JP6613738B2 - Straightening method for high-tensile steel plate shape - Google Patents

Straightening method for high-tensile steel plate shape Download PDF

Info

Publication number
JP6613738B2
JP6613738B2 JP2015175876A JP2015175876A JP6613738B2 JP 6613738 B2 JP6613738 B2 JP 6613738B2 JP 2015175876 A JP2015175876 A JP 2015175876A JP 2015175876 A JP2015175876 A JP 2015175876A JP 6613738 B2 JP6613738 B2 JP 6613738B2
Authority
JP
Japan
Prior art keywords
less
tempering
steel plate
steel
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015175876A
Other languages
Japanese (ja)
Other versions
JP2017052979A (en
Inventor
透 明石
貴之 大塚
利幸 白石
邦彦 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015175876A priority Critical patent/JP6613738B2/en
Publication of JP2017052979A publication Critical patent/JP2017052979A/en
Application granted granted Critical
Publication of JP6613738B2 publication Critical patent/JP6613738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)

Description

本発明は、焼入れにより高張力鋼を製造するにあたり、焼入れ後に焼戻しを行うまでの時間と、焼戻しから矯正操作までの時間経過に伴って、鋼板の降伏強度が増減する現象を利用し、熱処理後の鋼板の降伏強度が低値である時間帯にレベラー又は油圧プレスレベラーによる矯正を行うことにより、他の時間帯での矯正よりも大きい加工度を鋼板に与え、良好な矯正後平坦度を得る技術である。
The present invention, in producing a high-strength steel by quenching, time and until the Shi tempering after quenching, over time from tempered to straightening operation, by utilizing the phenomenon that the yield strength of the steel sheet is increased or decreased, By performing correction with a leveler or a hydraulic press leveler during the time zone when the yield strength of the steel plate after heat treatment is low, the steel plate has a greater degree of processing than the correction in other time zones, and good post-correction flatness Is the technology to get

高張力鋼は、メーカーや用途により様々な定義がなされているが、一般的には、概ね490MPa以上の引張強度(旧表示で50kg/mm2級)を有する鋼を指すことが多く、近年では1000MPaを超える強度のものも現われてきている。高張力鋼は、一般に、熱間圧延直後、あるいは熱処理炉での加熱直後に焼入れを施し、マルテンサイト変態を生じせしめることにより、製造される。また、用途に応じ、硬度や靭性の調整のために焼入れ後に焼戻し熱処理を行う場合もある。 High-strength steel is defined in various ways depending on the manufacturer and application. In general, however, high-strength steel generally refers to steel having a tensile strength of approximately 490 MPa or higher (50 kg / mm 2 class in the old display). The thing of the intensity | strength exceeding 1000 MPa has also appeared. High-tensile steel is generally produced by quenching immediately after hot rolling or immediately after heating in a heat treatment furnace to cause martensitic transformation. Depending on the application, tempering heat treatment may be performed after quenching to adjust hardness and toughness.

この製造プロセスにおいて、焼入れは鋼板表裏面への水スプレー噴射あるいは鋼板の水槽への浸漬により行うが、冷却の前半に鋼板に不均一温度分布が生じて高温部は圧縮、低温部は引張の塑性変形が生じ易く、この過程で高温部が座屈する場合があり、またこの過程で低温であった部位は線長が伸びているため、冷却が終了し、鋼板温度が均一になる段階で座屈する場合がある。   In this manufacturing process, quenching is performed by spraying water on the front and back surfaces of the steel sheet or immersing the steel sheet in a water tank. In the first half of cooling, the steel sheet has a non-uniform temperature distribution, and the hot part is compressed and the cold part is tensile plastic. Deformation is likely to occur, and the high temperature part may buckle in this process, and the part that was low temperature in this process has a long wire length, so the cooling ends and buckles when the steel plate temperature becomes uniform. There is a case.

即ち、焼入れ処理では、鋼板寸法及び冷却条件に応じ、鋼板各部に座屈による波が生じ易い。このような変形を低減するために、例えばローラークエンチ装置(Roller Quench、以下RQということがある。)による焼入れに対し、従来は特許文献1のように幅方向の冷却を均一にする技術、あるいは特許文献2のように通板の高速化により長手方向の温度勾配を低減する技術、及び拘束ロールの押し付けにより面外変形を抑制する技術が提案されている。   That is, in the quenching process, waves due to buckling tend to occur in each part of the steel sheet according to the steel sheet dimensions and cooling conditions. In order to reduce such deformation, for example, with respect to quenching by a roller quench device (Roller Quench, hereinafter referred to as RQ), conventionally, a technique of uniform cooling in the width direction as in Patent Document 1, or As in Patent Document 2, a technique for reducing the temperature gradient in the longitudinal direction by increasing the speed of the passing plate and a technique for suppressing out-of-plane deformation by pressing the restraining roll have been proposed.

特許第3449295号公報Japanese Patent No. 3449295 特開2008−231476号公報JP 2008-231476 A

しかしながら、冷却ノズルの均一性、通板速度、高速ロールの押し付け力等には設備的限界が存在し、特に板厚10mm未満の薄手高張力鋼に対しては一般的なRQでは十分な形状制御を行うことは困難である。一方、板厚が厚い高張力鋼の場合には、鋼板自体が有する冷却特性差、特に四周部と鋼板内部、及び上下面の冷却速度差が大きいため、鋼板内部の温度偏差、及びこれに伴う変形を完全に抑制することは困難である。   However, there are equipment limitations such as cooling nozzle uniformity, sheet feeding speed, pressing force of high-speed rolls, etc. Especially for thin high-tensile steel with a thickness of less than 10 mm, general RQ has sufficient shape control. Is difficult to do. On the other hand, in the case of high-strength steel with a large plate thickness, the difference in cooling characteristics of the steel plate itself, particularly the difference in cooling rate between the four circumferences and the inside of the steel plate, and the upper and lower surfaces is large. It is difficult to completely suppress deformation.

