JP6614554B2 - Nozzle cleaning method and nozzle cleaning structure of atomizer - Google Patents

Nozzle cleaning method and nozzle cleaning structure of atomizer Download PDF

Info

Publication number
JP6614554B2
JP6614554B2 JP2016222643A JP2016222643A JP6614554B2 JP 6614554 B2 JP6614554 B2 JP 6614554B2 JP 2016222643 A JP2016222643 A JP 2016222643A JP 2016222643 A JP2016222643 A JP 2016222643A JP 6614554 B2 JP6614554 B2 JP 6614554B2
Authority
JP
Japan
Prior art keywords
nozzle member
introduction
nozzle
flow path
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016222643A
Other languages
Japanese (ja)
Other versions
JP2018079417A (en
Inventor
弘樹 吉浦
謙一 原島
世一 徳道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugino Machine Ltd
Original Assignee
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugino Machine Ltd filed Critical Sugino Machine Ltd
Priority to JP2016222643A priority Critical patent/JP6614554B2/en
Priority to CN201711024705.7A priority patent/CN108067387A/en
Priority to EP17200252.9A priority patent/EP3320982A1/en
Publication of JP2018079417A publication Critical patent/JP2018079417A/en
Application granted granted Critical
Publication of JP6614554B2 publication Critical patent/JP6614554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/50Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter
    • B05B15/52Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter for removal of clogging particles
    • B05B15/531Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter for removal of clogging particles using backflow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/14Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
    • B05B15/18Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts for improving resistance to wear, e.g. inserts or coatings; for indicating wear; for handling or replacing worn parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/50Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter
    • B05B15/55Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter using cleaning fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material

Landscapes

  • Disintegrating Or Milling (AREA)
  • Accessories For Mixers (AREA)

Description

本発明は、高圧流体同士を衝突させる微粒化装置におけるノズル部材の閉塞を解消するためのノズル洗浄方法及びノズル洗浄構造に関する。   The present invention relates to a nozzle cleaning method and a nozzle cleaning structure for eliminating blockage of a nozzle member in an atomization apparatus that causes high-pressure fluids to collide with each other.

微粒化とは固体粒子を微小粒子に粉砕、分散、もしくは乳化させる概念であり、微粒化処理には対象素材を含む噴流同士の衝突を利用して微粒化を行う微粒化装置が用いられる。
特許文献1,2には、加圧した溶媒と原料粒子の混合液を導入流路からノズル部材方向に導入し、ノズル部材の複数本の加速流路を通過する際の剪断力と、通過した混合液同士が衝突するエネルギによって原料粒子を微粒化させる機構が開示されている。図10に示すように、特許文献1,2のような従来の微粒化装置200は、超高圧で加圧した原料を導入流路開口210や導入流路211を介してハウジング201内に導入する。そしてノズル部材209の素材であるダイヤモンドとダイヤモンドの隙間(スリット)、すなわち微細加速流路214を通過する際に圧縮、せん断、乱流等を生じさせ、衝突位置226において原料を対向衝突させて微粒化を行う。そして貫通孔217を介して加圧した原料を噴出させて噴流受け部材222によって受けた後、導出流路213や導出流路開口212から原料粒子を導出する。これらの装置200はノズル部材209がスリットを備えるためスリット式チャンバを備えた微粒化装置200と呼ばれ、特に乳化性能の向上を可能とする。化粧品、食品、医薬品等で乳化を行う際には、対向衝突で行うよりも強力な衝突エネルギおよび剪断力が得られ乳化が促進される。
Atomization is a concept of pulverizing, dispersing, or emulsifying solid particles into fine particles. For atomization, a atomization apparatus that performs atomization using collision of jets including a target material is used.
In Patent Documents 1 and 2, a mixture of pressurized solvent and raw material particles is introduced from the introduction channel toward the nozzle member, and the shearing force when passing through the plurality of acceleration channels of the nozzle member is passed. A mechanism is disclosed in which raw material particles are atomized by energy with which the mixed liquid collides. As shown in FIG. 10, conventional atomization apparatuses 200 such as Patent Documents 1 and 2 introduce a raw material pressurized at an ultrahigh pressure into a housing 201 through an introduction channel opening 210 and an introduction channel 211. . Then, compression, shearing, turbulent flow, etc. are generated when passing through the gap (slit) between diamond, which is the material of the nozzle member 209, that is, the fine acceleration flow path 214, and the raw material is caused to collide oppositely at the collision position 226. To do. Then, after the pressurized raw material is jetted through the through-hole 217 and received by the jet receiving member 222, the raw material particles are led out from the outlet channel 213 and the outlet channel opening 212. These devices 200 are called atomization devices 200 having slit-type chambers because the nozzle member 209 has slits, and in particular, can improve emulsification performance. When emulsifying with cosmetics, food, pharmaceuticals, etc., stronger collision energy and shearing force are obtained than with opposing collision, and emulsification is promoted.

特開2005−144329号公報JP 2005-144329 A 特許5021234号公報Japanese Patent No. 50212234

近年、上記機構において生産量増加のため、流量の増加による噴流衝突位置の壊食軽減や、乳化・分散などの微粒化の向上を図ることを目的として微細加速流路径(微細加速流路の内径)を小さくする傾向にある。しかしながら微細加速流路径を小さくしたことで、微細加速流路内に原料粒子による閉塞(詰まり)が生じる機会も増加している。従来の微粒化装置200においては、微細加速流路214内で閉塞が発生した場合、ノズル部材209を洗浄するためには微粒化装置200を全分解して、すなわち第1の封止部材202を取り外した後、第1の封止部材202側から、押さえ部材204、噴流受け部材222、そして第2の封止部材205を取り外し、そしてノズル部材209を取り出して微細加速流路214内や貫通孔217内を洗浄しなければ閉塞を解消できなかった(図10)。また洗浄によって閉塞を解消できない場合はノズル部材209を廃棄して交換せざるを得なかった。そのため簡単な閉塞解消方法が求められていた。   In recent years, due to the increase in production volume in the above mechanism, the fine acceleration channel diameter (inner diameter of the fine acceleration channel) is aimed at reducing erosion at the jet collision position due to the increase in flow rate and improving atomization such as emulsification and dispersion. ) Tends to be small. However, by reducing the diameter of the fine acceleration channel, the opportunity for clogging (clogging) with raw material particles in the fine acceleration channel is also increasing. In the conventional atomization apparatus 200, when clogging occurs in the fine acceleration flow path 214, in order to clean the nozzle member 209, the atomization apparatus 200 is completely disassembled, that is, the first sealing member 202 is removed. After the removal, the pressing member 204, the jet receiving member 222, and the second sealing member 205 are removed from the first sealing member 202 side, and the nozzle member 209 is taken out from the inside of the fine acceleration flow path 214 or through-holes. The blockage could not be resolved without cleaning the inside of 217 (FIG. 10). Further, when the blockage could not be eliminated by washing, the nozzle member 209 had to be discarded and replaced. Therefore, there has been a demand for a simple blockage elimination method.

そこで本発明の目的は、逆洗により目詰まりを完全になくすとともに、微粒化装置の全分解やノズル部材の廃棄交換をすることなく、ノズル部材の閉塞を容易に解消する、ノズル洗浄方法及び微粒化装置のノズル洗浄構造を提供することにある。   Accordingly, an object of the present invention is to provide a nozzle cleaning method and fine particles that can eliminate clogging completely by backwashing, and can easily eliminate clogging of the nozzle member without total disassembly of the atomization device or disposal replacement of the nozzle member. An object of the present invention is to provide a nozzle cleaning structure for a gasification apparatus.

本発明のノズル洗浄方法は、原料粒子を導入かつ導出するための第1の導入出流路開口と第4の導入出流路開口を備え、通常の高圧噴射時には、導入配管に第1の導入出流路開口を接続しかつ導出配管に第4の導入出流路開口を接続し、加圧流体を前記第1の導入出流路開口から導入する微粒化装置であって、逆洗時には、前記導入配管に前記第4の導入出流路開口を接続しかつ前記導出配管に前記第1の導入出流路開口を接続し、前記第4の導入出流路開口から加圧流体を導入することで、ノズル部材の流路内を閉塞する原料粒子を流出させることを特徴とする。
また本発明の微粒化装置のノズル洗浄構造は、加圧流体同士を対向衝突させる微細加速流路を有したノズル部材と、原料粒子を導入かつ導出するための第1の導入出流路開口と第4の導入出流路開口を備え、通常の高圧噴射時には、導入配管に前記第1の導入出流路開口を接続しかつ導出配管に前記第4の導入出流路開口を接続し、加圧流体を前記第1の導入出流路開口から導入する微粒化装置であって、前記導入配管に前記第4の導入出流路開口が接続され、前記導出配管に前記第1の導入出流路開口部が接続されることを特徴とする。
The nozzle cleaning method of the present invention includes a first inlet / outlet passage opening and a fourth inlet / outlet passage opening for introducing and discharging raw material particles, and the first introduction into the introduction pipe during normal high-pressure injection. An atomizing device that connects the outlet channel opening and connects the fourth inlet / outlet channel opening to the outlet pipe and introduces the pressurized fluid from the first inlet / outlet channel opening, and during backwashing, The fourth inlet / outlet passage opening is connected to the introduction pipe and the first introduction / outlet opening is connected to the outlet pipe, and pressurized fluid is introduced from the fourth introduction / outlet opening. Thus, the raw material particles closing the flow path of the nozzle member are caused to flow out.
Further, the nozzle cleaning structure of the atomization apparatus of the present invention includes a nozzle member having a fine acceleration channel for causing the pressurized fluids to collide with each other, a first introduction / extraction channel opening for introducing and deriving the raw material particles, and A fourth inlet / outlet passage opening, and during normal high-pressure injection, the first introduction / outlet passage opening is connected to the introduction pipe and the fourth introduction / outlet passage opening is connected to the outlet pipe; A device for atomizing pressurized fluid from the first inlet / outlet channel opening, wherein the fourth inlet / outlet channel opening is connected to the inlet pipe, and the first inlet / outlet flow is connected to the outlet pipe. A road opening is connected.

本発明によれば原料粒子を導入かつ導出するための第1の導入出流路開口と第4の導入出流路開口を備え、通常の高圧噴射時には、導入配管に第1の導入出流路開口を接続しかつ導出配管に第4の導入出流路開口を接続し、加圧流体を第1の導入出流路開口から導入することで、加圧流体は第1の導入出流路と第2の導入出流路を介して微細加速流路内に進入し、微細加速流路内を通過させて対向衝突し、通過孔を通過させて第3の導入出流路と第4の導入出流路を介して第4の導入出流路開口から噴射される。また逆洗時には、導入配管に第4の導入出流路開口を接続しかつ導出配管に第1の導入出流路開口を接続し、ノズル部材の上部を押圧しながら、第4の導入出流路開口から加圧流体を導入することで、加圧流体を第3の導入出流路と第4の導入出流路を介して通過孔内に進入させ、通過孔を通過させた後に微細加速流路内を通過させ、第1の導入出流路と第2の導入出流路を介して第1の導入出流路開口から加圧流体を流出させることができ、ノズル部材の流路内を閉塞する原料粒子を流出させることが出来る。なお本発明における逆洗とは、微粒化装置内で通常の加圧流体の流動方向とは逆向きに加圧流体を逆流させ、ノズル部材の流路内を洗浄することを意味する。
また本発明によれば、閉塞解消時間を約14分の1に短縮可能となり、閉塞を解消できない事象が減り、ノズル部材の廃棄数を減少させることが可能となった。
According to the present invention, the first inlet / outlet passage opening and the fourth inlet / outlet passage opening for introducing and discharging the raw material particles are provided, and the first introduction / outlet passage is provided in the introduction pipe at the time of normal high-pressure injection. By connecting the opening and connecting the fourth inlet / outlet flow passage opening to the outlet pipe and introducing the pressurized fluid from the first inlet / outlet passage opening, the pressurized fluid is connected to the first inlet / outlet passage. It enters the fine acceleration flow path through the second introduction / extraction flow path, passes through the fine acceleration flow path and collides with each other, passes through the passage hole, and passes through the third introduction / discharge flow path and the fourth introduction flow path. Jetted from the fourth inlet / outlet channel opening through the outlet channel. At the time of backwashing, the fourth inlet / outlet flow passage opening is connected to the introduction pipe and the first introduction / outflow passage opening is connected to the outlet pipe, while pressing the upper part of the nozzle member, By introducing the pressurized fluid from the passage opening, the pressurized fluid enters the through hole through the third inlet / outlet channel and the fourth inlet / outlet channel, and after passing through the through hole, is finely accelerated. The pressurized fluid can flow out from the opening of the first inlet / outlet channel through the first inlet / outlet channel and the second inlet / outlet channel through the first inlet / outlet channel, The raw material particles that block can be discharged. The backwashing in the present invention means that the inside of the flow path of the nozzle member is washed by causing the pressurized fluid to flow backward in the direction opposite to the flow direction of the normal pressurized fluid in the atomization apparatus.
Further, according to the present invention, the clogging elimination time can be shortened to about one-fourth, the number of events in which the clogging cannot be eliminated is reduced, and the number of discarded nozzle members can be reduced.

