JP6613606B2 - Method for manufacturing thermoelectric conversion material and method for manufacturing thermoelectric conversion element - Google Patents

Method for manufacturing thermoelectric conversion material and method for manufacturing thermoelectric conversion element Download PDF

Info

Publication number
JP6613606B2
JP6613606B2 JP2015096411A JP2015096411A JP6613606B2 JP 6613606 B2 JP6613606 B2 JP 6613606B2 JP 2015096411 A JP2015096411 A JP 2015096411A JP 2015096411 A JP2015096411 A JP 2015096411A JP 6613606 B2 JP6613606 B2 JP 6613606B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
crucible
conversion material
melting
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015096411A
Other languages
Japanese (ja)
Other versions
JP2016213343A (en
Inventor
嘉信 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015096411A priority Critical patent/JP6613606B2/en
Publication of JP2016213343A publication Critical patent/JP2016213343A/en
Application granted granted Critical
Publication of JP6613606B2 publication Critical patent/JP6613606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数のP型熱電変換素子とN型熱電変換素子とを組み合わせて配列した熱電変換モジュールに用いられる熱電変換素子(P型熱電変換素子及びN型熱電変換素子)の製造方法に関する。   The present invention relates to a method for manufacturing a thermoelectric conversion element (P-type thermoelectric conversion element and N-type thermoelectric conversion element) used in a thermoelectric conversion module in which a plurality of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements are arranged in combination.

熱電変換モジュールは、一組の配線基板の間に、一対のP型熱電変換素子とN型熱電変換素子とを電極で接続状態に組み合わせたものを、P,N,P,Nの順に交互に配置されるように、電気的に直列に接続した構成とされ、両端を直流電源に接続して、ペルチェ効果により各型熱電変換素子中で熱を移動させる(P型では電流と同方向、N型では電流と逆方向に移動させる)、あるいは、両配線基板間に温度差を付与して各熱電変換素子にゼーベック効果により起電力を生じさせるもので、冷却や加熱あるいは発電モジュールとしての利用が可能である。   In the thermoelectric conversion module, a pair of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements are combined in a connected state with electrodes between a pair of wiring boards, in the order of P, N, P, and N. It is configured to be electrically connected in series so as to be arranged, both ends are connected to a DC power source, and heat is transferred in each type thermoelectric conversion element by the Peltier effect (in the P type, the same direction as the current, N In the mold, it is moved in the direction opposite to the current), or a temperature difference is given between both wiring boards to generate an electromotive force in each thermoelectric conversion element by the Seebeck effect. Is possible.

ところで、P型熱電変換素子、N型熱電変換素子の両熱電変換素子は、一般には、ホットプレスやプラズマ放電焼結などの方法で粉体を固め、その圧粉体(熱電変換材料)から素子を切り出すという方法が用いられる。その際、粉体の作製にはガスアトマイズなどの方法の他に、溶解、鋳造により所望の熱電変換素子の母合金(熱電変換材料)を作製し、それを粉砕して粉体を作製するという方法も行われている。
しかし、このような方法ではプロセスが長く、材料のロスが多くなりコスト高になる。さらに、粉体を作製するプロセスの間に不純物が混入し、熱電変換特性が低下するおそれもある。
By the way, both the P-type thermoelectric conversion element and the N-type thermoelectric conversion element are generally obtained by solidifying powder by a method such as hot pressing or plasma discharge sintering, and using the green compact (thermoelectric conversion material) as an element. The method of cutting out is used. At that time, in addition to gas atomization and the like, powder is produced by melting and casting to produce a desired mother alloy (thermoelectric conversion material) of a thermoelectric conversion element, and then pulverizing it to produce powder. Has also been done.
However, this method requires a long process, increases material loss, and increases costs. Furthermore, impurities may be mixed during the process of producing the powder, and the thermoelectric conversion characteristics may be deteriorated.

そこで、熱電変換材料を溶解、鋳造により作製する方法が提案されている。
例えば、特許文献1には、熱電変換材料の原料を溶融させる工程と、前記溶融された熱電変換材料の原料を凝固させる工程とを有しており、少なくとも凝固工程において、熱電変換材料の原料の溶融物に超音波振動を印加することが開示されている。この方法によれば、結晶の配向を揃えるとともに、結晶粒を微細化し、これにより、熱伝導率を小さくし、性能指数を向上させることが可能になると記載されている。
Therefore, a method for producing a thermoelectric conversion material by melting and casting has been proposed.
For example, Patent Document 1 includes a step of melting a raw material of a thermoelectric conversion material and a step of solidifying the molten raw material of the thermoelectric conversion material. At least in the solidification step, the raw material of the thermoelectric conversion material Application of ultrasonic vibration to the melt is disclosed. According to this method, it is described that it is possible to make the crystal orientation uniform and to refine the crystal grains, thereby reducing the thermal conductivity and improving the figure of merit.

特許文献2には、冷却板の上に複数の貫通孔を有する型材を設置する工程と、型材内に熱電変換材料の溶湯を注湯する工程と、型材内で熱電変換材料の溶湯を凝固させて熱電変換素子を形成する工程とを有する製造方法が開示されている。この製造方法によれば、熱電変換材料の溶湯が急冷されるため、熱電変換素子の高さ方向に結晶配向が揃い、電気抵抗が低減でき、また結晶粒径が小さいため熱伝導率が低く、高い性能が得られると記載されている。   In Patent Document 2, a process of installing a mold material having a plurality of through holes on a cooling plate, a process of pouring a molten thermoelectric conversion material in the mold material, and solidifying the molten thermoelectric conversion material in the mold material. And a process for forming a thermoelectric conversion element is disclosed. According to this manufacturing method, since the melt of the thermoelectric conversion material is rapidly cooled, the crystal orientation is aligned in the height direction of the thermoelectric conversion element, the electrical resistance can be reduced, and the crystal grain size is small, so the thermal conductivity is low, It is described that high performance can be obtained.

特開2005−311094号公報JP 2005-311094 A 特開2007−194438号公報JP 2007-194438 A

ところで、粉体を作製してから、これをホットプレスやプラズマ放電焼結によって固める方法は、粉体を良く混ぜて焼結することで、組成の均一化を図ることができ、また、カーボンシートやグラファイトシート等の離型材を用いることにより、型と熱電変換材料が密着しないので、それによる割れを防止することができる。
これに対して、特許文献に開示される溶解鋳造によって熱電変換材料を製造する方法では、組成が不均一になり易く、また、冷却時に型に溶着し、熱応力によって割れが生じ易いという問題がある。
By the way, after producing powder, the method of solidifying this by hot pressing or plasma discharge sintering can achieve uniform composition by mixing and sintering the powder well, By using a mold release material such as or a graphite sheet, the mold and the thermoelectric conversion material are not in close contact with each other, so that cracking due to this can be prevented.
On the other hand, in the method of producing a thermoelectric conversion material by melt casting disclosed in the patent document, there is a problem that the composition is likely to be non-uniform, and it is likely to be welded to the mold during cooling and easily cracked due to thermal stress. is there.

本発明は、このような事情に鑑みてなされたものであり、熱電変換材料を溶解鋳造によって製造する場合に、組成を均一化し、割れの発生を防止することができる製造方法を提供することを目的とする。   This invention is made in view of such a situation, and when manufacturing a thermoelectric conversion material by melt | dissolution casting, providing a manufacturing method which can make a composition uniform and can prevent generation | occurrence | production of a crack. Objective.