また、座屈変形が生じた鋼板は、一般に図1に示すローラーレベラーCLによる曲げ加工にて矯正する必要があるが、高張力鋼は降伏強度も高いため、曲げ矯正時の加工度を確保しにくく、平坦に矯正することは困難である。油圧プレスレベラーOLによる矯正も曲げ加工であり、高張力鋼の矯正が軟鋼に比較して困難である点はローラーレベラーの場合と同じである。   In addition, a steel plate with buckling deformation generally needs to be corrected by bending with the roller leveler CL shown in FIG. 1, but high-tensile steel has high yield strength. It is difficult to correct flatly. The correction by the hydraulic press leveler OL is also a bending process, and it is the same as the roller leveler in that correction of high-tensile steel is difficult compared to mild steel.

ここで、加工度とは、矯正中に被矯正材に与えられる曲率κを被矯正材の弾性限曲率κ0で除したものであり、式(1)で与えられる。 Here, the degree of processing is obtained by dividing the curvature κ given to the material to be corrected during correction by the elastic limit curvature κ 0 of the material to be corrected, and is given by Expression (1).

Figure 0006613738
Figure 0006613738

レベラー矯正に於いては、図1及び図2に示すように、上下に千鳥配置されたワークロール間に鋼板を通すことにより鋼板に正負の曲げを繰り返し加える、図2のように上ワークロール#2、#4、#6、#8及び#10を傾斜させる機構を有するレベラーにおいては、入側押し込み量、即ち矯正機入側の鋼板表面と上部の先頭ワークロール#2下面との高さ差δiを正の値に設定し、出側押し込み量、即ち矯正機出側鋼板表面と上部の最終ワークロール#10下面との高さ差δoをゼロに設定することが一般的に行われている。   In leveler correction, as shown in FIG. 1 and FIG. 2, positive and negative bending is repeatedly applied to the steel sheet by passing the steel sheet between work rolls arranged in a staggered manner, as shown in FIG. 2, Levels # 4, # 6, # 8 and # 10 have a mechanism for tilting, and the amount of indentation, that is, the height difference between the steel plate surface on the straightening machine entry side and the lower surface of the top work roll # 2 on the upper side It is generally performed to set δi to a positive value and to set the exit side push amount, that is, the height difference δo between the straightening machine exit side steel plate surface and the upper surface of the final work roll # 10 to zero. .

このようなレベラーのワークロール位置設定により、矯正の初期に鋼板に大きな加工度を与え、その後、加工度を逓減させつつ繰り返し曲げを加え、最終的に曲率ゼロ、即ち平坦に仕上げることができる。この矯正過程で鋼板に付与される加工度の最大値が大きいほど、被矯正材の板厚方向の塑性変形領域が、表層から板厚中心近傍にまで及び、矯正効果が高まる。   By setting the work roll position of such a leveler, it is possible to give a large degree of processing to the steel plate at the initial stage of correction, then repeatedly bend it while gradually reducing the degree of processing, and finally finish to zero curvature, that is, flat. As the maximum value of the degree of work imparted to the steel sheet during this correction process increases, the plastic deformation region in the thickness direction of the material to be corrected extends from the surface layer to the vicinity of the center of the thickness, and the correction effect increases.

例えば、板厚8mm、降伏強度300MPaの軟鋼を矯正する際に、鋼板に所定の加工度を与えるためのワークロール位置設定は、ワークロールを剛体と仮定して計算すると、表1に示す値となる。 実際のレベラーでは、ロールアセンブリとフレームの変形、及びワークロールベンディングの影響等を考慮し、表1とは若干異なる値に設定される場合がある。   For example, when straightening mild steel with a plate thickness of 8 mm and a yield strength of 300 MPa, the work roll position setting for giving a predetermined degree of processing to the steel sheet is calculated assuming that the work roll is a rigid body. Become. The actual leveler may be set to a value slightly different from Table 1 in consideration of the deformation of the roll assembly and the frame, the influence of work roll bending, and the like.

Figure 0006613738
Figure 0006613738

式(1)の右辺に於いて、曲率κはレベラーの押込み量により決まり、Eは炭素鋼では
2.1×105N/mm2前後のほぼ一定値である。従って、同一の板厚の鋼材を同一の押込み量で矯正する場合は、被矯正材の降伏強度σyが大きいほど、加工度は小さくなる。
In the right side of the equation (1), the curvature κ is determined by the leveler pressing amount, and E is a substantially constant value of about 2.1 × 10 5 N / mm 2 in the case of carbon steel. Therefore, when the steel material having the same plate thickness is corrected with the same pressing amount, the degree of work decreases as the yield strength σ y of the material to be corrected increases.

軟鋼の降伏強度が300MPa前後であるのに対し、焼入れにより製造される高張力鋼の降伏強度は900MPa前後であり、軟鋼のおよそ3倍の値である。従って、同一矯正条件であれば、高張力鋼に付与される最大加工度は、軟鋼に付与される最大加工度のおよそ1/3となる。   While the yield strength of mild steel is around 300 MPa, the yield strength of high-strength steel produced by quenching is around 900 MPa, which is about three times that of mild steel. Therefore, under the same straightening conditions, the maximum workability imparted to the high-strength steel is approximately 1/3 of the maximum workability imparted to the mild steel.

レベラー矯正においては、矯正前後の急峻度と最大加工度の間の関係は式(2)のように表わされる。   In leveler correction, the relationship between the steepness before and after correction and the maximum degree of processing is expressed as in equation (2).