本発明のノズル洗浄方法は、前記ノズル部材と前記ノズル部材を封止するための第2の封止部材はテーパ形状であって、ノズル部材押さえによってノズル部材の上部を押圧しながら、前記ノズル部材のテーパ形状凸部と前記第2の封止部材のテーパ形状凹部との係合を維持して、前記ノズル部材と前記第2の封止部材との離脱を防止することを特徴とする。
本発明の微粒化装置のノズル洗浄構造は、逆洗の際に前記加圧流体が前記微細加速流路の衝突位置近傍の壁面に衝突する際に生じる衝突力の方向に対して前方に、前記衝突力を吸収して前記ノズル部材と前記ノズル部材を封止するための第2の封止部材の嵌合を維持するノズル部材押さえを有し、前記ノズル部材に前記ノズル部材押さえを当接してなることを特徴とする。
また本発明の微粒化装置のノズル洗浄構造は、前記ノズル部材押さえを脱着可能とし、かつ前記衝突力を吸収して前記ノズル部材と前記第2の封止部材の嵌合を維持し、かつ前記ノズル部材に対する前記ノズル部材押さえの押圧力を調節するための第3の封止部材を、前記ノズル部材押さえに当接させてなることを特徴とする。
In the nozzle cleaning method of the present invention, the nozzle member and the second sealing member for sealing the nozzle member are tapered, and the nozzle member is pressed while pressing the upper part of the nozzle member by pressing the nozzle member. The engagement between the tapered convex portion and the tapered concave portion of the second sealing member is maintained to prevent the nozzle member and the second sealing member from being separated.
The nozzle cleaning structure of the atomization apparatus according to the present invention has a structure in which the pressurized fluid moves forward in the direction of the collision force generated when the pressurized fluid collides with the wall surface in the vicinity of the collision position of the fine acceleration channel during backwashing. A nozzle member pressing member that absorbs a collision force and maintains the fitting of the second sealing member for sealing the nozzle member and the nozzle member, and the nozzle member pressing member is in contact with the nozzle member It is characterized by becoming.
Further, the nozzle cleaning structure of the atomization apparatus of the present invention makes it possible to detach the nozzle member presser, absorb the collision force, maintain the fitting of the nozzle member and the second sealing member, and A third sealing member for adjusting the pressing force of the nozzle member press against the nozzle member is brought into contact with the nozzle member press.

本発明によれば、従来の装置では逆洗の際にノズル部材と第2の封止部材との嵌合が外れることがあったが、ノズル部材押さえと第3の封止部材を備えることにより解消することができる。また、導入出流路開口とは別に第3の封止部材を備えるため加圧流体の導入出機能と封止機能とは別々の部材が担うこととなる。従ってトルク管理やシール管理が単純化され、作業者の作業負担が減る。   According to the present invention, in the conventional apparatus, the nozzle member and the second sealing member may be disengaged during backwashing. By providing the nozzle member presser and the third sealing member, Can be resolved. Further, since the third sealing member is provided separately from the inlet / outlet channel opening, the pressurized fluid introduction / extraction function and the sealing function are performed by different members. Therefore, torque management and seal management are simplified, and the work load on the operator is reduced.

本発明のノズル洗浄方法は、100MPa以下の前記加圧流体を送液するための加圧手段を備え、前記第4の導入出流路開口に前記導入配管を接続して、100MPa以下の溶媒または混合液である加圧流体を送液することを特徴とする。   The nozzle cleaning method of the present invention includes a pressurizing means for sending the pressurized fluid of 100 MPa or less, and connects the introduction pipe to the fourth introduction / exit flow path opening to provide a solvent of 100 MPa or less. A pressurized fluid that is a mixed solution is fed.

本発明によれば、樹脂製ノズル部材押さえの脱着のみで、100MPa以下の加圧洗浄により閉塞を解消でき、全分解が不要となった。
また本発明によれば、100MPa以下の加圧流体を送液するための加圧手段を備え、ノズル部材押さえは、100MPa以下の加圧洗浄に対して摩耗しにくい素材からなることで、ノズル部材と第2の封止部材の嵌合を維持することができ、逆洗時にも耐圧構造が保持される。
According to the present invention, the clogging can be eliminated by pressure washing of 100 MPa or less only by removing and attaching the resin nozzle member presser, and the entire decomposition becomes unnecessary.
Further, according to the present invention, the nozzle member is provided with a pressurizing means for feeding a pressurized fluid of 100 MPa or less, and the nozzle member presser is made of a material that is not easily worn against pressurized cleaning of 100 MPa or less. And the fitting of the second sealing member can be maintained, and the pressure-resistant structure is maintained even during backwashing.

本発明の微粒化装置のノズル洗浄構造は、ハウジングが円柱形状であって、円柱形状側面に前記第1の導入出流路開口と前記第4の導入出流路開口を備え、前記ノズル部材押さえの中心軸側部に導入出流路を備え、前記導入出流路において前記加圧流体が導入される方向に前記ノズル部材押さえが配置されることを特徴とする。   In the nozzle cleaning structure of the atomization apparatus according to the present invention, the housing has a cylindrical shape, and the first inlet / outlet passage opening and the fourth introduction / outlet passage opening are provided on a cylindrical side surface, and the nozzle member pressing member is provided. An inlet / outlet passage is provided on the central axis side of the nozzle member, and the nozzle member presser is disposed in the introduction / outlet passage in a direction in which the pressurized fluid is introduced.

本発明によれば、ハウジングの円柱形状側面に導入出流路開口を備えることで、ハウジング上面に位置する第3の封止部材やノズル部材押さえやノズル部材に加圧流体の流路を形成する必要が無くなり、装置構成を単純化することができる。   According to the present invention, the flow path for the pressurized fluid is formed in the third sealing member, the nozzle member pressing member, and the nozzle member located on the upper surface of the housing by providing the introduction / exit flow passage opening on the cylindrical side surface of the housing. This eliminates the necessity and simplifies the apparatus configuration.

本発明の微粒化装置のノズル洗浄構造は、前記ノズル部材押さえに加圧流体が衝突することを防止するためのリングが周設されることを特徴とする。   The nozzle cleaning structure of the atomization apparatus of the present invention is characterized in that a ring for preventing a pressurized fluid from colliding with the nozzle member press is provided.

本発明によれば、ノズル部材押さえにリングが周設されることにより、ノズル部材押さえの摩耗を低減することができ、高圧噴射時に加圧流体に夾雑物が生じることを防ぐことが可能となる。   According to the present invention, it is possible to reduce the wear of the nozzle member holder by providing the ring around the nozzle member holder, and to prevent the generation of contaminants in the pressurized fluid during high-pressure injection. .

本発明の微粒化装置のノズル洗浄構造は、ハウジングが円柱形状であって、前記ノズル部材押さえの中心軸に沿って前記第3の封止部材を配置し、前記第3の封止部材は前記中心軸に沿って前記第1の導入出流路開口と第1の導入出流路とが形成されることを特徴とする。   In the nozzle cleaning structure of the atomization apparatus of the present invention, the housing has a columnar shape, the third sealing member is disposed along the central axis of the nozzle member presser, and the third sealing member The first inlet / outlet channel opening and the first inlet / outlet channel are formed along a central axis.

本発明によれば、第3の封止部材が第1の導入流路開口や第1の導入出流路の機能を兼ね備え、ノズル部材押さえが第2の導入出流路の機能を兼ね備えることが可能であり、よりシンプルな構造となる。   According to the present invention, the third sealing member has a function of the first introduction flow path opening and the first introduction / extraction flow path, and the nozzle member press has a function of the second introduction / extraction flow path. This is possible and results in a simpler structure.

本発明の微粒化装置は、前記第1の導入出流路開口の内径と前記第4の導入出流路開口の内径は貫通孔の内径よりも大きく、前記貫通孔の内径は前記微細加速流路の内径よりも大きいことを特徴とする。   In the atomization apparatus of the present invention, the inner diameter of the first introduction / exit flow path opening and the inner diameter of the fourth introduction / exit flow path opening are larger than the inner diameter of the through hole, and the inner diameter of the through hole is the fine acceleration flow It is characterized by being larger than the inner diameter of the path.

本発明によれば、導入出流路開口の内径は貫通孔の内径よりも大きく、貫通孔の内径は微細加速流路の内径よりも大きいことで、微細加速流路内に生じた夾雑物による閉塞が解消されやすい構造となる。   According to the present invention, the inner diameter of the inlet / outlet flow passage opening is larger than the inner diameter of the through hole, and the inner diameter of the through hole is larger than the inner diameter of the fine acceleration flow path. The structure is such that the blockage is easily resolved.

本発明によれば、洗浄よりも閉塞解消効果の高い第2の導入出流路からの加圧逆洗をすることが可能となる。また第3の封止部材及び樹脂製のノズル部材押さえの脱着のみで、50MPa〜100MPaの加圧逆洗により閉塞を解消でき、全分解が不要となる。また従来の閉塞解消作業時間は約35分程度必要であったが、本発明では約2分半程度となり、閉塞解消作業時間を約14分の1に短縮できる。また閉塞を解消できない事象が減り、それに伴ってノズル部材の廃棄数も減少できる。   According to the present invention, it is possible to perform pressure backwashing from the second introduction / exit flow path, which has a higher blocking effect than washing. Further, only by removing and attaching the third sealing member and the resin nozzle member presser, the clogging can be eliminated by pressure backwashing of 50 MPa to 100 MPa, and total disassembly is unnecessary. Further, the conventional blockage elimination work time is about 35 minutes, but in the present invention, it is about two and a half minutes, and the blockage elimination work time can be shortened to about one-fourth. Further, the number of events in which the blockage cannot be eliminated is reduced, and the number of nozzle members discarded can be reduced accordingly.

本発明の第1の実施形態に係る微粒化装置の概略構造図である。It is a schematic structure figure of the atomization device concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る微粒化装置の概略構造図である。It is a schematic structure figure of the atomization device concerning a 2nd embodiment of the present invention. 上記実施形態に係るノズル部材押さえを示す斜視図である。It is a perspective view which shows the nozzle member holding | suppressing which concerns on the said embodiment. 本発明の第3の実施形態に係る微粒化装置の概略構造図である。It is a schematic structure figure of the atomization device concerning a 3rd embodiment of the present invention. 上記実施形態に係るノズル部材押さえを示す斜視図である。It is a perspective view which shows the nozzle member holding | suppressing which concerns on the said embodiment. 本発明の第4の実施形態に係る微粒化装置の概略構造図である。It is a schematic structure figure of the atomization device concerning a 4th embodiment of the present invention. 本実施形態に係る第3の封止部材の斜視図である。It is a perspective view of the 3rd sealing member concerning this embodiment. 本発明の第5の実施形態に係る微粒化装置の概略構造図である。It is a schematic structure figure of the atomization device concerning a 5th embodiment of the present invention. 上記実施形態に係るノズル部材の一部を示す斜視図である。It is a perspective view which shows a part of nozzle member which concerns on the said embodiment. 従来の微粒化装置を例示する構造図である。It is a structural diagram which illustrates the conventional atomization apparatus.