本発明の熱電変換材料の製造方法は、炉の中に、溶解用るつぼと凝固用るつぼとを設置して、前記炉内を不活性雰囲気又は還元性雰囲気としておき、熱電変換材料を構成する各元素の原料を前記溶解用るつぼ内で溶解する溶解工程と、前記溶解工程後に、予熱しておいた前記凝固用るつぼに熱電変換材料の溶湯を移して凝固させる凝固工程とを有し、前記溶解工程は、第1段階及び前記第1段階より加熱温度が高い第2段階からなり、前記溶解用るつぼの開口を開放した状態で前記溶解用るつぼを加熱し、前記原料に液相が生じた段階で前記溶解用るつぼの開口を閉塞した状態とし、次いで、その閉塞状態で前記原料を溶解し、前記凝固工程では、熱電変換材料を1030℃まで冷却する際の冷却速度を15℃/分以上90℃/分以下とする。 The method for producing a thermoelectric conversion material according to the present invention includes a melting crucible and a solidification crucible installed in a furnace, and the furnace is placed in an inert atmosphere or a reducing atmosphere to constitute the thermoelectric conversion material. a dissolution step of dissolving an element raw material in the melting crucible, after the dissolution step, and a solidifying step of solidifying transferred the melt of the thermoelectric conversion material into the coagulation crucible preheated, the dissolution The process includes a first stage and a second stage having a heating temperature higher than that of the first stage, and the melting crucible is heated with the opening of the melting crucible opened to produce a liquid phase in the raw material. The melting crucible opening is closed, and then the raw material is melted in the closed state. In the solidification step, the cooling rate when cooling the thermoelectric conversion material to 1030 ° C. is 15 ° C./min or more 90 ℃ / min or less

熱電変換材料としては、ビスマステルル合金、スクッテルダイト合金、シリサイド合金、ハーフホイスラー合金等が用いられるが、これらの熱電変換材料の成分には、種々の融点、沸点を有する元素が混在しており、各元素の個々の材料を溶解すると、沸点の低い元素が先に蒸発するため、所望の組成の熱電変換材料を得ることが難しい。   As thermoelectric conversion materials, bismuth tellurium alloy, skutterudite alloy, silicide alloy, half-Heusler alloy, etc. are used, but these thermoelectric conversion materials contain elements with various melting points and boiling points. When an individual material of each element is dissolved, an element having a low boiling point evaporates first, so that it is difficult to obtain a thermoelectric conversion material having a desired composition.

本発明においては、沸点の低い元素あるいは蒸気圧の高い元素と、融点の高い元素とを合金化するとき、原料に液相が生じたら溶解用るつぼの開口を蓋で覆うことにより、沸点の低い元素あるいは蒸気圧の高い元素の蒸発を抑え、溶湯のストイキオメトリを維持している。
また、溶解された原料は、そのまま溶解用るつぼ内で凝固させると凝固に時間がかかり、結晶が成長し微細化するのが難しい為、溶湯を凝固用るつぼに移し変え、結晶が割れないように凝固用るつぼの温度を制御しながら出来る限り素早く凝固させることにより、微細な結晶粒の熱電変換材料を得ることができる。そして、得られた熱電変換材料を所望の形に切り出すことによって熱電変換素子を得ることができる。
In the present invention, when an element having a low boiling point or an element having a high vapor pressure and an element having a high melting point are alloyed, if the liquid phase is generated in the raw material, the opening of the melting crucible is covered with a lid, thereby lowering the boiling point. It suppresses evaporation of elements or elements with high vapor pressure, and maintains the stoichiometry of the melt.
Also, if the melted raw material is solidified in the melting crucible as it is, it takes a long time to solidify, and it is difficult to grow and refine the crystal, so the molten metal is transferred to the solidification crucible so that the crystal does not break. A thermoelectric conversion material with fine crystal grains can be obtained by solidifying as quickly as possible while controlling the temperature of the crucible for solidification. And the thermoelectric conversion element can be obtained by cutting out the obtained thermoelectric conversion material in a desired shape.

本発明の熱電変換材料の製造方法において、前記溶解工程では、前記溶解用るつぼ内の溶湯を撹拌するとよい。
溶解用るつぼ内の溶湯を撹拌することにより、溶湯中の組成を均一化することができる。攪拌機には、セラミックス製の羽根を有する攪拌翼を用い、この羽根を回転させて攪拌するとよい。
In the method for producing a thermoelectric conversion material of the present invention, in the melting step, the molten metal in the melting crucible may be stirred.
By stirring the molten metal in the melting crucible, the composition in the molten metal can be made uniform. As the stirrer, a stirring blade having ceramic blades is used, and the blades are rotated and stirred.

本発明の熱電変換材料の製造方法において、前記凝固用るつぼの内面に離型層を形成しておくとよい。
凝固用るつぼの内面に離型層を形成しておくことにより、溶湯とるつぼとの反応を抑えて、るつぼとの溶着を防止することができる。このため、結晶が凝固し冷却する際にるつぼと熱電変換材料のインゴットとの拘束がなくなり、溶着による熱電変換材料の割れを防止できる。離型層にはシリコンナイトライド、ボロンナイトライドを用いることが好ましい。
In the method for producing a thermoelectric conversion material of the present invention, a release layer may be formed on the inner surface of the solidifying crucible.
By forming a release layer on the inner surface of the solidifying crucible, the reaction with the molten metal crucible can be suppressed, and welding with the crucible can be prevented. For this reason, when the crystal is solidified and cooled, there is no restriction between the crucible and the ingot of the thermoelectric conversion material, and cracking of the thermoelectric conversion material due to welding can be prevented. It is preferable to use silicon nitride or boron nitride for the release layer.

本発明の熱電変換素子の製造方法は、前述の熱電変換材料の製造方法により熱電変換素子を製造する方法であって、前記凝固用るつぼは、熱電変換材料を熱電変換素子の横断面形状で角型に凝固させるものであり、前記凝固工程の後に、前記角型に凝固した熱電変換材料を長さ方向の途中位置で切断して熱電変換素子を形成する。
凝固用るつぼにより熱電変換素子のほぼ最終形状に近い形状で凝固させ、これを切断して熱電変換素子とするため効率が良い。
The method for producing a thermoelectric conversion element of the present invention is a method for producing a thermoelectric conversion element by the above-described method for producing a thermoelectric conversion material, wherein the crucible for solidification has an angular shape in the cross-sectional shape of the thermoelectric conversion element. After the solidification step, the thermoelectric conversion material solidified into the square shape is cut at a halfway position in the length direction to form a thermoelectric conversion element.
A solidification crucible is used to solidify the thermoelectric conversion element in a shape close to the final shape, and this is cut into a thermoelectric conversion element, which is efficient.

本発明の製造方法によれば、溶解工程において沸点の低いあるいは蒸気圧の高い元素の蒸発を防止することができるので、所望の組成の熱電変換材料を得ることができ、また、溶解用と凝固用とでるつぼを分けたので、凝固用るつぼの温度を制御しながら冷却することができ、微細な結晶粒として、熱伝導率が低く、高い性能の熱電変換材料を得ることができる。   According to the production method of the present invention, evaporation of an element having a low boiling point or a high vapor pressure can be prevented in the melting step, so that a thermoelectric conversion material having a desired composition can be obtained. Since the crucible is divided into the one for use, it can be cooled while controlling the temperature of the crucible for solidification, and a high performance thermoelectric conversion material with low thermal conductivity can be obtained as fine crystal grains.

本発明の製造方法を実施するための装置の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the apparatus for enforcing the manufacturing method of this invention. 凝固用るつぼの他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the crucible for solidification.

