WO2012173068A1 - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
WO2012173068A1
WO2012173068A1 PCT/JP2012/064846 JP2012064846W WO2012173068A1 WO 2012173068 A1 WO2012173068 A1 WO 2012173068A1 JP 2012064846 W JP2012064846 W JP 2012064846W WO 2012173068 A1 WO2012173068 A1 WO 2012173068A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
detection
sub
touch panel
electrodes
Prior art date
Application number
PCT/JP2012/064846
Other languages
French (fr)
Japanese (ja)
Inventor
和寿 木田
有史 八代
杉田 靖博
山岸 慎治
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012173068A1 publication Critical patent/WO2012173068A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving

Definitions

  • the present invention relates to a touch panel, and more particularly to a capacitive touch panel.
  • touch panels for inputting a contact position by touching a fingertip or a pen while visually recognizing a display image on a display screen made of a liquid crystal panel or the like are widely used in mobile phones and the like.
  • FIG. 11 is a diagram illustrating an example of a capacitive touch panel.
  • FIG. 11A is a plan view of the touch panel as viewed from above
  • FIG. 11B is a cross-sectional view taken along line A-A ′ of FIG.
  • FIG. 11C is a diagram illustrating a situation when the fingertip is touched on the touch panel.
  • reference numeral 100 denotes a substrate made of a transparent insulator, and a plurality of drive electrodes 101 and a plurality of detection electrodes are provided on the front and back surfaces of the substrate 100, respectively. 102 is formed.
  • the substrate 100 serves as an insulating layer between the drive electrode 101 and the detection electrode 102.
  • the plurality of drive electrodes 101 and the plurality of detection electrodes 102 are formed so as to intersect at right angles, and further, a cover glass made of a transparent insulator covering the detection electrodes 102. 103 is provided.
  • the substrate 100 between the drive electrode 101 and the detection electrode 102 is indicated by a broken line, but the cover glass 103 is omitted to avoid the drawing from being complicated.
  • the lines of electric force have a parallel plate component 105 formed at a portion where the drive electrode 101 and the detection electrode 102 face each other, and a fringe component 104 formed at an edge portion.
  • the substrate made of an insulator is usually made of an insulator such as PET, and the thickness thereof is several hundred ⁇ m, for example, about 200 ⁇ m.
  • the fringe capacitance component 104 that contributes to the sensitivity of the touch panel among the lines of electric force accompanying the capacitance formed between the drive electrode and the detection electrode is generated from the detection electrode 102 as shown in FIG. It was also generated from a distant place (about 1.8 mm on one side) and was relatively weak.
  • FIG. 12 is an example of the detection circuit of the capacitive touch panel shown in FIG.
  • Various detection circuits have been proposed and are well-known techniques, and detailed description thereof is omitted here.
  • Patent Document 1 discloses a technique for detecting a contact position of a fingertip or the like in a state where a plurality of electrodes are coupled and connected in order to increase the detection sensitivity of a touch panel.
  • FIG. 13 is a diagram showing an outline of the touch panel disclosed in Patent Document 1.
  • reference numeral 111 denotes a touch panel unit.
  • a switch 115a for inputting a pulse signal to the input terminal to the X-axis electrode line and a pulse signal to the input terminal to the Y-axis electrode line are input.
  • a switch 115b for connecting the output from the X-axis electrode line to the arithmetic circuit 114, and a switch 116b for connecting the output from the Y-axis electrode line to the arithmetic circuit 114.
  • the control circuit 117 controls the whole and instructs the detection electrode coupling control circuit 113 to detect the proximity or contact position of a fingertip or the like in a state where a predetermined number of electrodes are coupled and connected.
  • an instruction is given to connect the electrodes in the vicinity of the position individually and connect the other regions by connecting a predetermined number of electrodes.
  • Patent Document 2 discloses a technique for simultaneously driving a plurality of drive electrodes in order to increase the SNR (Signal Noise Ratio) of a capacitive touch panel.
  • FIG. 14 is a diagram showing an outline of the touch panel disclosed in Patent Document 2.
  • E1-1 to E1-n are n drive electrodes arranged side by side in the scanning direction, and k detection electrodes E2-1 to E2-k are orthogonal to the drive electrodes.
  • the detection electrode is connected to a voltage detector DET.
  • Reference numeral 11 in FIG. 14 denotes a detection drive scanning unit for driving the drive electrodes.
  • the detection drive scanning unit 11 in FIG. 14 selects an AC drive electrode unit EU including m (2 ⁇ m ⁇ n) drive electrodes continuous from the n drive electrodes. Drive.
  • the detection drive scanning unit 11 in FIG. 14 performs a shift operation for changing the AC drive electrode unit EU to be selected in the scanning direction, but one or more drive electrodes common before and after each shift operation. Is repeated to select.
  • the voltage detector DET compares the potential of the corresponding detection electrode with a predetermined threshold value Vt.
  • JP 2009-258903 A (published on November 5, 2009) JP 2010-092275 A (published on April 22, 2010)
  • the change in capacitance is increased by bundling the drive electrode and the detection electrode, and the detection sensitivity is improved.
  • the detection accuracy will be reduced.
  • the SNR can be increased, but if the detection target is reduced, the number of electrodes can only be increased. As a result, the number of electrodes increases, which affects power consumption.
  • the present invention has been made in view of the above-described problems of the prior art, and in particular, a touch panel that can improve the accuracy of the detection position without increasing the number of detection electrodes that greatly affect power consumption. It is intended to provide.
  • the drive electrode is a touch panel having a detection electrode made of a plurality of strip-like conductive films insulated from each other through an insulator and provided in parallel to each other,
  • the drive electrode and the detection electrode are arranged in a matrix shape orthogonal to each other,
  • the detection electrode is composed of a main electrode extending orthogonally to the drive electrode and a plurality of sub-electrodes provided at a constant interval with respect to the main electrode,
  • the plurality of sub-electrodes are arranged such that the electrode width becomes narrower as they move away from the main electrode, and the sub-electrodes of two adjacent detection electrodes are arranged close to each other in pairs,
  • the main electrode and the sub-electrode are electrically connected at least at one place.
  • one detection electrode is composed of a main electrode and a plurality of sub-electrodes electrically connected to the main electrode, and the width of the plurality of sub-electrodes is made narrower as the distance from the main electrode is increased. Therefore, it is possible to detect the touch position on the narrowed sub-electrode, and it is possible to increase the definition of the detection position without affecting the power consumption.
  • the width of the sub-electrode is made narrower as it is farther from the main electrode, so that it is possible to increase or decrease the capacitance change (signal). From the relationship between the signals of two or more detection electrodes, the target There is an effect that the position information of an object (particularly an object such as a thin pen tip) can be accurately identified. In addition, even for a large object such as a finger, the number of detection electrodes is apparently increased compared to the conventional one, which has the effect of increasing the signal, and further, the shape around the finger is improved. On the other hand, the effect that shape recognition becomes easier than the conventional one can be expected.
  • a touch panel with low power consumption and high detection accuracy can be obtained.
  • FIGS. 1-10 a basic configuration of a touch panel according to the invention of the present application and a touch panel detection function based on the configuration will be described with reference to FIGS.
  • FIGS. 1-10 an embodiment of the present invention will be described in detail with reference to FIG.
  • the drawings are illustrated by, for example, enlarging the dimension in the thickness direction of some members so that the configuration of the touch panel can be easily understood, and do not indicate an actual dimensional relationship.
  • some components are omitted in some drawings.
  • FIG. 1A is an enlarged view of a part of the touch panel according to the present invention, and shows details of a portion surrounded by a broken line 15 in FIGS. 1B and 1C.
  • FIG. 1B and FIG. 1C are diagrams for clarifying the overall configuration of the touch panel according to the present invention, and are diagrams showing a part of the touch panel, but are shown in FIG. This indicates a wider range than the above range. Note that in FIG. 1B and FIG. 1C, in order to avoid complication of the drawing, a part of the configuration of the electrode portion is omitted.
  • 1, 2, and 3 are detection electrodes made of a plurality of strip-like conductive films provided in parallel to each other.
  • a driving electrode 4 made of a plurality of strip-like conductive films arranged in a matrix perpendicular to 3 is provided.