本発明を実施するための形態を以下に説明する。   The form for implementing this invention is demonstrated below.

(第1の実施形態)
図1は本発明の第1の実施形態に係る微粒化装置100を示す構造図である。本発明の微粒化装置100は、所定の厚みを備えた略カップ形状のハウジング1に第1の封止部材2を嵌合して内部に形成されるチャンバ3内に、第1の封止部材2側から挿設された押さえ部材4によってチャンバ3中央に支持された第2の封止部材5と、ハウジング1の略カップ形状の底面6に着脱可能に付設された第3の封止部材7の内壁に当接したノズル部材押さえ8との間で、ノズル部材9が保持されるものである。なお、図1においてハウジング1は上下逆さまの略カップ形状として図示されるため、底面6は図1の上部に図示される。
(First embodiment)
FIG. 1 is a structural view showing an atomization apparatus 100 according to the first embodiment of the present invention. The atomization apparatus 100 of the present invention includes a first sealing member in a chamber 3 formed inside by fitting a first sealing member 2 into a substantially cup-shaped housing 1 having a predetermined thickness. A second sealing member 5 supported at the center of the chamber 3 by a pressing member 4 inserted from the side 2, and a third sealing member 7 detachably attached to the substantially cup-shaped bottom surface 6 of the housing 1. The nozzle member 9 is held between the nozzle member presser 8 in contact with the inner wall of the nozzle member 9. In FIG. 1, the housing 1 is illustrated as a substantially cup shape upside down, and the bottom surface 6 is illustrated in the upper part of FIG.

ハウジング1の一端には、微粒化処理対象となる加圧流体をチャンバ3内に導入しかつチャンバ3から導出するための第1の導入出流路開口10が設けられる。ハウジング1を貫通するようにして第1の導入出流路開口10とチャンバ3を連通する第1の導入出流路11が設けられ、第1の導入出流路開口10から流入した加圧流体を微粒化装置100の中央部に形成されたチャンバ3内に第1の導入出流路11を介して導入し、かつ加圧流体をチャンバ3内から第1の導入出流路開口10へ導出することができる。またハウジング1の他端には、加圧流体をチャンバ3内から導出しかつチャンバ3内へ導入するための第4の導入出流路開口12が設けられる。ハウジング1を貫通するようにして第4の導入出流路開口12とチャンバ3(ハウジング1内部)を連通する第4の導入出流路13が設けられ、第4の導入出流路13を介して加圧流体をチャンバ3内から第4の導入出流路開口12に導出し、かつ第4の導入出流路開口12からチャンバ3内へ導入する。ハウジング1内ではノズル部材9がチャンバ3内壁に当接しないように第2の封止部材5とノズル部材押さえ8によって押止されることで、近接したチャンバ3内壁とノズル部材9との間に間隙15が形成される。この間隙15は第1の導入出流路11とノズル部材9内部の微細加速流路14を連通する第2の導入出流路15となる。またハウジング1内には、押さえ部材4と第2の封止部材5とがハウジング1内に挿嵌されることにより間隙16が形成される。この間隙16はノズル部材9の貫通孔17と第4の導入出流路13とを連通する第3の導入出流路16となる。なおハウジング1を構成する素材は特に限定されず、例えば既存の微粒化装置のハウジングとして使用される素材であっても良い。   One end of the housing 1 is provided with a first introduction / exit flow path opening 10 for introducing a pressurized fluid to be atomized into the chamber 3 and leading it out of the chamber 3. A pressurized fluid that flows through the first inlet / outlet channel opening 10 is provided so as to penetrate the housing 1 and communicate with the first inlet / outlet channel opening 10 and the chamber 3. Is introduced into the chamber 3 formed in the central portion of the atomization apparatus 100 through the first introduction / extraction flow path 11 and the pressurized fluid is led out from the chamber 3 to the first introduction / extraction flow path opening 10. can do. The other end of the housing 1 is provided with a fourth inlet / outlet channel opening 12 for leading the pressurized fluid from the chamber 3 and introducing it into the chamber 3. A fourth inlet / outlet channel 13 is provided to communicate with the fourth inlet / outlet channel opening 12 and the chamber 3 (inside the housing 1) so as to penetrate the housing 1, and is provided via the fourth inlet / outlet channel 13. Then, the pressurized fluid is led out from the chamber 3 to the fourth inlet / outlet channel opening 12 and introduced from the fourth inlet / outlet channel opening 12 into the chamber 3. In the housing 1, the nozzle member 9 is held between the inner wall of the adjacent chamber 3 and the nozzle member 9 by being held by the second sealing member 5 and the nozzle member presser 8 so as not to contact the inner wall of the chamber 3. A gap 15 is formed. The gap 15 serves as a second introduction / extraction channel 15 that communicates the first introduction / extraction channel 11 and the fine acceleration channel 14 inside the nozzle member 9. In addition, a gap 16 is formed in the housing 1 by inserting the pressing member 4 and the second sealing member 5 into the housing 1. The gap 16 becomes a third introduction / extraction flow path 16 that communicates the through hole 17 of the nozzle member 9 and the fourth introduction / extraction flow path 13. In addition, the raw material which comprises the housing 1 is not specifically limited, For example, the raw material used as a housing of the existing atomization apparatus may be sufficient.

第1の封止部材2はハウジング1の第1の開口18の内壁に沿ったテーパ形状をなし、開口18に内接して封止する。第1の封止部材2の素材は特に限定されないが、ハウジング1と同じであることが好ましい。チャンバ3はその内部空間にノズル部材9を備えるスリットチャンバであり、ノズル部材9が複数の加速流路を備え、超高圧で加圧した原料がダイヤモンドとダイヤモンドの隙間(スリット)を通過する際の圧縮、せん断、乱流等により微粒化を行う。チャンバ3は、ボトル形状の空洞であって、ハウジング底面6側の小径な円筒状の空間と、第1の封止部材2側の大径な円筒状の空間と、大径な円筒状の空間が小径な円筒状の空間に漸次縮径して続く縮径部とからなる。大径な円筒状の空間は押さえ部材4を収納し、小径な円筒状の空間はノズル部材9を収納し、縮径部の空間にはノズル部材9の一部と第2の封止部材5が収納される。押さえ部材4によって第2の封止部材5の一部が縮径部内壁に圧接されて押止される。   The first sealing member 2 has a tapered shape along the inner wall of the first opening 18 of the housing 1, and seals in contact with the opening 18. The material of the first sealing member 2 is not particularly limited, but is preferably the same as that of the housing 1. The chamber 3 is a slit chamber having a nozzle member 9 in its internal space. The nozzle member 9 has a plurality of acceleration channels, and the raw material pressurized with ultrahigh pressure passes through a gap (slit) between diamonds. Atomization is performed by compression, shear, turbulent flow, etc. The chamber 3 is a bottle-shaped cavity, and includes a small-diameter cylindrical space on the housing bottom surface 6 side, a large-diameter cylindrical space on the first sealing member 2 side, and a large-diameter cylindrical space. Consists of a reduced diameter portion that gradually decreases in diameter into a small cylindrical space. The large-diameter cylindrical space accommodates the pressing member 4, the small-diameter cylindrical space accommodates the nozzle member 9, and a part of the nozzle member 9 and the second sealing member 5 are included in the space of the reduced diameter portion. Is stored. A part of the second sealing member 5 is pressed against and pressed against the inner wall of the reduced diameter portion by the pressing member 4.

押さえ部材4は凹状、又はカップ形状の部材であって、その両端部19で第2の封止部材5を支持する。両端部19は貫通孔17の開口20を塞ぐことなく第2の封止部材5を支持し、押さえ部材4の内部には加圧流体が噴射衝突する半円状壁面21を備えた噴流受け部材22が嵌着される。両端部19の一端には通過孔23が形成されており、通過孔23を介して第3の導入出流路16と第4の導入出流路13が連通し、加圧流体が流入または流出可能とされる。押さえ部材4は第1の開口18からチャンバ内3へ嵌挿され、ハウジング内壁面1aに当接して第2の封止部材5を不動状態に固定支持する。   The pressing member 4 is a concave or cup-shaped member, and supports the second sealing member 5 at both ends 19 thereof. Both end portions 19 support the second sealing member 5 without blocking the opening 20 of the through-hole 17, and a jet receiving member provided with a semicircular wall surface 21 into which the pressurized fluid is injected and collided inside the pressing member 4. 22 is fitted. A passage hole 23 is formed at one end of both end portions 19, and the third introduction / extraction flow path 16 and the fourth introduction / extraction flow path 13 communicate with each other via the passage hole 23, and pressurized fluid flows in or out. It is possible. The pressing member 4 is inserted into the chamber 3 through the first opening 18 and contacts the inner wall surface 1a of the housing to fix and support the second sealing member 5 in an immobile state.

第2の封止部材5は中心にテーパ形状凹部24を備え、ノズル部材9のテーパ形状凸部9bと嵌合する。第2の封止部材5とノズル部材9のテーパ形状部24,9b同士を嵌合させ、第2の封止部材5を押さえ部材4により不動状態とするため、加圧流体の順流時にはノズル部材9はチャンバ3内で不動状態となる。なおノズル部材9と第2の封止部材5とは一体かしめ状態とする。   The second sealing member 5 includes a tapered concave portion 24 at the center, and fits with the tapered convex portion 9 b of the nozzle member 9. Since the tapered portions 24 and 9b of the second sealing member 5 and the nozzle member 9 are fitted to each other and the second sealing member 5 is brought into an immobile state by the pressing member 4, the nozzle member is in a forward flow of pressurized fluid. 9 becomes immobile in the chamber 3. The nozzle member 9 and the second sealing member 5 are caulked together.

底面6(図1ではハウジング1上部)には円形の第2の開口25が形成されている。第2の開口25の内径は必ずしも限定はされないが、円筒形状をしたノズル部材9の外径以下とすると、ノズル部材押さえ8が第1の導入出流路11と第2の導入出流路15を遮ることなく加圧流体の流出や流入を行うことができる。第3の封止部材7は内側部の一部がハウジング1に埋入し、ネジやボルトなど所定の固定手段によってハウジング1に固定されることで、加圧流体が微粒化装置100外に漏出しないように第2の開口25を隙間なく封止する。また第3の封止部材7はノズル部材押さえ8に隙間なく当接して支持し、第3の封止部材7とノズル部材押さえ8との間に加圧流体が進入することを防ぐ。第3の封止部材7は、ノズル部材押さえ8の大きさを調節したり、固定手段によるハウジング1への封止圧力を調節したりすることで、ノズル部材9に対するノズル部材押さえ8の押圧力を調節することが可能である。なお第3の封止部材7とノズル部材押さえ8とは蓋体として一体化し、逆洗時に蓋体を使用して、ノズル部材9に対する蓋体の押圧力を調節しても良い。   A circular second opening 25 is formed on the bottom surface 6 (the upper portion of the housing 1 in FIG. 1). The inner diameter of the second opening 25 is not necessarily limited, but if it is equal to or smaller than the outer diameter of the cylindrical nozzle member 9, the nozzle member presser 8 has the first inlet / outlet passage 11 and the second inlet / outlet passage 15. The pressurized fluid can flow out and in without blocking. A part of the inner part of the third sealing member 7 is embedded in the housing 1 and is fixed to the housing 1 by a predetermined fixing means such as a screw or a bolt, so that the pressurized fluid leaks out of the atomization apparatus 100. The second opening 25 is sealed without a gap so as not to occur. Further, the third sealing member 7 is in contact with and supported by the nozzle member presser 8 without any gap, and prevents the pressurized fluid from entering between the third sealing member 7 and the nozzle member presser 8. The third sealing member 7 adjusts the size of the nozzle member presser 8 or adjusts the sealing pressure applied to the housing 1 by the fixing means, thereby pressing the nozzle member presser 8 against the nozzle member 9. Can be adjusted. Note that the third sealing member 7 and the nozzle member presser 8 may be integrated as a lid, and the pressure of the lid against the nozzle member 9 may be adjusted by using the lid during backwashing.