以下、本発明の実施形態について、図面を参照しながら説明する。
本発明が適用される熱電変換材料としては、ビスマステルル合金、スクッテルダイト合金、シリサイド合金、ハーフホイスラー合金等が用いられる。
代表的な熱電変換材料の物性を表1に示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As the thermoelectric conversion material to which the present invention is applied, a bismuth tellurium alloy, a skutterudite alloy, a silicide alloy, a half-Heusler alloy, or the like is used.
Table 1 shows the physical properties of typical thermoelectric conversion materials.

Figure 0006613606
Figure 0006613606

この表1からわかるように、各熱電変換材料は、融点及び沸点が大きく異なる元素からなる合金である。このような熱電変換材料は、これら元素単体の原料を溶解して撹拌した後、凝固することにより製造される。
その製造のための装置として、図1に示すように、一つの炉の中に、溶解用るつぼと凝固用るつぼとを設置したものが用いられる。
As can be seen from Table 1, each thermoelectric conversion material is an alloy composed of elements having greatly different melting points and boiling points. Such a thermoelectric conversion material is produced by melting and stirring these elemental raw materials and then solidifying them.
As an apparatus for the production, as shown in FIG. 1, an apparatus in which a melting crucible and a solidifying crucible are installed in one furnace is used.

この製造装置10は、内部を密閉可能な炉11と、その炉11の中に設置された溶解用るつぼ1及び凝固用るつぼ2と、これらるつぼ1,2を個別に加熱するヒータ3,4と、溶解用るつぼ1の開口1aを閉塞可能な蓋5と、溶解用るつぼ1内の溶湯を撹拌するための羽根6aを有する攪拌機6とを備えている。蓋5の中心には攪拌棒6bを通す穴5aがあり、回転時のすべりとるつぼ1内の気密性を維持するために、攪拌棒6bの蓋5の穴5aと接する攪拌棒6bの部分には、厚さ0.1〜0.2mmの黒鉛シートを巻き付けるなどによりブッシュ6cが設けられている。さらに、炉壁において、攪拌棒6bは磁性流体シールユニットを用いてシールされ、炉内雰囲気を保ちながら炉外の回転体に接続されている。なお、磁性流体シールユニットは水冷され、磁気シール部の温度上昇を抑えている。
炉11は、ガス導入管12とガス排出管13とが備えられており、これら管12,13を通して、炉11内を真空にし、あるいは還元性雰囲気等の所定の雰囲気に設定することができる。
The manufacturing apparatus 10 includes a furnace 11 capable of sealing the inside, a melting crucible 1 and a solidification crucible 2 installed in the furnace 11, and heaters 3 and 4 for individually heating the crucibles 1 and 2. And a lid 5 capable of closing the opening 1a of the melting crucible 1, and a stirrer 6 having blades 6a for stirring the molten metal in the melting crucible 1. There is a hole 5a through which the stirring rod 6b passes in the center of the lid 5, and in order to maintain airtightness in the sliding crucible 1 during rotation, the portion of the stirring rod 6b in contact with the hole 5a of the lid 5 of the stirring rod 6b is provided. The bush 6c is provided by winding a graphite sheet having a thickness of 0.1 to 0.2 mm. Further, on the furnace wall, the stirring rod 6b is sealed using a magnetic fluid sealing unit, and is connected to a rotating body outside the furnace while maintaining the atmosphere in the furnace. The magnetic fluid seal unit is water-cooled to suppress the temperature rise of the magnetic seal portion.
The furnace 11 is provided with a gas introduction pipe 12 and a gas discharge pipe 13, and the inside of the furnace 11 can be evacuated or set to a predetermined atmosphere such as a reducing atmosphere through these pipes 12 and 13.

溶解用るつぼ1及び凝固用るつぼ2は、それぞれカーボンやアルミナ等により形成され、内面の全面にシリコンナイトライド(Si)からなる離型層7が形成されている。このシリコンナイトライドは、例えば、宇部興産株式会社製の高純度窒化珪素粉末(例えば商品名SN−E03)が用いられ、これを純水とポリビニルアルコールに混ぜて、その懸濁液(例えば、1kgの窒化珪素粉末と1.5kgのポリビニルアルコールと1.5kgの純水とを混合して得られる)をるつぼ1,2の内面に複数回(例えば、30回)吹き付けた後、加熱してるつぼ1,2内面に固着することにより離型層7が形成される。なお、前述した攪拌機6の羽根6aはアルミナやSiCによって形成することができる。さらに、アルミナやSiCの羽根6aにシリコンナイトライドやボロンナイトライドをコーティングして使用しても良い。
なお、離型層7をボロンナイトライドによって形成してもよい。
The melting crucible 1 and the solidifying crucible 2 are each formed of carbon, alumina, or the like, and a release layer 7 made of silicon nitride (Si 3 N 4 ) is formed on the entire inner surface. As this silicon nitride, for example, a high-purity silicon nitride powder (for example, trade name SN-E03) manufactured by Ube Industries, Ltd. is used, which is mixed with pure water and polyvinyl alcohol, and a suspension (for example, 1 kg). Obtained by mixing a silicon nitride powder of 1.5 kg of polyvinyl alcohol and 1.5 kg of pure water on the inner surface of the crucibles 1 and 2 (for example, 30 times) and then heating the crucible. The release layer 7 is formed by adhering to the inner surfaces of 1 and 2. In addition, the blade | wing 6a of the stirrer 6 mentioned above can be formed with an alumina or SiC. Further, alumina nitride or SiC blade 6a may be coated with silicon nitride or boron nitride.
Note that the release layer 7 may be formed of boron nitride.

また、凝固用るつぼ2の内側には熱電対などの温度センサ8が設けられている。この温度センサ8は、アルミナ等の材料から形成された保護管9内に収容されており、離形層7は、この保護管9の外面も覆うように形成されている。
また、溶解用るつぼ1には傾転機構(図示略)が備えられており、溶解用るつぼ1を垂直の起立姿勢から傾けて、内部の溶湯を注出して凝固用るつぼ2に移し変えることができるようになっている。
この傾転機構及び攪拌機6の各駆動部(ともに図示略)は炉11の外部に設置される。
A temperature sensor 8 such as a thermocouple is provided inside the solidification crucible 2. The temperature sensor 8 is accommodated in a protective tube 9 made of a material such as alumina, and the release layer 7 is formed so as to cover the outer surface of the protective tube 9.
Further, the melting crucible 1 is provided with a tilting mechanism (not shown), and the melting crucible 1 is tilted from a vertical standing posture, and the molten metal inside is poured out and transferred to the solidification crucible 2. It can be done.
The tilting mechanism and each drive unit (both not shown) of the stirrer 6 are installed outside the furnace 11.