  • the detection electrodes are numbered differently from the detection electrodes 1, 2, and 3, respectively, but basically the same configuration except for the left and right ends of the touch panel. It may be. That is, the detection electrode 1 at the left end portion in FIG. 1B and the detection electrode 2 adjacent to the right side thereof have different configurations, but the electrodes other than the end portion basically have the same configuration. .
  • Reference numeral 5 denotes a detection line for extracting detection signals from the detection electrodes 1, 2, and 3.
  • the detection electrodes 1, 2, 3 and the drive electrode 4 are electrically insulated from each other by an insulating layer.
  • the detection electrodes 1, 2, and 3 are also electrically insulated from each other.
  • FIG. 1A shows the configuration of the detection electrodes corresponding to FIG. 1C, and shows the details of the configuration of the detection electrodes 1, 2, and 3.
  • FIG. The detection electrode 1 is a detection electrode arranged at the left end portion of the touch panel according to the present invention, and is formed with a main electrode 10 extending perpendicularly to the drive electrode 4 and a predetermined distance from the main electrode 10.
  • a plurality of sub-electrodes 11, 12, and 13 are configured.
  • Reference numeral 19 denotes a connection electrode for connecting the main electrode 10 and the sub-electrodes 11, 12, and 13.
  • the sub-electrodes 11, 12, and 13 have a length (vertical direction in the drawing) in the width direction (vertical direction in the drawing). It is needless to say that some errors are allowed for the same length (direction), as long as it is “the same length.”
  • the dimension in the width direction is different from each other. More specifically, the widths of the plurality of sub-electrodes 11, 12, 13 are configured to become narrower as the distance from the main electrode 10 increases.
  • the electrode width of the sub electrode 11 is configured to be narrower than the electrode width of the main electrode 10
  • the electrode width of the sub electrode 12 is configured to be narrower than the electrode width of the sub electrode 11, and the electrode of the sub electrode 13
  • the width is narrower than the electrode width of the sub electrode 12.
  • the width of the main electrode 10 is divided into four equal parts, and the width of the sub-electrode 11 is set to the width of the main electrode 10.
  • the width of the sub-electrode 12 is made half (2/4) the width of the main electrode 10
  • the width of the sub-electrode 13 is made 1/4 of the width of the main electrode 10.
  • the width of the main electrode is made evenly thinner.
  • the electrode width varies depending on the thickness of the cover glass that is not shown in the figure but is to be provided on the detection electrodes 1, 2, and 3. It is determined in consideration of many conditions such as the distance between the electrode and the sub electrode, the width of the drive electrode, the distance between the drive electrode and the detection electrode.
  • the material of the cover glass will be described in detail later. Further, the number of sub-electrodes provided between the main electrode 1 and the main electrode 2 is not limited to the illustrated number.
  • the detection electrode 2 includes a main electrode 20, sub-electrodes 21, 22 and 23 on the left side of the main electrode 20 in the drawing, and sub-electrodes 24, 25 and 26 on the right side of the main electrode 20 in the drawing.
  • Reference numeral 29 denotes a connection electrode for electrically connecting the main electrode 20 and the sub-electrodes 21, 22, 23, 24, 25, and 26.
  • the configuration of the detection electrode 2 is such that the sub-electrodes are arranged in contrast in the left and right directions of the drawing of the main electrode, but the configuration is basically the same as that of the detection electrode 1 when one direction portion is taken out.
  • the sub-electrodes 21, 22, 23, 24, 25, and 26 are configured to become thinner as they move away from the main electrode 20.
  • the electrode widths of the sub-electrodes 21 and 24 may be equal to the width of the sub-electrode 11
  • the electrode widths of the sub-electrodes 22 and 25 may be equal to the electrode width of the sub-electrode 12
  • the electrode width may be equal to the electrode width of the sub electrode 13.
  • the sub electrode 23 of the detection electrode 2 is arranged very close to the sub electrode 11 of the detection electrode 1, and similarly, the sub electrode 12 and the sub electrode 22 are extremely close to each other.
  • the sub electrode 13 and the sub electrode 21 are arranged very close to each other.
  • a uniform voltage is applied to the detection electrodes 1, 2, and 3, there is no potential difference between the detection electrodes 1, 2, and 3. Therefore, the arrangement is only required to be separated by a distance that can maintain the electrical insulation between the sub-electrode on the detection electrode 1 side and the sub-electrode on the detection electrode 2 side. In an extreme case, the arrangement may be 1 ⁇ m, for example. .
  • a normal touch panel is designed with an interval of, for example, about 5 to 10 ⁇ m from the viewpoint of manufacturing.
  • the sub-electrode 11 is configured to have a 3/4 electrode width of the main electrode 10.
  • the sub-electrode 23 is configured to have an electrode width that is 1 ⁇ 4 of the main electrode 20
  • the sub-electrode 11 and the sub-electrode 23 that are arranged close to each other are substantially equal to the main electrodes 10 and 20. It is equivalent to the width.
  • the sub-electrode 12 and the sub-electrode 22 are disposed in close proximity to each other, and the sub-electrode 12 and the sub-electrode 22 are approximately equal in width to the main electrodes 10 and 20.
  • the sub electrode 13 and the sub electrode 21 That is, in the example described above, the sub-electrodes of two adjacent detection electrodes are arranged close to each other in pairs, and the widths of the paired sub-electrodes are almost equal to the width of the main electrode. Will be.
  • variety of a subelectrode which became a pair is not an essential condition,
  • variety of two subelectrodes which became a pair with respect to 500 micrometers of main electrodes is 400 micrometers.
  • the width of the main electrode and the total width of the two sub-electrodes may be different. Details of this case will be described later as a seventh embodiment.
  • the intervals are preferably the same.
  • the total performance of the touch panel is actually determined by the main electrode, sub-electrode spacing, drive electrode width, drive electrode-detection electrode spacing, etc.
  • One design example is shown below. .
  • the present invention is not limited to this design example, but the present inventors have confirmed that this design example has sufficient performance.
  • the optimum values such as the width of the main electrode, the width of the sub electrode, and the distance between the main electrode and the sub electrode differ depending on the thickness of the cover glass.
  • Main electrode width 400-500 ⁇ m
  • the total width of the two sub-electrodes 400 ⁇ m
  • FIG. 1A only the part corresponding to half of the detection electrode 2 on the main electrode 20 side of the detection electrode 2 is shown, but the actual touch panel has the same configuration as the detection electrode 2. . That is, the configuration of the main electrode 30 and the sub-electrodes 31, 32, 33 of the detection electrode 3 is the same as that of the main electrode 20, the sub-electrodes 21, 22, and 23 of the detection electrode 2. An electrode is also formed on the right side of the main electrode 30 in the drawing.
  • Reference numeral 39 denotes a connection electrode that electrically connects the main electrode 30 and the sub-electrodes 31, 32, and 33.
  • the number of sub-electrodes such as detection electrodes 1, 2, and 3 is three.
  • the number of sub-electrodes is not limited to this.
  • the number of sub-electrodes may be four or more. Or it can be set to 2.
  • the detection electrodes 1, 2, 3, the drive electrode 4, and the connection electrodes 19, 29 are all formed of a strip-like conductive film, and any of them can be easily formed by patterning using a known photolithography technique. . It can also be formed by printing using ink jet.
  • a cover glass is provided on the detection electrodes 1, 2, 3, etc., although not shown in FIG.
  • the cover glass is not limited to so-called glass, and may be an insulator having a certain dielectric constant.
  • a PET film, an acrylic plate, or the like can be used. In the case of an acrylic plate, since the dielectric constant is around 3 and the density is low, there is an advantage that the thickness can be made thinner and lighter than glass, but the transparency is somewhat worse than glass.
  • FIG. 1B shows a touch panel configured such that the sub electrode has the same length as the main electrode.
  • the sub-electrodes 11, 12, 13, etc. are divided into a plurality of electrode regions having a length substantially equal to the width of the drive electrode 4 at the intersection with the drive electrode 4.
  • the electrode regions divided into a plurality are electrically connected to the main electrode 10 and the like, respectively.
