JP6612123B2 - Capacitive input device - Google Patents

Capacitive input device Download PDF

Info

Publication number
JP6612123B2
JP6612123B2 JP2015252777A JP2015252777A JP6612123B2 JP 6612123 B2 JP6612123 B2 JP 6612123B2 JP 2015252777 A JP2015252777 A JP 2015252777A JP 2015252777 A JP2015252777 A JP 2015252777A JP 6612123 B2 JP6612123 B2 JP 6612123B2
Authority
JP
Japan
Prior art keywords
transparent
detection
input
detection electrode
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015252777A
Other languages
Japanese (ja)
Other versions
JP2017117246A (en
Inventor
勝彦 丹波
公 氷見
Original Assignee
株式会社マイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マイテック filed Critical 株式会社マイテック
Priority to JP2015252777A priority Critical patent/JP6612123B2/en
Publication of JP2017117246A publication Critical patent/JP2017117246A/en
Application granted granted Critical
Publication of JP6612123B2 publication Critical patent/JP6612123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、浮遊容量の変化から入力操作を検出する透明検出電極が目立たない静電容量式入力装置関する。 The present invention relates to an electrostatic capacitive input device is transparent detection electrode that detects an input operation from the variation in the stray capacitance inconspicuous.

電子機器のディスプレーに表示されたアイコンなどを指示入力するポインティングデバイスとして、指などの入力操作体が入力検知領域に配線された検出電極に接近することによる静電容量の変化から、入力検知領域への入力操作位置を検出する静電容量式入力装置が知られている。   As a pointing device for pointing and inputting icons displayed on the display of electronic devices, the input operation area such as a finger approaches the detection electrode wired to the input detection area, and changes to the input detection area. There is known a capacitance type input device that detects the input operation position.

静電容量式入力装置のうち、入力検知領域上の直交するXY方向の2次元入力操作位置を検出するタッチパネルは、Y方向に沿った多数のX検出電極と、X方向に沿った多数のY検出電極とを、所定の絶縁間隔を隔てて積層した2枚の絶縁シートの対向面にそれぞれ配線し、全てのX検出電極とY検出電極についての静電容量を監視し、静電容量が変化したX検出電極とY検出電極の交差位置に指などの入力操作体が接近したものとして、その交差位置のX検出電極とY検出電極の配線位置から2次元入力操作位置を検出している。   Among the capacitive input devices, a touch panel for detecting a two-dimensional input operation position in the orthogonal XY direction on the input detection area has a large number of X detection electrodes along the Y direction and a large number of Y along the X direction. The detection electrodes are wired on opposite surfaces of two insulating sheets laminated with a predetermined insulation interval, and the capacitances of all X detection electrodes and Y detection electrodes are monitored, and the capacitance changes. The two-dimensional input operation position is detected from the wiring position of the X detection electrode and the Y detection electrode at the intersection position, assuming that the input operation body such as a finger approaches the intersection position of the X detection electrode and the Y detection electrode.

以下、この検出原理を用いて二次元の入力操作位置を検出するタッチパネル100を図7で説明する。このタッチパネル100は、Y方向に沿った多数のX検出電極101と、X方向に沿った多数のY検出電極102とが、所定の絶縁間隔を隔てて積層された2枚の絶縁シート103(上方の絶縁シートは、図示を省略)の対向面の入力検知領域にそれぞれ配線されている。切り換え制御回路107は、多数のY検出電極102に接続するY軸入力スイッチ104を切り換え制御し、発振回路105を順次全てのY検出電極102に切り換え接続し、切り換え接続したY検出電極102へ所定のパルス波形の検出信号を出力する。また、切り換え制御回路107は、多数のX検出電極101に接続するX軸入力スイッチ106にも接続し、いずれかのY検出電極102に上記検出信号が出力されている間、順次全てのX検出電極101を演算回路108に切り換え接続し、接続したX検出電極101の検出信号の電位を読み取る。   Hereinafter, a touch panel 100 that detects a two-dimensional input operation position using this detection principle will be described with reference to FIG. The touch panel 100 includes two insulating sheets 103 (upper side) in which a large number of X detection electrodes 101 along the Y direction and a large number of Y detection electrodes 102 along the X direction are stacked with a predetermined insulation interval. These insulating sheets are respectively wired to the input detection areas on the opposite surface of the sheet. The switching control circuit 107 controls switching of the Y-axis input switch 104 connected to a large number of Y detection electrodes 102, switches the oscillation circuit 105 to all the Y detection electrodes 102 in sequence, and connects the Y detection electrodes 102 to the switching connection. The detection signal of the pulse waveform is output. The switching control circuit 107 is also connected to an X-axis input switch 106 connected to a large number of X detection electrodes 101. While the detection signal is being output to any Y detection electrode 102, all X detections are sequentially performed. The electrode 101 is switched and connected to the arithmetic circuit 108, and the detection signal potential of the connected X detection electrode 101 is read.

指などの入力操作体が接近する検出電極101、102では、入力操作体との浮遊容量が増大するので、検出電極101、102に流れるパルス波形の検出信号の一部が、浮遊容量を通して入力操作体側に漏れ、演算回路108で検出する検出信号の電位は、入力操作体を接近させる前の電位より低下する。絶縁シート103上には、多数のX検出電極101とY検出電極102が交差してマトリックス状に配置されているので、入力操作体が絶縁シート103のX検出電極101とY検出電極102のいずれかの交差位置に接近すると、その交差位置に配線されるX検出電極101とY検出電極102を切り換え制御回路107が切り換え接続した際に演算回路108が検出した検出信号の電位が最も低下するので、演算回路108は、そのX検出電極101のX方向の配線位置とY検出電極102のY方向配線位置とから、XY座標で表す入力操作位置を検出して、入力操作位置を処理する制御回路109へ出力する。   In the detection electrodes 101 and 102 that the input operation body such as a finger approaches, the stray capacitance with the input operation body increases. Therefore, a part of the detection signal of the pulse waveform flowing through the detection electrodes 101 and 102 is input through the stray capacitance. The potential of the detection signal that leaks to the body side and is detected by the arithmetic circuit 108 is lower than the potential before the input operation body is approached. Since a large number of X detection electrodes 101 and Y detection electrodes 102 intersect and are arranged in a matrix on the insulating sheet 103, the input operation body is either the X detection electrode 101 or the Y detection electrode 102 of the insulating sheet 103. When the crossing position is approached, the potential of the detection signal detected by the arithmetic circuit 108 when the switching control circuit 107 switches and connects the X detection electrode 101 and the Y detection electrode 102 wired at the crossing position decreases most. The arithmetic circuit 108 detects an input operation position represented by XY coordinates from the X-direction wiring position of the X detection electrode 101 and the Y-direction wiring position of the Y detection electrode 102, and processes the input operation position. To 109.

一般にこのように構成された静電容量式入力装置は、その背面側に配置される液晶表示パネルなどの表示装置とともに用いられ、操作者は、表示装置に表示されるアイコンなどを見ながら静電容量式入力装置の入力検知領域への入力操作を行う。従って、静電容量式入力装置の少なくとも入力検知領域に配置される各部品、例えば、上記タッチパネル100では、2枚の絶縁シート103とX検出電極101とY検出電極102は透明材料で形成される。   In general, the capacitance type input device configured as described above is used together with a display device such as a liquid crystal display panel arranged on the back side thereof, and an operator observes an icon or the like displayed on the display device. Input operation to the input detection area of the capacitive input device. Accordingly, in each component arranged in at least the input detection region of the capacitive input device, for example, the touch panel 100, the two insulating sheets 103, the X detection electrode 101, and the Y detection electrode 102 are formed of a transparent material. .

特に、X検出電極101とY検出電極102とは、透明性と低抵抗の導電性が求められるので、その材料は限られ、ITO(インジウム錫酸化物)、PEDOT/PSS(ポリエチレンジオキシチオフェン/ポリスチレンスルフォン酸)等の導電性ポリマーや銀ナノワイヤー等のナノサイズ導電体で形成されている。しかしながら、これらの材料は、透明性を有するものではあるが、ITO、PEDOT/PSS等の導電性ポリマーは薄い青色、銀ナノワイヤーは薄い黄色を帯びているので、検出電極101、102の輪郭が目視され、格子状に配線されている場合には格子状の模様となって表れ美感を損なう。   In particular, since the X detection electrode 101 and the Y detection electrode 102 are required to have transparency and low resistance conductivity, the materials thereof are limited, and ITO (indium tin oxide), PEDOT / PSS (polyethylenedioxythiophene / It is made of a conductive polymer such as polystyrene sulfonic acid) or a nanosize conductor such as silver nanowire. However, although these materials have transparency, conductive polymers such as ITO and PEDOT / PSS are light blue, and silver nanowires are light yellow. When it is visually observed and wired in a grid pattern, it appears as a grid pattern and impairs aesthetics.

導電性透明材料で形成される検出電極自体の厚さを薄くすれば透明に近づけることは可能であるが、検出電極の電気抵抗が高くなるので、微小な電圧変化から入力操作位置を検出する静電容量式入力装置には限界がある。   If the thickness of the detection electrode itself made of a conductive transparent material is reduced, it can be made transparent. However, since the electrical resistance of the detection electrode increases, the static detection of detecting the input operation position from a minute voltage change is possible. Capacitive input devices have limitations.