次に、この製造装置10を用いて熱電変換材料及び熱電変換素子を製造する方法について説明する。
まず、溶解用るつぼ1に原料を投入する。
例えば、シリサイド系のP型熱電変換材料の場合は、原料としてMnとSiが用いられる。シリサイド系のN型熱電変換材料の場合には、MgとSi、さらにSb、Al、Sn、Agなどの元素を添加して熱電特性(熱伝導度、電気伝導度、ゼーベック係数等)の向上を図る。個別原料はそれぞれペレット状、粒状、粉状等の形態で混ぜて投入する。
次に、炉11内をまず真空引きしてアルゴンガス等の不活性ガスで炉11内を置換した後、再度真空引きし、その後、不活性ガス、又は不活性ガスに水素を混合した還元性ガスを導入して、その不活性ガス又は還元性ガスを炉11内に流通させる。この一連の操作によって溶解るつぼ1上部の酸素を追い出す。還元性ガスは水素の爆発限界を避け、例えば、アルゴン+1%〜4%水素、あるいはアルゴン+75%〜100%水素等を使用することができる。
Next, a method for manufacturing a thermoelectric conversion material and a thermoelectric conversion element using the manufacturing apparatus 10 will be described.
First, the raw material is put into the melting crucible 1.
For example, in the case of a silicide-based P-type thermoelectric conversion material, Mn and Si are used as raw materials. In the case of silicide-based N-type thermoelectric conversion materials, Mg and Si, and further elements such as Sb, Al, Sn, and Ag can be added to improve thermoelectric properties (thermal conductivity, electrical conductivity, Seebeck coefficient, etc.). Plan. Individual raw materials are mixed and fed in the form of pellets, granules, powders, and the like.
Next, the inside of the furnace 11 is first evacuated, and the inside of the furnace 11 is replaced with an inert gas such as argon gas, and then evacuated again, and then the reducing gas obtained by mixing the inert gas or the inert gas with hydrogen. A gas is introduced and the inert gas or reducing gas is circulated in the furnace 11. The oxygen in the upper part of the melting crucible 1 is driven out by this series of operations. The reducing gas avoids the explosion limit of hydrogen, and for example, argon + 1% -4% hydrogen or argon + 75% -100% hydrogen can be used.

そして、溶解用るつぼ1を加熱して原料を溶解する。なお、溶解中にも不活性ガス又は還元性ガスを流通させておく。この加熱は2段階で行われ、まず第1段階の温度に保持した後、それより高い第2段階の温度に保持する。MgSi(N型)の場合、具体的には、第1段階として650℃〜950℃で、固相反応によってMgSiの粒子が形成される時間、例えば60分〜240分保持し、その後、第2段階としてMgSiが溶解する温度、1085℃〜1200℃に30分〜180分保持する。その間、少なくとも原料の一部に液相が生じるようになったら(例えば700℃以上の温度になったら)、溶解用るつぼ1に蓋5をする。
なお、原料の一部に液相が生じる前、即ち、加熱前から溶解用るつぼ1に蓋5をすることも可能である。しかしながら、液相が生じた状態で溶解用るつぼ1に蓋5をする場合、加熱中に原料表面に付着した水分や有機物等の不純物を揮発させることが可能であり、また、還元性ガスを使用した場合には原料表面の酸化物を還元することも可能となる。よって、ガスとして還元性ガスを用い、少なくとも原料の一部に液相が生じた状態で溶解用るつぼ1に蓋5をすることが望ましい。
Then, the melting crucible 1 is heated to dissolve the raw material. In addition, an inert gas or a reducing gas is circulated during dissolution. This heating is performed in two stages. First, the first stage temperature is maintained, and then the second stage temperature is maintained higher. In the case of Mg 2 Si (N-type), specifically, the first stage is held at 650 ° C. to 950 ° C., and the time during which Mg 2 Si particles are formed by solid-phase reaction, for example, 60 to 240 minutes, Thereafter, as a second stage, the temperature is maintained at 1085 ° C. to 1200 ° C. for 30 minutes to 180 minutes at which Mg 2 Si is dissolved. Meanwhile, when a liquid phase is generated at least in part of the raw material (for example, when the temperature reaches 700 ° C. or higher), the melting crucible 1 is covered with the lid 5.
It is also possible to cover the melting crucible 1 before the liquid phase is generated in a part of the raw material, that is, before heating. However, when the melting crucible 1 is covered with the lid 5 in a state where a liquid phase is generated, it is possible to volatilize impurities such as moisture and organic substances adhering to the surface of the raw material during heating, and a reducing gas is used. In this case, the oxide on the raw material surface can be reduced. Therefore, it is desirable to use a reducing gas as the gas and cover the melting crucible 1 with a liquid phase in at least a part of the raw material.

原料を溶解していくと、沸点の低い元素の原料(MgSiの場合であるとMg)が先に蒸発し始めるが、蓋5をすることにより、その蒸気は溶解用るつぼ1の外部には流出しない。そして、第2段階の温度である1085℃〜1200℃に保持した状態で内部の原料をすべて溶解させる。この原料がすべて溶解したら、攪拌機6を作動させて、その羽根6aにより溶解用るつぼ1内の溶湯を撹拌する。羽根の回転数は10〜120rpmである。攪拌時間は5分〜30分とすると良い。 When the raw material is dissolved, the raw material of the element having a low boiling point (Mg in the case of Mg 2 Si) begins to evaporate first, but by covering the lid 5, the vapor is transferred to the outside of the melting crucible 1. Will not leak. And all the raw materials inside are melt | dissolved in the state hold | maintained at 1085 to 1200 degreeC which is the temperature of a 2nd step. When all of the raw materials are dissolved, the stirrer 6 is operated, and the molten metal in the melting crucible 1 is stirred by the blade 6a. The rotation speed of a blade | wing is 10-120 rpm. The stirring time is preferably 5 minutes to 30 minutes.

この1085℃〜1200℃で5分〜30分、溶湯を攪拌した後、撹拌を停止して蓋5を開け、傾転機構8によって溶解用るつぼ1を傾転させ、内部の溶湯を凝固用るつぼ2に移し変える。
この溶湯の移し変えに際しては、凝固用るつぼ2を予めヒータ4で加熱して700℃〜1030℃に保温しておく。
そして、この凝固用るつぼ2に溶湯を移し変える。
この際、溶湯注入後、1030℃までの冷却速度を15℃/分以上90℃/分以下となるよう冷却する。1030℃までの冷却速度が15℃/分未満の場合、得られる熱電変換材料の結晶粒径が大きくなる。このような熱電変換材料を用いて熱電変換素子を作製すると、熱伝導率が高くなり、無次元性能指数が低下するため、発電変換効率が低下することとなる。1030℃までの冷却速度が90℃/分を超えると、熱電変換材料に割れが生じやすい。よって、少なくとも溶湯の温度が1030℃にまで低下するまでは、冷却速度を15℃/分以上90℃/分以下とする必要がある。
そして、凝固用るつぼ2にて、500℃〜950℃に維持した状態で10分〜120分保持した後、ヒータ4からの加熱を停止して、炉冷する。この炉冷の際の冷却速度は、1℃/分以上10℃以下/分とするとよい。
After stirring the molten metal at 1085 ° C. to 1200 ° C. for 5 to 30 minutes, stirring is stopped, the lid 5 is opened, the melting crucible 1 is tilted by the tilting mechanism 8, and the molten metal inside is solidified. Move to 2.
When the molten metal is transferred, the solidification crucible 2 is heated in advance by the heater 4 and kept at 700 ° C. to 1030 ° C.
Then, the molten metal is transferred to the crucible 2 for solidification.
At this time, after pouring the molten metal, the cooling rate to 1030 ° C. is cooled to 15 ° C./min to 90 ° C./min. When the cooling rate to 1030 ° C. is less than 15 ° C./min, the crystal grain size of the resulting thermoelectric conversion material becomes large. When a thermoelectric conversion element is produced using such a thermoelectric conversion material, the thermal conductivity increases and the dimensionless figure of merit decreases, so that the power generation conversion efficiency decreases. When the cooling rate to 1030 ° C. exceeds 90 ° C./min, cracks are likely to occur in the thermoelectric conversion material. Therefore, it is necessary to set the cooling rate to 15 ° C./min or more and 90 ° C./min or less until at least the temperature of the molten metal is lowered to 1030 ° C.
And after hold | maintaining for 10 minutes-120 minutes in the state maintained at 500 to 950 degreeC with the crucible 2 for solidification, the heating from the heater 4 is stopped and furnace cooling is carried out. The cooling rate during the furnace cooling is preferably 1 ° C./min to 10 ° C./min.