  • the sub-electrode is not divided into a plurality of electrode regions, but has the same length as the main electrode, and is electrically connected to the main electrode at at least one location. Is done.
  • the length of the sub-electrode (the vertical dimension in the drawing) may be configured to be equal to the width of a plurality of drive electrodes 4.
  • FIG. 2 is a diagram for explaining the detection operation of the touch panel according to the present invention having the detection electrodes described above.
  • FIG. 2A is a diagram showing a state in which a fingertip or the like (hereinafter simply referred to as “fingertip”) is placed on the touch panel, near the main electrode (position 0) of the nth detection electrode.
  • fingertip a fingertip or the like
  • position 0 the main electrode of the nth detection electrode.
  • a state in which the fingertip is placed and a state in which the fingertip is placed at a position x slightly shifted to the right from the position 0 are shown.
  • the fingertip is only near the main electrode of the nth detection electrode.
  • the fingertip is closest to the sub-electrode near the main electrode of the n-th detection electrode and further away from the main electrode of the adjacent detection electrode (n + 1 first detection electrode). It reaches the vicinity of the secondary electrode at the specified position.
  • FIG. 2B is a diagram showing a state of detection output output to the detection electrode depending on the position where the fingertip or the like is placed. Note that the graph shown in FIG. 2B is simplified for explaining the operation principle of the touch panel according to the present invention, and does not show an accurate characteristic.
  • the vertical axis indicates the magnitude of the output signal of the detection electrode
  • the horizontal axis indicates the position on the touch panel (the position in the horizontal direction on the paper surface) in a form that clearly shows the relationship with the detection electrode.
  • the solid line (output: n) indicates the output of the n-th detection electrode, indicating that the main electrode has the maximum output at a certain position, and the output decreases as the distance from the main electrode increases.
  • the broken line (output: n + 1) indicates the output of the (n + 1) th detection electrode, and the maximum output at the position where the main electrode is located as in the case of the solid line (output: n).
  • the output decreases as the distance from the main electrode increases.
  • the output of S0 can be obtained only from the nth detection electrode.
  • an output S1 is obtained from the nth detection electrode and an output S2 is also obtained from the n + 1th detection electrode. In this way, the fingertip can be detected with high accuracy at the position level of the sub-electrode.
  • the algorithm for specifying the position coordinates is also simple. There is also a merit that it can be made into something.
  • FIG. 3 is a diagram showing Example 1 of the present invention.
  • FIG. 3 (a), FIG. 3 (b), FIG. 3 (c), FIG. 3 (d), and FIG. 3 (e) are diagrams showing the configuration of the touch panel according to the first embodiment of the present invention. Only the portion corresponding to the portion surrounded by the broken line 16 in 1 (b) and (c) is shown. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 3A is a plan view showing the configuration of the detection electrodes 1, 2 and the drive electrode 4, and FIG. 3B is a view showing only the detection electrode 1 taken out.
  • FIG. 3C is a diagram showing only the detection electrode 2 taken out, and
  • FIG. 3D is a diagram showing only the drive electrode 4 taken out.
  • FIG. 3E shows a cross-sectional view along the line A-A ′ in FIG.
  • FIG.3 (e) although nothing is described on the detection electrodes 1 and 2, as already stated, the cover glass etc. are provided in the actual touch panel.
  • the configuration of the detection electrode 1 and the detection electrode 2 is the same as that of the detection electrode 1 and the detection electrode 2 described in FIG. That is, the detection electrode 1 is composed of a main electrode 10 and sub-electrodes 11, 12, 13 connected to the main electrode 10 by a connection electrode 19, and the sub-electrodes 11, 12, 13 are electrodes as they move away from the main electrode 10. It is comprised so that a width
  • Reference numeral 29 denotes a connection electrode for connecting the main electrode 20 and the sub-electrodes 21, 22, and 23.
  • the detection electrode 1 and the detection electrode 2 are arranged so that the sub-electrode 11 and the sub-electrode 23 are paired close to each other.
  • the sub-electrode 12 of the detection electrode 1 and the sub-electrode 22 of the detection electrode 2 are arranged in close proximity to each other, and further, the sub-electrode 13 of the detection electrode 1 and the sub-electrode of the detection electrode 2 are arranged.
  • the electrodes 21 are arranged so as to be paired close to each other.
  • the sub-electrodes arranged so as to be paired close to each other are insulated from each other.
  • the drive electrode 4 is configured as a uniform conductive film on the entire surface as shown in FIG. 3D, and the detection electrode 1 and the detection electrode 2 are opposed to the detection electrode 1 and the detection electrode 2.
  • the electrode 2 is provided so as to cover the entire surface.
  • FIG. 3E is a cross-sectional view taken along the line A-A ′ in FIG.
  • reference numeral 7 denotes a substrate, and the drive electrode 4 is formed on the substrate 7.
  • Reference numeral 6 denotes an insulating layer, which achieves electrical insulation between the drive electrode 4 and the detection electrodes 1, 2, and 3.
  • the main electrode 10 and the sub-electrodes 11, 12, and 13 constitute the detection electrode 1
  • the main electrode 20 and the sub-electrodes 21, 22, and 23 constitute the detection electrode 2.
  • the sub-electrode 11 and the sub-electrode 23, the sub-electrode 12 and the sub-electrode 22, and the sub-electrode 13 and the sub-electrode 21 are arranged so as to be close to each other and to be paired. I understand.
  • the detection electrodes 1, 2 and 3, the drive electrode 4, the substrate 7, the insulating layer 6, and the cover glass are placed on a display device such as a liquid crystal display device and associated with the display image of the display device.
  • a display device such as a liquid crystal display device
  • ITO which is well known as a transparent electrode
  • an insulating material such as PET can be used for the insulating layer 6.
  • various transparent glass and an acrylic board can be used for a cover glass.
  • ITO As a material for the drive electrode and the detection electrode, ITO is generally used. However, if the pattern is very fine, metal may be an option. As long as the metal is employed in the liquid crystal panel, there is no problem. For example, Ti, Al, Mo, or a combination thereof may be used.
  • As the insulating layer it is also possible to use an insulating layer or a resin layer used in the liquid crystal process. For example, a silicon nitride film (SiNx), a silicon oxide film (SiO2), an acrylic resin, or the like can be used. It is possible to use.
  • Example 1 demonstrated above, the specific design example of each member is shown below.
  • the main electrode and the sub electrode having the same configuration as the member shown in FIG. 1 are designed to have substantially the same values as described in the explanation of FIG.
  • the present invention is not limited to the design example of the first embodiment, but the present inventors have confirmed that the design example has sufficient performance.
  • Main electrode width 400-500 ⁇ m
  • the total width of the two sub-electrodes 400 ⁇ m
  • Interval between main electrode and sub electrode 800 ⁇ m
  • Cover glass thickness 700-800 ⁇ m
  • Driving electrode 4 width 1.6 to 1.7 mm
  • Insulating layer 6 thickness 2-3 ⁇ m
  • Drive electrode and detection electrode thickness 100 ⁇ m
  • the substrate 7 may be determined mainly from consideration of strength.
  • the configuration of the drive electrode 4 is simple, and the drive electrode 4 itself serves as a good shield, so when it is used by being laminated with a liquid crystal module or the like,
  • the touch panel resists noise from the LCD module.
  • the positional accuracy with respect to a thin detection target such as a pen can be improved, since the cross capacitance between the drive electrode and the detection electrode becomes large, it is effective to use for a relatively small panel.
  • FIG. 4 shows a second embodiment of the present invention.
  • FIG. 4 is a diagram showing the configuration of the touch panel according to the second embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS.
  • the touch panel of Example 2 shown in FIG. 4 since the same number is provided to the same component as FIG. 1, FIG. 3, detailed description of those portions is abbreviate
  • FIG. 4 (a) is a diagram showing the configuration of the detection electrodes 1, 2 and the drive electrode 40 in a plan view
  • FIG. 4 (b) is a diagram showing the drive electrode 40 taken out.
  • FIG. 4C is a cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 4D is a diagram showing a modification of the second embodiment, and is a cross-sectional view taken along the line A-A ′ in FIG.
  • the touch panel of the second embodiment shown in FIG. 4 is greatly different from the touch panel of the first embodiment shown in FIG.