ノズル部材押さえ8は、樹脂製の部材であり第3の封止部材7の内側と第2の開口25の開口縁部全体に支持される。加圧流体の逆洗(夾雑物によって生じたノズル部材9内の閉塞を解消するために、通常の高圧噴射時の加圧流体の流れとは逆向きに加圧流体を流して、夾雑物を除去しノズル内を洗浄すること)の際に、ノズル部材押さえ8は、ノズル部材9の円筒形状部9aを上部、すなわち第3の封止部材7側から押圧することでノズル部材9と第2の封止部材5の抜脱を防止する。樹脂は耐摩耗エンジニアリングプラスチック(PEEK)等の摩耗しにくい素材であることが好ましい。なおノズル部材押さえ8は、ハウジング1に一部埋入した第3の封止部材7の内側部と第2の開口25の開口縁部全体とに密着して間隙が生じないよう封止しており、加圧流体の漏出を防ぐ。なお第2の開口25はノズル部材9の中心軸方向でかつ円筒形状部9a側のハウジング1に形成されることで、ノズル部材押さえ8による円筒形状部9aの押圧も容易となり、ノズル部材押さえ8の交換も容易となる。   The nozzle member presser 8 is a resin member and is supported on the inner side of the third sealing member 7 and the entire opening edge of the second opening 25. Backwashing of pressurized fluid (in order to eliminate clogging in the nozzle member 9 caused by contaminants, the pressurized fluid is flowed in the direction opposite to the flow of pressurized fluid during normal high-pressure injection, The nozzle member presser 8 presses the cylindrical portion 9a of the nozzle member 9 from the upper part, that is, the third sealing member 7 side. The removal of the sealing member 5 is prevented. The resin is preferably a material that is not easily worn, such as wear-resistant engineering plastic (PEEK). The nozzle member presser 8 is sealed so as not to be in close contact with the inner side of the third sealing member 7 partially embedded in the housing 1 and the entire opening edge of the second opening 25. And prevent leakage of pressurized fluid. The second opening 25 is formed in the housing 1 on the cylindrical portion 9a side in the central axis direction of the nozzle member 9, so that the cylindrical member 9a can be easily pressed by the nozzle member retainer 8, and the nozzle member retainer 8 Can be easily replaced.

ノズル部材9は円筒形の一端にテーパ形状の凸部を有した形状であって、ノズル部材9の外径はチャンバ3の内径よりも小さく、ノズル部材9はチャンバ3内中央においてハウジング1の壁面と当接することなく壁面との間に間隙が形成されるよう配置される。ノズル部材9は、ノズル部材9の中心軸方向に対して直行する方向に貫通してなる微細加速流路14と、微細加速流路14の中心位置26を起点としてノズル部材9の中心軸方向に沿って形成された貫通孔17とを備え、原料粒子を含む流体を衝突させて微粒化させるために使用される。微細加速流路14の中心位置26は加圧流体が衝突する衝突位置26であり、貫通孔17は微細加速流路14に対して垂直に直交し、微細加速流路14内の衝突位置26近傍の開口から開口20までを結ぶ直線状の流路であって、微細加速流路14と第3の導入出流路16を連通する。   The nozzle member 9 has a cylindrical shape having a tapered convex portion at one end. The outer diameter of the nozzle member 9 is smaller than the inner diameter of the chamber 3, and the nozzle member 9 has a wall surface of the housing 1 at the center in the chamber 3. It arrange | positions so that a clearance gap may be formed between wall surfaces, without contacting. The nozzle member 9 has a fine acceleration channel 14 penetrating in a direction perpendicular to the central axis direction of the nozzle member 9 and a central position 26 of the fine acceleration channel 14 in the central axis direction of the nozzle member 9. And a through hole 17 formed along the same, and is used to collide and atomize a fluid containing raw material particles. The center position 26 of the fine acceleration flow path 14 is a collision position 26 where the pressurized fluid collides, and the through hole 17 is perpendicular to the fine acceleration flow path 14 and is in the vicinity of the collision position 26 in the fine acceleration flow path 14. The fine acceleration channel 14 and the third inlet / outlet channel 16 are communicated with each other.

なおノズル部材9は、2つのノズル部材9を圧接させ、当接箇所の微小な隙間により微細加速流路14を形成させた部材であっても良いが、ノズル部材9は単独の部材から構成され微細加速流路14と貫通孔17を備える方が好ましい。すなわち、ノズル部材9が2つの部材からなる場合、逆洗時における加圧流体の逆流による圧力負荷に対して脆弱な構成となり、2つの部材へと分離・分解される可能性があるが、1つのノズル部材9が微細加速流路14と貫通孔17を備える場合、逆洗時に生じる逆向きの圧力負荷に対しても分離・分解されることはなく逆洗に対して耐久性のある構成となる。
ノズル部材9の微細加速流路14の壁面は高圧流体による剪断力が生じる領域のため摩耗しやすく、さらに中心位置26の壁面は高圧流体同士の衝突領域であり、かつノズル部材9を逆洗する際には開口20から逆流してきた加圧流体が衝突する領域でもあるため、最も摩耗しやすい。そのため中心位置26壁面はダイヤモンドにより形成されることが好ましく、さらに衝突位置26近傍に位置した、微細加速流路14と微細加速流路14内の開口部と貫通孔17の壁面はダイヤモンドにより形成れることがより好ましい。また衝突位置26近傍だけでなく、微細加速流路14と貫通孔17の内壁面全体がダイヤモンドにより形成されていても良い。これらによりノズル部材9の寿命を長持ちさせることができる。
The nozzle member 9 may be a member in which the two nozzle members 9 are press-contacted and the fine acceleration flow path 14 is formed by a minute gap at the contact portion, but the nozzle member 9 is constituted by a single member. It is preferable to provide the fine acceleration channel 14 and the through hole 17. That is, when the nozzle member 9 is composed of two members, the nozzle member 9 has a configuration that is vulnerable to the pressure load caused by the backflow of the pressurized fluid during backwashing, and may be separated and disassembled into two members. When one nozzle member 9 is provided with the fine acceleration flow path 14 and the through-hole 17, the structure is durable against backwashing without being separated and disassembled against a reverse pressure load generated during backwashing. Become.
The wall surface of the fine acceleration channel 14 of the nozzle member 9 is easily worn because it is a region where shear force is generated by the high pressure fluid, and the wall surface at the central position 26 is a collision region between the high pressure fluids, and the nozzle member 9 is backwashed. At this time, since it is also a region where the pressurized fluid flowing backward from the opening 20 collides, it is most easily worn. Therefore, the wall surface of the central position 26 is preferably formed of diamond, and the fine acceleration channel 14, the opening in the fine acceleration channel 14, and the wall surface of the through hole 17, which are located near the collision position 26, are formed of diamond. It is more preferable. Further, not only the vicinity of the collision position 26 but also the entire inner wall surface of the fine acceleration channel 14 and the through hole 17 may be formed of diamond. As a result, the life of the nozzle member 9 can be extended.

第1の導入出流路開口10は、微粒化装置100の外部から加圧流体を導入するための外部の導入配管及び外部に加圧流体を導出するための外部の導出配管のいずれの配管とも接続可能とし、同様に第4の導入出流路開口12も導入配管及び導出配管と接続可能とする。配管接続の切り替えが可能となることで、通常の高圧噴射から逆洗への切り替えが容易となる。第1の導入出流路開口10の内径は第1の導入出流路11の内径より大きい内径とし、第2の導入出流路15は微細加速流路14の内径より大きい内径とする。なお第1の導入出流路11の内径は第2の導入出流路15の内径以上としても良い。これらにより逆洗の際に微細加速流路14内で閉塞した加圧流体がノズル部材9外部に流し出されやすくなり閉塞が解消しやすくなる。微細加速流路14の内径は貫通孔17の内径より小さい内径とする。また、貫通孔17の内径は第3の導入出流路16の内径より小さい内径とし、第3の導入出流路16の内径は第4の導入出流路開口12の内径より小さい内径とする。なお第3の導入出流路16の内径は通過孔23の内径以下とし、通過孔23の内径は第4の導入出流路13の内径以下としても良い。これらにより逆洗の際に微粒化装置100外部から微細加速流路14内に加圧流体を流入しやすくなり閉塞が解消しやすくなる。また第1の導入出流路開口10、第1の導入出流路11、微細加速流路14、貫通孔17、通過孔23、第4の導入出流路13、そして第4の導入出流路開口12の横断面は略円形状の方が好ましく、このことにより逆洗の際に加圧流体の滑りがよくなり閉塞が解消されやすくなる。   The first introduction / exit flow path opening 10 is both an external introduction pipe for introducing pressurized fluid from the outside of the atomization apparatus 100 and an external outlet pipe for introducing pressurized fluid to the outside. Similarly, the fourth inlet / outlet passage opening 12 can be connected to the inlet pipe and outlet pipe. By switching the pipe connection, it is easy to switch from normal high-pressure injection to backwashing. The inner diameter of the first inlet / outlet channel opening 10 is set to be larger than the inner diameter of the first inlet / outlet channel 11, and the second inlet / outlet channel 15 is set to be larger than the inner diameter of the fine acceleration channel 14. The inner diameter of the first inlet / outlet channel 11 may be equal to or larger than the inner diameter of the second inlet / outlet channel 15. As a result, the pressurized fluid blocked in the fine accelerating flow path 14 during backwashing is likely to flow out of the nozzle member 9 and the blockage is easily eliminated. The inner diameter of the fine acceleration channel 14 is set to be smaller than the inner diameter of the through hole 17. Further, the inner diameter of the through hole 17 is smaller than the inner diameter of the third introduction / extraction flow path 16, and the inner diameter of the third introduction / extraction flow path 16 is smaller than the inner diameter of the fourth introduction / extraction flow path opening 12. . The inner diameter of the third inlet / outlet channel 16 may be equal to or smaller than the inner diameter of the passage hole 23, and the inner diameter of the passage hole 23 may be equal to or smaller than the inner diameter of the fourth inlet / outlet channel 13. As a result, during backwashing, the pressurized fluid can easily flow into the fine accelerating flow path 14 from the outside of the atomization apparatus 100 and the blockage can be easily eliminated. The first introduction / exit flow path opening 10, the first introduction / exhaust flow path 11, the fine acceleration flow path 14, the through hole 17, the passage hole 23, the fourth introduction / exhaust flow path 13, and the fourth introduction / extraction flow The cross-section of the passage opening 12 is preferably substantially circular, and this makes it easier for the pressurized fluid to slip during backwashing and to eliminate the blockage.

次に本実施形態に係る微粒化装置100の作用を説明する。本実施形態に係る微粒化装置100は、通常の高圧噴射時には、導入配管と第1の導入出流路開口10を接続し、導出配管と第4の導入出流路開口12を接続する。そして溶媒と原料粒子の混合液を所定の加圧手段によって100MPaから150MPa程度に加圧した加圧流体を、第1の導入出流路開口10から導入する。その後、加圧流体はノズル部材9の外周に位置した第2の導入出流路15からノズル部材9の円柱部側面に形成された開口を介して微細加速流路14内に供給される。微細加速流路14内に進入した加圧流体はノズル部材9の中心方向へ向けて逆放射状に集まる過程で剪断力が加えられ、微細加速流路14内の中心に位置する衝突位置26で互いに対向衝突して原料粒子が微粒化される。すなわち微細加速流路14を通過する際の剪断力と、通過した混合液同士の衝突エネルギとによって原料粒子は微粒化される。その後、加圧流体は衝突位置26の近傍に形成された開口を介して貫通孔17に進入し、貫通孔17の他端に形成された貫通孔の開口20から導出される。なお通常の高圧噴射時に、第1の導入出流路11を通過した加圧流体がノズル部材押さえ8に衝突することにより微小な不純物が加圧流体に混ざる可能性があるが、ノズル部材押さえ8を取り外しておくことで解消できる。   Next, the operation of the atomization apparatus 100 according to this embodiment will be described. The atomization apparatus 100 according to the present embodiment connects the inlet pipe and the first inlet / outlet passage opening 10 and connects the outlet pipe and the fourth inlet / outlet passage opening 12 during normal high-pressure injection. Then, a pressurized fluid obtained by pressurizing the mixed liquid of the solvent and the raw material particles from about 100 MPa to about 150 MPa by a predetermined pressurizing means is introduced from the first introduction / outflow passage opening 10. Thereafter, the pressurized fluid is supplied from the second introduction / extraction channel 15 located on the outer periphery of the nozzle member 9 into the fine acceleration channel 14 through an opening formed on the side surface of the cylindrical portion of the nozzle member 9. The pressurized fluid that has entered the fine accelerating flow path 14 is subjected to a shearing force in the process of gathering in a reverse radial direction toward the center of the nozzle member 9, so Raw material particles are atomized by opposing collision. That is, the raw material particles are atomized by the shearing force when passing through the fine acceleration flow path 14 and the collision energy between the mixed liquids that have passed. Thereafter, the pressurized fluid enters the through hole 17 through an opening formed in the vicinity of the collision position 26 and is led out from the through hole opening 20 formed at the other end of the through hole 17. During normal high-pressure injection, the pressurized fluid that has passed through the first inlet / outlet flow path 11 may collide with the nozzle member retainer 8 to mix minute impurities with the pressurized fluid. It can be solved by removing the.