ここで、冷却速度の測定方法を説明する。まず、凝固用るつぼ2の内部側面に内径4mm、外形6mmのアルミナ保護管の封じた側をるつぼ底部に接触させ、凝固用るつぼ内面の側壁の縦方向に沿って絶縁耐熱接着剤(例えば、商品名:RESBOND 989)を用いて固定する。そして、アルミナ保護管の外表面には、凝固用るつぼ2と同様の離型層を形成する。そして、アルミナ保護管内部に封じた側の底部から1cm上の位置にR(白金ロジウム合金(13%ロジウム)−白金)熱電対の先端をいれて、凝固用るつぼ内の温度を測定し、冷却速度を求めた。   Here, a method for measuring the cooling rate will be described. First, the sealed side of the alumina protective tube having an inner diameter of 4 mm and an outer diameter of 6 mm is brought into contact with the inner side surface of the solidifying crucible 2 with the bottom of the crucible, and an insulating heat-resistant adhesive (for example, a product) Name: RESBOND 989). A release layer similar to the solidification crucible 2 is formed on the outer surface of the alumina protective tube. Then, insert the tip of an R (platinum rhodium alloy (13% rhodium) -platinum) thermocouple at a position 1 cm above the bottom on the side sealed inside the alumina protective tube, measure the temperature in the crucible for solidification, and cool The speed was determined.

なお、溶解用るつぼ1内で溶湯をそのまま冷却して凝固させると、凝固までに時間がかかり、部分的に濃縮が生じるなど、目的とする組成が得られない。   Note that if the molten metal is cooled and solidified in the melting crucible 1 as it is, it takes time to solidify, and a desired composition cannot be obtained, such as partial concentration.

そして、得られた熱電変換材料を所望の形に切り出すことによって、熱電変換素子を製造することができる。 And the thermoelectric conversion element can be manufactured by cutting out the obtained thermoelectric conversion material into a desired shape.

このようにして原料を溶解して冷却することにより、目的とする組成で、結晶粒が微細とされた熱電変換材料を得ることができ、この熱電変換材料から、熱伝導性が低く高い性能を有する熱電変換素子を得ることができる。また、るつぼ1,2の内面にシリコンナイトライドの離型層7を形成しておくことにより、るつぼ1,2との溶着が防止され、熱電変換材料の割れの発生を防止することができ、高い品質の熱電変換材料を歩留まり良く生産することができる。   By melting the raw material in this way and cooling, a thermoelectric conversion material having a crystal grain with a target composition can be obtained. From this thermoelectric conversion material, the thermal conductivity is low and the performance is high. The thermoelectric conversion element which has can be obtained. Moreover, by forming the release layer 7 of silicon nitride on the inner surfaces of the crucibles 1 and 2, welding with the crucibles 1 and 2 can be prevented, and the occurrence of cracks in the thermoelectric conversion material can be prevented. High quality thermoelectric conversion materials can be produced with good yield.

図2は、凝固用るつぼの他の例を示している。この凝固用るつぼ21は、複数個のキャビティ22を有しており、各キャビティ22が、最終的な熱電変換素子の横断面形状の角型の材料を得ることができる大きさに形成されている。
この凝固用るつぼ21を用いることにより、熱電変換素子をより効率的に製造することができる。
なお、この凝固用るつぼ21の場合、複数個のキャビティ22のうちの一つのキャビティ22aに熱電対等の温度センサ8が挿入されており、このキャビティ22aを除く他のキャビティ22内に溶湯が充填される。
FIG. 2 shows another example of a solidification crucible. The crucible 21 for solidification has a plurality of cavities 22, and each cavity 22 is formed to have a size capable of obtaining a rectangular material having a cross-sectional shape of the final thermoelectric conversion element. .
By using this crucible 21 for solidification, a thermoelectric conversion element can be manufactured more efficiently.
In the case of the crucible 21 for solidification, the temperature sensor 8 such as a thermocouple is inserted into one of the cavities 22a, and the other cavities 22 except the cavity 22a are filled with molten metal. The

以上、実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上記以外の種々の変更を加えることも可能である。   Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and various modifications other than those described above can be added without departing from the spirit of the present invention.

前述した製造方法に従って、N型マグネシウムシリサイド(融点1085℃)からなる熱電変換材料を種々の条件で作製して評価した。
溶解用るつぼ、凝固用るつぼともにアルミナ製のものを用意し、後述の実施例5を除き、内面にシリコンナイトライドの離型層をコーティングしたものを用いた。各実施例、比較例の原料としては、いずれも以下のものを準備した。
Mg:純度99.9%(3N)、直径6mm、長さ5mmのワイヤーカット材を300g
Si:純度99.999%(5N)、最大径5mmの破砕状のものを171g
Sb:純度99.9%(3N)、直径300μm以下の粗粉末状のものを11.3g
According to the manufacturing method described above, thermoelectric conversion materials made of N-type magnesium silicide (melting point: 1085 ° C.) were prepared and evaluated under various conditions.
Both a melting crucible and a solidifying crucible were prepared from alumina. Except for Example 5 described later, an inner surface coated with a release layer of silicon nitride was used. As raw materials for each of Examples and Comparative Examples, the following were prepared.
Mg: 300 g of a wire cut material having a purity of 99.9% (3N), a diameter of 6 mm, and a length of 5 mm
Si: 171 g of a pulverized product having a purity of 99.999% (5N) and a maximum diameter of 5 mm
Sb: 11.3 g of a coarse powdery product having a purity of 99.9% (3N) and a diameter of 300 μm or less

これらの原料の溶解・凝固の条件を変えて、以下の実施例、比較例の熱電変換材料を作製した。また、原料を溶解する際に、炉内を真空引きした後、アルゴンガスで置換し、再度真空引きした後、アルゴンに4%水素を混合した還元性ガスを原料が溶解して凝固が完了するまで流した。凝固完了後は、不活性ガスであるアルゴンを炉内温度が300℃になるまで流通させた。
また、得られた熱電変換材料の結晶粒径を測定した。結晶粒径は、二次電子走査電子顕微鏡(SEM)を用いて、熱電変換材料の任意の領域を10か所測定し、面内の結晶粒子の個数を数え、測定領域の面積をその個数で割り、結晶粒子の平均面積を求めた。その平均面積の平方根を求め、その値を結晶粒径とした。
各実施例、比較例の条件及びその作製結果は以下の通りである。
The thermoelectric conversion materials of the following Examples and Comparative Examples were produced by changing the conditions for melting and solidifying these raw materials. When the raw material is melted, the inside of the furnace is evacuated, replaced with argon gas, evacuated again, and then the raw material is dissolved in a reducing gas in which 4% hydrogen is mixed with argon to complete solidification. I washed it up. After the completion of solidification, argon as an inert gas was circulated until the furnace temperature reached 300 ° C.
Further, the crystal grain size of the obtained thermoelectric conversion material was measured. The crystal grain size is determined by measuring 10 arbitrary regions of the thermoelectric conversion material using a secondary electron scanning electron microscope (SEM), counting the number of crystal particles in the plane, and calculating the area of the measurement region by the number. The average area of the crystal grains was determined. The square root of the average area was determined and the value was taken as the crystal grain size.
The conditions of each example and comparative example and the production results are as follows.