  • the drive electrode 4 is formed so as to cover the entire surface of the detection electrode 1, the detection electrode 2, and the like.
  • the drive electrode 40 is formed as shown in FIG. As shown in FIG. 4, it is configured in a comb-like shape, and as shown in FIG. 4C, the structure is removed in a portion overlapping with the main electrodes 10, 20 and the sub electrode.
  • the drive electrode formed in a comb-teeth shape is described as “drive electrode 40”, and is distinguished from the drive electrode 4 of the first embodiment.
  • 41 is a comb-teeth connection wiring for mutually connecting each comb-teeth portion of the drive electrode 40 formed in a comb-teeth shape, and is connected only by one side portion in the length direction of the drive electrode.
  • the “portion overlapping with the sub-electrode” to be removed from the drive electrode 4 shown in the first embodiment is a portion of “the sub-electrode 11 and the sub-electrode 23 arranged in a close proximity to each other”.
  • 7 is a board
  • the comb-tooth connection electrode 41 is provided on the upper side portion (the top of the drawing) of the drive electrode 40, and the drive electrode 40 is formed in a literal comb-tooth shape. 41 may be provided other than this part, and a plurality of comb-teeth connection electrodes 41 may be provided. That is, the drive electrode may be provided so that a part of the drive electrode is removed from the portion overlapping the detection electrode.
  • sub-electrode pair 1123 a portion of “sub-electrode 11 and sub-electrode 23 arranged in pairs close to each other” is abbreviated as “sub-electrode pair 1123” and “close to each other”.
  • the portion of the sub-electrode 12 and the sub-electrode 22 arranged as a pair is referred to as a “sub-electrode pair 1222”, and similarly, the portion of the “sub-electrode 13 and the sub-electrode 21 arranged as a pair close to each other”. May be abbreviated as “sub electrode pair 1321”.
  • the area of the overlapping portion (cross portion) between the detection electrode and the drive electrode can be considerably reduced, and as a result, the capacitance at this intersection portion can be reduced. Therefore, the charging time in the detection electrode is shortened, and driving at a high frequency is possible. This means that the number of touch detections on the touch panel can be increased, and the detection performance of the touch panel is improved.
  • FIG. 4D is a modification of the second embodiment.
  • the detection electrode and the drive electrode are provided so as to be insulated from each other on the same plane.
  • a comb-like drive electrode 40 is sandwiched between the main electrode 20 and the main electrode 20 in the same plane. Needless to say, it is necessary to insulate between the detection electrode 1 and the detection electrode 2 and further between the detection electrodes 1 and 2 and the drive electrode 40.
  • the entire touch panel can be made thin, and since the insulating layer can be disposed only in the cross portion, there is an effect of suppressing a decrease in transmittance.
  • FIG. 5 shows a third embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. 1 (b) and 1 (c).
  • FIG. 5 shows a third embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. 1 (b) and 1 (c).
  • the touch panel of Example 3 shown in FIG. 5 since the same number is attached
  • the third embodiment differs from the second embodiment described with reference to FIG. 4 in the configuration of the drive electrode 40, but as shown in FIG. 5A, the detection electrodes 1, 2, the main electrodes 10, 20.
  • the configurations of the sub-electrodes 11, 12, 13, the sub-electrodes 21, 22, 23, and the connection electrodes 19, 29 may be the same as those in the second embodiment, and as shown in FIGS. 5 (c) and 5 (d),
  • the insulating layer 6 and the substrate 7 may have the same configuration.
  • the detection electrodes 1 and 2 and the drive electrode 40 are arranged to face each other with the insulating layer 6 therebetween as shown in FIG. 5C.
  • the detection electrodes 1 and 2 and the drive electrode 40 may be arranged on the same plane.
  • a metal wiring 42 made of a highly conductive conductor is provided adjacent to the comb connection wiring 41 of the drive electrode 40 formed in a comb shape.
  • the drive electrode 40 is a portion that overlaps the detection electrode and is made of a high conductivity conductor at a portion of the comb-teeth connection wiring 41 that is narrowed by removing a part of the drive electrode 40.
  • the metal wiring 42 is provided.
  • the metal wiring 42 is provided so as to be electrically connected to the comb-teeth connection wiring 41 and suppresses a decrease in the resistance value of the comb-teeth connection wiring 41.
  • the metal wiring 42 can be a typical metal used for liquid crystal panels such as Ti, Al, Mo, and composites in addition to metal wiring such as gold, silver, and copper, but the entire touch panel is transparent. In some cases, it is necessary to make the presence of metal wiring inconspicuous by taking measures such as narrowing the wiring width. Moreover, you may respond by increasing the thickness of transparent conductive films, such as ITO. In this case, a part of the comb-teeth connection wiring 41 may be thickened, or the entire thickness of the comb-teeth connection wiring 41 may be increased.
  • FIG. 6 shows a fourth embodiment of the present invention.
  • a shield conductive film insulated from the drive electrode is provided at a location where the drive electrode is removed in order to form the comb-like drive electrode 40.
  • FIG. 6 is a diagram showing the configuration of the touch panel according to the fourth embodiment of the present invention.
  • FIG. 6A shows a conductive shield for a comb-like drive electrode 40 formed in a comb-like shape.
  • FIG. 6B shows the structure of only the comb-shaped shielding conductive film 8
  • FIG. 6C shows the structure of FIG. 6A.
  • a cross-sectional view along line AA ′ is shown.
  • FIG. 6 only the portion corresponding to the portion surrounded by the broken line 16 in FIGS. 1B and 1C is shown.
  • the touch panel according to the fourth embodiment shown in FIG. 6 the same components as those in FIGS. 1 and 3 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. .
  • the drive electrode 40 formed in a comb-like shape in the second and third embodiments shown in FIG. 4 and FIG.
  • a shielding conductive film 8 insulated from the drive electrode 40 is provided on the same plane.
  • the shielding conductive film 8 preferably fills the entire portion (blank portion) where the drive electrode 40 is not present, and also fills the blank portion of the drive electrode 40 as shown in FIG.
  • the shielding conductive films 8 are electrically connected to each other.
  • the comb-teeth connection wiring 41 (see FIG. 5B) that connects the tooth-like conductors of the drive electrodes 40 formed in a comb-teeth shape.
  • the metal wiring 42 made of a conductor having high conductivity is adjacent to the metal wiring 42, the metal wiring 42 is not an essential constituent element. Therefore, the shielding conductive film 8 may be provided without providing the metal wiring 42. .
  • the conductive film 8 for shielding is provided, a touch panel resistant to external electrical noise can be obtained.
  • the touch panel is often used in a manner overlapping with a display device that generates electrical noise during operation, for example, a liquid crystal display device.
  • a conductive film 8 for shielding By providing such a conductive film 8 for shielding, noise from the liquid crystal panel is provided. It is possible to prevent the operation of the touch panel from becoming unstable even when the liquid crystal panel generates strong electrical noise.
  • the influence of noise can be further reduced by using the drive electrode 40 and the shielding conductive film 8.
  • the potential other than the active drive electrode to the same potential as that of the shielding conductive film 8, for example, even if a display device such as a liquid crystal panel disposed under the touch panel generates strong electrical noise. This can be effectively shielded.
  • noise components are reduced with respect to the detection electrodes. That is, in the touch panel, a drive voltage is selectively applied to the drive electrode in order to detect a touch of a fingertip or the like, but other than the drive electrode to which the drive voltage is applied has the same potential as the shield conductive film 15. Will be.
  • FIG. 7 shows a fifth embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. 1 (b) and 1 (c).
  • FIG. 7 is a diagram showing an outline of the touch panel according to the fifth embodiment of the present invention
  • FIG. 7A is a diagram showing the configuration of the detection electrodes 1, 2 and the drive electrode 40
  • FIG. 7C is a diagram showing a cross section taken along the line AA ′ in FIG. 7A.
  • the detection electrodes 1 and 2 and the drive electrode 40 are provided in a hierarchical structure with the insulating layer 6 interposed therebetween.
  • FIG. 7C shows an example (a modification of the fifth embodiment) in which the detection electrodes 1 and 2 and the drive electrode 40 are insulated from each other on the same plane.