また逆洗が必要な際、すなわち粗大もしくは凝集状態の原料粒子が夾雑物となって微細加速流路14内に閉塞が生じた際には、導入配管と第4の導入出流路開口12を接続し、導出配管と第1の導入出流路開口10を接続する。また加圧洗浄時には第3の封止部材7を取り外してノズル部材押さえ8を微粒化装置100内に組付け、さらに第3の封止部材7によって封止することでノズル部材9を不動状態に押圧固定する。このようにして通常の高圧噴射とは逆向きの50MPa〜100MPaの加圧逆洗に耐えられる機構として、第2の封止部材5と嵌合するノズル部材9の離脱を防止する。そして第4の導入出流路13から50MPaから100MPaに加圧された溶媒もしくは混合液を、微細加速流路14に逆向きの流れで導入して加圧逆洗することで閉塞を解消させる。なお逆洗の際に使用される加圧流体は溶媒のみであっても良いし、通常の高圧噴射時に使用される溶媒と原料粒子の混合液であっても良いが、混合液の場合であれば通常の高圧噴射時と同じ加圧流体のため作業が容易である。なお、逆洗時の加圧流体の温度は特に限定はされないが、粘性の高い原料の場合、40℃から60℃とすることが好ましい。また加圧流体が水の場合には、沸点超過を防ぐため70℃以下とすることが好ましい。   When backwashing is necessary, that is, when coarse or aggregated raw material particles become contaminants and blockage occurs in the fine accelerating channel 14, the introduction pipe and the fourth introduction / exit channel opening 12 are opened. Connect the outlet pipe and the first inlet / outlet passage opening 10. In addition, the third sealing member 7 is removed at the time of pressure washing, the nozzle member presser 8 is assembled in the atomization apparatus 100, and further the third sealing member 7 is sealed to make the nozzle member 9 stationary. Press and fix. In this manner, the nozzle member 9 fitted to the second sealing member 5 is prevented from being detached as a mechanism that can withstand pressure backwashing of 50 MPa to 100 MPa opposite to normal high-pressure injection. Then, the solvent or mixed liquid pressurized from 50 MPa to 100 MPa from the fourth inlet / outlet flow path 13 is introduced into the fine acceleration flow path 14 in the reverse flow and is backwashed under pressure to eliminate the blockage. Note that the pressurized fluid used for backwashing may be a solvent alone or a mixture of solvent and raw material particles used during normal high-pressure injection, but in the case of a mixture. For example, work is easy because of the same pressurized fluid used during normal high-pressure injection. In addition, the temperature of the pressurized fluid at the time of backwashing is not particularly limited, but in the case of a highly viscous raw material, it is preferably 40 ° C to 60 ° C. When the pressurized fluid is water, the temperature is preferably 70 ° C. or lower in order to prevent the boiling point from being exceeded.

本実施例では、第1の導入出流路開口10や第4の導入出流路開口12は、押さえ部材4、第2の封止部材5、ノズル部材押さえ8、そしてノズル部材9といった部材を、ハウジング1内部に収納して封止するための封止機能を備えることはなく、封止機能は別に設けられた第1の封止部材2や第3の封止部材7が担う。すなわち外部の導入配管や導出配管に接続するための配管接続機能と、ノズル部材9等をハウジング1内部に収納して封止するための封止機能は別々の部材が担う。そのためハウジング1において第1の導入出流路開口10や第4の導入出流路開口12は、第1の封止部材2や第3の封止部材7とは異なる面若しくは位置に設けられ、第1の封止部材2や第3の封止部材7には第1の導入出流路11や第4の導入出流路13は形成されない構成となる。例えば本実施例のように円柱形状のハウジング1の場合、第1の封止部材2や第3の封止部材7は円柱の上面又は底面に設けられ、第1の導入出流路開口10、第1の導入出流路11、第4の導入出流路開口12、第4の導入出流路13は円柱の側面に形成される。また通常の加圧噴射時にノズル部材9を適切に押さえる目的で押さえ部材4を、また封止する目的で第1の封止部材2を、貫通孔17における加圧流体の順流方向に設ける。また逆洗時にノズル部材9を適切に押さえる目的で、ノズル部材押さえ8と第3の封止部材7は、貫通孔17における加圧流体の逆流方向に設けられる。そのため、ハウジング1を貫通する第1の導入出流路11や第4の導入出流路13における加圧流体の流入出方向(第1の導入出流路11や第4の導入出流路13の伸長方向)は、貫通孔17における加圧流体の流入出方向(貫通孔17の伸長方向)とは異なる方向となる。例えば本実施例の場合、第1の導入出流路11や第4の導入出流路13の伸長方向は、貫通孔17の伸長方向と同一平面状で直交する。   In the present embodiment, the first introduction / outflow passage opening 10 and the fourth introduction / outflow passage opening 12 are formed of members such as the pressing member 4, the second sealing member 5, the nozzle member pressing 8, and the nozzle member 9. The first sealing member 2 or the third sealing member 7 provided separately does not have a sealing function for being housed and sealed in the housing 1 and the sealing function is provided separately. That is, separate members are responsible for a pipe connection function for connecting to an external introduction pipe and a lead-out pipe and a sealing function for housing and sealing the nozzle member 9 and the like in the housing 1. Therefore, in the housing 1, the first inlet / outlet channel opening 10 and the fourth inlet / outlet channel opening 12 are provided on a different surface or position from the first sealing member 2 and the third sealing member 7, The first inlet / outlet passage 11 and the fourth inlet / outlet passage 13 are not formed in the first sealing member 2 and the third sealing member 7. For example, in the case of the cylindrical housing 1 as in the present embodiment, the first sealing member 2 and the third sealing member 7 are provided on the upper surface or the bottom surface of the cylinder, and the first introduction / exit flow path opening 10, The first inlet / outlet channel 11, the fourth inlet / outlet channel opening 12, and the fourth inlet / outlet channel 13 are formed on the side surface of the cylinder. Further, the pressing member 4 is provided in the forward flow direction of the pressurized fluid in the through hole 17 for the purpose of appropriately pressing the nozzle member 9 during normal pressure injection, and the first sealing member 2 for the purpose of sealing. For the purpose of appropriately pressing the nozzle member 9 during backwashing, the nozzle member presser 8 and the third sealing member 7 are provided in the reverse flow direction of the pressurized fluid in the through hole 17. Therefore, the inflow / outflow direction of the pressurized fluid in the first introduction / extraction flow path 11 and the fourth introduction / extraction flow path 13 penetrating the housing 1 (the first introduction / extraction flow path 11 and the fourth introduction / extraction flow path 13). Is a direction different from the inflow / outflow direction of the pressurized fluid in the through hole 17 (extension direction of the through hole 17). For example, in the case of the present embodiment, the extending direction of the first introducing / extracting channel 11 and the fourth introducing / extracting channel 13 is coplanar and orthogonal to the extending direction of the through hole 17.

本実施例においては別々の部材が配管接続機能と封止機能を担うが、1つの部材が配管接続機能と封止機能を備える場合、外部配管と接続するためのトルク管理と、封止するためのトルク管理の2つのトルク管理を1つの部材で行う必要がある。加えて、外部配管と接続する開口部のシーリングと、封止部材としてハウジング1を封止するためのシーリングを1つの部材において行う必要があり、2つのシーリング管理を確実に行う必要がある。本実施例では通常の加圧噴射から逆洗に切り替える際、第1の導入出流路開口10や第4の導入出流路開口12を外部配管から一度外し、外部配管との接続を切り替える必要があり、またノズル部材押さえ8の脱着を行うために第3の封止部材7の脱着を行う必要がある。そのため1つの部材が配管接続機能と封止機能を備える場合、逆洗を行う度に1つの部材において2つのトルク管理と2つのシーリング管理を都度行う必要があり作業者に負担をかける。本実施例では外部配管への接続機能と、ハウジング1内部に収納して封止するための封止機能とは異なる部材が担うため、1つの部材において1つのトルク管理と1つのシーリング管理を行うだけで済み、作業管理が容易となり作業負担が軽減する。   In this embodiment, separate members have a pipe connection function and a sealing function. However, when one member has a pipe connection function and a sealing function, torque management for connecting to an external pipe and sealing are performed. It is necessary to perform two torque managements of the torque management with one member. In addition, it is necessary to perform sealing of the opening connected to the external pipe and sealing for sealing the housing 1 as a sealing member in one member, and it is necessary to perform two sealing managements with certainty. In this embodiment, when switching from normal pressure injection to backwashing, it is necessary to first disconnect the first introduction / exit passage opening 10 and the fourth introduction / exit passage opening 12 from the external pipe and switch the connection with the external pipe. There is also a need to detach the third sealing member 7 in order to detach the nozzle member presser 8. Therefore, when one member has a pipe connection function and a sealing function, it is necessary to perform two torque managements and two sealing managements for one member each time backwashing is performed, which places a burden on the operator. In this embodiment, since a member different from the function of connecting to the external pipe and the sealing function for housing and sealing inside the housing 1 bears, one member performs one torque management and one sealing management. It is only necessary, and work management becomes easy and the work load is reduced.

(第2の実施形態)
図2は本発明の第2の実施形態に係る微粒化装置100を示す構造図である。本実施形態の微粒化装置100はノズル部材押さえ8にリング27を周設し、ノズル部材押さえ8は通常の高圧噴射時にも装着される。なお第1の実施形態と同様の構成については、重複するため説明を省略する。
(Second Embodiment)
FIG. 2 is a structural diagram showing an atomization apparatus 100 according to the second embodiment of the present invention. In the atomization apparatus 100 of the present embodiment, a ring 27 is provided around the nozzle member presser 8, and the nozzle member presser 8 is mounted even during normal high-pressure injection. In addition, about the structure similar to 1st Embodiment, since it overlaps, description is abbreviate | omitted.

本実施例の微粒化装置100内において、リング27を備えたノズル部材押さえ8は、少なくともノズル部材押さえ8の上面が第3の封止部材7に当接するか、またはノズル部材押さえ8の底面がノズル部材9に当接しており、ノズル部材押さえ8の上面又は底面が当接していない場合、リング27が第3の封止部材7又はノズル部材9に当接する。なおリング27を備えたノズル押さえ8の形状及び位置は、ノズル部材9に当接してノズル部材9が逆洗時に加圧流体が衝突位置26に与える衝撃を吸収する形状及び位置であれば特に限定はされない。微粒化装置100内において、リング27は通常の高圧噴射時における第1の導入出流路11内の加圧流体の流動方向28、すなわち第1の導入出流路11を通過した加圧流体がノズル部材押さえ8に衝突する位置29に、ノズル部材押さえ8の少なくとも一部を覆う形状として配置される。   In the atomization apparatus 100 of the present embodiment, the nozzle member presser 8 provided with the ring 27 has at least the upper surface of the nozzle member presser 8 in contact with the third sealing member 7 or the bottom surface of the nozzle member presser 8 is When the nozzle member 9 is in contact with the upper surface or the bottom surface of the nozzle member presser 8, the ring 27 contacts the third sealing member 7 or the nozzle member 9. The shape and position of the nozzle presser 8 provided with the ring 27 are particularly limited as long as the shape and position are in contact with the nozzle member 9 and the nozzle member 9 absorbs the impact of the pressurized fluid on the collision position 26 when backwashing. Not done. In the atomization apparatus 100, the ring 27 has a flow direction 28 of the pressurized fluid in the first inlet / outlet channel 11 during normal high-pressure injection, that is, the pressurized fluid that has passed through the first inlet / outlet channel 11. The nozzle member presser 8 is disposed at a position 29 that collides with the nozzle member presser 8 so as to cover at least a part of the nozzle member presser 8.