そこで、特許文献1に開示される従来の静電容量式タッチパネルは、PEDOT/PSSで形成した検出電極と、同色の薄い青色のインキでコーティングしたガラス板、意匠シート等を検出電極を配線した透明絶縁シートに重ね、検出電極の輪郭が目立たないようにしている。   Therefore, the conventional capacitive touch panel disclosed in Patent Document 1 is a transparent electrode in which a detection electrode formed by PEDOT / PSS is coated with a glass plate coated with a light blue ink of the same color, a design sheet, and the like. It overlaps with the insulating sheet so that the outline of the detection electrode is not noticeable.

また、特許文献2に開示される従来の静電容量式タッチパネル110は、図9に示すように、X検出電極111とY検出電極112とが絶縁シートの積層方向で重ならない幅200μm程度の隙間113に、X検出電極111やY検出電極112のいずれにも接続されない多数のダミーパターン114を絶縁シートの表裏に形成している。ダミーパターン114を、X検出電極111及びY検出電極112と同一の透明導電材料であるITOで形成することにより、X検出電極111とY検出電極112間の隙間113や各電極111、112の輪郭を見え難くしている。   Further, as shown in FIG. 9, the conventional capacitive touch panel 110 disclosed in Patent Document 2 has a gap of about 200 μm in width where the X detection electrode 111 and the Y detection electrode 112 do not overlap in the stacking direction of the insulating sheets. A large number of dummy patterns 114 that are not connected to either the X detection electrode 111 or the Y detection electrode 112 are formed on the front and back sides of the insulating sheet. By forming the dummy pattern 114 from ITO, which is the same transparent conductive material as the X detection electrode 111 and the Y detection electrode 112, the gap 113 between the X detection electrode 111 and the Y detection electrode 112 and the contours of the electrodes 111, 112 are formed. It is difficult to see.

特開2011−3169公報JP2011-3169A 特開2010−9456号公報JP 2010-9456 A

従来の特許文献1に開示される静電容量式タッチパネルは、PEDOT/PSSで形成される薄い青色の検出電極に、更に同色のインキでコーティングしたガラス板、意匠シート等を重ねるので、入力検知領域の透明性が悪化し、その内方に配置される表示装置の表示が見えづらくなる。   The conventional capacitive touch panel disclosed in Patent Document 1 has a light blue detection electrode formed of PEDOT / PSS and a glass plate coated with the same color ink, a design sheet, and the like, so that the input detection area The transparency of the display deteriorates and it becomes difficult to see the display of the display device disposed inside.

更に、この静電容量式タッチパネルでは、検出電極の輪郭を見えづらいものとするために別部材のガラス板、意匠シート等を積層させるので、部品点数が増加すると共にタッチパネルの薄型化の障害となる。   Furthermore, in this capacitive touch panel, glass plates, design sheets, etc., which are separate members are laminated in order to make it difficult to see the outline of the detection electrode, which increases the number of parts and hinders the thinning of the touch panel. .

また、従来の静電容量式タッチパネル110は、入力検知領域に接近する入力操作体との対向面積を拡大させるために、複数のX検出電極111と複数のY検出電極112とを、相補する同一のパターン形状として、X検出電極111とY検出電極112のいずれかで入力検知領域のほぼ全面を覆うものであるが、X検出電極111とY検出電極112間の幅200μm程度のわずかな隙間113に、X検出電極111とY検出電極112のいずれにも接続しないダミーパターン114を形成するので、X検出電極111、Y検出電極112及びダミーパターン114のパターニングに高度な製造精度が求められる。   In addition, the conventional capacitive touch panel 110 includes a plurality of X detection electrodes 111 and a plurality of Y detection electrodes 112 that complement each other in order to increase the facing area of the input operation body that approaches the input detection area. As the pattern shape, either the X detection electrode 111 or the Y detection electrode 112 covers almost the entire input detection region, but a slight gap 113 having a width of about 200 μm between the X detection electrode 111 and the Y detection electrode 112 is used. In addition, since the dummy pattern 114 that is not connected to either the X detection electrode 111 or the Y detection electrode 112 is formed, high manufacturing accuracy is required for patterning the X detection electrode 111, the Y detection electrode 112, and the dummy pattern 114.

そこで、一般に、絶縁シート上に形成されるX検出電極111、Y検出電極112及びダミーパターン114は、フォトエッチングによるパターニングで形成されるが、多数の工程を要すると共に、エッチングには強酸のエッチング液を用いるので自然環境を損なう原因ともなる。   Therefore, in general, the X detection electrode 111, the Y detection electrode 112, and the dummy pattern 114 formed on the insulating sheet are formed by patterning by photoetching. However, many processes are required and etching is performed using a strong acid etching solution. It can cause damage to the natural environment.

本発明は、このような従来の問題点を考慮してなされたものであり、別部材を重ねることなく、透明検出電極の輪郭が目立たない静電容量式入力装置提供することを目的とする。 The present invention has been made in consideration of such conventional problems, and an object thereof is to provide a capacitance type input device in which the outline of the transparent detection electrode is not conspicuous without overlapping another member. .

また、高度な製造精度を要することなく、輪郭が目立たない透明検出電極を形成する静電容量式入力装置提供することを目的とする。 It is another object of the present invention to provide a capacitance type input device that forms a transparent detection electrode whose outline is not conspicuous without requiring high manufacturing accuracy.

上述の目的を達成するため、請求項1に記載の静電容量式入力装置は、第1透明絶縁シートの第1入力検知領域に、第1方向に所定間隔を隔てて第1方向と直交する第2方向に沿って配線される複数の第1透明検出電極と、第1透明絶縁シートの第1入力検知領域と絶縁間隔を隔てて対向する第2透明絶縁シートの第2入力検知領域に、第2方向に所定間隔を隔てて第1方向に沿って配線される複数の第2透明検出電極と、複数の第1透明検出電極と複数の第2透明検出電極の全ての交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量の変化を検出する静電容量検出手段とを備え、入力操作体が接近して交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量が変化する第1透明検出電極と第2透明検出電極の第1方向と第2方向の配線位置から、入力操作体の第1方向と第2方向の入力操作位置を検出する静電容量式入力装置であって、
第1入力検知領域の全面に形成される透明導電層は、第2方向に沿って100μm以下の線幅でその透明導電層が除去された複数の第1スリットにより複数の透明導電層に分割され、第1方向で隣り合う第1スリットの間の透明導電層により、複数の第1透明検出電極と複数の第1ダミーパターンが第1方向に交互に形成されるとともに、第2入力検知領域の全面に形成される透明導電層は、第1方向に沿ってその透明導電層が除去された複数の第2スリットにより複数の透明導電層に分割され、各第2透明検出電極は、第2方向で隣り合う一対の第2スリットの間の透明導電層により形成され、
第2方向に沿って形成される前記各第1ダミーパターンは、第2スリットを第1入力検知領域上に投影させた投影形状の両側に沿って100μm以下の線幅で透明導電層が除去された複数の絶縁スリットにより、相互に絶縁された複数のパターンに分割されることを特徴とする。
In order to achieve the above object, the capacitive input device according to claim 1 is orthogonal to the first direction at a predetermined interval in the first direction in the first input detection region of the first transparent insulating sheet. A plurality of first transparent detection electrodes wired along the second direction, and a second input detection region of the second transparent insulation sheet facing the first input detection region of the first transparent insulation sheet with an insulation interval, A plurality of second transparent detection electrodes wired along the first direction at a predetermined interval in the second direction, and a plurality of first transparent detection electrodes and a plurality of second transparent detection electrodes intersect at all intersection positions. A first transparent detection electrode and a second transparent detection electrode, each having a capacitance detection means for detecting a change in stray capacitance between the first transparent detection electrode and the second transparent detection electrode, intersecting at an intersection position when the input operation body approaches. First transparent detection electrode and second transparent detection electrode in which stray capacitance between detection electrodes changes The 1 direction wiring position in the second direction, an electrostatic capacitive input device for detecting the input operation position in the first direction and the second direction input operation member,
The transparent conductive layer formed on the entire surface of the first input detection region is divided into a plurality of transparent conductive layers by a plurality of first slits from which the transparent conductive layer is removed with a line width of 100 μm or less along the second direction. The plurality of first transparent detection electrodes and the plurality of first dummy patterns are alternately formed in the first direction by the transparent conductive layer between the first slits adjacent in the first direction, and the second input detection region The transparent conductive layer formed on the entire surface is divided into a plurality of transparent conductive layers along a first direction by a plurality of second slits from which the transparent conductive layer has been removed, and each second transparent detection electrode has a second direction. Formed by a transparent conductive layer between a pair of adjacent second slits,
In each of the first dummy patterns formed along the second direction, the transparent conductive layer is removed with a line width of 100 μm or less along both sides of the projected shape in which the second slit is projected onto the first input detection region. The pattern is divided into a plurality of patterns insulated from each other by a plurality of insulating slits .

透明導電層に第2方向に沿って複数の第1スリットを形成するだけで、その間に第2方向に沿って配線される第1透明検出電極を形成することができ、また、その形状に多少の誤差が生じていても、第1方向の入力操作位置の検出には影響しないので、第1スリットの形成に高い加工精度は求められない。   By simply forming a plurality of first slits along the second direction in the transparent conductive layer, the first transparent detection electrode wired along the second direction can be formed between them, and the shape thereof is somewhat different. Even if this error occurs, it does not affect the detection of the input operation position in the first direction, and therefore high processing accuracy is not required for forming the first slit.

透明導電層に第1方向に沿って複数の第2スリットを形成するだけで、その間に第1方向に沿って配線される第2透明検出電極が形成される。また、第2透明検出電極の形状に多少の誤差が生じていても、第2方向の入力操作位置の検出に影響しないので、第2スリットの形成に高い加工精度は求められない。   By only forming a plurality of second slits along the first direction in the transparent conductive layer, a second transparent detection electrode wired along the first direction is formed therebetween. Further, even if a slight error occurs in the shape of the second transparent detection electrode, it does not affect the detection of the input operation position in the second direction, and therefore high processing accuracy is not required for forming the second slit.

複数の第1透明検出電極の間には、100μm以下の線幅の第1スリットを介して第1透明検出電極と同材料で形成される第1ダミーパターンが配置されるので、第1透明検出電極の輪郭は目立たない。 Since a first dummy pattern formed of the same material as the first transparent detection electrode is disposed between the plurality of first transparent detection electrodes via a first slit having a line width of 100 μm or less , the first transparent detection The outline of the electrode is not noticeable.

また、第1透明検出電極に絶縁して隣接する第1ダミーパターンは、第1入力検知領域上に投影させた第2スリットの両側に沿った複数の絶縁スリットにより第2透明検出電極の単位で複数のパターンに分割されるので、分割された第1ダミーパターンが対向位置に配線される第2透明検出電極と容量結合しても第2方向の入力操作位置の検出精度に影響しない。   In addition, the first dummy pattern that is insulated and adjacent to the first transparent detection electrode has a plurality of insulation slits along both sides of the second slit projected onto the first input detection area in units of the second transparent detection electrode. Since it is divided into a plurality of patterns, even if the divided first dummy pattern is capacitively coupled to the second transparent detection electrode wired at the opposing position, the detection accuracy of the input operation position in the second direction is not affected.

絶縁スリットは、100μm以下の線幅で形成されるので、絶縁スリットにより分割された第1ダミーパターンの輪郭は目立たない。 Since the insulating slit is formed with a line width of 100 μm or less, the outline of the first dummy pattern divided by the insulating slit is inconspicuous.

請求項2に記載の静電容量式入力装置は、透明絶縁シートの表面側の第1入力検知領域に、第1方向に所定間隔を隔てて第1方向と直交する第2方向に沿って配線される複数の第1透明検出電極と、前記透明絶縁シートの裏面側の第2入力検知領域に、第2方向に所定間隔を隔てて第1方向に沿って配線される複数の第2透明検出電極と、
複数の第1透明検出電極と複数の第2透明検出電極の全ての交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量の変化を検出する静電容量検出手段とを備え、
入力操作体が接近して交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量が変化する第1透明検出電極と第2透明検出電極の第1方向と第2方向の配線位置から、入力操作体の第1方向と第2方向の入力操作位置を検出する静電容量式入力装置であって、
第1入力検知領域の全面に形成される透明導電層は、第2方向に沿って100μm以下の線幅でその透明導電層が除去された複数の第1スリットにより複数の透明導電層に分割され、第1方向で隣り合う第1スリットの間の透明導電層により、複数の第1透明検出電極と複数の第1ダミーパターンが第1方向に交互に形成されるとともに、第2入力検知領域の全面に形成される透明導電層は、第1方向に沿ってその透明導電層が除去された複数の第2スリットにより複数の透明導電層に分割され、各第2透明検出電極が、第2方向で隣り合う一対の第2スリットの間の透明導電層により形成され、
第2方向に沿って形成される前記各第1ダミーパターンは、第2スリットを第1入力検知領域上に投影させた投影形状の両側に沿って100μm以下の線幅で透明導電層が除去された複数の絶縁スリットにより、相互に絶縁された複数のパターンに分割されることを特徴とする。
The capacitance-type input device according to claim 2 is wired along a second direction perpendicular to the first direction at a predetermined interval in the first direction in the first input detection region on the surface side of the transparent insulating sheet. A plurality of first transparent detection electrodes and a plurality of second transparent detections wired along the first direction at a predetermined interval in the second direction to the second input detection region on the back side of the transparent insulating sheet Electrodes,
A first transparent detection electrode that intersects at all intersecting positions of the plurality of first transparent detection electrodes and the plurality of second transparent detection electrodes; and a capacitance detection means that detects a change in stray capacitance between the second transparent detection electrodes. Prepared,
The first transparent detection electrode and the second transparent detection electrode in which the stray capacitance changes between the first transparent detection electrode and the second transparent detection electrode intersected at the crossing position when the input operation body approaches and in the first direction and the second direction of the second transparent detection electrode A capacitance type input device that detects an input operation position in a first direction and a second direction of an input operation body from a wiring position,
The transparent conductive layer formed on the entire surface of the first input detection region is divided into a plurality of transparent conductive layers by a plurality of first slits from which the transparent conductive layer is removed with a line width of 100 μm or less along the second direction. The plurality of first transparent detection electrodes and the plurality of first dummy patterns are alternately formed in the first direction by the transparent conductive layer between the first slits adjacent in the first direction, and the second input detection region The transparent conductive layer formed on the entire surface is divided into a plurality of transparent conductive layers by a plurality of second slits from which the transparent conductive layer has been removed along the first direction, and each second transparent detection electrode is formed in the second direction. Formed by a transparent conductive layer between a pair of adjacent second slits,
In each of the first dummy patterns formed along the second direction, the transparent conductive layer is removed with a line width of 100 μm or less along both sides of the projected shape in which the second slit is projected onto the first input detection region. The pattern is divided into a plurality of patterns insulated from each other by a plurality of insulating slits .

第1透明検出電極は、目視されない線幅の一対の第1スリットを輪郭とするので、輪郭が目立たない。   Since the first transparent detection electrode has a pair of first slits having a line width that is not visually recognized as an outline, the outline is not conspicuous.

絶縁シートの表面側と裏面側に形成される透明導電層に、互いに直交する複数の第1スリットと複数の第2スリットとをそれぞれ形成するだけで、直交方向に配線される第1透明検出電極と第2透明検出電極を形成することができ、また、その形状に多少の誤差が生じていても、入力操作位置の検出には影響しないので、第1スリット若しくは第2スリットの形成に高い加工精度は求められない。   A first transparent detection electrode wired in an orthogonal direction by simply forming a plurality of first slits and a plurality of second slits orthogonal to each other on the transparent conductive layer formed on the front surface side and the back surface side of the insulating sheet. And the second transparent detection electrode can be formed, and even if a slight error occurs in the shape of the second transparent detection electrode, it does not affect the detection of the input operation position. Accuracy is not required.

請求項1又は請求項2の発明によれば、同色のインクをコーティングした別部材を重ねることなく、透明性を悪化させることなく、第1透明検出電極と第2透明検出電極のいずれの輪郭も目立たたず、美感を損なわない静電容量式入力装置とすることができる。   According to the first or second aspect of the present invention, the contours of the first transparent detection electrode and the second transparent detection electrode are not overlapped without overlapping another member coated with the same color ink, without deteriorating the transparency. It can be set as the electrostatic capacitance type input device which does not stand out and does not impair aesthetics.

また、高精度の加工精度を要しない第1スリットを複数形成するだけで、第1方向で隣り合う1対の第1スリットの内側に第1透明検出電極を形成できる。   Moreover, a 1st transparent detection electrode can be formed inside a pair of 1st slit which adjoins in a 1st direction only by forming several 1st slits which do not require high-precision process precision.

また、透明導電層に第1方向に沿って複数の第2スリットを形成するだけで、その間に第1方向に沿って配線される第2透明検出電極を、直交する第1透明検出電極と絶縁して形成することができ、二次元の入力操作位置を検出する第1透明検出電極と第2透明検出電極を容易に形成できる。   In addition, the second transparent detection electrode wired along the first direction in the meantime is insulated from the orthogonal first transparent detection electrode only by forming a plurality of second slits along the first direction in the transparent conductive layer. The first transparent detection electrode and the second transparent detection electrode for detecting a two-dimensional input operation position can be easily formed.

また、第1透明検出電極を任意幅とすることによって生じる第1透明検出電極間の隙間は、第1ダミーパターンが形成されることにより目立たず、更に第1ダミーパターンを第1透明検出電極の間に配置しても、絶縁スリットによって第2透明検出電極の単位で複数のパターンに分割されるので、入力操作位置の検出精度に影響しない。   Further, the gap between the first transparent detection electrodes generated by setting the first transparent detection electrodes to an arbitrary width is not noticeable due to the formation of the first dummy pattern, and further, the first dummy detection pattern is formed on the first transparent detection electrode. Even if it is arranged between them, since it is divided into a plurality of patterns by the unit of the second transparent detection electrode by the insulating slit, the detection accuracy of the input operation position is not affected.

本発明の一実施の形態に係る静電容量式入力装置1の平面図である。1 is a plan view of a capacitive input device 1 according to an embodiment of the present invention. 静電容量式入力装置1の側面図である。1 is a side view of a capacitive input device 1. FIG. 積層された入力検知領域2A、3Aの部分拡大底面図である。It is a partial enlarged bottom view of laminated input detection areas 2A and 3A. 入力検知領域2Aの部分拡大底面図である。It is a partial enlarged bottom view of the input detection area 2A. 入力検知領域3Aの部分拡大平面図である。It is a partial enlarged plan view of the input detection area 3A. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. タッチパネル100の基本構成を示す回路図である。2 is a circuit diagram showing a basic configuration of a touch panel 100. FIG. 他の実施の形態に係る入力検知領域3Aの部分拡大平面図である。It is a partial enlarged plan view of input detection area 3A concerning other embodiments. 従来の静電容量式入力装置100の検出電極111、112の交差部分を拡大した平面図である。It is the top view to which the intersection part of the detection electrodes 111 and 112 of the conventional electrostatic capacitance type input device 100 was expanded.

以下、本発明の一実施の形態に係る静電容量式入力装置1と静電容量式入力装置1の透明検出電極10X、10Yの形成方法を、図1乃至図7を用いて説明する。本実施の形態に係る静電容量式入力装置は、静電容量式タッチパネル(以下、単にタッチパネルという)1であり、図7に示すタッチパネル100と同様の動作原理で入力操作位置を検出するものであるので、同一に作用する構成については同一の番号を用いてその詳細な説明は省略する。また、タッチパネル1の図2に示す積層構造の全体は後述するように透明体で形成されるが、図2を除く各図では、理解を容易にするために、上部透明絶縁シート2と下部透明絶縁シート3の輪郭、各スリット及び引き出し線5を実線で表す。   Hereinafter, a method for forming the capacitance type input device 1 and the transparent detection electrodes 10X and 10Y of the capacitance type input device 1 according to an embodiment of the present invention will be described with reference to FIGS. The capacitive input device according to the present embodiment is a capacitive touch panel (hereinafter simply referred to as a touch panel) 1 and detects an input operation position on the same operating principle as the touch panel 100 shown in FIG. Therefore, the same number is used for the same function, and the detailed description is omitted. Moreover, although the whole laminated structure shown in FIG. 2 of the touch panel 1 is formed of a transparent body as will be described later, in each of the drawings excluding FIG. 2, for easy understanding, the upper transparent insulating sheet 2 and the lower transparent body The outline of the insulating sheet 3, each slit, and the lead wire 5 are represented by solid lines.

このタッチパネル1は、直交するXY方向の入力操作位置を検出するために、上部透明絶縁シート2の入力検知領域2Aに、Y方向に沿って多数のX側透明検出電極10Xを、上部透明絶縁シート2の入力検知領域2Aに対して絶縁スペーサシート4を介して対向する下部透明絶縁シート3の入力検知領域3Aに、X方向に沿って多数のY側透明検出電極10Yを配線している。   The touch panel 1 includes a plurality of X-side transparent detection electrodes 10X along the Y direction in the input detection region 2A of the upper transparent insulating sheet 2 and the upper transparent insulating sheet in order to detect an input operation position in the orthogonal XY directions. A number of Y-side transparent detection electrodes 10Y are wired along the X direction in the input detection region 3A of the lower transparent insulating sheet 3 that faces the two input detection regions 2A via the insulating spacer sheet 4.

2枚の透明絶縁シート2、3は、その入力検知領域2A、3Aに薄膜の透明導電層を形成可能な材質であれば、ポリエチレンテレフタレート(PET)やポリイミド等のプラスチックシートやガラス基板等の種々の材料で構成することができるが、ここでは、透明性と可撓性を備え、積層が容易なPETで形成している。図2に示す構造では、上部透明絶縁シート2と下部透明絶縁シート3とを、同様にPETで形成した絶縁スペーサシート4を挟んで上下に3層に積層させた構造としているが、上部透明絶縁シート2上に、更に入力検知領域2A、3Aを保護する硬質のガラス基板や、入力検知領域2A、3Aが入力操作領域であることを表示した透明意匠シートを重ねて積層してもよい。   The two transparent insulating sheets 2 and 3 are various materials such as plastic sheets such as polyethylene terephthalate (PET) and polyimide, glass substrates, etc., as long as the material can form a thin transparent conductive layer in the input detection areas 2A and 3A. Here, it is made of PET which has transparency and flexibility and can be easily laminated. In the structure shown in FIG. 2, the upper transparent insulating sheet 2 and the lower transparent insulating sheet 3 are similarly laminated in three layers vertically with an insulating spacer sheet 4 formed of PET interposed therebetween. A hard glass substrate that protects the input detection areas 2A and 3A and a transparent design sheet that indicates that the input detection areas 2A and 3A are input operation areas may be stacked on the sheet 2 in an overlapping manner.

図1に示すように、入力検知領域2A、3Aは、上部透明絶縁シート2と下部透明絶縁シート3とを積層させた状態で、鉛直方向に同一の長方形輪郭で重なり、入力検知領域2A、3Aの周囲の余白領域6に、各X側透明検出電極10X及び各Y側透明検出電極10YをそれぞれX軸入力スイッチ106及びY軸入力スイッチ104へ接続する銀細線からなる引き出し線5が印刷形成されている。   As shown in FIG. 1, the input detection areas 2A and 3A overlap with the same rectangular outline in the vertical direction in a state where the upper transparent insulating sheet 2 and the lower transparent insulating sheet 3 are laminated, and the input detection areas 2A and 3A. A lead-out line 5 made of a thin silver wire that connects each X-side transparent detection electrode 10X and each Y-side transparent detection electrode 10Y to the X-axis input switch 106 and Y-axis input switch 104, respectively, is printed and formed in a blank area 6 around ing.

入力検知領域2Aに配線される多数のX側透明検出電極10Xは、任意の透明導電材料で形成できるが、ここでは、PETに薄膜を形成可能なPEDOT/PSS(ポリエチレンジオキシチオフェン/ポリスチレンスルフォン酸)で形成されている。図4に示すように、入力検知領域2Aの全面には、スパッタ法、真空蒸着法、CVD法若しくはスクリーン印刷などで、PEDOT/PSSを数10nmの厚さで形成した薄膜導電層が形成され、各X側透明検出電極10Xは、それぞれその薄膜導電層の一部をY方向に沿って除去した多数のX側スリット11Xの内、X方向で隣り合う1対のX側スリット11X、11Xの間の薄膜導電層で形成される。   A number of X-side transparent detection electrodes 10X wired to the input detection region 2A can be formed of any transparent conductive material, but here, PEDOT / PSS (polyethylenedioxythiophene / polystyrene sulfonic acid capable of forming a thin film on PET) ). As shown in FIG. 4, a thin film conductive layer in which PEDOT / PSS is formed with a thickness of several tens of nanometers is formed on the entire surface of the input detection region 2A by sputtering, vacuum evaporation, CVD, screen printing, or the like. Each X-side transparent detection electrode 10X is between a pair of X-side slits 11X and 11X adjacent in the X direction, among a number of X-side slits 11X from which a part of the thin film conductive layer is removed along the Y direction. The thin film conductive layer is formed.

X方向に沿って隣り合うX側スリット11X間のピッチが交互に異なることにより、X方向に複数に分割された薄膜導電層からX側スリット11Xとダミーパターン13とが交互に形成される。ここで、各X側透明検出電極10Xは、入力操作体のX方向幅、タッチパネル1のX方向の分解能からX方向幅D(10X)が一定幅に定められ、また、隣り合うX側透明検出電極10X間のピッチP(10X)も、入力検知領域2AのX方向幅とX軸入力スイッチ106の切り換え端子数とから一定幅に決定されるので、ピッチP(10X)からX方向幅D(10X)と2列分のX側スリット11Xの幅を除いた残る幅にダミーパターン13が形成される。   By alternately changing the pitch between adjacent X-side slits 11X along the X direction, X-side slits 11X and dummy patterns 13 are alternately formed from the thin film conductive layers divided in the X direction. Here, each X-side transparent detection electrode 10X has an X-direction width D (10X) determined to be a constant width based on the X-direction width of the input operation body and the X-direction resolution of the touch panel 1, and adjacent X-side transparent detections. Since the pitch P (10X) between the electrodes 10X is also determined to be a constant width from the X-direction width of the input detection area 2A and the number of switching terminals of the X-axis input switch 106, the pitch P (10X) to the X-direction width D ( 10X) and the dummy pattern 13 is formed in the remaining width excluding the width of the X-side slits 11X for two rows.

X側スリット11XのX方向の溝幅は、20μmから100μmの間に設定され、ここでは、スポット径が40μmのレーザー光をY方向に沿って照射し、幅40μmで薄膜導電層が除去されたX側スリット11Xを形成する。視力1.0の操作者が入力検知領域2Aから43cm離れた距離で視認可能な溝幅が120μmであることから、X側スリット11XのX方向の溝幅が100μm以下であれば、通常の使用状態でX側スリット11Xが視認されることはなく、一方、20μm未満となると、隣接するダミーパターン13との静電容量が増大して容量結合し、X方向の入力位置検出精度に影響することとなる。   The groove width in the X direction of the X-side slit 11X is set between 20 μm and 100 μm. Here, a laser beam having a spot diameter of 40 μm is irradiated along the Y direction, and the thin film conductive layer is removed with a width of 40 μm. The X-side slit 11X is formed. Since the groove width visible to an operator with a visual acuity of 1.0 at a distance of 43 cm from the input detection area 2A is 120 μm, if the groove width in the X direction of the X-side slit 11X is 100 μm or less, normal use In the state, the X-side slit 11X is not visually recognized. On the other hand, when the thickness is less than 20 μm, the capacitance with the adjacent dummy pattern 13 is increased and capacitively coupled, thereby affecting the input position detection accuracy in the X direction. It becomes.

幅40μmの一対のX側スリット11Xで囲われるX側透明検出電極10Xの輪郭は目視されることがなく、また、隣り合うX側透明検出電極10X間の隙間には、X側透明検出電極10Xと同一の透明導電材料からなるダミーパターン13が形成されるので、その隙間も目立たないものとなる。   The outline of the X-side transparent detection electrode 10X surrounded by the pair of X-side slits 11X having a width of 40 μm is not visually recognized, and in the gap between the adjacent X-side transparent detection electrodes 10X, the X-side transparent detection electrode 10X Since the dummy pattern 13 made of the same transparent conductive material is formed, the gap is inconspicuous.

各ダミーパターン13は、更にダミーパターン13の薄膜導電層の一部をX方向に沿って除去した複数の絶縁スリット14によって、Y方向に複数のダミーパターン13に分割されている。複数の絶縁スリット14は、図3に示すように、後述するY側スリット11Yを入力検知領域2A上に投影させた投影形状の両側に沿って、スポット径が40μmのレーザー光を照射し、幅40μmで薄膜導電層が除去して形成される。従って、複数の絶縁スリット14により分割される各ダミーパターン13は、Y側スリット11Yで区切られる後述するY側透明検出電極10Yの単位でY方向に分割される。絶縁スリット14の溝幅も40μmであるので、目視されず、分割されたダミーパターン13の輪郭も目立たない。一方、各ダミーパターン13がY側透明検出電極10Yの単位でY方向に複数に分割されるので、大面積のダミーパターン13が入力操作体に対向することがなく、入力操作位置の検出に影響しない。また、図6に示すように、絶縁スリット14とY側スリット11Yとは、鉛直方向で重ならずに積層されるので、極端に透明性が異なる部分が線状に表れない。   Each dummy pattern 13 is further divided into a plurality of dummy patterns 13 in the Y direction by a plurality of insulating slits 14 obtained by removing a part of the thin film conductive layer of the dummy pattern 13 along the X direction. As shown in FIG. 3, the plurality of insulating slits 14 are irradiated with laser light having a spot diameter of 40 μm along both sides of a projected shape obtained by projecting a Y-side slit 11 </ b> Y described later onto the input detection region 2 </ b> A. The thin film conductive layer is removed at 40 μm. Therefore, each dummy pattern 13 divided by the plurality of insulating slits 14 is divided in the Y direction in units of a Y-side transparent detection electrode 10Y described later divided by the Y-side slit 11Y. Since the groove width of the insulating slit 14 is also 40 μm, it is not visually observed and the outline of the divided dummy pattern 13 is not conspicuous. On the other hand, each dummy pattern 13 is divided into a plurality of Y-direction transparent detection electrodes 10Y in the Y direction, so that the large-area dummy pattern 13 does not face the input operation body and affects the detection of the input operation position. do not do. Moreover, as shown in FIG. 6, since the insulating slit 14 and the Y-side slit 11Y are stacked without overlapping in the vertical direction, portions with extremely different transparency do not appear linearly.

入力検知領域3Aに配線される多数のY側透明検出電極10Yも、X側透明検出電極10Xと同一のPEDOT/PSSで形成されている。各Y側透明検出電極10Yは、X側透明検出電極10Xと同様に、図5に示すように、入力検知領域3Aの全面にスパッタ法、真空蒸着法、CVD法若しくはスクリーン印刷などで、PEDOT/PSSを数10nmの厚さで成膜した薄膜導電層の一部をX方向に沿って除去した多数のY側スリット11YからY方向で隣り合う1対のY側スリット11Y、11Y間の薄膜導電層により形成される。   A number of Y-side transparent detection electrodes 10Y wired in the input detection region 3A are also formed of the same PEDOT / PSS as the X-side transparent detection electrode 10X. As with the X-side transparent detection electrode 10X, each Y-side transparent detection electrode 10Y has a PEDOT / VD method formed on the entire surface of the input detection region 3A by sputtering, vacuum deposition, CVD, screen printing, or the like, as shown in FIG. Thin film conduction between a pair of Y side slits 11Y and 11Y adjacent in the Y direction from a large number of Y side slits 11Y obtained by removing a part of the thin film conductive layer formed of PSS with a thickness of several tens of nm along the X direction. Formed by layers.

透明絶縁シート2、3の対向面に配線されるX側透明検出電極10XとY側透明検出電極10Yとは、スペーサシート4を介して透明絶縁シート2、3を積層することにより、スペーサシート4で絶縁されると共に平面側上方からみて格子状に配線される。Y側透明検出電極10Yには、上方から入力操作を行う入力操作体との間にスペーサシート4が介在するので、入力操作体が接近することによる浮遊容量の変化は、X側透明検出電極10Xより小さく、従って、X側透明検出電極10Xのようにその間にダミーパターン13を形成せずに、Y側透明検出電極10Yは、Y方向に等間隔で形成される1対のY側スリット11Y、11Y間に、X側透明検出電極10Xより幅広に形成される。   The X-side transparent detection electrode 10 </ b> X and the Y-side transparent detection electrode 10 </ b> Y wired on the opposing surfaces of the transparent insulating sheets 2 and 3 are stacked by interposing the transparent insulating sheets 2 and 3 through the spacer sheet 4. And is wired in a lattice shape when viewed from above the plane side. Since the spacer sheet 4 is interposed between the Y-side transparent detection electrode 10Y and the input operation body that performs an input operation from above, a change in stray capacitance due to the approach of the input operation body is caused by the X-side transparent detection electrode 10X. Thus, without forming the dummy pattern 13 between them like the X-side transparent detection electrode 10X, the Y-side transparent detection electrode 10Y has a pair of Y-side slits 11Y formed at equal intervals in the Y direction, 11Y is formed wider than the X-side transparent detection electrode 10X.

Y側スリット11Yも、スポット径が40μmのレーザー光をX方向に沿って照射し、幅40μmで入力検知領域3Aの薄膜導電層を除去して形成される。Y側スリット11YのY方向の溝幅が目視できない40μm幅で形成されることによって、Y側透明検出電極10Yの輪郭も目立たないものとなる。   The Y-side slit 11Y is also formed by irradiating a laser beam with a spot diameter of 40 μm along the X direction and removing the thin film conductive layer in the input detection region 3A with a width of 40 μm. When the groove width in the Y direction of the Y-side slit 11Y is formed so as not to be visible, the outline of the Y-side transparent detection electrode 10Y becomes inconspicuous.

このように構成されるタッチパネル1の図1に示す入力検出部の製造工程は、初めに、上部透明絶縁シート2の裏面側の長方形の入力検知領域2Aの全面に、例えばスクリーン印刷でPEDOT/PSSからなる薄膜導電層を形成する。続いて、形成した薄膜導電層に対し、入力検知領域2Aの左側から、X側透明検出電極10XのX方向幅D(10X)を隔てた両側の位置で、Y方向に沿ってスポット径が40μmのレーザー光を照射し、40μm幅で薄膜導電層が除去された一対のX側スリット11Xを形成し、X側透明検出電極10X間のピッチP(10X)で入力検知領域2Aの右側に達するまでこのレーザー加工工程を繰り返し、X方向に等間隔で所定数のX側透明検出電極10Xを形成する。   The manufacturing process of the input detection unit shown in FIG. 1 of the touch panel 1 configured as described above is as follows. First, on the entire surface of the rectangular input detection region 2A on the back surface side of the upper transparent insulating sheet 2, for example, PEDOT / PSS by screen printing. A thin film conductive layer is formed. Subsequently, with respect to the formed thin-film conductive layer, the spot diameter is 40 μm along the Y direction at positions on both sides of the X-side transparent detection electrode 10X separated from the left side of the input detection region 2A by the X-direction width D (10X). Until the right side of the input detection area 2A is reached with a pitch P (10X) between the X-side transparent detection electrodes 10X. This laser processing step is repeated to form a predetermined number of X-side transparent detection electrodes 10X at equal intervals in the X direction.

同時に、X方向で隣り合うX側透明検出電極10Xの間にダミーパターン13が形成されるので、各ダミーパターン13について、Y側スリット11Yを入力検知領域2A上に投影させた投影形状の両側に沿って、スポット径が40μmのレーザー光を照射し、幅40μm幅で薄膜導電層が除去された絶縁スリット14を形成し、Y側透明検出電極10Yの単位でダミーパタン13をY方向に分割する。   At the same time, since the dummy pattern 13 is formed between the X-side transparent detection electrodes 10X adjacent in the X direction, for each dummy pattern 13, the Y-side slit 11Y is projected on both sides of the projection shape projected onto the input detection area 2A. Along with this, a laser beam having a spot diameter of 40 μm is irradiated to form an insulating slit 14 having a width of 40 μm from which the thin film conductive layer has been removed, and the dummy pattern 13 is divided in the Y direction in units of the Y-side transparent detection electrode 10Y.

続いて、入力検知領域2A上に形成された各X側透明検出電極10XをX軸入力スイッチ106の各切り換え端子に接続する引き出し線5を、スクリーン印刷などで上部透明絶縁シート2の余白領域6に配線し、上部透明絶縁シート2側の加工が完了する。   Subsequently, the lead-out line 5 that connects each X-side transparent detection electrode 10X formed on the input detection area 2A to each switching terminal of the X-axis input switch 106 is a blank area 6 of the upper transparent insulating sheet 2 by screen printing or the like. And processing on the upper transparent insulating sheet 2 side is completed.

また、下部透明絶縁シート3の表面側の長方形の入力検知領域3Aにも、同様の方法で複数のY側透明検出電極10Yを形成する。すなわち、力検知領域3Aの全面に、スクリーン印刷でPEDOT/PSSからなる薄膜導電層を形成し、形成した薄膜導電層に対し、入力検知領域3Aの上端から、Y側透明検出電極10Y間のピッチP(10Y)の位置で、X方向に沿ってスポット径が40μmのレーザー光を照射して40μm幅で薄膜導電層が除去されたY側スリット11Yを形成し、入力検知領域3Aの下端に達するまでこのレーザー加工工程を繰り返し、Y方向に等間隔でX方向に配線される所定数のY側透明検出電極10Yを形成する。   A plurality of Y-side transparent detection electrodes 10Y are also formed in the rectangular input detection region 3A on the surface side of the lower transparent insulating sheet 3 by the same method. That is, a thin film conductive layer made of PEDOT / PSS is formed on the entire surface of the force detection region 3A by screen printing, and the pitch between the upper end of the input detection region 3A and the Y-side transparent detection electrode 10Y with respect to the formed thin film conductive layer. At the position of P (10Y), a laser beam having a spot diameter of 40 μm is irradiated along the X direction to form a Y-side slit 11Y from which the thin film conductive layer is removed with a width of 40 μm, and reaches the lower end of the input detection region 3A. This laser processing step is repeated until a predetermined number of Y-side transparent detection electrodes 10Y wired in the X direction at equal intervals in the Y direction are formed.

その後、入力検知領域3A上に形成された各Y側透明検出電極10YをY軸入力スイッチ104の各切り換え端子に接続する引き出し線5を、スクリーン印刷などで下部透明絶縁シート3の余白領域6に配線し、下部透明絶縁シート2側の加工も完了する。   Thereafter, the lead lines 5 connecting the Y-side transparent detection electrodes 10Y formed on the input detection area 3A to the switching terminals of the Y-axis input switch 104 are formed in the blank area 6 of the lower transparent insulating sheet 3 by screen printing or the like. Wiring is completed and processing on the lower transparent insulating sheet 2 side is also completed.

続いて、表面と裏面に透明粘着剤を付着させたスペーサシート4の表面と裏面に、それぞれ上記加工を行った上部透明絶縁シート2と下部透明絶縁シート3とを重ね、スペーサシート4を介して入力検知領域2Aと入力検知領域3Aが対向してその輪郭が重なる状態で全体を積層し、タッチパネル1の入力検出部の製造工程が完了する。   Subsequently, the upper transparent insulating sheet 2 and the lower transparent insulating sheet 3 subjected to the above processing are overlapped on the front and back surfaces of the spacer sheet 4 with the transparent adhesive attached to the front and back surfaces, respectively, and the spacer sheet 4 is interposed therebetween. The whole is laminated in a state where the input detection area 2A and the input detection area 3A face each other and the outlines overlap, and the manufacturing process of the input detection unit of the touch panel 1 is completed.

このように構成されたタッチパネル1は、切り換え制御回路107が一定の走査周期で、Y軸入力スイッチ104の切り換え端子を切り換え制御し、発振回路105を順次全てのY側透明検出電極10Yに接続して、切り換え接続したY側透明検出電極10Yへ所定のパルス波形の交流検出信号を出力する。   In the touch panel 1 configured as described above, the switching control circuit 107 controls switching of the switching terminal of the Y-axis input switch 104 at a constant scanning cycle, and sequentially connects the oscillation circuit 105 to all the Y-side transparent detection electrodes 10Y. Then, an AC detection signal having a predetermined pulse waveform is output to the Y-side transparent detection electrode 10Y that is switched and connected.

尚、本実施の形態では、切り換え制御回路107で切り換え制御されないY軸入力スイッチ104の他の切り換え端子は、一定電位、ここでは接地接続され、接地電位となるようになっている。従って、交流検出信号が印加されていない他の全てのY側透明検出電極10Yは接地されてシールド板として作用し、タッチパネル1が配置される機器の内方で発生する高周波ノイズは、接地されたY側透明検出電極10Yにより遮蔽され、高周波検出信号の電位を検出するX側透明検出電極10Xに重畳しない。   In the present embodiment, the other switching terminals of the Y-axis input switch 104 that are not controlled to be switched by the switching control circuit 107 are connected to a constant potential, here, to the ground potential. Therefore, all other Y-side transparent detection electrodes 10Y to which no AC detection signal is applied are grounded and act as shield plates, and high-frequency noise generated inside the device on which the touch panel 1 is disposed is grounded. It is shielded by the Y-side transparent detection electrode 10Y and does not overlap with the X-side transparent detection electrode 10X that detects the potential of the high-frequency detection signal.

切り換え制御回路107は、Y側透明検出電極10Yに接続するY軸入力スイッチ104のいずれかの切り換え端子を切り換え制御している間、順次X軸入力スイッチ106の切り換え端子を切り換え制御し、全てのX側透明検出電極10Xを演算回路108に切り換え接続し、接続したX側透明検出電極10Xの検出信号の電位を読み取る。   The switching control circuit 107 sequentially controls switching of the switching terminals of the X-axis input switch 106 while switching control of any switching terminal of the Y-axis input switch 104 connected to the Y-side transparent detection electrode 10Y. The X-side transparent detection electrode 10X is switched and connected to the arithmetic circuit 108, and the potential of the detection signal of the connected X-side transparent detection electrode 10X is read.

指などの入力操作体が入力検知領域2A、3Aに接近すると、入力操作体にXY方向の配線位置が最も近いX側透明検出電極10XとY側透明検出電極10Yの入力操作体との浮遊容量が増大するので、そのX側透明検出電極10XとY側透明検出電極10Yに流れる交流検出信号の一部が、浮遊容量を通して入力操作体側に漏れ、演算回路108で検出する交流検出信号の電位は、入力操作体が接近する以前の電位より低下する。そこで演算回路108は、上記一走査周期中に最も低い交流検出電位を検出したX側透明検出電極10Xと、その検出した際に交流検出信号を印加したY側透明検出電極10Yの入力検知領域2A、3A上の配線位置から、XY座標で表す入力操作位置を検出し、入力操作位置を処理する制御回路109へ出力する。   When an input operation body such as a finger approaches the input detection areas 2A and 3A, the floating capacitance between the input operation body of the X-side transparent detection electrode 10X and the Y-side transparent detection electrode 10Y whose wiring position in the XY direction is closest to the input operation body Therefore, a part of the AC detection signal flowing through the X-side transparent detection electrode 10X and the Y-side transparent detection electrode 10Y leaks to the input operating body side through the stray capacitance, and the potential of the AC detection signal detected by the arithmetic circuit 108 is , Lower than the potential before the input operating body approaches. Accordingly, the arithmetic circuit 108 detects the input detection region 2A of the X-side transparent detection electrode 10X that has detected the lowest AC detection potential during the one scanning period and the Y-side transparent detection electrode 10Y to which an AC detection signal has been applied. 3A, an input operation position represented by XY coordinates is detected from the wiring position on 3A, and is output to the control circuit 109 that processes the input operation position.

上述の実施の形態では、図5に示すように、交流検出信号を印加したY側透明検出電極10Yの間に、入力検知領域2Aの第1ダミーパターン13のようなダミーパターンを形成しないので太幅に形成されているが、交差位置で対向するX側透明検出電極10Xとの対向面積が拡大し、例えば、X側透明検出電極10XとY側透明検出電極10Y間の絶縁間隔が100μm以下となると、その間に形成される静電容量が増大し、相対的に入力操作体が接近することによるX側透明検出電極10XやY側透明検出電極10Yの浮遊容量の変化量が減少して、入力操作位置の検出精度が低下する。   In the above-described embodiment, as shown in FIG. 5, a dummy pattern like the first dummy pattern 13 in the input detection region 2A is not formed between the Y-side transparent detection electrodes 10Y to which the AC detection signal is applied. Although it is formed in a width, the facing area between the X-side transparent detection electrode 10X facing at the crossing position is enlarged, and for example, the insulation interval between the X-side transparent detection electrode 10X and the Y-side transparent detection electrode 10Y is 100 μm or less. Then, the capacitance formed in the meantime increases, and the amount of change in the stray capacitance of the X-side transparent detection electrode 10X and the Y-side transparent detection electrode 10Y due to the relative proximity of the input operation body decreases, and the input The detection accuracy of the operation position decreases.

そこで、交差位置で対向するX側透明検出電極10XとY側透明検出電極10Yのいずれかに、リング状絶縁スリット15で囲われた第2ダミーパターン16を形成し、両者の対向面積を減少させるものとしてもよい。以下、Y側透明検出電極10Yの一部に第2ダミーパターン16を形成した本発明の他の実施の形態を図8を用いて説明する。図8では、上記実施の形態と同一若しくは同様の構成について同一の番号を付し、その説明を省略する。   Therefore, the second dummy pattern 16 surrounded by the ring-shaped insulating slit 15 is formed on either the X-side transparent detection electrode 10X or the Y-side transparent detection electrode 10Y facing each other at the intersecting position to reduce the facing area between the two. It may be a thing. Hereinafter, another embodiment of the present invention in which the second dummy pattern 16 is formed on a part of the Y-side transparent detection electrode 10Y will be described with reference to FIG. In FIG. 8, the same or similar components as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

この実施の形態では、入力検知領域3Aの薄膜導電層に対して、Y側スリット11Yで区切られるY側透明検出電極10Yの間であって、図中破線で示すX側透明検出電極10Xとの交差位置に、長方形の輪郭でスポット径が40μmのレーザー光を照射して40μm幅で薄膜導電層が除去されたリング状絶縁スリット15を形成し、リング状絶縁スリット15で囲われる内側に薄膜導電層からなる第2ダミーパターン16を形成する。   In this embodiment, with respect to the thin-film conductive layer in the input detection region 3A, between the Y-side transparent detection electrode 10Y partitioned by the Y-side slit 11Y and the X-side transparent detection electrode 10X indicated by a broken line in the figure A ring-shaped insulating slit 15 is formed by irradiating a laser beam having a rectangular outline with a spot diameter of 40 μm at the intersection position, and the thin-film conductive layer is removed with a width of 40 μm, and the thin-film conductive is formed inside the ring-shaped insulating slit 15. A second dummy pattern 16 composed of layers is formed.

これにより、X側透明検出電極10Xとの交差位置のY側透明検出電極10Yは、Y方向の上下にリング状絶縁スリット15が形成されることによって細幅となり、交差位置でのX側透明検出電極10Xとで形成される静電容量が減少し、相対的にX側透明検出電極10XとY側透明検出電極10Yの浮遊容量の変化量が増大し、入力操作感度が上昇する。   As a result, the Y-side transparent detection electrode 10Y at the position intersecting with the X-side transparent detection electrode 10X becomes narrow by forming the ring-shaped insulating slits 15 above and below in the Y direction, and the X-side transparent detection at the intersection position is performed. The capacitance formed with the electrode 10X decreases, the amount of change in the stray capacitance between the X-side transparent detection electrode 10X and the Y-side transparent detection electrode 10Y relatively increases, and the input operation sensitivity increases.

このように第2ダミーパターン16を形成しても、Y側透明検出電極10Yと同一材料の透明導電層で形成され、目視されない線幅のリング状絶縁スリット15で囲われるので、その輪郭は目立たない。   Even when the second dummy pattern 16 is formed in this way, it is formed of a transparent conductive layer made of the same material as that of the Y-side transparent detection electrode 10Y and is surrounded by the ring-shaped insulating slit 15 having a line width that is not visually recognized. Absent.

また、第2ダミーパターン16は、Y側透明検出電極10Yに絶縁して入力検知領域3Aに形成されるので、入力操作位置の検出に影響しない。   Further, since the second dummy pattern 16 is formed in the input detection region 3A so as to be insulated from the Y-side transparent detection electrode 10Y, it does not affect the detection of the input operation position.

また、上述の実施の形態では、X側透明検出電極10XとY側透明検出電極10Yを短冊状の長方形に形成しているので、X側スリット11X、Y側スリット11Yを直線に沿って形成しているが、X側スリット11X、Y側スリット11Yの一部若しくは全部を曲線で形成し、X側透明検出電極10X若しくはY側透明検出電極10Yを種々の形状とすることもできる。   In the above-described embodiment, since the X-side transparent detection electrode 10X and the Y-side transparent detection electrode 10Y are formed in a strip-like rectangle, the X-side slit 11X and the Y-side slit 11Y are formed along a straight line. However, a part or all of the X-side slit 11X and the Y-side slit 11Y can be formed in a curved line, and the X-side transparent detection electrode 10X or the Y-side transparent detection electrode 10Y can have various shapes.

また、薄膜の透明導電層を20μm乃至100μmの幅で除去してスリット11X、11Y、14を形成する加工を、レーザー光を照射するレーザー加工で行っているが、機械的な切削加工、エッチング等他の加工方法で形成してもよい。   Further, the process of forming the slits 11X, 11Y, and 14 by removing the thin transparent conductive layer with a width of 20 μm to 100 μm is performed by laser processing that irradiates laser light, but mechanical cutting processing, etching, etc. You may form with another processing method.

また、上述のタッチパネル1は、2種類の検出電極の一方に交流検出信号を印加し、他方の検出電極の交流検出信号の電位から入力操作を検出する相互容量方式(2線式)の静電容量式入力検知装置で説明したが、1種類の検出電極についての浮遊容量の増加を検出して、その検出電極への入力操作を検出するタッチスイッチやタッチセンサーのような自己容量方式(1線式)の静電容量式入力検知装置にも本発明を適用できる。   The touch panel 1 described above is a mutual capacitance type (two-wire type) electrostatic that applies an AC detection signal to one of two types of detection electrodes and detects an input operation from the potential of the AC detection signal of the other detection electrode. As described in the capacitive input detection device, a self-capacitance system (one line) such as a touch switch or a touch sensor that detects an increase in stray capacitance for one type of detection electrode and detects an input operation to the detection electrode. The present invention can also be applied to a capacitance type input detection device of formula (1).

また、上述の実施の形態では、直交するXY方向に互いに絶縁された2種類のX側透明検出電極10XとY側透明検出電極10Yを配線して、2次元の入力操作位置を検出する例で説明したが、1方向に多数の透明検出電極を配置して1方向の入力操作位置を検出する静電容量式入力検知装置であってもよい。   In the above-described embodiment, two types of X-side transparent detection electrode 10X and Y-side transparent detection electrode 10Y that are insulated from each other in the orthogonal XY directions are wired to detect a two-dimensional input operation position. As described above, a capacitance type input detection device that arranges a large number of transparent detection electrodes in one direction and detects an input operation position in one direction may be used.

また、2種類のX側透明検出電極10XとY側透明検出電極10Yを、それぞれ上部透明絶縁シート2と下部透明絶縁シート3に形成しているが、1枚の透明絶縁シートの表面と裏面に分けて2種類のX側透明検出電極10XとY側透明検出電極10Yを形成するものであってもよい。   Two types of X-side transparent detection electrode 10X and Y-side transparent detection electrode 10Y are formed on the upper transparent insulating sheet 2 and the lower transparent insulating sheet 3, respectively. Two types of X-side transparent detection electrode 10X and Y-side transparent detection electrode 10Y may be formed separately.

入力操作体を接近させることによる透明検出電極の浮遊容量の微小変化から入力操作位置を検出する静電容量式入力装置に適している。   This is suitable for a capacitance type input device that detects an input operation position from a minute change in the stray capacitance of a transparent detection electrode caused by approaching an input operation body.

1 静電容量式入力装置
2 上部透明絶縁シート(第1透明絶縁シート)
2A 入力検知領域(第1入力検知領域)
3 下部透明絶縁シート(第2透明絶縁シート)
3A 入力検知領域(第2入力検知領域)
10X X側透明検出電極(第1透明検出電極)
10Y Y側透明検出電極(第2透明検出電極)
11X X側スリット(第1スリット)
11Y Y側スリット(第2スリット)
13 ダミーパターン
14 絶縁スリット
1 Capacitive Input Device 2 Upper Transparent Insulating Sheet (First Transparent Insulating Sheet)
2A Input detection area (first input detection area)
3 Lower transparent insulation sheet (second transparent insulation sheet)
3A input detection area (second input detection area)
10X X-side transparent detection electrode (first transparent detection electrode)
10Y Y side transparent detection electrode (second transparent detection electrode)
11X X side slit (first slit)
11Y Y side slit (second slit)
13 Dummy pattern 14 Insulation slit

Claims (2)

第1透明絶縁シートの第1入力検知領域に、第1方向に所定間隔を隔てて第1方向と直交する第2方向に沿って配線される複数の第1透明検出電極と、
第1透明絶縁シートの第1入力検知領域と絶縁間隔を隔てて対向する第2透明絶縁シートの第2入力検知領域に、第2方向に所定間隔を隔てて第1方向に沿って配線される複数の第2透明検出電極と、
複数の第1透明検出電極と複数の第2透明検出電極の全ての交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量の変化を検出する静電容量検出手段とを備え、
入力操作体が接近して交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量が変化する第1透明検出電極と第2透明検出電極の第1方向と第2方向の配線位置から、入力操作体の第1方向と第2方向の入力操作位置を検出する静電容量式入力装置であって、
第1入力検知領域の全面に形成される透明導電層は、第2方向に沿って100μm以下の線幅でその透明導電層が除去された複数の第1スリットにより複数の透明導電層に分割され、第1方向で隣り合う第1スリットの間の透明導電層により、複数の第1透明検出電極と複数の第1ダミーパターンが第1方向に交互に形成されるとともに、
第2入力検知領域の全面に形成される透明導電層は、第1方向に沿ってその透明導電層が除去された複数の第2スリットにより複数の透明導電層に分割され、各第2透明検出電極は、第2方向で隣り合う一対の第2スリットの間の透明導電層により形成され、
第2方向に沿って形成される前記各第1ダミーパターンは、第2スリットを第1入力検知領域上に投影させた投影形状の両側に沿って100μm以下の線幅で透明導電層が除去された複数の絶縁スリットにより、相互に絶縁された複数のパターンに分割されることを特徴とする静電容量式入力装置。
A plurality of first transparent detection electrodes wired along a second direction orthogonal to the first direction at a predetermined interval in the first direction in the first input detection region of the first transparent insulating sheet;
Wiring is performed along the first direction at a predetermined interval in the second direction to the second input detection region of the second transparent insulating sheet facing the first input detection region of the first transparent insulating sheet with an insulation interval. A plurality of second transparent detection electrodes;
A first transparent detection electrode that intersects at all intersecting positions of the plurality of first transparent detection electrodes and the plurality of second transparent detection electrodes; and a capacitance detection means that detects a change in stray capacitance between the second transparent detection electrodes. Prepared,
The first transparent detection electrode and the second transparent detection electrode in which the stray capacitance changes between the first transparent detection electrode and the second transparent detection electrode intersected at the crossing position when the input operation body approaches and in the first direction and the second direction of the second transparent detection electrode A capacitance type input device that detects an input operation position in a first direction and a second direction of an input operation body from a wiring position,
The transparent conductive layer formed on the entire surface of the first input detection region is divided into a plurality of transparent conductive layers by a plurality of first slits from which the transparent conductive layer is removed with a line width of 100 μm or less along the second direction. The plurality of first transparent detection electrodes and the plurality of first dummy patterns are alternately formed in the first direction by the transparent conductive layer between the first slits adjacent in the first direction,
The transparent conductive layer formed on the entire surface of the second input detection region is divided into a plurality of transparent conductive layers along the first direction by a plurality of second slits from which the transparent conductive layer has been removed. The electrode is formed by a transparent conductive layer between a pair of second slits adjacent in the second direction,
In each of the first dummy patterns formed along the second direction, the transparent conductive layer is removed with a line width of 100 μm or less along both sides of the projected shape in which the second slit is projected onto the first input detection region. The electrostatic capacitance type input device is divided into a plurality of mutually insulated patterns by a plurality of insulating slits .
透明絶縁シートの表面側の第1入力検知領域に、第1方向に所定間隔を隔てて第1方向と直交する第2方向に沿って配線される複数の第1透明検出電極と、
前記透明絶縁シートの裏面側の第2入力検知領域に、第2方向に所定間隔を隔てて第1方向に沿って配線される複数の第2透明検出電極と、
複数の第1透明検出電極と複数の第2透明検出電極の全ての交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量の変化を検出する静電容量検出手段とを備え、
入力操作体が接近して交差位置で交差する第1透明検出電極と第2透明検出電極間の浮遊容量が変化する第1透明検出電極と第2透明検出電極の第1方向と第2方向の配線位置から、入力操作体の第1方向と第2方向の入力操作位置を検出する静電容量式入力装置であって、
第1入力検知領域の全面に形成される透明導電層は、第2方向に沿って100μm以下の線幅でその透明導電層が除去された複数の第1スリットにより複数の透明導電層に分割され、第1方向で隣り合う第1スリットの間の透明導電層により、複数の第1透明検出電極と複数の第1ダミーパターンが第1方向に交互に形成されるとともに、
第2入力検知領域の全面に形成される透明導電層は、第1方向に沿ってその透明導電層が除去された複数の第2スリットにより複数の透明導電層に分割され、各第2透明検出電極が、第2方向で隣り合う一対の第2スリットの間の透明導電層により形成され、
第2方向に沿って形成される前記各第1ダミーパターンは、第2スリットを第1入力検知領域上に投影させた投影形状の両側に沿って100μm以下の線幅で透明導電層が除去された複数の絶縁スリットにより、相互に絶縁された複数のパターンに分割されることを特徴とする静電容量式入力装置。
A plurality of first transparent detection electrodes wired along a second direction orthogonal to the first direction at a predetermined interval in the first direction on the first input detection region on the surface side of the transparent insulating sheet
A plurality of second transparent detection electrodes wired along the first direction at a predetermined interval in the second direction on the second input detection region on the back side of the transparent insulating sheet;
A first transparent detection electrode that intersects at all intersecting positions of the plurality of first transparent detection electrodes and the plurality of second transparent detection electrodes; and a capacitance detection means that detects a change in stray capacitance between the second transparent detection electrodes. Prepared,
The first transparent detection electrode and the second transparent detection electrode in which the stray capacitance changes between the first transparent detection electrode and the second transparent detection electrode intersected at the crossing position when the input operation body approaches and in the first direction and the second direction of the second transparent detection electrode A capacitance type input device that detects an input operation position in a first direction and a second direction of an input operation body from a wiring position,
The transparent conductive layer formed on the entire surface of the first input detection region is divided into a plurality of transparent conductive layers by a plurality of first slits from which the transparent conductive layer is removed with a line width of 100 μm or less along the second direction. The plurality of first transparent detection electrodes and the plurality of first dummy patterns are alternately formed in the first direction by the transparent conductive layer between the first slits adjacent in the first direction,
The transparent conductive layer formed on the entire surface of the second input detection region is divided into a plurality of transparent conductive layers along the first direction by a plurality of second slits from which the transparent conductive layer has been removed. An electrode is formed by a transparent conductive layer between a pair of second slits adjacent in the second direction;
In each of the first dummy patterns formed along the second direction, the transparent conductive layer is removed with a line width of 100 μm or less along both sides of the projected shape in which the second slit is projected onto the first input detection region. The electrostatic capacitance type input device is divided into a plurality of mutually insulated patterns by a plurality of insulating slits .
JP2015252777A 2015-12-25 2015-12-25 Capacitive input device Active JP6612123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015252777A JP6612123B2 (en) 2015-12-25 2015-12-25 Capacitive input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015252777A JP6612123B2 (en) 2015-12-25 2015-12-25 Capacitive input device

Publications (2)

Publication Number Publication Date
JP2017117246A JP2017117246A (en) 2017-06-29
JP6612123B2 true JP6612123B2 (en) 2019-11-27

Family

ID=59234536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252777A Active JP6612123B2 (en) 2015-12-25 2015-12-25 Capacitive input device

Country Status (1)

Country Link
JP (1) JP6612123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108010167A (en) * 2017-12-14 2018-05-08 业成科技(成都)有限公司 The device and its unlocking method locked by coded lock
KR20220093784A (en) * 2020-12-28 2022-07-05 엘지디스플레이 주식회사 Touch display device

Also Published As

Publication number Publication date
JP2017117246A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US10558305B2 (en) Touch sensors
JP5445438B2 (en) Capacitive touch panel
US8698029B2 (en) Touch sensor and method of forming a touch sensor
KR101679622B1 (en) Touch input device
KR20140018120A (en) Touch sensor panel with in-plane backup bypass connections
US10175836B2 (en) Conductive sheet, touch panel device, and display device
WO2014176902A1 (en) Touch control electrode and manufacturing method therefor, capacitive touch control device and touch display device
JP6233075B2 (en) Touch panel sensor and input / output device including touch panel sensor
JP6539190B2 (en) Touch detection device and display device with touch detection function
TWI631503B (en) Mutual capacitive touch panel with double-layer electrode structures
WO2013080638A1 (en) Touch panel
US9753572B2 (en) Touch panel, method of fabricating the same and touch display device
KR20100070964A (en) Pattern structure of the touch panel using electrostatic capacitive type
KR101618653B1 (en) Touch input device and touch detecting method
US9645684B2 (en) Self-capacitive touch panel and conductive layer structure thereof
CN104951161A (en) Liquid crystal display with touch function and conducting layer structure thereof
JP2013218647A (en) Conductor pattern structure of capacitive touch panel and method of configuring the same
KR101859515B1 (en) Touch panel
WO2012173068A1 (en) Touch panel
JP2011128896A (en) Electrostatic capacitance touch panel and method of manufacturing the same
JP6612123B2 (en) Capacitive input device
JP2014194697A (en) Capacitive touch panel
JP2017091018A (en) Touch panel and display device
JP2013156949A (en) Touch panel
KR20100126140A (en) Electrode pattern structure of capacitive touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191030

R150 Certificate of patent or registration of utility model

Ref document number: 6612123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250