Figure 0006613738
Figure 0006613738

図3に示すように、焼入れ後の形状不良材の急峻度は0.7%前後に分布しており、累積頻度を示す曲線から理解されるように、全体の約85%は1.0%未満である。また、製品として出荷可能な急峻度は0.5%以下であることが多い。鋼板の急峻度を、焼入れ後急峻度の85%をカバーする1.0%から、一般的な出荷可能平坦度である0.5%にレベラー矯正により低減させるためには、式(2)の関係より、最大加工度は4以上とする必要がある。図4はこれをグラフ化して表したものであり、矯正後急峻度は、入側急峻度を加工度の1/2乗で除した値に減少することを示している。   As shown in FIG. 3, the steepness of the poorly shaped material after quenching is distributed around 0.7%, and as understood from the curve showing the cumulative frequency, about 85% of the whole is 1.0%. Is less than. The steepness that can be shipped as a product is often 0.5% or less. In order to reduce the steepness of the steel sheet from 1.0%, which covers 85% of the steepness after quenching, to 0.5%, which is a general flatness that can be shipped, by leveler correction, the formula (2) From the relationship, the maximum processing degree needs to be 4 or more. FIG. 4 is a graph of this, and shows that the post-correction steepness decreases to a value obtained by dividing the entry-side steepness by the half power of the processing degree.

一方、通常のレベラーは、軟鋼に対し5乃至6の最大加工度を付与するような設計となっている場合が多く、これらのレベラーで高張力鋼を矯正すると、式(1)により最大加工度は1/3となり、式(2)によりレベラー出側の材料急峻度は、軟鋼に対し√3倍に増大する。   On the other hand, a normal leveler is often designed to give a maximum workability of 5 to 6 to mild steel. When high-strength steel is corrected with these levelers, the maximum workability is calculated according to equation (1). Is 1/3, and the material steepness on the exit side of the leveler is increased by √3 times that of mild steel according to the equation (2).

高張力鋼に対し、より大きな最大加工度を付与するためには、ロール押込量を増大させる必要があるが、荷重や駆動力が設備限界を超過し、噛み止めや設備破損の危険性が増すため、例えば軟鋼に対して最大加工度6を付与するロール押込量設定から設備限界に至るまでの押込量の増分は高々10〜20%であることが多い。ここで、ロール押込量をδ、ロール間隔をpとすると、当該ロールで鋼板に付与される曲率κは、下式(3)で表される。   In order to give a higher maximum workability to high-strength steel, it is necessary to increase the roll push-in amount, but the load and driving force exceed the equipment limit, increasing the risk of jamming and equipment damage. For this reason, for example, the increment of the push amount from the setting of the roll push amount that gives the maximum workability 6 to the mild steel to the equipment limit is often 10 to 20% at most. Here, when the roll pressing amount is δ and the roll interval is p, the curvature κ given to the steel plate by the roll is expressed by the following expression (3).

Figure 0006613738
Figure 0006613738

即ち、曲率は押込量に比例し、従って、式(1)より加工度も押込量に比例する。軟鋼に対し最大加工度6を付与する設定から押込量を20%増大させた場合、軟鋼に対しては最大加工度7.2を付与する設定となる。しかし、同じ設定で軟鋼の3倍の降伏強度を有する高張力鋼を矯正すると、最大加工度は7.2÷3=2.4に減少し、入側急峻度が1.0%の場合の出側急峻度は1.0÷√(2.4)=0.65%となり、合格基準には到達し得ない。   That is, the curvature is proportional to the push amount, and therefore the degree of processing is also proportional to the push amount from the equation (1). When the indentation amount is increased by 20% from the setting for giving the maximum workability 6 to the mild steel, the maximum workability 7.2 is given to the mild steel. However, when straightening a high-strength steel that has three times the yield strength of mild steel with the same setting, the maximum workability decreases to 7.2 / 3 = 2.4, and the entry side steepness is 1.0%. The exit-side steepness is 1.0 ÷ √ (2.4) = 0.65%, and the acceptance criterion cannot be reached.

以上に述べたように、高張力鋼は焼入れ過程で座屈変形を起し易く、かつ焼入れ後の形状矯正は、その高い降伏強度が障害となって、軟鋼に比べ極めて困難であり、矯正による平坦化が難しい欠点があった。   As described above, high-strength steel is likely to buckle and deform during quenching, and shape correction after quenching is extremely difficult compared to mild steel because of its high yield strength. There was a drawback that flattening was difficult.

上記課題を解決するために、本発明者らが、鋭意研究した結果、焼入れ後に焼戻し処理を行った鋼板の降伏強度は、焼入れ処理から焼戻し処理までの時間t1の経過と、焼戻し処理から矯正処理までの時間t3の経過に応じて、増減するとの知見を得た。
In order to solve the above problems, the yield strength of the present inventors have conducted intensive studies and as a result, steel sheets were tempered Shi treatment after quenching, the elapsed time t1 to tempering Shi processed from quenching, and tempering The knowledge that it increased / decreased according to progress of time t3 from a process to a correction process was acquired.

図5は、鋼板に焼入れ、焼戻しを行うタイムスケジュールの一例を示したものである。
鋼板を加熱して930℃に1200秒保持したのち、70℃/sの冷却速度でローラークエンチ(RQ;冷却ロールに挟持して急冷)し、t1秒後に昇温を開始して500℃に1200秒保持したのち、300℃程度まで1℃/s、その後冷却終了温度50℃まで0.2℃/s〜1℃/sで冷却し、t3秒後にレベラーによる矯正を行う。ここでt3のカウントを開始するタイミングは50℃になってからの時間と定義する。
Figure 5 is a diagram showing an example of a time schedule for performing quenching and tempering on the steel plate.
The steel plate was heated and held at 930 ° C. for 1200 seconds, and then roller quenching (RQ; sandwiched between cooling rolls and rapidly cooled) at a cooling rate of 70 ° C./s. After holding for 2 seconds, it is cooled to about 300 ° C. at 1 ° C./s, and then cooled to a cooling end temperature of 50 ° C. at 0.2 ° C./s to 1 ° C./s. Here, the timing for starting the count of t3 is defined as the time after reaching 50 ° C.