  • FIG. 7 shows only a portion corresponding to the portion surrounded by the broken line 16 in FIGS. 1B and 1C as described above.
  • the same reference numerals are given to the same components, and detailed description of those components is omitted.
  • connection electrode 19 that connects the main electrode 10 of the detection electrode 1 and the sub-electrodes 11, 12, and 13, and a main electrode 20 of the detection electrode 2
  • connection electrodes 29 for connecting the sub-electrodes 21, 22, 23 are provided on the same side.
  • the connection electrodes 19 and 29 are provided on the side opposite to the comb connection wiring 41 of the comb-shaped drive electrode 40. That is, in the fifth embodiment, the connection electrode for connecting the main electrode and the sub electrode in the detection electrode is provided on the side opposite to the comb connection wiring of the drive electrode formed in the comb shape. Yes.
  • the cross capacitance based on the intersection between the drive electrode 40 and the detection electrodes 1 and 2 can be further reduced.
  • the charging time at the detection electrode is shortened, and driving at high frequency is performed. Is possible. As described above, this means that the number of touch detections on the touch panel can be increased, and the detection performance of the touch panel is improved.
  • a comb-like portion of the drive electrode 40 is formed between the main electrode and the sub electrode of the detection electrodes 1 and 2. It is not necessary to provide it on the entire surface, and it may be provided intentionally through a space. That is, in FIG. 7A, it can be confirmed that a slight space is provided between the comb-like portion of the drive electrode 40 and the main electrode and the sub electrode of the detection electrodes 1 and 2.
  • a space may be provided intentionally.
  • the space may be about 200 ⁇ m.
  • FIG. 8 shows Embodiment 6 of the present invention.
  • FIG. 8 is a diagram showing an outline of the touch panel of Example 6 according to the present invention
  • FIG. 8A is a diagram showing the configuration of the detection electrodes 1 and 2 and the drive electrode 40
  • FIG. FIG. 8A is a diagram showing a cross section taken along line AA ′ in FIG. 8A
  • FIG. 8C is a diagram for explaining the effect of the touch panel according to the sixth embodiment.
  • FIG. 8 shows only a portion corresponding to the portion surrounded by the broken line 16 in FIGS.
  • the same reference numerals are given to the same components as those in FIGS. 1 and 3 to 7, and detailed description of these components will be omitted. .
  • the configuration is almost the same as that of the fifth embodiment shown in FIG. 7C.
  • An insulating conductive film 9 is provided for insulation.
  • a ground conductive film 9 is provided on the back surface of the substrate 7 on which the detection electrode and the drive electrode are formed.
  • the substrate 7, the insulating layer 6, the detection electrodes 1 and 2, the drive electrode 40, etc., including the ground conductive film 9 are known transparent insulators, It will be formed of a transparent conductive film.
  • FIG. 8B shows a structure in which a ground conductive film 9 is provided on the back surface of the substrate 7 of the touch panel in which the detection electrode and the drive electrode are formed on the same plane, but FIG. Needless to say, the ground conductive film 9 may be provided on the back surface of the substrate 7 even in a touch panel having a structure in which the detection electrode and the drive electrode as shown in FIG.
  • FIG. 8C shows a state of lines of electric force when a driving voltage is applied to the touch panel provided with the ground conductive film 9.
  • the grounding conductive film 9 is provided under the substrate 7, so that the lower side of the lines of electric force (see the arrows in the figure) from the drive electrode 40 to the detection electrode 1 is reduced.
  • the electric lines of force that wrap around are trapped in the grounding conductive film 9 and the cross capacitance can be reduced.
  • the conductive film 9 for earthing also has a shielding effect against noise from noise generation sources such as a liquid crystal panel and an organic EL panel.
  • FIG. 9 shows a seventh embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. 1 (b) and 1 (c).
  • Example 7 shown in FIG. 9 shows a case where the width of the “main electrode” constituting the detection electrode is different from the width of the “total number of sub-electrodes paired”. In addition, the width of the “sub electrode total” is smaller than the width of the “main electrode”.
  • the detection electrode 1 is composed of a main electrode 10 and four sub-electrodes 101, 102, 103, 104
  • the detection electrode 2 is composed of a main electrode 20 and four sub-electrodes 201, 202, 203, 204. It is configured.
  • the sub-electrode 101 and the sub-electrode 204 are arranged in close proximity to each other to constitute a “paired sub-electrode”.
  • the drive electrode 40 is inserted between the “main electrode” and the “paired sub-electrode” and between the “paired sub-electrodes”.
  • connection electrode connecting the main electrode 10 and the sub-electrodes 101, 102, 103, 104, and the connection between the main electrode 20 and the sub-electrodes 201, 202, 203, 204 are connected.
  • the connection electrodes for connecting the drive electrodes 40 and the drive electrodes 40 are omitted, but in actuality, they are connected to each other by the configuration shown in FIG. 1, FIG. 4, FIG. 5, FIG. Has been.
  • Example 7 the width of the main electrodes 10 and 20 is set to 500 ⁇ m, and the total width of the paired sub-electrodes is set to 400 ⁇ m. Further, the width of the drive electrode 40 is set to 400 ⁇ m, and the distance between the drive electrode 40 and the main electrodes 10 and 20 and between the sub electrode paired with the drive electrode 40 is set to 200 ⁇ m. Furthermore, the dimension of the drive electrode 40 in the length direction is set to 5100 ⁇ m. Regarding the width of the main electrode, it has been confirmed that a similar effect can be obtained by increasing the width in the range of 100 ⁇ m to 150 ⁇ m with respect to the width of “the total of the paired sub electrodes”.
  • the present inventors set the “total width of the paired sub-electrodes” to be smaller than the “width of the main electrode”, thereby outputting the detection output in FIG. It has been found that a detection output with good linearity as indicated by n and output n + 1 can be obtained. That is, when the width of the main electrode and the “total width of the paired sub-electrodes” are designed to be substantially the same width, the detection object such as a fingertip is the first “paired sub-electrode from the main electrode. The detection output obtained when moving to “” is small and the detection output is somewhat saturated. However, it has been confirmed that the linearity of the detection output can be improved by the above configuration.
  • the reason why the change in detection output obtained when a detection object such as a fingertip moves from the main electrode to the first “paired sub-electrode” is reduced is that the first “paired sub-electrode” from the main electrode This is probably because the difference in the lines of electric force when going to the “electrode” is small. Therefore, the “total width of the paired sub-electrodes” is made smaller than the “main electrode width”, and the fingertip or pen tip placed on the main electrode is moved to the first “pair” from the main electrode. The difference of the electric lines of force when going to the “sub electrode” side is increased. As a result, the change in the detection output is increased, and as a result, the linearity of the detection output can be improved.
  • the number of sub-electrodes and the size (dimensions) of each part shown in FIG. 9 are examples, and the present invention is not limited to this number and size. It is confirmed that a good detection output can be obtained when the number of each is set to 4 and the size of each part is set as shown in FIG. That is, in general, the optimum value of the size of each part depends on the thickness of the cover glass, depends on the number of sub-electrodes, further depends on the size of the main electrode, etc. Although it is known that the size of each part affects each other in a complicated manner, it has been confirmed that sufficient detection output can be obtained with sufficient accuracy as a touch panel when set to the above values.
  • the sub-electrode 101 of the main electrode 10 is disposed close to the sub-electrode 204 of the main electrode 20, and together with the sub-electrode 204, “a pair of sub-electrodes”
  • the sub electrode 204 is disposed on the side close to the main electrode 10, and the sub electrode 101 is disposed at a position away from the main electrode 10.
  • the sub electrode 204 may be close to the main electrode 10.
  • FIGS. 3, 4, 5, 6, 7, and 7. The touch panel of each embodiment shown in FIG.
  • FIG. 10 is a diagram for explaining another effect of the touch panel according to the invention of the present application in comparison with a conventional example.
  • FIG. 10 (a) shows a conventional touch panel
  • FIG. b) shows an example of a touch panel according to the invention of the present application.
  • FIG. 10A and FIG. 10B each show a touch panel having the same level of detection accuracy, and shows necessary detection lines in each touch panel.
  • the touch panel according to the present invention it is only necessary to draw out the detection line from only the main electrode among the main electrode and the sub electrode constituting the detection electrode, and the number of detection lines can be greatly reduced.
  • the number of detection lines may be 1/5 as compared with the conventional example shown in FIG. For this reason, a so-called narrow frame touch panel can be easily realized.
  • Example 2 shown in FIGS. 4 (a) to 4 (b)
  • Example 3 shown in FIGS. 5 (a) to (c) is shown in FIGS. 7 (a) and 7 (b).
  • the comb-like drive electrode 40 is provided with the comb-teeth connection wiring 41 in the upper part of the drawing. It is not limited to. That is, the comb-teeth connection wiring 41 may be further provided in the lower part of the drawing, and the comb-like drive electrodes may be connected to the upper and lower ends of the drawing. Further, the comb connection wiring 41 may be provided and connected only to the intermediate portion. In short, the drive electrode 4 may be partially removed from the portion overlapping the detection electrode. Also by this, the area of the overlapping portion (cross portion) of the detection electrode and the drive electrode can be reduced, so that the above effect can be expected.
  • the sub-electrode is further divided into a plurality of electrode regions having a length substantially equal to the width of the drive electrode at the intersection with the drive electrode,
  • the electrode regions divided into a plurality are preferably electrically connected to the main electrode.
  • the sub electrode is divided into a plurality of electrode regions having a length substantially equal to the width of the drive electrode at the intersection with the drive electrode, and the divided electrode region is divided into the plurality of electrode regions.
  • the cross capacitance with the drive electrode can be reduced, and the drive power consumption can be reduced.
  • the cross capacitance can be reduced, the charging time can be shortened, so that the time constant required for charging is lowered, and as a result, the driving frequency can be increased.
  • a part of the drive electrode is removed in a portion overlapping with the detection electrode.
  • the overlapping part (cross part) of the drive electrode and the detection electrode can be further reduced, it becomes possible to further shorten the charging time during driving, and it is possible to drive at a higher frequency. Become.
  • the drive electrode may be connected to only one side portion in the length direction of the drive electrode in a portion overlapping the detection electrode, and may be formed in a comb shape. preferable.
  • the drive electrode further includes a metal wiring made of a high conductivity conductor in a portion where the drive electrode is partially removed and narrowed in a portion overlapping the detection electrode. It is preferable to have.
  • a shield conductive film is provided on the same plane as the drive electrode, where the drive electrode is removed, and is insulated from the drive electrode. Preferably it is.
  • the noise component entering the touch panel can be minimized, and the operation as the touch panel can be stabilized.
  • connection electrode for connecting the main electrode and the sub electrode in the detection electrode, and the comb connection wiring of the drive electrode formed in the comb shape It is preferable to provide on the opposite side.
  • the cross capacitance based on the intersection of the drive electrode and the detection electrode can be further reduced, and the drive at a higher frequency becomes possible. This means that the number of touch detections of the touch panel is increased, and the detection performance of the touch panel can be improved.
  • the touch panel according to one embodiment of the present invention is further characterized in that a ground conductive film is provided so as to be insulated from the detection electrode and the drive electrode.
  • the cross capacitance between the detection electrode and the drive electrode can be further reduced, and noise from the noise generation source can be effectively shielded.
  • the detection electrode and the drive electrode are both transparent conductive films, an insulating layer that insulates the detection electrode and the drive electrode, the detection electrode, and the drive electrode. It is preferable that any of the substrates that form the layer is made of a transparent insulator.
  • a touch panel can be mounted on a display device such as a liquid crystal display panel, and the touch panel can be used in cooperation with a display image of the display device, and the convenience of the touch panel can be further enhanced.
  • the shielding conductive film is transparent.
  • a touch panel provided with a conductive film for shielding to enhance noise resistance together with a liquid crystal display device or the like, and the convenience of the touch panel can be enhanced.
  • the touch panel according to one embodiment of the present invention is further characterized in that the ground conductive film is transparent.
  • a touch panel provided with a conductive film for grounding can be installed on a liquid crystal display device or the like, and an operation as a touch panel can be performed while checking an image displayed on the liquid crystal display device or the like.
  • the convenience of the touch panel can be improved.
  • the sub-electrodes of the two adjacent detection electrodes are arranged in close proximity to each other, and the total width of the paired sub-electrodes is greater than the width of the main electrode. It is preferable to make it smaller. According to this, the linearity of the detection output at the detection electrode can be improved.
  • the present invention can improve detection accuracy without increasing power consumption in a touch panel that can input information by touching a fingertip or the like.
  • Various portable devices are used as information input devices in man-machine interfaces. It can be applied to personal computers and the like, and its industrial applicability is high.

Abstract

Provided is a capacitance touch panel with superior detection precision. A touch panel is configured from detection electrodes (1, 2, 3), respective primary electrodes (10, 20, 30), and respective pluralities of auxiliary electrodes (11-13), auxiliary electrodes (21-26), and auxiliary electrodes (31-33). The auxiliary electrodes (11-13) are configured to narrow the further from the primary electrode (10), and are positioned to mutually make contact, and form pairs, with the adjacent auxiliary electrodes (23, 22, 21) of another primary electrode (20). With the auxiliary electrodes configured to narrow the further from the primary electrodes, it is possible to detect even a touch in an auxiliary electrode location with high precision.

Description

タッチパネルTouch panel
 本発明は、タッチパネルに関し、より詳細には静電容量型のタッチパネルに関する。 The present invention relates to a touch panel, and more particularly to a capacitive touch panel.
 現在、携帯電話機等において、液晶パネル等よりなる表示画面の表示画像を視認しながら、指先やペン等を接触させて接触位置を入力するタッチパネルが広く用いられている。 At present, touch panels for inputting a contact position by touching a fingertip or a pen while visually recognizing a display image on a display screen made of a liquid crystal panel or the like are widely used in mobile phones and the like.
 この種のタッチパネルとしては、従来、種々のタイプのものが提案されているが、使用に際して指による操作が簡単に可能となる静電容量型のタッチパネルが広く用いられてきている。 Conventionally, various types of touch panels have been proposed as this type of touch panel, but capacitive touch panels that can be easily operated with a finger during use have been widely used.
 図11は、静電容量型のタッチパネルの一例を示す図である。図11(a)はタッチパネルを上からみた平面図であり、図11(b)は、図11(a)の線分A-A’に沿った断面図である。また、図11(c)は、指先をタッチパネルにタッチした場合の状況を示す図である。図11(a)、図11(b)、図11(c)において、100は透明な絶縁体よりなる基板であり、基板100の表裏面には、それぞれ複数の駆動電極101、複数の検出電極102が形成されている。基板100は駆動電極101と検出電極102の間の絶縁層として働く。 FIG. 11 is a diagram illustrating an example of a capacitive touch panel. FIG. 11A is a plan view of the touch panel as viewed from above, and FIG. 11B is a cross-sectional view taken along line A-A ′ of FIG. FIG. 11C is a diagram illustrating a situation when the fingertip is touched on the touch panel. In FIGS. 11A, 11B, and 11C, reference numeral 100 denotes a substrate made of a transparent insulator, and a plurality of drive electrodes 101 and a plurality of detection electrodes are provided on the front and back surfaces of the substrate 100, respectively. 102 is formed. The substrate 100 serves as an insulating layer between the drive electrode 101 and the detection electrode 102.
 複数の駆動電極101と複数の検出電極102は、図11(a)に示すように、直角に交差するように形成されており、更に、検出電極102を覆って透明な絶縁体よりなるカバーガラス103が設けられている。なお、図11(a)においては、駆動電極101と検出電極102の間の基板100を破線で示しているが、図面が煩雑になることを避けるため、カバーガラス103を省略している。 As shown in FIG. 11A, the plurality of drive electrodes 101 and the plurality of detection electrodes 102 are formed so as to intersect at right angles, and further, a cover glass made of a transparent insulator covering the detection electrodes 102. 103 is provided. In FIG. 11A, the substrate 100 between the drive electrode 101 and the detection electrode 102 is indicated by a broken line, but the cover glass 103 is omitted to avoid the drawing from being complicated.