(実施例1)
条件:内容積が500cmの溶解用るつぼ内に原料を投入して850℃まで昇温した後、850℃に4時間保持し、その後1150℃で60分保持した。その際、700℃より溶解用るつぼに蓋をし、1150℃で5分間蓋をした状態で攪拌した。攪拌を止め、1150℃で5分間放置した後に蓋をあけ、950℃に保温した内容積300cmの凝固用るつぼに溶湯を注ぎ、凝固後900℃まで降温し、900℃で1時間保持した後、炉冷した。凝固用るつぼに溶湯を注いでから1030℃までの冷却速度は、25℃/分であった。
結果:結晶に割れがなく、るつぼとの溶着が見られず、凝固用るつぼから容易に熱電変換材料を取り出すことができた。得られた熱電変換材料の結晶粒径は36μmであった。
Example 1
Conditions: The raw material was put into a melting crucible having an internal volume of 500 cm 3 , heated to 850 ° C., held at 850 ° C. for 4 hours, and then held at 1150 ° C. for 60 minutes. At that time, the melting crucible was covered from 700 ° C., and stirred at 1150 ° C. for 5 minutes. Stirring was stopped, the mixture was left at 1150 ° C. for 5 minutes, then the lid was opened, the molten metal was poured into a solidification crucible with an internal volume of 300 cm 3 kept at 950 ° C., cooled to 900 ° C., and held at 900 ° C. for 1 hour. The furnace was cooled. The cooling rate from pouring the molten metal into the solidification crucible to 1030 ° C. was 25 ° C./min.
Result: There was no crack in the crystal, no welding with the crucible was observed, and the thermoelectric conversion material could be easily taken out from the crucible for solidification. The crystal grain size of the obtained thermoelectric conversion material was 36 μm.

(実施例2)
条件:内容積が500cmの溶解用るつぼ内に原料を投入して850℃まで昇温した後、850℃に4時間保持し、その後1120℃で60分保持した。その際、700℃より溶解用るつぼに蓋をし、1120℃で5分間蓋をした状態で攪拌した。攪拌を止め、1120℃で5分間放置した後に蓋をあけ、900℃に保温した内容積300cmの凝固用るつぼに溶湯を注ぎ、900℃で1時間保持した後、炉冷した。凝固用るつぼに溶湯を注いでから1030℃までの冷却速度は、45℃/分であった。
結果:結晶に割れがなく、るつぼとの溶着が見られず、凝固用るつぼから容易に結晶を取り出すことができた。得られた熱電変換材料の結晶粒径は25μmであった。
(Example 2)
Conditions: The raw material was put into a melting crucible having an internal volume of 500 cm 3 , heated to 850 ° C., held at 850 ° C. for 4 hours, and then held at 1120 ° C. for 60 minutes. At that time, the melting crucible was capped at 700 ° C., and the mixture was stirred at 1120 ° C. for 5 minutes. Stirring was stopped, the mixture was left at 1120 ° C. for 5 minutes, then the lid was opened, the molten metal was poured into a crucible for solidification having an internal volume of 300 cm 3 kept at 900 ° C., kept at 900 ° C. for 1 hour, and then cooled in the furnace. The cooling rate from pouring the molten metal into the solidification crucible to 1030 ° C. was 45 ° C./min.
Result: There was no crack in the crystal, no welding with the crucible, and the crystal could be easily taken out from the crucible for solidification. The crystal grain size of the obtained thermoelectric conversion material was 25 μm.

(実施例3)
条件:内容積が500cmの溶解用るつぼ内に原料を投入して850℃まで昇温した後、850℃に4時間保持し、その後1150℃で60分保持した。その際、700℃より溶解用るつぼに蓋をし、1150℃で5分間蓋をした状態で攪拌した。攪拌を止め、1150℃で5分間放置した後に蓋をあけ、800℃に保温した内容積300cmの凝固用るつぼに溶湯を注ぎ、800℃で1時間保持した後、炉冷した。凝固用るつぼに溶湯を注いでから1030℃までの冷却速度は、90℃/分であった。
結果:取り出した熱電変換材料に割れがなく、るつぼとの溶着が見られず、凝固用るつぼから容易に熱電変換材料を取り出すことができた。得られた熱電変換材料の結晶粒径は17μmであった。
(Example 3)
Conditions: The raw material was put into a melting crucible having an internal volume of 500 cm 3 , heated to 850 ° C., held at 850 ° C. for 4 hours, and then held at 1150 ° C. for 60 minutes. At that time, the melting crucible was covered from 700 ° C., and stirred at 1150 ° C. for 5 minutes. Stirring was stopped, the mixture was left at 1150 ° C. for 5 minutes, then the lid was opened, the molten metal was poured into a solidification crucible having an internal volume of 300 cm 3 kept at 800 ° C., held at 800 ° C. for 1 hour, and then cooled in the furnace. The cooling rate from pouring the molten metal into the solidifying crucible to 1030 ° C. was 90 ° C./min.
Result: The thermoelectric conversion material taken out had no cracks, no welding with the crucible was observed, and the thermoelectric conversion material could be easily taken out from the solidification crucible. The crystal grain size of the obtained thermoelectric conversion material was 17 μm.

(実施例4)
条件:内容積が500cmの溶解用るつぼ内に原料を投入して850℃まで昇温した後、850℃に4時間保持し、その後1150℃で60分保持した。その際、700℃より溶解用るつぼに蓋をした。溶解用るつぼ内で原料を溶解した際の攪拌は行わなかった。1150℃で蓋をあけ、1030℃に保温した内容積300cmの凝固用るつぼに溶湯を注ぎ、凝固後900℃まで降温し、900℃で1時間保持した後、炉冷した。凝固用るつぼに溶湯を注いでから1030℃までの冷却速度は、15℃/分であった。
結果:るつぼとの反応はなく、結晶の割れも生じなかったが、一部に組成が異なる領域のものがあった。理想的なマグネシウムシリサイド(N型)の組成は、質量%比でMg:Si=66.6:33.3であるが、Mg:Si=50.3:49.4あるいはMg:Si=55.2:44.5の比率のものが存在した。得られた熱電変換材料の結晶粒径は43μmであった。
Example 4
Conditions: The raw material was put into a melting crucible having an internal volume of 500 cm 3 and heated up to 850 ° C., held at 850 ° C. for 4 hours, and then held at 1150 ° C. for 60 minutes. At that time, the melting crucible was covered from 700 ° C. No stirring was performed when the raw material was dissolved in the melting crucible. The lid was opened at 1150 ° C., the molten metal was poured into a solidification crucible having an internal volume of 300 cm 3 kept at 1030 ° C., cooled to 900 ° C., kept at 900 ° C. for 1 hour, and then cooled in the furnace. The cooling rate from pouring the molten metal into the solidifying crucible to 1030 ° C. was 15 ° C./min.
Result: There was no reaction with the crucible and no crystal cracking occurred, but some of the regions had different compositions. The ideal composition of magnesium silicide (N-type) is Mg: Si = 66.6: 33.3 by mass% ratio, but Mg: Si = 50.3: 49.4 or Mg: Si = 55. There was a ratio of 2: 44.5. The crystal grain size of the obtained thermoelectric conversion material was 43 μm.