図6は、焼戻し終了からレベラーによる矯正操作開始時点までの時間t3を15分に固定して、焼入れから焼戻しのための昇温開始までの時間t1を変化させたときの、矯正操作開始時点での高張力鋼板の降伏強度の変化を示したグラフである。
6, to fix the time t3 from tempered until end correction operation start point by leveler 15 minutes, when changing the time t1 to the start temperature increase for the skip back baked from quenching, straightening operation start It is the graph which showed the change of the yield strength of the high strength steel plate at the time.

図6から明らかなように、t3を15分に固定して、焼入れから焼戻しのための昇温開始までの経過時間t1を変化させると、t1が大きい程、矯正操作開始時点の鋼板の降伏強度が低下する傾向にあることが判る。   As is apparent from FIG. 6, when t3 is fixed to 15 minutes and the elapsed time t1 from the quenching to the start of temperature rise for tempering is changed, the yield strength of the steel sheet at the start of the straightening operation increases as t1 increases. It can be seen that there is a tendency to decrease.

一方、図7は、焼戻し終了時点から、レベラーによる矯正操作開始時点までの時間t1を1440分の一定値としたままで、焼入れ終了時点から焼戻しのための昇温開始までの時間t3を変化させた時の、矯正操作開始時点の鋼板の降伏強度の変化をプロットした図である。
同図によれば、焼戻し終了後の鋼板降伏強度は、t3が短い程、小さくなる傾向にあることが判る。
即ち、焼入れ終了から1440分後に焼戻しのための昇温を開始した場合には、焼戻し終了後の経過時間が短い程、鋼板の降伏強度は小さくなるので、矯正操作は、焼戻し終了後、なるべく早く開始することが、降伏強度が小さくなって有利となる。
On the other hand, FIG. 7 shows that the time t1 from the end of tempering to the start of the straightening operation by the leveler is kept constant at 1440 minutes, and the time t3 from the end of quenching to the start of temperature increase for tempering is changed. It is the figure which plotted the change of the yield strength of the steel plate at the time of a straightening operation start at the time.
According to the figure, the steel sheet yield strength after the completion Shi tempering it is found that the shorter the t3, tends to be smaller.
That is, when the temperature started to be raised for tempering the 1440 minutes after quenching completion, as the elapsed time after the completion Shi tempering is short, since the yield strength of the steel sheet becomes small, the straightening operation, after the tempering ends, Starting as soon as possible is advantageous because the yield strength decreases.

図8は、図6及び図7に示したt1及びt3の変化による降伏強度の変化を重畳して記載したグラフであり、t1及びt3の変化が、焼戻し終了時の高張力鋼板の降伏強度変化に強い相関を有していることが理解できる。   FIG. 8 is a graph in which changes in yield strength due to changes in t1 and t3 shown in FIGS. 6 and 7 are superimposed, and changes in t1 and t3 indicate changes in yield strength of the high-tensile steel sheet at the end of tempering. It can be understood that this has a strong correlation.

図6乃至8に示した結果に基づけば、鋼板に対して焼入れ及び焼戻しを実施してから、形状制御のための矯正操作を実施する際には、焼入れ後、ある程度以上の時間をおいてから、焼戻しのための昇温を開始し、焼戻し終了後には、できるだけ速やかに形状制御のための矯正操作を開始すれば、高張力鋼板の降伏強度が低い状態で矯正操作できることになり、矯正操作の効果が最大限得られることが判る。
Based on the results shown in FIGS. 6-8, the hardening and tempering after performed on the steel plate, in carrying out the correction operation for shape control, after quenching, at a certain level or more times Therefore, if the temperature rise for tempering is started and straightening operation for shape control is started as soon as possible after tempering, the high strength steel sheet can be straightened with low yield strength. It can be seen that the maximum effect can be obtained.

軟鋼との対比で考えると、表2に示すように、軟鋼に最大加工度5.0乃至6.0を付与する設定のレベラーを適用した場合、本来の降伏強度に達した高張力鋼では最大加工度は1.7乃至2.1に留まり、入側急峻度1.0%の鋼板の出側急峻度は0.8%乃至0.7%である。
これに対し、同高張力鋼を降伏強度360MPaの時点で矯正すると、最大加工度4.2乃至5になり、出側急峻度を0.45乃至0.48%程度にまで低減することが可能である。
In comparison with mild steel, as shown in Table 2, when a leveler set to give a maximum workability of 5.0 to 6.0 is applied to mild steel, it is the highest in high-strength steel that has reached its original yield strength. The degree of work remains at 1.7 to 2.1, and the exit side steepness of a steel sheet with an entrance side steepness of 1.0% is 0.8% to 0.7%.
On the other hand, when the high-strength steel is corrected when the yield strength is 360 MPa, the maximum working degree is 4.2 to 5, and the exit steepness can be reduced to about 0.45 to 0.48%. It is.

Figure 0006613738
Figure 0006613738

本発明は、上記の知見に基づいてなされたものであって、降伏強度が低値である時間帯、即ち焼入れ終了後から焼戻しまでの時間を十分確保した後、焼戻しのための昇温を開始すると共に、焼戻し終了後、できるだけ速やかにレベラー等による矯正操作を開始することで、高張力鋼板が本来有する降伏強度(最終到達降伏強度)よりもはるかに低い降伏強度を示す時点で、レベラー矯正を行うことにより、高張力鋼板に大きな加工度を付与し、良好な平坦度を得ることを特徴としており、その要旨は以下のとおりである。
The present invention was made based on the above findings, the yield strength is low value at which time zone, i.e., after sufficiently securing the time at the tempering it from the after quenching completion, heating for tempering At the point of time when the yield strength is much lower than the inherent yield strength (final ultimate yield strength) of the high-tensile steel sheet by starting straightening operation with a leveler as soon as possible after tempering is completed. By performing correction, a high degree of workability is imparted to the high-tensile steel sheet, and good flatness is obtained, and the gist thereof is as follows.