図3は本実施形態に係るリング27を備えたノズル部材押さえ8を示す斜視図であり、破線によって内部構造を示した内部透視図である。例えば、ノズル部材押さえ8は円柱や角柱であり、リング27はノズル部材押さえ8の周囲を取り囲むように覆う形状の中空円筒や(図3(a),(c))、内部が中空の角柱や(不図示)、略カップ形状である(図3(b))。ノズル部材押さえ8とリング27との固着には、化学材料等の接着手段を用いられる他、ノズル部材押さえ8の側面が窪みを有しリング27を嵌め込む形式とする等(図3(b),(c))、ノズル部材押さえ8とリング27の構造により不動状態としても良い。リング27の素材は加圧流体の高圧噴射に耐えられる耐腐食性、耐圧性、耐摩耗性の素材であれば特に限定されず、例えばステンレスやアルミニウムや合金などの金属製の素材が好ましく、超耐摩耗性の弾性素材であっても良い。   FIG. 3 is a perspective view showing the nozzle member presser 8 provided with the ring 27 according to the present embodiment, and is an internal perspective view showing the internal structure by broken lines. For example, the nozzle member holder 8 is a cylinder or a prism, and the ring 27 is a hollow cylinder having a shape that covers the periphery of the nozzle member holder 8 (FIGS. 3A and 3C), (Not shown), and has a substantially cup shape (FIG. 3B). For adhering the nozzle member presser 8 and the ring 27, an adhesive means such as a chemical material is used, and the side surface of the nozzle member presser 8 has a recess and is fitted with the ring 27 (FIG. 3B). , (C)), the nozzle member presser 8 and the structure of the ring 27 may be in a stationary state. The material of the ring 27 is not particularly limited as long as it is a material having corrosion resistance, pressure resistance, and wear resistance that can withstand high pressure injection of a pressurized fluid. For example, a metal material such as stainless steel, aluminum, or an alloy is preferable. It may be a wear-resistant elastic material.

リング27は本発明の通常の高圧噴射時に、第1の導入出流路11を通過した加圧流体がノズル部材押さえ8に衝突する際の衝撃力を吸収し、ノズル部材押さえ8が摩耗することによって生じる、加圧流体中への微小な夾雑物の混入を抑制するために使用される。従って、本実施例のリング27は必ずしもリング形状に限定はされず例えば板状のものであっても良く、加圧流体がノズル部材押さえ8へ直接衝突することを防ぐ形状として微粒化装置100内に配置されれば良い。また本実施例のリング27を備えたノズル部材押さえ8は、逆洗の際に使用される他、通常の高圧噴射時にも装着されたままで良く、微粒化装置100内に取り外すことなく常に装着されていても良い。なおノズル部材押さえ8は、第3の封止部材7によって脱着可能ではあるが、通常の高圧噴射時にもリング27によってノズル部材押さえ8の摩耗は抑制され、ノズル部材押さえ8由来の夾雑物の生成が抑制されるため取り外す必要はない。したがって第3の封止部材7やノズル部材押さえ8の取り外し及び取り付けの必要がなく作業性が向上する。   The ring 27 absorbs the impact force when the pressurized fluid that has passed through the first introduction / exit flow path 11 collides with the nozzle member retainer 8 during normal high-pressure injection of the present invention, and the nozzle member retainer 8 wears. Is used to suppress the entry of minute impurities into the pressurized fluid. Therefore, the ring 27 of the present embodiment is not necessarily limited to the ring shape, and may be, for example, a plate shape. The shape of the inside of the atomization apparatus 100 is such that the pressurized fluid is prevented from directly colliding with the nozzle member presser 8. Should just be arranged. Further, the nozzle member presser 8 provided with the ring 27 according to the present embodiment may be used in backwashing, or may remain attached even during normal high-pressure injection, and is always attached without being removed in the atomization apparatus 100. May be. Although the nozzle member presser 8 can be attached and detached by the third sealing member 7, wear of the nozzle member presser 8 is suppressed by the ring 27 even during normal high-pressure injection, and foreign matter derived from the nozzle member presser 8 is generated. Is not necessary to remove. Therefore, it is not necessary to remove and attach the third sealing member 7 and the nozzle member presser 8 and workability is improved.

(第3の実施形態)
図4は本発明の第3の実施形態に係る微粒化装置100を示す構造図である。本実施形態の微粒化装置100は、2つの第3の封止部材7を備えており、第3の封止部材7には導入出流路開口31が形成され、導入出流路開口31と連続的に繋がった導入出流路32を備える。ノズル部材押さえ8には、第1の導入出流路11の一部11bと第2の導入出流路15の一部15aが形成される。なお第1の実施形態と同様の構成については、重複するため説明を省略する。
(Third embodiment)
FIG. 4 is a structural diagram showing an atomization apparatus 100 according to the third embodiment of the present invention. The atomization apparatus 100 according to the present embodiment includes two third sealing members 7, and the third sealing member 7 is formed with an introduction / exit flow path opening 31. An introduction / outflow passage 32 continuously connected is provided. A part 11 b of the first introduction / exit flow path 11 and a part 15 a of the second introduction / extraction flow path 15 are formed in the nozzle member presser 8. In addition, about the structure similar to 1st Embodiment, since it overlaps, description is abbreviate | omitted.

2つの第3の封止部材7は、接続される外部配管によって一方が導入側封止部材33となり、他方は導出側封止部材34となる。すなわち導入配管に接続される側が導入側封止部材33となり、加圧流体を微粒化装置100外からチャンバ3内に導入する。また導出配管と接続される側が導出側封止部材34となり、加圧流体をチャンバ3内から微粒化装置100外に導出する。通常の噴射時には、ノズル部材押さえ8は取り外されても良く、導入側封止部材33は第2の開口25に接続し、導出側封止部材34は第3の開口35に接続する。また逆洗時にはノズル部材押さえ8が取り付けられ、導入側封止部材33は第3の開口35に接続し、導出側封止部材34は第2の開口25と接続し、かつノズル部材押さえ8と当接して封止する(図4)。外部配管は導入側封止部材33や導出側封止部材34から取り外されることはなく、導入側封止部材33や導出側封止部材34をハウジング1から取り外すことで通常の高圧噴射と逆洗の切り替えを行う。導入側封止部材33と導出側封止部材34は同形の部材としても良いが、どちらも第2の開口25及び第3の開口35と接続可能であって、加圧流体の流動を遮らない流路が形成されていれば特に限定はされない。   One of the two third sealing members 7 is an introduction-side sealing member 33 and the other is an outlet-side sealing member 34 depending on the external piping to be connected. That is, the side connected to the introduction pipe becomes the introduction side sealing member 33, and the pressurized fluid is introduced into the chamber 3 from the outside of the atomization apparatus 100. Further, the side connected to the outlet pipe is the outlet side sealing member 34, and the pressurized fluid is led out of the atomization apparatus 100 from the chamber 3. During normal injection, the nozzle member presser 8 may be removed, the introduction side sealing member 33 is connected to the second opening 25, and the outlet side sealing member 34 is connected to the third opening 35. Further, the nozzle member presser 8 is attached at the time of backwashing, the introduction side sealing member 33 is connected to the third opening 35, the outlet side sealing member 34 is connected to the second opening 25, and the nozzle member presser 8 Abut and seal (FIG. 4). The external piping is not removed from the introduction-side sealing member 33 or the outlet-side sealing member 34. By removing the introduction-side sealing member 33 or the outlet-side sealing member 34 from the housing 1, normal high-pressure injection and backwashing are performed. Switch. The introduction-side sealing member 33 and the outlet-side sealing member 34 may be the same shape, but both can be connected to the second opening 25 and the third opening 35 and do not block the flow of the pressurized fluid. There is no particular limitation as long as the flow path is formed.

第3の封止部材7(導入側封止部材33と導出側封止部材34)は、第2の開口25に接続する場合、導入出流路開口31は第1の導入出流路開口10となり、導入出流路32は第1の導入出流路11の一部11aとして使用される。ノズル部材押さえ8には第1の導入出流路11の一部11bが形成されており、第1の導入出流路の一部11aと11bは中心軸30に沿って連続的に繋がって第1の導入出流路11を形成する。ノズル部材押さえ8には第1の導入出流路11に直交して第2の導入出流路15の一部15aが形成され、ハウジング1とノズル部材9との間に生じる間隙である第2の導入出流路15と連続的に繋がる。第3の封止部材7は、第3の開口35に接続する場合、導入出流路開口31は第4の導入出流路開口12となり、導入出流路32は第4の導入出流路13の一部13aとなって第4の導入出流路13と連続的に繋がる。   When the third sealing member 7 (the introduction side sealing member 33 and the outlet side sealing member 34) is connected to the second opening 25, the introduction / outflow passage opening 31 is the first introduction / outflow passage opening 10. Thus, the inlet / outlet channel 32 is used as a part 11 a of the first inlet / outlet channel 11. The nozzle member presser 8 is formed with a part 11 b of the first introduction / extraction flow path 11, and the parts 11 a and 11 b of the first introduction / extraction flow path are continuously connected along the central axis 30. 1 introduction / exit flow path 11 is formed. The nozzle member presser 8 is formed with a portion 15 a of the second introduction / extraction flow path 15 orthogonal to the first introduction / extraction flow path 11, and is a second gap that is formed between the housing 1 and the nozzle member 9. Are continuously connected to the inlet / outlet flow path 15. When the third sealing member 7 is connected to the third opening 35, the introduction / extraction channel opening 31 becomes the fourth introduction / extraction channel opening 12, and the introduction / extraction channel 32 is the fourth introduction / extraction channel. 13 is a part 13 a of the 13 and is continuously connected to the fourth inlet / outlet channel 13.

図5は本実施形態に係るノズル部材押さえ8を示す斜視図であり、破線によって内部構造を示した内部透視図である。ノズル部材押さえ8の第1の導入出流路の一部11bと、第1の導入出流路の一部11aとは横断面の形状は等しい方が好ましい。直方体状や多角柱形状でも良いが、円柱形、半円柱形、トンネル形状であれば流路に閉塞が生じにくい。同様に、ノズル部材9に対して当接する側36に形成される第2の導入出流路一部15aと、第2の導入出流路15の横断面の形状は等しい方が好ましい。   FIG. 5 is a perspective view showing the nozzle member presser 8 according to the present embodiment, and is an internal perspective view showing the internal structure by broken lines. It is preferable that the first introduction / exit flow path part 11b of the nozzle member presser 8 and the first introduction / exhaust flow path part 11a have the same cross-sectional shape. A rectangular parallelepiped shape or a polygonal column shape may be used, but if the column shape, the semi-column shape, or the tunnel shape is used, the flow path is hardly blocked. Similarly, it is preferable that the second inlet / outlet flow channel part 15a formed on the side 36 in contact with the nozzle member 9 and the second inlet / outlet flow channel 15 have the same cross-sectional shape.

本実施例において第3の封止部材7は、第1の実施形態で示したノズル部材押さえ8を覆う封止部材としての用途の他、第1の導入出流路開口10や第4の導入出流路開口12の用途として使用される。逆洗の際には外部配管を第3の封止部材7から脱着することなく、外部配管を接続した状態で第3の封止部材7をハウジング1から脱着して、通常の高圧噴射と逆洗の切り替えを行うことができる。2つの第3の封止部材7を脱着するだけで済むため、トルク管理が2箇所で済み作業が容易となる。なお第4の導入出流路開口12は第3の封止部材7とすることで脱着可能としたが実施例1と同様としても良い。その場合には外部配管の脱着を必要とする。   In the present example, the third sealing member 7 is used as a sealing member that covers the nozzle member presser 8 shown in the first embodiment, as well as the first introduction / outflow passage opening 10 and the fourth introduction. It is used as an application for the outlet passage opening 12. At the time of backwashing, the third sealing member 7 is detached from the housing 1 in a state where the external piping is connected without detaching the external piping from the third sealing member 7. The washing can be switched. Since only the two third sealing members 7 need to be attached and detached, torque management is required at two places, and the work becomes easy. The fourth inlet / outlet channel opening 12 can be detached by using the third sealing member 7, but may be the same as in the first embodiment. In that case, it is necessary to attach and detach external piping.

(第4の実施形態)
図6は本発明の第4の実施形態に係る微粒化装置100を示す構造図である。図7は本実施形態に係る第3の封止部材7の斜視図であり、破線によって内部構造を示した内部透視図である。本実施形態の微粒化装置100は、第1の封止部材2に第4の導入出流路開口12が形成され、第3の封止部材7に第1の導入出流路開口10が形成される。ノズル部材押さえ8は第1の実施形態又は第2の実施形態と同じである。なお第1の実施形態と同様の構成については、重複するため説明を省略する。
(Fourth embodiment)
FIG. 6 is a structural diagram showing an atomization apparatus 100 according to the fourth embodiment of the present invention. FIG. 7 is a perspective view of the third sealing member 7 according to the present embodiment, and is an internal perspective view showing the internal structure by broken lines. In the atomization apparatus 100 of the present embodiment, the fourth introduction / exit flow path opening 12 is formed in the first sealing member 2, and the first introduction / exit flow path opening 10 is formed in the third sealing member 7. Is done. The nozzle member presser 8 is the same as in the first embodiment or the second embodiment. In addition, about the structure similar to 1st Embodiment, since it overlaps, description is abbreviate | omitted.

第1の封止部材2には第4の導入出流路開口12と第4の導入出流路13の一部が形成され、押さえ部材4と噴流受け部材22にも形成された第4の導入出流路13の一部と直線的に連続して、一体的に第4の導入出流路13を形成する。第3の封止部材7には第1の導入出流路開口10と第1の導入出流路11が形成されており、第1の導入出流路11は大径の円筒形流路11aと複数の小径の円筒形流路11bとから構成され、連続的に第2の導入出流路15と繋がる(図6,図7)。   The first sealing member 2 is formed with a part of the fourth inlet / outlet channel opening 12 and the fourth inlet / outlet channel 13, and the fourth sealing member 4 and the jet flow receiving member 22 are also formed. The fourth inlet / outlet channel 13 is integrally formed linearly continuously with a part of the inlet / outlet channel 13. The third sealing member 7 is formed with a first introduction / exit passage opening 10 and a first introduction / exit passage 11, and the first introduction / exit passage 11 is a large-diameter cylindrical passage 11 a. And a plurality of small-diameter cylindrical channels 11b, which are continuously connected to the second inlet / outlet channel 15 (FIGS. 6 and 7).

本実施形態の場合、第3の実施形態とは異なりノズル部材押さえ8には流路は形成されない。また第1の導入出流路11と第2の導入出流路15が直線的に繋がり、加圧流体がノズル部材押さえ8に衝突することなく、ノズル部材押さえ8の側方を通過する構成となる。そのためノズル部材押さえ8の摩耗を抑制することが可能である。加えて、ノズル部材押さえ8が第2の実施形態で示したリング27を備えた場合、ノズル部材押さえ8の摩耗はさらに抑えられる。従って通常の噴射時にもノズル部材押さえ8を装着したままとすることが可能である。ノズル部材押さえ8を脱着する必要がないため作業が容易となる。   In the case of this embodiment, unlike the third embodiment, no flow path is formed in the nozzle member presser 8. Further, the first introduction / extraction flow path 11 and the second introduction / extraction flow path 15 are linearly connected so that the pressurized fluid passes through the side of the nozzle member holder 8 without colliding with the nozzle member holder 8. Become. Therefore, it is possible to suppress wear of the nozzle member presser 8. In addition, when the nozzle member presser 8 includes the ring 27 shown in the second embodiment, wear of the nozzle member presser 8 is further suppressed. Therefore, it is possible to keep the nozzle member presser 8 attached even during normal injection. Since it is not necessary to remove the nozzle member presser 8, the operation becomes easy.

(第5の実施形態)
図8は本発明の第5の実施形態に係る微粒化装置100を示す構造図である。本実施形態の微粒化装置100はノズル部材9の円柱形状部9aがハウジング1に当接することでノズル部材9をチャンバ3内で不動状態とし、かつハウジング1に当接した円柱形状部9aに第2の導入出流路15aが形成することでチャンバ3内において加圧流体を流動可能とする。ノズル部材押さえ8と第3の封止部材7は使用されず、中心軸30に沿って第1の導入出流路開口10と第1の導入出流路11が形成され、チャンバ3内の第1の導入出流路11開口は円柱形状部9aの中心近傍と当接する。第1の実施形態と同様の構成については説明を省略する。
(Fifth embodiment)
FIG. 8 is a structural view showing an atomization apparatus 100 according to the fifth embodiment of the present invention. In the atomization apparatus 100 of the present embodiment, the cylindrical member 9 a of the nozzle member 9 abuts on the housing 1, so that the nozzle member 9 is immovable in the chamber 3, and the cylindrical member 9 a in contact with the housing 1 As a result, the pressurized fluid can flow in the chamber 3. The nozzle member presser 8 and the third sealing member 7 are not used, and the first introduction / exit passage opening 10 and the first introduction / exit passage 11 are formed along the central axis 30. The opening of the 1 introduction / exit flow path 11 is in contact with the vicinity of the center of the cylindrical portion 9a. The description of the same configuration as that of the first embodiment is omitted.

図9は本実施形態に係る円柱形状部9aを示す斜視図であり、破線によって内部構造を示した内部透視図である。円柱形状部9aの端部9cに形成された第2の導入出流路の一部15aの形状は例えば直方体形状(図9(a))、円柱形状(図9(b))、若しくはそれらの組み合わせ等(図9(b),(c))、特に限定はされないが、加圧流体の流動を妨げずかつ閉塞を生じにくい形状の流路とすることが好ましい。本実施形態ではノズル部材押さえ8を使用することがないため、ノズル部材押さえ8の着脱は不要となる。   FIG. 9 is a perspective view showing the columnar portion 9a according to the present embodiment, and is an internal perspective view showing the internal structure by broken lines. The shape of the part 15a of the second inlet / outlet flow channel formed at the end 9c of the cylindrical portion 9a is, for example, a rectangular parallelepiped shape (FIG. 9A), a cylindrical shape (FIG. 9B), or those Combinations and the like (FIGS. 9B and 9C) are not particularly limited, but it is preferable that the flow path has a shape that does not hinder the flow of the pressurized fluid and does not easily block. In the present embodiment, since the nozzle member presser 8 is not used, it is not necessary to attach or detach the nozzle member presser 8.

以上多様な例をとり説明してきたが、本発明は上述した実施の形態や実施例に限定されるものではない。各種実施例は、適宜組み合わせて使用することが可能であり、本発明はその趣旨を逸脱しない範囲で適宜変更が可能であることは言うまでもない。   Although various examples have been described above, the present invention is not limited to the above-described embodiments and examples. Various embodiments can be used in appropriate combinations, and it is needless to say that the present invention can be appropriately modified without departing from the spirit of the present invention.

100 微粒化装置、
1 ハウジング、
1a ハウジング内壁面、
2 第1の封止部材、
3 チャンバ、
4 押さえ部材、
5 第2の封止部材、
6 底面、
7 第3の封止部材、
8 ノズル部材押さえ、
9 ノズル部材、
9a 円筒形状部、
9b テーパ形状凸部、
9c 端部、
10 第1の導入出流路開口、
11,11a,11b 第1の導入出流路、
12 第4の導入出流路開口、
13 第4の導入出流路、
14 微細加速流路、
15,15a 第2の導入出流路(間隙)、
16 第3の導入出流路(間隙)、
17 貫通孔、
18 第1の開口、
19 両端部、
20 貫通孔の開口、
21 半円状壁面、
22 噴流受け部材、
23 通過孔、
24 テーパ形状凹部、
25 第2の開口、
26 衝突位置(中心位置)、
27 リング、
28 流動方向、
29 衝突位置、
30 中心軸、
31 導入出流路開口、
32 導入出流路、
33 導入側封止部材、
34 導出側封止部材、
35 第3の開口、
36 当接側、
37 第3の封止部材底部
100 atomizer,
1 housing,
1a Housing inner wall surface,
2 1st sealing member,
3 chambers,
4 Holding member,
5 second sealing member,
6 Bottom,
7 Third sealing member,
8 Nozzle member presser,
9 Nozzle member,
9a Cylindrical shape part,
9b taper-shaped convex part,
9c end,
10 first inlet / outlet passage opening,
11, 11a, 11b 1st introduction / exit flow path,
12 Fourth inlet / outlet channel opening,
13 Fourth inlet / outlet channel,
14 Fine acceleration flow path,
15, 15a Second introduction / exit flow path (gap),
16 Third inlet / outlet channel (gap),
17 through hole,
18 first opening,
19 Both ends,
20 Opening of through-hole,
21 semicircular wall,
22 jet receiving member,
23 passage hole,
24 tapered recess,
25 second opening,
26 Collision position (center position),
27 rings,
28 Flow direction,
29 Collision position,
30 central axis,
31 Inlet / outlet channel opening,
32 Inlet / outlet flow path,
33 introduction side sealing member,
34 Lead-out side sealing member,
35 third opening,
36 Abutting side,
37 Third sealing member bottom

Claims (10)