(実施例5)
条件:溶解用るつぼ、凝固用るつぼとも内面の離型層が形成されていないものを用いた他は、実施例1と同じ条件とした。なお、アルミナ保護管にも離型層は形成されていないものを用いた。凝固用るつぼに溶湯を注いでから1030℃までの冷却速度は、25℃/分であった。
結果:熱電変換材料がつるぼと反応し、るつぼの内壁に溶着した。また、外周部(るつぼの内周部付近)の熱電変換材料には割れが発生していた。得られた熱電変換材料の結晶粒径は40μmであった。
(Example 5)
Conditions: The same conditions as in Example 1 were used, except that both a melting crucible and a solidifying crucible were used in which a release layer on the inner surface was not formed. An alumina protective tube having no release layer was also used. The cooling rate from pouring the molten metal into the solidification crucible to 1030 ° C. was 25 ° C./min.
Result: The thermoelectric conversion material reacted with the crucible and welded to the inner wall of the crucible. Moreover, the thermoelectric conversion material of the outer peripheral part (near the inner peripheral part of a crucible) had generate | occur | produced the crack. The crystal diameter of the obtained thermoelectric conversion material was 40 μm.

(実施例6)
条件:内容積が500cmの溶解用るつぼ内に原料を投入して850℃まで昇温した後、850℃に4時間保持し、その後1150℃で60分保持した。その際、700℃より溶解用るつぼに蓋をし、1150℃で5分間蓋をした状態で攪拌した。攪拌を止め、1150℃で5分間放置した後に蓋をあけ、1030℃に保温した内容積300cmの凝固用るつぼに溶湯を注ぎ、凝固後900℃まで降温し、900℃で1時間保持した後、炉冷した。凝固用るつぼに溶湯を注いでから1030℃までの冷却速度は、15℃/分であった。
結果:取り出した熱電変換材料に割れがなく、るつぼとの溶着が見られず、凝固用るつぼから容易に熱電変換材料を取り出すことができた。得られた熱電変換材料の結晶粒径は44μmであった。
(Example 6)
Conditions: The raw material was put into a melting crucible having an internal volume of 500 cm 3 , heated to 850 ° C., held at 850 ° C. for 4 hours, and then held at 1150 ° C. for 60 minutes. At that time, the melting crucible was covered from 700 ° C., and stirred at 1150 ° C. for 5 minutes. Stirring was stopped, the mixture was left at 1150 ° C. for 5 minutes, then the lid was opened, the molten metal was poured into a solidification crucible having an internal volume of 300 cm 3 kept at 1030 ° C., the temperature was lowered to 900 ° C. The furnace was cooled. The cooling rate from pouring the molten metal into the solidifying crucible to 1030 ° C. was 15 ° C./min.
Result: The thermoelectric conversion material taken out had no cracks, no welding with the crucible was observed, and the thermoelectric conversion material could be easily taken out from the solidification crucible. The crystal grain size of the obtained thermoelectric conversion material was 44 μm.

(比較例1)
条件:溶解用るつぼ、凝固用るつぼとも実施例1と同じものを用い、溶解条件も実施例1と同じとしたが、凝固用るつぼを650℃に保温し、その凝固用るつぼに溶解用るつぼから溶湯を注いで、そのまま炉冷した。凝固用るつぼに溶湯を注いでから1030℃までの冷却速度は、100℃/分であった。
結果:熱電変換材料に割れが発生していた。得られた熱電変換材料の結晶粒径は8μmであった。
(Comparative Example 1)
Conditions: The same melting crucible and coagulation crucible as in Example 1 were used, and the melting conditions were the same as in Example 1. However, the coagulation crucible was kept at 650 ° C., and the melting crucible was melted from the melting crucible. The molten metal was poured and cooled as it was. The cooling rate from pouring the molten metal into the solidifying crucible to 1030 ° C. was 100 ° C./min.
Result: Cracks occurred in the thermoelectric conversion material. The crystal grain size of the obtained thermoelectric conversion material was 8 μm.

(比較例2)
条件:溶解用るつぼ内で原料を溶解した後、凝固用るつぼに移し変えずに、溶解用るつぼのままヒータによる加熱を停止して炉冷した。また、溶湯の攪拌は行わなかった。ヒータによる加熱を停止してから1030℃までの冷却速度は、10℃/分であった。
結果:るつぼとの反応はなく、熱電変換材料の割れも生じなかったが、一部に組成が大きく異なる領域(Mg:Si=15.0:84.9)があった。得られた熱電変換材料の結晶粒径は67μmであった。
(Comparative Example 2)
Conditions: After the raw material was melted in the melting crucible, it was not transferred to the solidification crucible, but the heating with the heater was stopped in the melting crucible and the furnace was cooled. Further, the molten metal was not stirred. The cooling rate to 1030 ° C. after the heating by the heater was stopped was 10 ° C./min.
Result: There was no reaction with the crucible and no cracking of the thermoelectric conversion material occurred, but there was a region (Mg: Si = 15.0: 84.9) with a greatly different composition. The crystal grain size of the obtained thermoelectric conversion material was 67 μm.

以上の結果から、組成が偏ることなく、所望の熱電変換材料を得るために、溶解工程の途中、少なくともるつぼ内に液相が発生した段階で溶解用るつぼに蓋をすること、及び、適切な温度に制御した凝固用るつぼに溶解用るつぼから溶湯を移し変えて冷却することが重要であることがわかる。即ち、少なくとも溶湯を1030℃まで冷却する際の冷却速度を15℃/分以上90℃/分以下にすることが重要である。
なお、その場合、溶解用るつぼ内の溶湯を撹拌することにより、より正確な組成の熱電変換材料を歩留まり良く得ることができる。
なお、離型層を形成しなかったるつぼを用いた実施例5においては、るつぼの内周面付近で異常が認められ、歩留まりは低下するものの、内側のの熱電変換材料から得られる熱電変換素子は、他の実施例と同等の性能を有するものであった。
これに対して、溶解用るつぼにて原料を溶解して、そのまま凝固したものや、溶解用るつぼから溶湯を650℃に保持した凝固用るつぼに移し変えた場合には、即ち、少なくとも溶湯を1030℃まで冷却する際の冷却速度が15℃/分未満の場合や、90℃/分を超えた場合には、得られる熱電変換材料の結晶の粒径が大きく異なったり、熱電変換材料に割れが生じたりする不具合があった。
From the above results, in order to obtain the desired thermoelectric conversion material without biasing the composition, the melting crucible is covered at least when the liquid phase is generated in the crucible during the melting process, and an appropriate It can be seen that it is important to transfer the molten metal from the melting crucible to the solidification crucible controlled to the temperature and cool it. That is, it is important that the cooling rate at least when the molten metal is cooled to 1030 ° C. is 15 ° C./min or more and 90 ° C./min or less.
In this case, a thermoelectric conversion material having a more accurate composition can be obtained with high yield by stirring the molten metal in the melting crucible.
In Example 5 using the crucible in which the release layer was not formed, an abnormality was recognized in the vicinity of the inner peripheral surface of the crucible, and the yield decreased, but the thermoelectric conversion element obtained from the inner thermoelectric conversion material Had the same performance as the other examples.
On the other hand, when the raw material is melted in a melting crucible and solidified as it is, or when the molten metal is transferred from the melting crucible to a solidifying crucible maintained at 650 ° C., that is, at least the molten metal is 1030. When the cooling rate at the time of cooling to 15 ° C. is less than 15 ° C./min, or when it exceeds 90 ° C./min, the crystal grain size of the obtained thermoelectric conversion material is greatly different or the thermoelectric conversion material is cracked. There was a problem that occurred.