(1)質量%でC:0.50%以下、Si:0.70%以下、P:0.05%以下、S:0.05%以下、O:0.007%以下、N:0.01%以下であって、Ni、Cr及びMoの3種の少なくとも1種以上を、各々Ni:9.5%以下、Cr:2.5%以下、Mo:1.2%以下の範囲で含み、残部不可避的不純物及びFeからなる鋼板を、熱処理炉で加熱して鋼板組織をオーステナイトとした後に、当該鋼板を水冷して鋼板組織をマルテンサイトに変態させる焼入れを行う焼入れ工程と焼戻しを行って高張力鋼する焼戻し工程と、前記焼戻しを行った前記高張力鋼板の形状矯正を行う形状矯正工程と、を有し、前記形状矯正工程において、焼入れ後〜焼戻しまでの時間(t1)24時間以上とし、焼戻し終了から矯正までの時間(t3)60分以内として、矯正を行うことを特徴とする高張力鋼板形状の矯正方法
(2)記鋼板が、更に、Cuを0.5%以下含む、前記()に記載の高張力鋼板形状の矯正方法。
)焼入れおよび焼戻し後の降伏強度が、最終到達強度の60%以下である時間帯に、矯正を行う、前記(1)又は(2)に記載の高張力鋼板形状の矯正方法。
)焼入れおよび焼戻し後の降伏強度を、t1、t3及び予め求めたσy0.2%に基づいて予測し、σy0.2%が低値である時間帯で、矯正を実施する、前記(1)〜()の何れかに記載の高張力鋼板形状の矯正方法。
(1) In mass%, C: 0.50% or less, Si: 0.70% or less, P: 0.05% or less, S: 0.05% or less, O: 0.007% or less, N: 0.00. 01% or less, including at least one of Ni, Cr and Mo in a range of Ni: 9.5% or less, Cr: 2.5% or less, Mo: 1.2% or less the steel sheet comprising the balance inevitable impurities and Fe, after the steel sheet structure and austenite is heated in a heat treatment furnace, a quenching step of performing quenching to Ru is transformed to steel sheet structure with water cooling to martensite the steel sheet, tempering been has a tempering process to high-tensile steel plate, a straightening step for straightening of the high tensile steel plate subjected to the tempering, the, the said shape in the correction process, the time until hardening after-tempering (t1 ) was greater than or equal to 24 hours, the time from the tempering until the end correction As within 60 minutes between (t3), straightening method of high-tensile steel plate shape and performing correction.
(2) pre-Symbol steel plate, further, the Cu 0.5% or less including, straightening method of high-tensile steel plate shape according to (1).
(3) yield strength after quenching and tempering, the final 60% or less times of arrival intensity, cormorants row corrective, wherein (1) or method of correcting high-tensile steel plate shape according to (2).
(4) the yield strength after quenching and tempering, is predicted on the basis of t1, t3 and previously determined .sigma.y 0.2%, in the time zone is .sigma.y 0.2% is low, you implement a corrective, the (1) The correction method of the high-tensile steel plate shape according to any one of to ( 3 ).

上述のように、本発明によれば、レベラーで所定の押込量を高張力鋼板に付与した場合、矯正時点での降伏強度が低いため、最終的な降伏強度に達した高張力鋼板に同一の押込量を付与した場合に比して、より大きな加工度と矯正効果が得られ、鋼板形状を良好なものとすることができる。   As described above, according to the present invention, when a predetermined indentation amount is applied to the high-tensile steel plate with a leveler, the yield strength at the time of correction is low, so the same strength as that of the high-tensile steel plate that has reached the final yield strength is obtained. Compared with the case where an indentation amount is provided, a greater degree of processing and a straightening effect can be obtained, and the steel plate shape can be improved.

ローラーレベラーの基本構造と鋼板の曲げ矯正を示す図である。It is a figure which shows the basic structure of a roller leveler, and the bending correction of a steel plate. 鋼板とローラーレベラーの相対関係と入側押し込み量及び出側押し込み量を示す図である。It is a figure which shows the relative relationship of a steel plate and a roller leveler, the entrance side pushing amount, and the exit side pushing amount. レベラー矯正において、鋼板の急峻度が、矯正前の1.0%を起点とし、レベラーで付与される最大加工度に応じて減少する様子を示す図である。In leveler correction, it is a figure which shows a mode that the steepness of a steel plate reduces according to the maximum work degree provided with a leveler from 1.0% before correction as a starting point. 加工度の増大が急峻度の低下に与える影響を示すグラフである。It is a graph which shows the influence which the increase in a processing degree has on the fall of steepness. RQを用いた焼入れ、焼戻しプロセスのタイムスケジュールの一例を示す図である。It is a figure which shows an example of the time schedule of the quenching and tempering process using RQ. t3を15分に固定してt1を変化させた場合の降伏強度変化を示す図である。It is a figure which shows the yield strength change at the time of fixing t3 to 15 minutes and changing t1. t1を1440分(1日)に固定してt3を変化させた場合の降伏強度変化を示す図である。It is a figure which shows the yield strength change at the time of fixing t1 to 1440 minutes (1 day) and changing t3. t1とt3を変化させた場合の降伏強度変化を重回帰式によって示す図である。It is a figure which shows the yield strength change at the time of changing t1 and t3 by a multiple regression equation.

以下に、添付した図面を参照して、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図5において、鋼板を熱処理炉で930℃に昇温し、20分(1200秒)保定してオーステナイト化処理を行った後、熱処理炉から抽出し、速やかに水冷しマルテンサイト変態を生じせしめることにより、高張力鋼板とする。ここで、熱処理は連続式熱処理炉またはバッチ式熱処理炉で行い、水冷は、RQまたは水槽で行う。   In FIG. 5, the steel sheet is heated to 930 ° C. in a heat treatment furnace, held for 20 minutes (1200 seconds) and subjected to austenitizing treatment, and then extracted from the heat treatment furnace and quickly cooled with water to cause martensitic transformation. Thus, a high-tensile steel plate is obtained. Here, the heat treatment is performed in a continuous heat treatment furnace or a batch heat treatment furnace, and the water cooling is performed in an RQ or a water tank.

t1秒後に焼戻しのための加熱を開始し、1.4℃/sの加熱速度で500℃まで加熱した後、20分(1200秒)保持してから、1℃/sで300℃まで、その後常温まで0.2℃/sで冷却し、t3秒後に、ライン下流のコールドローラーレベラー(Coldroller Leveler、CL)及び/または油圧プレスレベラー(Oil Leveler、OL)に送り、形状矯正を行う。
Heating for tempering is started after t1 seconds, heated to 500 ° C at a heating rate of 1.4 ° C / s, held for 20 minutes (1200 seconds), then to 1300 ° C at 1 ° C / s, then Cool to room temperature at 0.2 ° C./s, and after 3 seconds, send to a cold roller leveler (CL) and / or a hydraulic press leveler (Oil Leveler, OL) downstream of the line to correct the shape.

本発明においては、焼入れ後〜焼戻しまでの時間(t1)が24時間以上、焼戻し終了から矯正までの時間(t3)が60分以内であれば、普通鋼用の矯正装置(降伏応力が400MPa程度以下の鋼の矯正が可能)であっても、高張力鋼に対して所定の形状矯正効果が得られる程度に降伏応力の軟化が期待できるが、好ましくは、t1が36時間(2160min)以上、t3が40分以内、更に好ましくは、t1が48時間以上、t3が20分以内であれば、さらなる降伏強度の低下が期待できる。その際、降伏強度が最終強度の60%以下である時間帯に矯正を行うと、本発明の効果を十分享受することが出来る。 但し、t1を長くすることは、生産性の低下や鋼材ヤード等の保管場所の増大につながるので、それらとの兼ね合いを考慮して設定する必要がある。 In the present invention, if the time (t1) from quenching to tempering is 24 hours or more and the time (t3) from the end of tempering to straightening is within 60 minutes, the straightening device for ordinary steel (yield stress is about 400 MPa) Even if the following steel can be straightened), the yield stress can be expected to be softened to such an extent that a predetermined shape straightening effect can be obtained with respect to high-strength steel. Preferably, t1 is 36 hours (2160 min) or more, If t3 is within 40 minutes, more preferably t1 is 48 hours or longer and t3 is within 20 minutes, a further decrease in yield strength can be expected. At that time, if the correction is performed in a time zone in which the yield strength is 60% or less of the final strength, the effect of the present invention can be fully enjoyed. However, since increasing t1 leads to a decrease in productivity and an increase in storage locations such as a steel yard, it is necessary to set the balance in consideration of these factors.

本発明は、各種の高張力鋼に適用できるが、以下に成分の目安を示す。
<C:0.50%以下>
Cは、いうまでもなく、焼入れ性を確保し、鋼の強度を創出する基本元素であるが、高濃度であると、硬さは向上するものの靱性が低下し、割れなどを発生し易くなるので、 0.5%を上限とする。
The present invention can be applied to various high-strength steels.
<C: 0.50% or less>
Needless to say, C is a basic element that secures hardenability and creates the strength of steel. However, when the concentration is high, the hardness is improved, but the toughness is reduced, and cracks are easily generated. Therefore, the upper limit is 0.5%.

<Si:0.70%以下>
Siは、脱酸操作上、鋼中に含有され、固溶強化作用を有するが、過剰に含むと溶接性やHAZ靱性を悪化させるため、0.70%を上限とした。
<Si: 0.70% or less>
Si is contained in the steel in the deoxidation operation and has a solid solution strengthening effect. However, if excessively contained, the weldability and HAZ toughness are deteriorated, so the upper limit was made 0.70%.

<P:0.05%以下>
Pは、固溶強化元素としての側面もあるが、その量が多くなると、鋼板の加工性や溶接性の低下が顕著となるので、好ましくない。特に、0.05%を超えると、これらの悪影響が大きくなるので、上限を0.05%とした。
<P: 0.05% or less>
P also has a side as a solid solution strengthening element, but an increase in the amount thereof is not preferable because the workability and weldability of the steel sheet are significantly reduced. In particular, if it exceeds 0.05%, these adverse effects become large, so the upper limit was made 0.05%.

<S:0.05%以下>
Sは、熱間圧延時の割れや加工時の割れを引き起こす元素であるため、含有量の上限を0.05%に規定した。
<S: 0.05% or less>
Since S is an element that causes cracking during hot rolling and cracking during processing, the upper limit of the content is defined as 0.05%.

<Mn>
Mnは、鉄鋼成分の基本5元素のひとつであるが、本発明では、成分中に含まれるSをMnSとして捕捉する以上の作用は予定していない。したがって、不純物として含まれるSの含有量に見合う量が含まれていればよく、構造用普通鋼種と同様、含有量の上限は、1.5%程度である。
<Mn>
Mn is one of the five basic elements of the steel component, but in the present invention, no action beyond capturing S contained in the component as MnS is planned. Therefore, it is only necessary to include an amount commensurate with the content of S contained as an impurity, and the upper limit of the content is about 1.5% as in the case of structural steel.

Niは、鋼の焼入れ性を向上させる元素であると共に、低温靱性を確保できる成分であり、実際に9%Ni含有高張力鋼は、LNGタンク素材として広く利用されているところであるが、高コストと、効果の飽和のため、上限を9.5%に規定した。
Ni, together with an element that improves the hardenability les of steel, a component can be secured low temperature toughness, actually 9% Ni-containing high strength steel, although is where widely used as LNG tanks material, The upper limit was set at 9.5% due to high cost and saturation of effects.

<Cr:2.5%以下>
Crは、鋼材の強度と靱性を共に向上するが、添加量が多すぎるとかえって靱性を劣化すると共に、溶接性も劣化するため、上限を2.5%に規定した。
<Cr: 2.5% or less>
Cr improves both the strength and toughness of the steel material. However, if the addition amount is too large, the toughness deteriorates and the weldability also deteriorates. Therefore, the upper limit is specified to 2.5%.

<Mo:1.2%以下>
Moは、焼入れ性向上元素であるが、同時に固溶強化能が高く、またMoC2として析出し、強い2次硬化現象を起こす。1.2%を超えて添加すると、硬化が強くなりすぎてかえって材料が脆化するため、1.2%を上限とした。
<Mo: 1.2% or less>
Mo is an element that improves hardenability, but at the same time has a high solid solution strengthening ability, and precipitates as MoC 2 , causing a strong secondary hardening phenomenon. If added over 1.2%, the curing becomes too strong and the material becomes brittle, so 1.2% was made the upper limit.

<Cu:0.5%以下>
Cu粒子として、析出強化作用を有するが、低融点のため、高温下では、溶融して粒界に浸透し、赤熱脆化を起こす。このため、0.5%を上限とした。
なお、Niとの共存下では、熱間圧延中の割れを抑制する効果もある。
なお、Oは0.007%、Nについては、0.05%程度を含有量の上限の目安とする。その他の、高張力鋼に限らず鋼材一般に含有される不可避的不純物については、通常の鋼材と同様であって、特有の含有量範囲を設定するものではない。
<Cu: 0.5% or less>
Although it has a precipitation strengthening action as Cu particles, it has a low melting point, and therefore melts and penetrates into grain boundaries at high temperatures, causing red-hot embrittlement. For this reason, 0.5% was made the upper limit.
In the presence of Ni, there is an effect of suppressing cracking during hot rolling.
Note that O is 0.007%, and N is about 0.05% as a guide for the upper limit of the content. Other unavoidable impurities that are generally contained in steel materials as well as high-tensile steels are the same as those in ordinary steel materials, and do not set a specific content range.

(実施例)
表3に試験に使用した高張力鋼(鋼A)の成分を示す。
この鋼に、同一条件で熱処理を施し、焼入れ終了後、15分、60分(1時間)、1440分(1日)、2160分(1.5日)、2880分(2日)及び5760分(4日)経過後に、焼戻し操作を行い、15,20、40及び60分、1、2及び4日後に降伏強度を測定した結果を表4に示す。
(Example)
Table 3 shows the components of the high-strength steel (steel A) used in the test.
This steel was heat-treated under the same conditions. After quenching, 15 minutes, 60 minutes (1 hour), 1440 minutes (1 day), 2160 minutes (1.5 days), 2880 minutes (2 days) and 5760 minutes Table 4 shows the results of performing the tempering operation after 4 days and measuring the yield strength after 15, 20, 40 and 60 minutes, 1, 2 and 4 days.

Figure 0006613738
Figure 0006613738

Figure 0006613738
Figure 0006613738

表4の降伏強度の値から理解されるように、焼入れ後から焼戻し開始までの時間t1を、1日(1440分)以上とし、焼戻し終了後からの経過時間t3を60分以内として、降伏強度を測定すると、何れの場合でも400MPa未満の降伏強度を示し、普通鋼用の矯正機器でも板形状を有効に矯正できることが理解される。t1とt3の組合せとしては、好ましくはt1を1.5日以上、t3を40分以内、さら好ましくは、t1を2日以上とし、t3を20分以内と規定できるが、特にt1を長時間とすることは、生産性や待機ヤードの確保の点から、いたずらに長時間とすることは難しい。
これに対して、比較例に示すように、焼入れ後1日未満で焼戻しを行い、及び/又は焼戻し後60分以上経過してから矯正を行った場合には、高張力鋼の降伏強度が400MPa以上に上昇し、普通鋼用の矯正機器による板形状の矯正操作では、出荷基準を満たすことができない。
As understood from the yield strength values in Table 4, the time t1 from quenching to the start of tempering is 1 day (1440 minutes) or longer, and the elapsed time t3 from the end of tempering is within 60 minutes, yield strength. In any case, the yield strength is less than 400 MPa, and it is understood that the plate shape can be effectively corrected even with straightening equipment for ordinary steel. As a combination of t1 and t3, t1 is preferably 1.5 days or more, t3 is 40 minutes or less, more preferably t1 is 2 days or more, and t3 can be defined as 20 minutes or less. In terms of productivity and securing a waiting yard, it is difficult to unnecessarily take a long time.
On the other hand, as shown in the comparative example, when tempering is performed in less than one day after quenching and / or after 60 minutes or more have elapsed after tempering, the yield strength of the high-strength steel is 400 MPa. As a result of the above, the plate shape straightening operation using the straight steel straightening device cannot meet the shipping standards.

この発明に係る鋼板の矯正方法によれば、焼入れ処理後の高張力鋼板に対して適切な加工度を付与でき、良好な矯正後平坦度を得ることができるので、産業上の利用可能性は大きいものがある。   According to the steel sheet straightening method according to the present invention, it is possible to give an appropriate degree of processing to the high-tensile steel plate after quenching treatment, and to obtain good post-correction flatness, so industrial applicability is There is a big one.

RQ ローラークエンチ設備
CL コールドローラーレベラー
OL 油圧プレスレベラー
RQ Roller quench equipment CL Cold roller leveler OL Hydraulic press leveler

Claims (4)

質量%でC:0.50%以下、Si:0.70%以下、P:0.05%以下、S:0.05%以下、O:0.007%以下、N:0.01%以下であって、Ni、Cr及びMoの3種の少なくとも1種以上を、各々Ni:9.5%以下、Cr:2.5%以下、Mo:1.2%以下の範囲で含み、残部不可避的不純物及びFeからなる鋼板を、熱処理炉で加熱して鋼板組織をオーステナイトとした後に、当該鋼板を水冷して鋼板組織をマルテンサイトに変態させる焼入れを行う焼入れ工程と
焼戻しを行って高張力鋼する焼戻し工程と、
前記焼戻しを行った前記高張力鋼板の形状矯正を行う形状矯正工程と、
を有し、
前記形状矯正工程において、焼入れ後〜焼戻しまでの時間(t1)24時間以上とし、焼戻し終了から矯正までの時間(t3)60分以内として、矯正を行うことを特徴とする高張力鋼板形状の矯正方法。
C: 0.50% or less, Si: 0.70% or less, P: 0.05% or less, S: 0.05% or less, O: 0.007% or less, N: 0.01% or less in mass% And containing at least one of Ni, Cr and Mo in a range of Ni: 9.5% or less, Cr: 2.5% or less, Mo: 1.2% or less, the remainder being inevitable the steel sheet consisting of impurities and Fe, after the steel sheet structure and austenite is heated in a heat treatment furnace, a quenching step of performing quenching Ru the steel sheet is transformed to steel sheet structure with water cooling to martensite,
A tempering step of the high-tensile steel plate subjected to tempering,
A shape correction step of correcting the shape of the high-tensile steel sheet that has been tempered;
Have
In the straightening process, the time until hardening after-tempering (t1) of not less than 24 hours, the time from the tempering ends to correct (t3) as within 60 minutes, high-tensile steel plate shape and performing corrective Correction method.
記鋼板が、更に、Cuを0.5%以下含む、請求項に記載の高張力鋼板形状の矯正方法。 Before Symbol steel plate, further, 0.5% or less including the Cu, straightening method of high-tensile steel plate shape according to Motomeko 1. 焼入れおよび焼戻し後の降伏強度が、最終到達強度の60%以下である時間帯に、矯正を行う、請求項1又は2に記載の高張力鋼板形状の矯正方法。 Yield strength after quenching and tempering, the final to 60% or less times of arrival intensity, cormorants row corrective straightening method of high-tensile steel plate shape according to Motomeko 1 or 2. 焼入れおよび焼戻し後の降伏強度を、t1、t3及び予め求めたσy0.2%に基づいて予測し、σy0.2%が低値である時間帯で、矯正を実施する、請求項1〜3の何れか1項に記載の高張力鋼板形状の矯正方法。 The yield strength after quenching and tempering, is predicted on the basis of t1, t3 and previously determined .sigma.y 0.2%, in the time zone .sigma.y 0.2% is low, we implement corrective, of Motomeko 1-3 The correction method of the high-tensile steel plate shape according to any one of the above items.
JP2015175876A 2015-09-07 2015-09-07 Straightening method for high-tensile steel plate shape Active JP6613738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175876A JP6613738B2 (en) 2015-09-07 2015-09-07 Straightening method for high-tensile steel plate shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175876A JP6613738B2 (en) 2015-09-07 2015-09-07 Straightening method for high-tensile steel plate shape

Publications (2)

Publication Number Publication Date
JP2017052979A JP2017052979A (en) 2017-03-16
JP6613738B2 true JP6613738B2 (en) 2019-12-04

Family

ID=58320463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175876A Active JP6613738B2 (en) 2015-09-07 2015-09-07 Straightening method for high-tensile steel plate shape

Country Status (1)

Country Link
JP (1) JP6613738B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988112B2 (en) * 2017-03-17 2022-01-05 住友ベークライト株式会社 Photosensitive resin composition, manufacturing method of semiconductor device, resin film, cured resin film, and semiconductor device
JP6819469B2 (en) * 2017-06-06 2021-01-27 日本製鉄株式会社 Manufacturing method of heat-treated steel sheet
CN107723418A (en) * 2017-11-06 2018-02-23 贵州航天新力铸锻有限责任公司 A kind of heat treatment method of 45# material bars forging comprehensive mechanical property

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270912A (en) * 1975-11-05 1977-06-13 Nippon Kokan Kk <Nkk> Equipment for heat treatment of high tensile steel material
JP5015386B2 (en) * 2001-06-26 2012-08-29 Jfeスチール株式会社 Heat treatment method for thick steel plate
KR101854060B1 (en) * 2014-01-14 2018-05-02 가부시키가이샤 고베 세이코쇼 High-strength steel sheet and process for producing same

Also Published As

Publication number Publication date
JP2017052979A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5056876B2 (en) Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP5375916B2 (en) Manufacturing method of wear-resistant steel plate with excellent flatness
WO2016084283A1 (en) Method for manufacturing metal plates and quenching device
EP2529038B1 (en) Process for the heat treatment of metal strip material, and strip material produced in that way
KR20180001590A (en) Steel sheet for hot forming
US10344351B2 (en) Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
JP5234876B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
CN109072327B (en) Method for producing cold-rolled, welded steel sheets, and sheet produced thereby
JP6613738B2 (en) Straightening method for high-tensile steel plate shape
JP4998716B2 (en) Manufacturing method of wear-resistant steel plate
RU2018113405A (en) STEEL, PRODUCT OBTAINED FROM THE SPECIFIED STEEL AND METHOD FOR PRODUCING IT
JP6835046B2 (en) Thin steel sheet and its manufacturing method
KR20110127241A (en) Micro-alloyed carbon steel as texture-rolled strip steel, in particular for spring elements
JP5151354B2 (en) High tensile cold-rolled steel sheet and method for producing high-tensile cold-rolled steel sheet
KR101406444B1 (en) Ultra high strength cold rolled steel sheet having excellent elongation and bendability and method for manufacturing the same
CN114302978B (en) Steel sheet, member, and method for producing same
JP6796472B2 (en) Hollow member and its manufacturing method
US11970753B2 (en) Method of producing ultrahigh-strength steel sheets and steel sheets therefor
CN111032898B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
WO2016148045A1 (en) Steel sheet for hot pressing and method for producing same
CN109689238B (en) On-line manufacturing method of steel pipe
JP4192857B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2016084506A (en) Hot rolled steel sheet excellent in cold workability and production method therefor
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6613738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151