 駆動電極101と検出電極102が絶縁体である基板100を介して相対することになるので、駆動電極101と検出電極102の間には静電容量が形成されることになる。従って、駆動電極101と検出電極102間に電圧が印加されると、図11(b)に示すように、電気力線が形成される。電気力線は、駆動電極101と検出電極102が対向する部分に形成される平行平板成分105と、縁の部分に形成されるフリンジ成分104とを有する。 Since the drive electrode 101 and the detection electrode 102 face each other through the substrate 100 which is an insulator, a capacitance is formed between the drive electrode 101 and the detection electrode 102. Therefore, when a voltage is applied between the drive electrode 101 and the detection electrode 102, lines of electric force are formed as shown in FIG. The lines of electric force have a parallel plate component 105 formed at a portion where the drive electrode 101 and the detection electrode 102 face each other, and a fringe component 104 formed at an edge portion.
 このようなタッチパネルにおいて、図11(c)に示すようにカバーガラス103の上から指先等がタッチすると、指先を介して接地されることとなって、指先との間に静電容量が形成され、結局、駆動電極101と検出電極102との間の静電容量が変化することになる。この静電容量の変化が何処で起きたかを検出して指先等のタッチした箇所を検出する。 In such a touch panel, as shown in FIG. 11C, when a fingertip or the like touches from the top of the cover glass 103, it is grounded via the fingertip, and a capacitance is formed between the fingertip. Eventually, the capacitance between the drive electrode 101 and the detection electrode 102 changes. It is detected where this capacitance change has occurred and a touched part such as a fingertip is detected.
 図11に示したタッチパネルにおいて、絶縁体より構成される基板は、通常PET等の絶縁体で構成されており、その厚みは数百μm、例えば、200μm程度であった。この場合、駆動電極と検出電極間に形成される静電容量に伴う電気力線の内、タッチパネルの感度に寄与するフリンジ容量成分104は、図11(b)に示すように、検出電極102から遠いところからも発生しており(片側約1.8mm)、比較的弱いものであった。 In the touch panel shown in FIG. 11, the substrate made of an insulator is usually made of an insulator such as PET, and the thickness thereof is several hundred μm, for example, about 200 μm. In this case, the fringe capacitance component 104 that contributes to the sensitivity of the touch panel among the lines of electric force accompanying the capacitance formed between the drive electrode and the detection electrode is generated from the detection electrode 102 as shown in FIG. It was also generated from a distant place (about 1.8 mm on one side) and was relatively weak.
 図11に示したタッチパネルでは、感度を落とさないためには検出電極102の相互の間隔をある程度広く取る必要があり(約4mm)、しかも、広く取ることによる感度の向上にも限度があった。また、検出電極の間隔を狭めることが困難であることから、検出の精度を上げることが困難であるという課題がある。 In the touch panel shown in FIG. 11, in order not to reduce the sensitivity, it is necessary to increase the distance between the detection electrodes 102 to some extent (about 4 mm), and there is a limit to the improvement in sensitivity due to the wide detection. In addition, since it is difficult to reduce the interval between the detection electrodes, there is a problem that it is difficult to increase the detection accuracy.
 なお、図12は、図11に示した静電容量型タッチパネルの検出回路の一例である。検出回路自体は種々提案されているところであって公知の技術であり、ここでは詳細な説明は省く。 FIG. 12 is an example of the detection circuit of the capacitive touch panel shown in FIG. Various detection circuits have been proposed and are well-known techniques, and detailed description thereof is omitted here.
 特許文献1には、タッチパネルの検出感度を大きくするために、複数の電極を結合し、接続した状態で指先等の接触位置の検出を行う技術が示されている。 Patent Document 1 discloses a technique for detecting a contact position of a fingertip or the like in a state where a plurality of electrodes are coupled and connected in order to increase the detection sensitivity of a touch panel.
 図13は、特許文献1に示されたタッチパネルの概要を示す図である。図13において、111はタッチパネル部であり、このタッチパネル部111には、X軸電極線への入力端へパルス信号を入力するためのスイッチ115a、Y軸電極線への入力端へパルス信号を入力するためのスイッチ115b、X軸電極線からの出力を演算回路114に接続するためのスイッチ116a、Y軸電極線からの出力を演算回路114に接続するためのスイッチ116bが設けられている。 FIG. 13 is a diagram showing an outline of the touch panel disclosed in Patent Document 1. In FIG. 13, reference numeral 111 denotes a touch panel unit. In this touch panel unit 111, a switch 115a for inputting a pulse signal to the input terminal to the X-axis electrode line and a pulse signal to the input terminal to the Y-axis electrode line are input. A switch 115b for connecting the output from the X-axis electrode line to the arithmetic circuit 114, and a switch 116b for connecting the output from the Y-axis electrode line to the arithmetic circuit 114.
 制御回路117は、全体を制御すると共に、検知電極結合制御回路113に対して、複数の電極を所定の本数結合して接続した状態で指先等の近接または接触位置の検出を指示し、この位置検出が行われた場合は、その位置付近の電極を個別接続し、その他の領域は複数を所定の本数結合して接続した状態とするよう指示を行う。 The control circuit 117 controls the whole and instructs the detection electrode coupling control circuit 113 to detect the proximity or contact position of a fingertip or the like in a state where a predetermined number of electrodes are coupled and connected. When the detection is performed, an instruction is given to connect the electrodes in the vicinity of the position individually and connect the other regions by connecting a predetermined number of electrodes.
 特許文献2には、静電容量タッチパネルのSNR(Signal Noise Ratio)を高めるために同時に複数の駆動電極を駆動させる技術が示されている。 Patent Document 2 discloses a technique for simultaneously driving a plurality of drive electrodes in order to increase the SNR (Signal Noise Ratio) of a capacitive touch panel.
 図14は、特許文献2に示されたタッチパネルの概要を示す図である。図14において、E1-1~E1-nは、走査方向に並べて設けられたn個の駆動電極であり、この駆動電極に直交してk個の検出電極E2-1~検出電極E2-kが設けられており、この検出電極は電圧検出器DETに接続されている。図14中の11は駆動電極を駆動するための検出駆動走査部である。 FIG. 14 is a diagram showing an outline of the touch panel disclosed in Patent Document 2. In FIG. 14, E1-1 to E1-n are n drive electrodes arranged side by side in the scanning direction, and k detection electrodes E2-1 to E2-k are orthogonal to the drive electrodes. The detection electrode is connected to a voltage detector DET. Reference numeral 11 in FIG. 14 denotes a detection drive scanning unit for driving the drive electrodes.
 タッチパネルの動作時には、前記図14中の検出駆動走査部11は、前記n個の駆動電極から連続するm(2≦m<n)個の駆動電極を含む交流駆動電極ユニットEUを選択し、これを駆動する。前記図14中の検出駆動走査部11は、この選択される対象である交流駆動電極ユニットEUを走査方向内で変更するシフト動作を行うが、各シフト動作の前後で共通な1以上の駆動電極が選択されるように繰り返される。図14において、電圧検出器DETは、検出駆動走査部11がシフト動作を行うたびに、対応する検出電極の電位を所定の閾値Vtと比較する。 When the touch panel operates, the detection drive scanning unit 11 in FIG. 14 selects an AC drive electrode unit EU including m (2 ≦ m <n) drive electrodes continuous from the n drive electrodes. Drive. The detection drive scanning unit 11 in FIG. 14 performs a shift operation for changing the AC drive electrode unit EU to be selected in the scanning direction, but one or more drive electrodes common before and after each shift operation. Is repeated to select. In FIG. 14, each time the detection drive scanning unit 11 performs a shift operation, the voltage detector DET compares the potential of the corresponding detection electrode with a predetermined threshold value Vt.