1 溶解用るつぼ
1a 開口
2 凝固用るつぼ
3,4 ヒータ
5 蓋
6 攪拌機
6a 羽根
6b 攪拌棒
6c ブッシュ
7 離型層
8 温度センサ
9 保護管
10 製造装置
11 炉
21 凝固用るつぼ
22,22a キャビティ
DESCRIPTION OF SYMBOLS 1 Melting crucible 1a Opening 2 Solidification crucible 3, 4 Heater 5 Lid 6 Stirrer 6a Blade 6b Stirring rod 6c Bush 7 Release layer 8 Temperature sensor 9 Protection tube 10 Manufacturing apparatus 11 Furnace 21 Solidification crucible 22, 22a Cavity

Claims (4)

炉の中に、溶解用るつぼと凝固用るつぼとを設置して、前記炉内を不活性雰囲気又は還元性雰囲気としておき、熱電変換材料を構成する各元素の原料を前記溶解用るつぼ内で溶解する溶解工程と、前記溶解工程後に、予熱しておいた前記凝固用るつぼに熱電変換材料の溶湯を移して凝固させる凝固工程とを有し、前記溶解工程は、第1段階及び前記第1段階より加熱温度が高い第2段階からなり、前記溶解用るつぼの開口を開放した状態で前記溶解用るつぼを加熱し、前記原料に液相が生じた段階で前記溶解用るつぼの開口を閉塞した状態とし、次いで、その閉塞状態で前記原料を溶解し、前記凝固工程では、熱電変換材料を1030℃まで冷却する際の冷却速度を15℃/分以上90℃/分以下とすることを特徴とする熱電変換材料の製造方法。 In the furnace, a melting crucible and a solidification crucible are installed, and the inside of the furnace is set as an inert atmosphere or a reducing atmosphere, and the raw materials of each element constituting the thermoelectric conversion material are dissolved in the melting crucible. And a solidification step in which the molten metal of the thermoelectric conversion material is solidified by transferring the molten metal of the thermoelectric conversion material to the pre-heated crucible after the melting step. The melting step includes the first step and the first step. The second stage having a higher heating temperature, wherein the melting crucible is heated with the opening of the melting crucible opened, and the opening of the melting crucible is closed when the liquid phase is generated in the raw material Then, the raw material is dissolved in the closed state, and in the solidification step, the cooling rate when cooling the thermoelectric conversion material to 1030 ° C. is 15 ° C./min or more and 90 ° C./min or less. Manufacture of thermoelectric conversion materials Law. 前記溶解工程では、前記溶解用るつぼ内の溶湯を撹拌することを特徴とする請求項1記載の熱電変換材料の製造方法。   The method for producing a thermoelectric conversion material according to claim 1, wherein in the melting step, the molten metal in the melting crucible is stirred. 前記凝固用るつぼの内面に離型層を形成しておくことを特徴とする請求項1又は2記載の熱電変換材料の製造方法。   The method for producing a thermoelectric conversion material according to claim 1 or 2, wherein a release layer is formed on the inner surface of the crucible for solidification. 請求項1から3のいずれか一項記載の熱電変換材料の製造方法により熱電変換素子を製造する方法であって、前記凝固用るつぼは、熱電変換材料を熱電変換素子の横断面形状で角型に凝固させるものであり、前記凝固工程の後に、前記角型に凝固した熱電変換材料を長さ方向の途中位置で切断して熱電変換素子を形成することを特徴とする熱電変換素子の製造方法。   A method for producing a thermoelectric conversion element by the method for producing a thermoelectric conversion material according to any one of claims 1 to 3, wherein the crucible for solidification has a square shape in a cross-sectional shape of the thermoelectric conversion element. The method of manufacturing a thermoelectric conversion element is characterized in that after the solidification step, the thermoelectric conversion material solidified into the rectangular shape is cut at a halfway position in the length direction to form a thermoelectric conversion element. .
JP2015096411A 2015-05-11 2015-05-11 Method for manufacturing thermoelectric conversion material and method for manufacturing thermoelectric conversion element Expired - Fee Related JP6613606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096411A JP6613606B2 (en) 2015-05-11 2015-05-11 Method for manufacturing thermoelectric conversion material and method for manufacturing thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096411A JP6613606B2 (en) 2015-05-11 2015-05-11 Method for manufacturing thermoelectric conversion material and method for manufacturing thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2016213343A JP2016213343A (en) 2016-12-15
JP6613606B2 true JP6613606B2 (en) 2019-12-04

Family

ID=57551661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096411A Expired - Fee Related JP6613606B2 (en) 2015-05-11 2015-05-11 Method for manufacturing thermoelectric conversion material and method for manufacturing thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6613606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176248B2 (en) * 2017-06-29 2022-11-22 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
WO2019004373A1 (en) * 2017-06-29 2019-01-03 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2015780A1 (en) * 1968-08-16 1970-04-30 Consortium Elektrochem Ind
WO2011115297A1 (en) * 2010-03-17 2011-09-22 国立大学法人茨城大学 Production apparatus and method for producing mg2si1-xsnx polycrystals
JP2015056416A (en) * 2013-09-10 2015-03-23 国立大学法人島根大学 N-type thermoelectric conversion material, thermoelectric conversion module, method for manufacturing n-type thermoelectric conversion material

Also Published As

Publication number Publication date
JP2016213343A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
TWI476159B (en) Composite oxide sintered body, amorphous composite oxide film manufacturing method, amorphous composite oxide film, crystal composite oxide film manufacturing method and crystalline composite oxide film
JP5737566B2 (en) Manufacturing method of magnesium silicide sintered body and manufacturing method of thermoelectric conversion element using the same
JP2013008747A (en) Mg2Si1-xSnx-BASED POLYCRYSTALLINE MATERIAL AND PRODUCING METHOD THEREOF
JPWO2011115297A1 (en) Manufacturing apparatus and manufacturing method for Mg2Si1-xSnx polycrystal
JP4211318B2 (en) Filled skutterudite-based alloy, method for producing the same, and thermoelectric conversion element
CN106796910A (en) The preparation method of ceramic structure, base plate keeping device part and ceramic structure
JP4415303B2 (en) Sputtering target for thin film formation
JP6613606B2 (en) Method for manufacturing thermoelectric conversion material and method for manufacturing thermoelectric conversion element
KR20110112993A (en) Thermoelectric materials and method for manufacturing the same
JP2005133202A (en) Magnesium-metal compound, and its production method
TWI802573B (en) Semiconductor sintered body, electric and electronic component, and method for manufacturing semiconductor sintered body
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JP6879435B2 (en) A thermoelectric conversion material, a thermoelectric conversion module using the thermoelectric conversion material, and a method for manufacturing the thermoelectric conversion material.
JP2011040506A (en) P-type thermoelectric material and method for manufacturing the same
JP7076093B2 (en) Thin film containing strontium and its manufacturing method
CN108198934B (en) Composite thermoelectric material and preparation method thereof
JP6853995B2 (en) Mg2Si (1-x) Snx-based sintered body and its manufacturing method
KR20170074013A (en) Bi-Te-Se based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
JP4123388B2 (en) Zinc antimony compound sintered compact
JP5353213B2 (en) Thermoelectric material, method for producing thermoelectric material
JP2000054009A (en) Production of alloy powder and production of thermoelement using it
JP2011210845A (en) BULK TYPE MANGANESE SILICIDE SINGLE CRYSTAL OR POLYCRYSTAL DOPED WITH Ga OR Sn, AND METHOD OF MANUFACTURING THE SAME
JP4872092B2 (en) Manufacturing method of micro thermoelectric element
JP3704556B2 (en) Method for producing zinc antimony compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6613606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees