructed by laminating a stator core with a silicon steel plate, and a concentrated winding method is adopted for winding when low cost and efficiency are important. The reason for this is that in the radial distributed winding method, the coil end portion that does not contribute to torque generation becomes larger and the copper loss increases, the efficiency decreases, and in concentrated winding, the winding is simple and it is possible to wind directly into the slot. This is because the winding becomes inexpensive. In the case of the concentrated winding method, the number of slots of the stator is limited to 4 to 12 mainly from the viewpoint of the cost of the rotating electrical machine if configured practically. However, the concentrated winding method has a drawback that harmonic magnetic flux is easily generated and vibration noise is increased. The distributed winding method is also employed for applications that particularly require low vibration and low noise.
On the other hand, there is an axial gap type rotating electrical machine that has an air gap in the axial direction. However, because the air gap is opposed to the plane, there are problems such as surface blurring. Compared to the gap type, it is inferior in efficiency and torque. For this reason, there is a problem that is less prevalent than the radial gap type except for special uses such as a flat-shaped electric motor and an electric motor that emphasizes constant speed rotation without much start and stop.
The axial height of the coil end of the concentrated winding method is smaller than that of distributed winding, so the copper loss is reduced and the efficiency is increased, but in order to further increase the efficiency, it does not become the area facing the rotor, contributing to torque generation The area occupied by the coil ends that are not used is also required to generate torque. As one of the solutions, there is a technique in which a so-called overhang shape in which the pole shape of the stator winding portion is protruded in the axial direction or the rotation circumferential direction is formed of a dust core. Since this overhang structure is generally difficult or expensive in a silicon steel sheet laminated type, a dust core that can be molded in three dimensions is advantageous. The compacted iron core is obtained by compression-molding soft magnetic iron powder with a small amount of resin coated with a binder and iron powder, and mixing them for insulation of eddy current. The compacted iron core has the advantage that it has a three-dimensional complicated shape compared to the two-dimensional simple shape of the silicon steel sheet laminated type, and further has a small eddy current loss of iron loss. Although the above-described dust core has the disadvantage that the magnetic flux density is smaller than that of the silicon steel plate, it can be said that the overhang shape is suitable for increasing the efficiency because the area facing the rotor increases.
It is known that high torque can be achieved by adopting an overhang structure for the portion of the stator magnetic pole portion facing the rotor so as to increase the facing area of the rotor. However, there is a problem that the winding of the stator becomes difficult because the stator winding is obstructed by the overhang portion.
Therefore, the rotating electrical machine according to the present invention makes winding work as easy as before, and increases the magnetic flux density of the air gap by using an inexpensive magnet to generate high torque. The dust core is used for an embedded magnet type rotor.

本発明を実現するには以下の手段による。
「手段1」
固定子と回転子を有する回転電機であって、前記回転子は軟磁性鉄粉からなる回転子鉄心と当該回転子鉄心の略内部に軸と平行に存在する永久磁石を有し、前記回転子鉄心は、前記固定子と対向する部分における軸方向長さが、前記回転子鉄心において前記永久磁石の前記回転子鉄心との接触部分における軸方向長さより短く形成されて、前記接触部分から前記固定子と対向する部分までその軸方向長さが漸次縮小して形成されると共に前記軸方向に沿って前記軟磁性鉄粉によって一体に形成されており、前記固定子は、巻き線部が巻回されることを手段とするラジアルギャップ式回転電機。
The present invention is realized by the following means.
"Means 1"
A rotating electrical machine having a stator and a rotor, wherein the rotor includes a rotor core made of soft magnetic iron powder and a permanent magnet that is substantially parallel to the shaft inside the rotor core. The iron core is formed such that an axial length in a portion facing the stator is shorter than an axial length in a contact portion of the permanent magnet with the rotor core in the rotor core, and the fixing from the contact portion is performed. The axial length is gradually reduced to the portion facing the child, and is integrally formed with the soft magnetic iron powder along the axial direction . It is a radial gap type rotating electric machine according to means Rukoto.

1)固定子巻き線のコイルエンドの軸方向高さ部はトルク発生に寄与しない空間であるがこの空間部を活用して回転子を軸方向に拡張し、回転子鉄心が固定子と対向する軸方向長さより大きい永久磁石から磁束を取り出すことで、回転子鉄心で、固定子対向部長さまで、磁束を凝縮できるので、エアギャップの磁束密度が高くなり、高トルク化、小形化が容易に実現できる。
2)飽和磁束密度が2(T)の回転子鉄心を使用して、残留磁束密度が1.3(T)のネオジム希土類磁石を使用すれば、SPM式では最大でも空隙磁束密度は1.3(T)を超えることはできないが、IPM式の本発明では、回転子の軸方向を略2/1.3=1.54倍に拡張することで、空隙磁束密度を2(T)近くまで高めることができる。この1・54倍のスペースはラジアルギャップ式では軸方向に薄型形状ほど容易に得られる。BLDCモータの発生トルクは空隙磁束密度に比例するので、この場合、50%強のトルク増加が期待できる。
3)ラジアル式回転電機では磁石の軸方向長さのみでなく径方向厚みを適度に増加すれば、例えばネオジム磁石をフェライト磁石で代行することも可能で、回転電機のコスト削減にもなる。
4)本発明は、ラジアルギャップ式、アキシャルギャップ式の両方に、有効である。
1) The axial height of the coil end of the stator winding is a space that does not contribute to torque generation. The space is used to expand the rotor in the axial direction, and the rotor core faces the stator. By extracting the magnetic flux from the permanent magnet that is larger than the axial length, the magnetic flux can be condensed up to the length of the stator facing part with the rotor core, so the magnetic flux density of the air gap is increased, and high torque and miniaturization are easily realized. it can.
2) If a rotor core with a saturation magnetic flux density of 2 (T) is used and a neodymium rare earth magnet with a residual magnetic flux density of 1.3 (T) is used, the gap magnetic flux density is 1.3 at the maximum in the SPM system. (T) cannot be exceeded, but in the present invention of the IPM type, the axial magnetic flux density is increased to nearly 2 (T) by expanding the axial direction of the rotor to about 2 / 1.3 = 1.54 times. Can be increased. In the radial gap type, the space of 1.54 times is easily obtained as the shape becomes thinner in the axial direction. Since the generated torque of the BLDC motor is proportional to the gap magnetic flux density, in this case, a torque increase of more than 50% can be expected.
3) In a radial rotating electric machine, if not only the axial length of the magnet but also the radial thickness is appropriately increased, for example, a neodymium magnet can be substituted with a ferrite magnet, and the cost of the rotating electric machine can be reduced.
4) The present invention is effective for both the radial gap type and the axial gap type.

本発明一例のラジアルギャップ式回転電機の軸を含んだ断面図Sectional drawing including the axis | shaft of the radial gap type rotary electric machine of an example of this invention 図1の回転電機のA−A断面図(但し回転子部は軸方向から見た図)AA sectional view of the rotating electrical machine of FIG. 1 (however, the rotor portion is seen from the axial direction) 本発明のアキシャルギャップ式の軸を含んだ断面図Sectional view including the axial gap type shaft of the present invention 図3の回転電機のA−A断面図AA sectional view of the rotating electrical machine of FIG. 従来技術のラジアルギャップ式回転電機の軸を含んだ断面図Sectional view including the shaft of a conventional radial gap type rotating electrical machine 図5の回転電機のA−A断面図AA sectional view of the rotating electrical machine of FIG. 従来のIPM式回転電機の説明図Explanatory drawing of conventional IPM type rotating electrical machine

以下図面によって説明する。   This will be described below with reference to the drawings.

図1は本発明を適用する回転電機の構成の一例を示したものであり、ラジアルギャップ式回転電機の軸を含んだ断面図である。図2は図1の回転電機のA−A断面図である。但し回転子部は軸方向から見た図で示してある。
図1、図2にで、符号1は本発明の回転子鉄心である。回転子鉄心1には軸方向に溝が設けてあり、板状の永久磁石7が埋め込まれている。本図では永久磁石7は4個設けられ、N極S極が交互に磁化されて配置されて、4極の回転子とした図で示している。符号2は固定子であり、珪素鋼鈑を積層して構成される。符号3は巻き線部である。本図では6スロットのため、6個の巻き線部となり、集中巻きされた例で示した。符号4は回転軸、符号5はボールベアリング等の軸受け、符号6は固定子2の左右に設けられたブラケットであり、軸受け5を保持して、回転子鉄心1を回転可能に固定子2との間でエアギャップを維持している。
本発明の構成は図1を参照すれば、軟磁性鉄粉からなる回転子鉄心1と回転子鉄心1の略内部に軸と平行に存在する永久磁石7を有し、回転子鉄心1において、固定子2と対向する部分における軸方向長さは、回転子鉄心1の埋め込まれた永久磁石7との接触部分における軸方向長さより短くなるようにしている。即ち、巻き線部3はそのコイルエンドの軸方向高さが突き出ており、この空間部はトルク発生に直接寄与していない。そこでこの軸方向の空間部を利用して軸方向に回転子部長及び磁石長を増大させて、回転子鉄心1が固定子2と対向する軸方向長さより大きい永久磁石7から磁束を取り出し、永久磁石7の半径外側部と回転子鉄心1の接触部から固定子対向部長さまでその軸方向長さを漸次縮小している。このような形状によれば回転子鉄心1の固定子2と対向する部分において磁束を凝縮できるので、エアギャップの磁束密度が高くなり、高トルク化、小形化が容易に実現できるものである。回転子鉄心1は軟磁性鉄分からなる焼結鉄心や樹脂粉で軟磁性鉄分をコーテングして圧縮熱処理した圧粉鉄心であれば容易にしかも安価にその形状を作ることができる。しかしこれを珪素鋼鈑の積層方式で実現させようとすればプレス抜き型を含めて高価で複雑なものとなる。更に軟磁性鉄分構成の場合は磁束透磁率の方向性はなく均一であるが積層式では圧延方向は磁束が通り易いが積層方向には通りづらいという方向性の問題が発生するので本発明には不適当な構成となる。また図1、図2はインナーロータ式で示したが、本発明はアウターロータ式にもそのまま当てはまるものである。以上は電動機のみならず、発電機にも適用するものである。
FIG. 1 shows an example of the configuration of a rotating electrical machine to which the present invention is applied, and is a cross-sectional view including a shaft of a radial gap type rotating electrical machine. 2 is a cross-sectional view of the rotary electric machine of FIG. 1 taken along the line AA. However, the rotor part is shown in the figure seen from the axial direction.
1 and 2, reference numeral 1 denotes the rotor core of the present invention. The rotor core 1 is provided with a groove in the axial direction, and a plate-like permanent magnet 7 is embedded therein. In the drawing, four permanent magnets 7 are provided, and N poles and S poles are alternately magnetized to be arranged as a four pole rotor. Reference numeral 2 denotes a stator, which is configured by laminating silicon steel plates. Reference numeral 3 denotes a winding portion. In this figure, since there are 6 slots, there are 6 winding portions, and an example of concentrated winding is shown. Reference numeral 4 denotes a rotating shaft, reference numeral 5 denotes a bearing such as a ball bearing, and reference numeral 6 denotes brackets provided on the left and right sides of the stator 2, and holds the bearing 5 to rotate the rotor core 1 with the stator 2. Maintain an air gap between them.
Referring to FIG. 1, the configuration of the present invention includes a rotor core 1 made of soft magnetic iron powder and a permanent magnet 7 that is substantially parallel to the axis inside the rotor core 1. The axial length of the portion facing the stator 2 is shorter than the axial length of the contact portion with the permanent magnet 7 in which the rotor core 1 is embedded. That is, the coil portion 3 has a protruding axial height of the coil end, and this space portion does not directly contribute to torque generation. Therefore, the rotor space length and the magnet length are increased in the axial direction using the space in the axial direction, and the magnetic flux is taken out from the permanent magnet 7 where the rotor core 1 is opposed to the stator 2 and is larger than the axial length. The length in the axial direction is gradually reduced from the contact portion between the radially outer portion of the magnet 7 and the rotor core 1 to the length of the stator facing portion. According to such a shape, since the magnetic flux can be condensed at the portion of the rotor core 1 facing the stator 2, the magnetic flux density in the air gap is increased, and high torque and downsizing can be easily realized. The rotor core 1 can be formed easily and inexpensively if it is a sintered iron core made of soft magnetic iron or a powder iron core coated with a soft magnetic iron with a resin powder and subjected to a compression heat treatment. However, if this is to be realized by a silicon steel sheet laminating system, it will be expensive and complicated, including a punching die. Furthermore, in the case of the soft magnetic iron composition, the magnetic flux permeability has no directivity but is uniform, but in the lamination type, the magnetic flux tends to pass in the rolling direction but difficult to pass in the lamination direction. The configuration is inappropriate. 1 and 2 show the inner rotor type, the present invention also applies to the outer rotor type as it is. The above applies not only to electric motors but also to generators.

例えば飽和磁束密度が2(T)の回転子鉄心を使用して、残留磁束密度が1.3(T)のネオジム希土類磁石を使用すれば、SPM式では永久磁石がエアギャップ表面に露出しているため、最大でも空隙磁束密度は1.3(T)を超えることはできないが、IPM式の本発明では、回転子の軸方向を略、2/1.3=1.54倍に拡張することで、空隙磁束密度を2(T)近くまで高めることができる。この1.54倍のスペースはラジアルギャップ式では軸方向に薄型形状ほど容易に得られる。これはコイルエンドの軸方向高さは固定子と回転子の対向長に関係なく一定であり、BLDCモータの発生トルクは空隙磁束密度に比例するので、この場合、50%強のトルク増加が期待できる。即ち、モータのサイズは増加することなしで、しかも極めて簡単で実現容易な方法でトルクを50%も大きく出来るものである。   For example, if a rotor core having a saturation magnetic flux density of 2 (T) is used and a neodymium rare earth magnet having a residual magnetic flux density of 1.3 (T) is used, the permanent magnet is exposed on the air gap surface in the SPM type. Therefore, the gap magnetic flux density cannot exceed 1.3 (T) at the maximum, but in the present invention of the IPM type, the axial direction of the rotor is expanded to about 2 / 1.3 = 1.54 times. Thus, the gap magnetic flux density can be increased to nearly 2 (T). In the radial gap type, this 1.54 times space can be obtained more easily in a thin shape in the axial direction. This is because the axial height of the coil end is constant regardless of the opposing length of the stator and rotor, and the torque generated by the BLDC motor is proportional to the air gap magnetic flux density. In this case, a torque increase of more than 50% is expected. it can. That is, the torque can be increased by 50% without increasing the size of the motor and by a very simple and easy to implement method.

図1及び図2の永久磁石7は必ずしも板状である必要はない。図2で軸方向から見た永久磁石形状は半径外方向に開いたU字型でもV字型でもよい。あるいは半径外方向に開いた逆さハの字形状でもよい。但し軸と平行である必要がある。
埋め込み磁石の着磁は半径方向に磁化される。その場合、半径方向の磁石厚みを増加すれば、磁石の起磁力は磁石厚み長に比例するので大きく出来る。
通常ネオジム磁石をそのままの形状でフェライト磁石に置き換えるとトルクは50%から70%程度減少するが、本発明を適用すれば、また必要により磁石の半径方向の厚み長を増加させれば、フェライト磁石でもネオジム磁石に近いトルク値が期待できる。仮にフェライト磁石が軸方向長さで1.5倍、半径方向の磁石厚みで2倍、従って体積がネオジム磁石の体積の3倍で同等な値が得られたとしても、磁石のコストはフェライト磁石の方が十分に安価である。
The permanent magnet 7 in FIGS. 1 and 2 does not necessarily have a plate shape. The permanent magnet shape seen from the axial direction in FIG. 2 may be a U-shape or a V-shape that opens outward in the radius direction. Alternatively, it may be an inverted square shape that opens in the radially outward direction. However, it must be parallel to the axis.
The magnetization of the embedded magnet is magnetized in the radial direction. In this case, if the magnet thickness in the radial direction is increased, the magnetomotive force of the magnet is proportional to the magnet thickness length and can be increased.
When a neodymium magnet is replaced with a ferrite magnet in its original shape, the torque decreases by about 50% to 70%. However, if the present invention is applied, and if the thickness of the magnet in the radial direction is increased as necessary, the ferrite magnet However, torque values close to those of neodymium magnets can be expected. Even if the ferrite magnet is 1.5 times the axial length and twice the thickness of the radial magnet, so even if the volume is three times the volume of the neodymium magnet, the magnet cost is the ferrite magnet. Is cheap enough.