スリット式の微細加速流路を有するノズル部材と、
原料粒子を導入かつ導出するための第1の導入出流路開口と第4の導入出流路開口を備えた微粒化装置のノズル洗浄方法であって、
前記微粒化装置は、前記ノズル部材を押圧するノズル部材押さえと、前記ノズル部材を嵌合する第2の封止部材とを備え、
通常の高圧噴射時には、導入配管に第1の導入出流路開口を接続しかつ導出配管に第4の導入出流路開口を接続し、加圧流体を前記第1の導入出流路開口から導入して、前記微細加速流路内で前記加圧流体同士を衝突させて微粒化し、逆洗時には、前記導入配管に前記第4の導入出流路開口を接続しかつ前記導出配管に前記第1の導入出流路開口を接続し、前記第4の導入出流路開口から加圧流体を導入しながら前記ノズル部材押さえによって前記ノズル部材を押圧することで、前記ノズル部材と前記第2の封止部材との嵌合を維持させて、前記ノズル部材の流路内を閉塞する原料粒子を流出させることを特徴とするノズル洗浄方法。
A nozzle member having a slit type fine acceleration flow path;
A nozzle cleaning method for an atomization apparatus having a first introduction / exit flow path opening and a fourth introduction / exit flow path opening for introducing and deriving raw material particles,
The atomization device includes a nozzle member press that presses the nozzle member, and a second sealing member that fits the nozzle member,
During normal high-pressure injection, the first inlet / outlet passage opening is connected to the introduction pipe and the fourth introduction / outflow passage opening is connected to the outlet pipe, and the pressurized fluid is supplied from the first introduction / outlet passage opening. Introduced to cause the pressurized fluids to collide with each other in the fine acceleration flow path to be atomized, and at the time of backwashing, the fourth introduction / outflow path opening is connected to the introduction pipe and the fourth outlet is connected to the outlet pipe. The nozzle member is pressed by the nozzle member press while the pressurized fluid is introduced from the fourth inlet / outlet channel opening, and the nozzle member and the second outlet are connected. A nozzle cleaning method characterized by maintaining the fitting with a sealing member and causing the raw material particles closing the flow path of the nozzle member to flow out.
前記ノズル部材はテーパ形状凸部を備え、前記第2の封止部材はテーパ形状凹部を備え、
前記ノズル部材押さえによって前記ノズル部材の上部を押圧しながら、前記ノズル部材のテーパ形状凸部と前記第2の封止部材のテーパ形状凹部との係合を維持して、前記ノズル部材と前記第2の封止部材との離脱を防止することを特徴とする請求項1記載のノズル洗浄方法。
The nozzle member includes a tapered convex portion, and the second sealing member includes a tapered concave portion,
While the upper portion of the nozzle member is pressed by the nozzle member press, the engagement between the tapered convex portion of the nozzle member and the tapered concave portion of the second sealing member is maintained, and the nozzle member and the first The nozzle cleaning method according to claim 1, wherein separation from the two sealing members is prevented.
前記微粒化装置は、100MPa以下の前記加圧流体を送液するための加圧手段を備え、前記第4の導入出流路開口に前記導入配管を接続して、100MPa以下の溶媒または混合液である加圧流体を送液することを特徴とする請求項1又は2記載のノズル洗浄方法。   The atomization apparatus includes a pressurizing unit for feeding the pressurized fluid of 100 MPa or less, and the introduction pipe is connected to the fourth introduction / exit flow path opening to provide a solvent or mixed solution of 100 MPa or less. 3. A nozzle cleaning method according to claim 1 or 2, wherein a pressurized fluid is fed. 加圧流体同士を衝突させるスリット式の微細加速流路を有したノズル部材と、
原料粒子を導入かつ導出するための第1の導入出流路開口と第4の導入出流路開口を備えた微粒化装置のノズル洗浄構造であって、
前記微粒化装置は、前記ノズル部材を押圧するノズル部材押さえと、前記ノズル部材を嵌合する第2の封止部材とを備え、
通常の高圧噴射時には、導入配管に前記第1の導入出流路開口を接続しかつ導出配管に前記第4の導入出流路開口を接続し、加圧流体を前記第1の導入出流路開口から導入して、前記微細加速流路内で前記加圧流体同士を衝突させて微粒化し、逆洗時には、前記導入配管に前記第4の導入出流路開口が接続され、前記導出配管に前記第1の導入出流路開口部が接続され、前記ノズル部材押さえによって前記ノズル部材と前記第2の封止部材の嵌合が維持されることを特徴とする微粒化装置のノズル洗浄構造。
A nozzle member having a slit type fine acceleration flow path for causing the pressurized fluids to collide with each other;
A nozzle cleaning structure of an atomization device having a first introduction / exit flow path opening and a fourth introduction / exit flow path opening for introducing and deriving raw material particles,
The atomization device includes a nozzle member press that presses the nozzle member, and a second sealing member that fits the nozzle member,
At the time of normal high-pressure injection, the first inlet / outlet passage opening is connected to the introduction pipe and the fourth introduction / outlet passage opening is connected to the outlet pipe, and pressurized fluid is supplied to the first introduction / outlet passage. Introduced from the opening, the pressurized fluid collides with each other in the fine acceleration flow path to atomize, and at the time of backwashing, the fourth inlet / outlet flow path opening is connected to the inlet pipe, and the outlet pipe is connected to the outlet pipe. The nozzle cleaning structure of the atomization apparatus, wherein the first introduction / exit flow path opening is connected, and the fitting of the nozzle member and the second sealing member is maintained by the nozzle member pressing.
前記微粒化装置は、逆洗の際に前記加圧流体が前記微細加速流路の壁面に衝突する衝突力を吸収して前記ノズル部材と前記第2の封止部材の嵌合を維持するノズル部材押さえを有し、
前記微粒化装置は、前記ノズル部材に前記ノズル部材押さえを当接してなることを特徴とする請求項4記載の微粒化装置のノズル洗浄構造。
The atomization device absorbs a collision force that the pressurized fluid collides with a wall surface of the fine acceleration channel during backwashing, and maintains a fitting between the nozzle member and the second sealing member. Has a member presser,
The nozzle cleaning structure of the atomization apparatus according to claim 4, wherein the atomization apparatus is configured to abut the nozzle member press against the nozzle member.
前記微粒化装置は、前記ノズル部材押さえを脱着可能とし、かつ前記衝突力を吸収して前記ノズル部材と前記第2の封止部材の嵌合を維持し、かつ前記ノズル部材に対する前記ノズル部材押さえの押圧力を調節するための第3の封止部材を有し、
前記微粒化装置は、前記ノズル部材押さえに前記第3の封止部材を当接させてなることを特徴とする請求項5記載の微粒化装置のノズル洗浄構造。
The atomization device is configured to allow the nozzle member presser to be detachable, absorb the collision force, maintain the fitting of the nozzle member and the second sealing member, and press the nozzle member press against the nozzle member. A third sealing member for adjusting the pressing force of
6. The nozzle cleaning structure of the atomization device according to claim 5, wherein the atomization device is formed by bringing the third sealing member into contact with the nozzle member presser.
前記微粒化装置は、円柱形状のハウジングを備え、
前記ハウジングは、円柱形状側面に前記第1の導入出流路開口と前記第4の導入出流路開口を備え、かつ前記ノズル部材押さえの側部に導入出流路を備え、
前記微粒化装置は、前記導入出流路において前記加圧流体の上流側に前記ノズル部材押さえが配置されることを特徴とする請求項6記載の微粒化装置のノズル洗浄構造。
The atomizer includes a cylindrical housing,
The housing includes the first inlet / outlet channel opening and the fourth inlet / outlet channel opening on a cylindrical side surface, and the inlet / outlet channel on the side of the nozzle member presser,
The nozzle cleaning structure of the atomization apparatus according to claim 6, wherein the atomization apparatus has the nozzle member presser disposed upstream of the pressurized fluid in the introduction / extraction flow path.
前記微粒化装置には、前記ノズル部材押さえに加圧流体が衝突することを防止するためのリングが周設されることを特徴とする請求項5から7のいずれか一項記載の微粒化装置のノズル洗浄構造。   The atomization device according to any one of claims 5 to 7, wherein a ring for preventing a pressurized fluid from colliding with the nozzle member press is provided around the atomization device. Nozzle cleaning structure. 前記微粒化装置は、ハウジングを貫通する前記第1の導入出流路開口と、チャンバを連通する第1の導入出流路とを備え、
前記ハウジングが円柱形状であって、前記第3の封止部材は、前記ノズル部材押さえの中心軸に沿って配置され、前記中心軸に沿って前記第1の導入出流路開口と前記第1の導入出流路とが形成されることを特徴とする請求項6記載の微粒化装置のノズル洗浄構造。
The atomization device is provided with the first introduction overhead stream passage opening through the housings, a first introduction overhead stream path communicating Ji Yanba,
The housing has a cylindrical shape, and the third sealing member is disposed along a central axis of the nozzle member presser, and the first introduction / exit flow channel opening and the first are disposed along the central axis. The nozzle cleaning structure of the atomization apparatus according to claim 6, wherein an inlet / outlet flow path is formed.
前記微細加速流路には、前記微細加速流路の内径よりも大きい内径を有する貫通孔が形成され、
前記第1の導入出流路開口の内径と前記第4の導入出流路開口の内径は、前記貫通孔の内径よりも大きいことを特徴とする請求項4から9のいずれか一項記載の微粒化装置のノズル洗浄構造。

A through hole having an inner diameter larger than the inner diameter of the fine acceleration channel is formed in the fine acceleration channel,
The inner diameter of the first introduction / outflow passage opening and the inner diameter of the fourth introduction / outflow passage opening are larger than the inner diameter of the through hole. Nozzle cleaning structure of atomizer.

JP2016222643A 2016-11-15 2016-11-15 Nozzle cleaning method and nozzle cleaning structure of atomizer Active JP6614554B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016222643A JP6614554B2 (en) 2016-11-15 2016-11-15 Nozzle cleaning method and nozzle cleaning structure of atomizer
CN201711024705.7A CN108067387A (en) 2016-11-15 2017-10-27 The nozzle of nozzle method of cleaning and micro-granulating device cleans structure
EP17200252.9A EP3320982A1 (en) 2016-11-15 2017-11-07 Nozzle cleaning method and nozzle cleaning structure for atomization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222643A JP6614554B2 (en) 2016-11-15 2016-11-15 Nozzle cleaning method and nozzle cleaning structure of atomizer

Publications (2)

Publication Number Publication Date
JP2018079417A JP2018079417A (en) 2018-05-24
JP6614554B2 true JP6614554B2 (en) 2019-12-04

Family

ID=60543306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222643A Active JP6614554B2 (en) 2016-11-15 2016-11-15 Nozzle cleaning method and nozzle cleaning structure of atomizer

Country Status (3)

Country Link
EP (1) EP3320982A1 (en)
JP (1) JP6614554B2 (en)
CN (1) CN108067387A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161794B1 (en) * 2018-12-21 2020-10-07 세메스 주식회사 Apparatus and Method for cleaning component
JP7077259B2 (en) 2019-03-20 2022-05-30 日本発條株式会社 Nozzle cleaning device
CN109759250B (en) * 2019-03-22 2023-12-22 南充市农业科学院 Shower nozzle that can backwash
CN111420831B (en) * 2020-03-06 2022-02-11 湖南恒凯环保科技投资有限公司 Prevent blockking up nozzle and spraying system
CN113522555A (en) * 2021-08-26 2021-10-22 湖南森焱科技有限公司 Powder spraying device with controllable and uniform powder spraying concentration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH472116A (en) 1968-04-29 1969-04-30 Siemens Ag Method and device for producing a resist pattern on a semiconductor body
JP2003001079A (en) * 2001-06-18 2003-01-07 Karasawa Fine Ltd Apparatus for finely pulverizing particles
JP2005144329A (en) * 2003-11-14 2005-06-09 Sugino Mach Ltd Pulverizing apparatus
US8297050B2 (en) * 2008-07-11 2012-10-30 GM Global Technology Operations LLC Nozzle diffuser mixer
JP4737327B2 (en) * 2009-08-31 2011-07-27 新東工業株式会社 Blasting spray nozzle
WO2013158209A1 (en) * 2012-04-20 2013-10-24 Nordson Corporation Cleaning devices and methods for a fluid dispensing cartridge
ITPR20120090A1 (en) * 2012-12-21 2014-06-22 Gea mechanical equipment italia spa PROCEDURE AND HOMOGENIZATION SYSTEM WITH FLOW REVERSAL
JP6687342B2 (en) * 2015-08-07 2020-04-22 株式会社大川原製作所 Atomization device and atomization method

Also Published As

Publication number Publication date
JP2018079417A (en) 2018-05-24
EP3320982A1 (en) 2018-05-16
CN108067387A (en) 2018-05-25

Similar Documents

Publication Publication Date Title
JP6614554B2 (en) Nozzle cleaning method and nozzle cleaning structure of atomizer
US20240075484A1 (en) Spray head
US8113545B2 (en) Rotary joint
WO2018197025A1 (en) Atomizing nozzle
KR102383209B1 (en) Device for treating fluid mixtures
CN211772134U (en) Microbubble shower nozzle and have washing equipment of this microbubble shower nozzle
US8783146B2 (en) Abrasive waterjet focusing tube retainer and alignment
CN104741066A (en) Mass transfer device with liquid seal device
GB2524499A (en) Jet pump
US20150010342A1 (en) Pin Joint For An Eccentric Screw Pump
JP2008104929A (en) Nozzle
CN111989163B (en) Nozzle assembly for generating an oscillating spray discharge
US10005010B2 (en) Filter device
KR101197236B1 (en) fitting device of connecting joint horse
JP2007301509A (en) Atomizing device
JP2011143364A (en) Gas-liquid separator
JP5176946B2 (en) Microbubble generator
US10487949B2 (en) Coupling member
JP6305865B2 (en) Outside type mechanical seal
KR102591953B1 (en) Two fluid nozzle for continuous caster comprising filter
CA3113711A1 (en) Apparatus and method for bulk production of atomically thin 2-dimensional materials including graphene
CN112831984A (en) Microbubble shower nozzle and have washing equipment of this microbubble shower nozzle
TW201641174A (en) Device for removing scale from the surface of a slab or a rolled product
JP3930036B1 (en) Atomization method, atomization apparatus and atomization system
JP5525937B2 (en) Crusher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6614554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250