図3は本発明をアキシャルギャップ式回転電機に適用した図であり、軸を含んだ断である。図4は図3の回転電機のA−A断面図である。図3、図4を参照して、固定子11とその巻き線部12及び回転子を有する回転電機である。前記回転子は軟磁性鉄粉からなる回転子鉄心9と当該回転子鉄心9とバックヨーク10の間に軸方向に存在する永久磁石8を有している。バックヨーク10は磁性体で構成されて軸受け13を介して回転軸4に支持されている。前記回転子鉄心9において、前記固定子11と対向する部分の面積は軸方向で前記永久磁石8との接触部分の面積より小さくなることを手段として、エアギャップ対向部より大きな面積を有する永久磁石8から集めた磁束を軸方向に漸次その面積を小さく構成した回転子鉄心9にて凝縮してエアギャップの磁束密度を高めたアキシャルギャップ式回転電機である。この場合も、モータサイズを増大しないで、磁束凝縮度の可能な目安は図3で示したように、半径方向で述べれば巻き線部12の半径方向長まで永久磁石8の半径方向長を大きく出来、エアギャップ対向部の半径方向長との比となる。図3でのこの比率は1.5倍であり、50%近いトルク増加が可能である。図4で固定子は6スロット、6コイルの集中巻きの例である。回転子の構成の図示は省略したが、N極S極が交互に配置された4極であり、図2の回転子構成をアキシャルギャップに展開したものである。   FIG. 3 is a diagram in which the present invention is applied to an axial gap type rotating electrical machine, and includes a shaft. 4 is a cross-sectional view of the rotary electric machine of FIG. 3 taken along the line AA. Referring to FIGS. 3 and 4, the rotating electric machine includes a stator 11, a winding portion 12 thereof, and a rotor. The rotor has a rotor core 9 made of soft magnetic iron powder, and a permanent magnet 8 that exists between the rotor core 9 and the back yoke 10 in the axial direction. The back yoke 10 is made of a magnetic material and is supported on the rotating shaft 4 via a bearing 13. In the rotor core 9, the area of the portion facing the stator 11 is smaller than the area of the contact portion with the permanent magnet 8 in the axial direction, and the permanent magnet has a larger area than the air gap facing portion. 8 is an axial gap type rotating electrical machine in which the magnetic flux collected from 8 is condensed in a rotor core 9 whose area is gradually reduced in the axial direction to increase the magnetic flux density of the air gap. Also in this case, without increasing the motor size, as shown in FIG. 3, a possible guide for the degree of magnetic flux condensation is to increase the radial length of the permanent magnet 8 up to the radial length of the winding portion 12 in the radial direction. Yes, it is the ratio to the radial length of the air gap facing portion. This ratio in FIG. 3 is 1.5 times, and a torque increase of nearly 50% is possible. In FIG. 4, the stator is an example of concentrated winding of 6 slots and 6 coils. Although illustration of the configuration of the rotor is omitted, there are four poles in which N poles and S poles are alternately arranged, and the rotor configuration in FIG. 2 is developed in an axial gap.

図5は従来技術の例を示したものであり、図6は図5のA−A断面図である。固定子及びブラケットの構成は図1と同じであるので説明は省略する。回転子鉄心は珪素鋼鈑の積層方式であり、その溝部には本発明の永久磁石7より軸方向での長さが短い永久磁石15が埋め込みされている。図5と図1を比較すれば、本発明が簡単な構成で高トルク化できる有効な手段であるかが容易に理解される。尚アキシャルギャップの従来技術の図示は省略する。また参考文献としての非特許文献1(本明細書に添付した図7に相当)を示したが、図7(a)及び(b)には埋め込み磁石式のIPM式回転電機の磁気回路構成が4極の例で示されている。そして磁石幅の中心線がd軸で、この軸でIBL則のトルクを発生させる。そしてd軸から45°隔てた軸がq軸であることが示されている。即ちIPM式ではわずかな幅で回転子表面にできる非磁石部が固定子巻き線q軸からの磁束通過口になり、レラクタンストルクが加算されることになる。また図7(c)にはSPM式とIPM式のトルク比較が示されてIPMが高トルク化で有利であることが述べられている。本発明はこのIPM式の改良進歩を目的としたものである。   FIG. 5 shows an example of the prior art, and FIG. 6 is a cross-sectional view taken along line AA of FIG. The configuration of the stator and the bracket is the same as in FIG. The rotor core is a laminated type of silicon steel plates, and permanent magnets 15 shorter in the axial direction than the permanent magnets 7 of the present invention are embedded in the grooves. Comparing FIG. 5 and FIG. 1, it can be easily understood whether the present invention is an effective means capable of increasing the torque with a simple configuration. The illustration of the prior art of the axial gap is omitted. Non-patent document 1 (corresponding to FIG. 7 attached to this specification) is shown as a reference. FIGS. 7A and 7B show the magnetic circuit configuration of an embedded magnet type IPM type rotating electrical machine. A four pole example is shown. The center line of the magnet width is the d axis, and an IBL law torque is generated on this axis. It is shown that the axis separated by 45 ° from the d-axis is the q-axis. That is, in the IPM system, the non-magnet portion formed on the rotor surface with a slight width becomes a magnetic flux passage opening from the stator winding q-axis, and reluctance torque is added. FIG. 7C shows a torque comparison between the SPM type and the IPM type, and it is stated that the IPM is advantageous in increasing the torque. The present invention aims to improve the IPM system.

本発明の回転子鉄心は軟磁性鉄分からなる鉄心と述べたが、実際の製法は圧縮して適当な温度での熱処理又は燒結によりその強度を確保するものである。更に軟磁性鉄粉に絶縁とバインダーとしての樹脂粉をコーテングして加圧成形後、適度な温度で熱処理した所謂、圧粉鉄心とすれば渦電流損をほぼなくすことで鉄損の少ない回転電機が得られる。更に適量の珪素粉を加えることで、樹脂粉による渦電流損の減少に加えて珪素粉によるヒステリシス損をも減少させることができ、回転電機の効率を更に向上できる。これは冷間あるいは熱間圧延の鋼鈑に3%程度の珪素を加えることで鉄損を軽減する珪素鋼鈑の鉄損軽減原理により圧粉鉄心の場合でも同様な効果が得られるものである。   Although the rotor core of the present invention is described as an iron core made of soft magnetic iron, the actual manufacturing method is to compress and secure the strength by heat treatment or sintering at an appropriate temperature. Furthermore, after coating with soft magnetic iron powder and insulation and resin powder as binder, heat treatment at an appropriate temperature, so-called powder iron core can reduce eddy current loss and reduce iron loss. Is obtained. Furthermore, by adding an appropriate amount of silicon powder, it is possible to reduce hysteresis loss due to silicon powder in addition to reduction of eddy current loss due to resin powder, and further improve the efficiency of the rotating electrical machine. The same effect can be obtained even in the case of a dust core due to the iron loss mitigation principle of a silicon steel plate that reduces iron loss by adding about 3% silicon to a cold or hot rolled steel plate. .

本発明による回転電機は電動機または発電機に活用でき、安価で堅牢で軽薄短小、高トルク化、高効率化に適した、極めて実用的なものである。従って工業的に大きな貢献が期待される。   The rotating electrical machine according to the present invention can be used for an electric motor or a generator, and is extremely practical, inexpensive, robust, light and thin, suitable for high torque and high efficiency. Therefore, it is expected to make a significant industrial contribution.

1、9、14、 回転子鉄心
2、11、 固定子鉄心
3、12、 巻き線
4、 回転軸
5、13、 軸受け
6、 ブラケット
7、8、15、 永久磁石
10、 バックヨーク
1, 9, 14, rotor cores 2, 11, stator cores 3, 12, winding 4, rotating shafts 5, 13, bearing 6, brackets 7, 8, 15, permanent magnet 10, back yoke

Claims (1)

固定子と回転子を有する回転電機であって、
前記回転子は軟磁性鉄粉からなる回転子鉄心と当該回転子鉄心の略内部に軸と平行に存在する永久磁石を有し、
前記回転子鉄心は、前記固定子と対向する部分における軸方向長さが、前記回転子鉄心において前記永久磁石の前記回転子鉄心との接触部分における軸方向長さより短く形成されて、前記接触部分から前記固定子と対向する部分までその軸方向長さが漸次縮小して形成されると共に前記軸方向に沿って前記軟磁性鉄粉によって一体に形成されており
前記固定子は、巻き線部が巻回されることを特徴とするラジアルギャップ式回転電機。
A rotating electric machine having a stator and a rotor,
The rotor has a rotor core made of soft magnetic iron powder, and a permanent magnet that exists substantially in parallel with the shaft inside the rotor core;
The rotor core, the axial length of the stator and facing portions, the formed shorter than the axial length of the contact portion between the rotor core of the permanent magnet in the rotor core, wherein the contact portion The axial length of the portion facing the stator is gradually reduced and formed integrally with the soft magnetic iron powder along the axial direction ,
The stator is a radial gap type rotary electric machine winding portion is characterized Rukoto wound.
JP2018106971A 2018-06-04 2018-06-04 Permanent magnet rotating electric machine Active JP6615266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018106971A JP6615266B2 (en) 2018-06-04 2018-06-04 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106971A JP6615266B2 (en) 2018-06-04 2018-06-04 Permanent magnet rotating electric machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013070397A Division JP2014195351A (en) 2013-03-28 2013-03-28 Permanent magnet dynamo-electric machine

Publications (2)

Publication Number Publication Date
JP2018157752A JP2018157752A (en) 2018-10-04
JP6615266B2 true JP6615266B2 (en) 2019-12-04

Family

ID=63716971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106971A Active JP6615266B2 (en) 2018-06-04 2018-06-04 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP6615266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170390A1 (en) * 2019-02-21 2020-08-27 三菱電機株式会社 Motor, compressor, and air conditioning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035639A (en) * 2006-07-28 2008-02-14 Asmo Co Ltd Motor
JP2008236866A (en) * 2007-03-19 2008-10-02 Toyota Industries Corp Rotor of permanent magnet embedded-type rotating electric machine, and permanent magnet embedded-type rotating electric machine
JP2012165568A (en) * 2011-02-07 2012-08-30 Fuji Electric Co Ltd Permanent magnet type rotary electric machine
JP5363520B2 (en) * 2011-03-04 2013-12-11 株式会社日立産機システム Permanent magnet synchronous machine

Also Published As

Publication number Publication date
JP2018157752A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5438749B2 (en) Permanent magnet rotor with magnetic flux concentrating pole pieces
CN103872869B (en) Multiple level formula electric rotating machine
WO2015161668A1 (en) Permanent magnet synchronous motor and rotor thereof
JP2014195351A (en) Permanent magnet dynamo-electric machine
JP2013236534A (en) Rotary electric machine
JP2004304958A (en) Permanent-magnetic motor
JP4491260B2 (en) Rotor for bearingless motor and bearingless motor
WO2013147157A1 (en) Rotating electrical machine
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP2003309953A (en) Permanent magnet rotor for inner rotor type rotary electric machine
JP6615266B2 (en) Permanent magnet rotating electric machine
JP3871873B2 (en) Permanent magnet type rotor
JP2015027160A (en) Permanent magnet type rotary electric machine
US10374474B2 (en) Permanent magnet motor
JP5587233B2 (en) Stator core and motor using the same
JPH11136892A (en) Permanent magnet motor
US10056792B2 (en) Interior permanent magnet electric machine
JP5082825B2 (en) Rotor for embedded magnet type rotating electrical machine, embedded magnet type rotating electrical machine, vehicle, elevator, fluid machine, processing machine using the rotating electrical machine
JP2010045870A (en) Rotating machine
JP2010045872A (en) Permanent magnet rotary machine
JP2010246301A (en) Rotor for permanent magnet type motor
JP6661960B2 (en) Self-starting permanent magnet motor
JP6330425B2 (en) Rotating electrical machine
JP2014225959A (en) Rotor of dynamo-electric machine and manufacturing method therefor
JP6126873B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6615266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150