特開2009-258903号公報(平成21年11月5日公開)JP 2009-258903 A (published on November 5, 2009) 特開2010-092275号公報(平成22年4月22日公開)JP 2010-092275 A (published on April 22, 2010)
 特許文献1に記載の技術によれば、駆動電極及び検出電極を束ねることで、静電容量の変化を大きくし、検出感度を向上しているが、見かけ上の電極の間隔が更に広がるため、検出精度の低下を招くことになる。特許文献2の技術では、SNRを高くすることはできるが、検出対象が小さくなると、電極数を増やすしかなく、その結果、電極数が増大して消費電力に影響を与えることとなる。 According to the technique described in Patent Document 1, the change in capacitance is increased by bundling the drive electrode and the detection electrode, and the detection sensitivity is improved. The detection accuracy will be reduced. In the technique of Patent Document 2, the SNR can be increased, but if the detection target is reduced, the number of electrodes can only be increased. As a result, the number of electrodes increases, which affects power consumption.
 本発明は、上述の従来技術の課題に鑑みて成されたものであり、特に消費電力に影響を与えることが大きい検出電極の数を増やすことなく、検出位置の精度を高めることができるタッチパネルを提供することを目的としている。 The present invention has been made in view of the above-described problems of the prior art, and in particular, a touch panel that can improve the accuracy of the detection position without increasing the number of detection electrodes that greatly affect power consumption. It is intended to provide.
 上記の課題を解決するために、本発明の一態様に係るタッチパネルでは、
 互いに平行に設けられた複数のストリップ状導電膜よりなる駆動電極と、
 前記駆動電極とは絶縁体を介して絶縁され、互いに平行に設けられた複数のストリップ状導電膜よりなる検出電極とを有するタッチパネルであって、
 前記駆動電極と前記検出電極は、互いに直交するマトリックス状に配置されており、
 前記検出電極は、前記駆動電極に直交して延びる主電極と、前記主電極に対して一定の間隔を隔てて設けられた複数の副電極とにより構成されており、
 前記複数の副電極は、主電極から離れるに従って電極幅が細くなるものであって、且つ、隣接する2つの検出電極の副電極が互いに近接して対になって配置されており、
 前記主電極と前記副電極とは、少なくとも1箇所で電気的に接続されていることを特徴としている。
In order to solve the above problems, in the touch panel according to one embodiment of the present invention,
Drive electrodes made of a plurality of strip-like conductive films provided in parallel to each other;
The drive electrode is a touch panel having a detection electrode made of a plurality of strip-like conductive films insulated from each other through an insulator and provided in parallel to each other,
The drive electrode and the detection electrode are arranged in a matrix shape orthogonal to each other,
The detection electrode is composed of a main electrode extending orthogonally to the drive electrode and a plurality of sub-electrodes provided at a constant interval with respect to the main electrode,
The plurality of sub-electrodes are arranged such that the electrode width becomes narrower as they move away from the main electrode, and the sub-electrodes of two adjacent detection electrodes are arranged close to each other in pairs,
The main electrode and the sub-electrode are electrically connected at least at one place.
 これによれば、1つの検出電極を主電極と該主電極に電気的に接続された複数の副電極で構成し、且つ、複数の副電極の幅を主電極から離れるに従って細くなるように構成しているので、細くなった副電極におけるタッチ位置をも検出できることとなり、消費電力に影響を与えることなく検出位置の高精細化が可能となる。 According to this, one detection electrode is composed of a main electrode and a plurality of sub-electrodes electrically connected to the main electrode, and the width of the plurality of sub-electrodes is made narrower as the distance from the main electrode is increased. Therefore, it is possible to detect the touch position on the narrowed sub-electrode, and it is possible to increase the definition of the detection position without affecting the power consumption.
 また、上述のとおり副電極幅を主電極から遠くなるほど細くすることで、静電容量の変化(シグナル)の強弱をつけることができることになり、2本以上の検出電極のシグナルの関係から、対象物(特に細いペン先のような対象物)の位置情報が正確にわかるという効果を奏することになる。なお、指のような大きな対象物に対しても、従来のものと比較して、検出電極が見かけ上多くなっているので、シグナルが大きくなるという効果があり、更に、指の周辺の形状に対して、従来のものよりも形状認識がしやすくなるという効果が期待できる。 In addition, as described above, the width of the sub-electrode is made narrower as it is farther from the main electrode, so that it is possible to increase or decrease the capacitance change (signal). From the relationship between the signals of two or more detection electrodes, the target There is an effect that the position information of an object (particularly an object such as a thin pen tip) can be accurately identified. In addition, even for a large object such as a finger, the number of detection electrodes is apparently increased compared to the conventional one, which has the effect of increasing the signal, and further, the shape around the finger is improved. On the other hand, the effect that shape recognition becomes easier than the conventional one can be expected.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 以上に述べたとおり、本願の発明によれば、消費電力が少なく検出精度の高いタッチパネルを得ることができる。 As described above, according to the present invention, a touch panel with low power consumption and high detection accuracy can be obtained.
本発明に係るタッチパネルの基本的な構成を示す図である。It is a figure which shows the fundamental structure of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの第1の実施例(実施例1)を示す図である。It is a figure which shows the 1st Example (Example 1) of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの第2の実施例(実施例2)を示す図である。It is a figure which shows the 2nd Example (Example 2) of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの第3の実施例(実施例3)を示す図である。It is a figure which shows the 3rd Example (Example 3) of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの第4の実施例(実施例4)を示す図である。It is a figure which shows the 4th Example (Example 4) of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの第5の実施例(実施例5)を示す図である。It is a figure which shows the 5th Example (Example 5) of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの第6の実施例(実施例6)及びその効果を説明するための図である。It is a figure for demonstrating the 6th Example (Example 6) of the touchscreen which concerns on this invention, and its effect. 本発明に係るタッチパネルの第7の実施例(実施例7)を示す図である。It is a figure which shows the 7th Example (Example 7) of the touchscreen which concerns on this invention. 本発明に係るタッチパネルの効果の1つ説明するための図である。It is a figure for demonstrating one of the effects of the touchscreen which concerns on this invention. 静電容量型タッチパネルの動作原理を示す図である。It is a figure which shows the principle of operation of a capacitive touch panel. 静電容量型タッチパネルの検出回路の例を示す図である。It is a figure which shows the example of the detection circuit of an electrostatic capacitance type touch panel. 従来のタッチパネルの例を示す図である。It is a figure which shows the example of the conventional touch panel. 従来のタッチパネルの他の例を示す図である。It is a figure which shows the other example of the conventional touch panel.
 以下、先ず、図1、図2を用いて本願の発明に係るタッチパネルの基本となる構成とその構成に基づくタッチパネルの検出機能を説明する。次いで、図3以下の図面を用いて本発明の実施例について、詳細に説明する。なお、以下の説明では本発明を実施するために好ましい種々の限定が付与されているが、本発明の技術的範囲は以下の実施例及び図面の記載に限定されるものではない。また、図面はタッチパネルの構成が理解し易くなるように、例えば、一部部材の厚み方向の寸法を拡大する等して記載しており、実際の寸法関係を示しているものではない。また、図面によっては、一部の構成要件を省略して記載している。 Hereinafter, first, a basic configuration of a touch panel according to the invention of the present application and a touch panel detection function based on the configuration will be described with reference to FIGS. Next, an embodiment of the present invention will be described in detail with reference to FIG. In the following description, various preferred limitations for implementing the present invention are given, but the technical scope of the present invention is not limited to the description of the following examples and drawings. In addition, the drawings are illustrated by, for example, enlarging the dimension in the thickness direction of some members so that the configuration of the touch panel can be easily understood, and do not indicate an actual dimensional relationship. In addition, some components are omitted in some drawings.
 最初に、図1を参照して、本発明の基本的な構成を説明する。図1(a)は、本発明に係るタッチパネルの一部を拡大して示した図であり、図1(b)、図1(c)の破線15で囲った部分の詳細を示している。図1(b),図1(c)は、本発明に係るタッチパネルの全体構成を明らかにするための図であり、タッチパネルの一部を示した図ではあるが、図1(a)で示した範囲より広い範囲を示している。なお、図1(b)、図1(c)では、図面が煩雑になることを避けるために電極部分の構成において、一部省略して記載している。 First, the basic configuration of the present invention will be described with reference to FIG. FIG. 1A is an enlarged view of a part of the touch panel according to the present invention, and shows details of a portion surrounded by a broken line 15 in FIGS. 1B and 1C. FIG. 1B and FIG. 1C are diagrams for clarifying the overall configuration of the touch panel according to the present invention, and are diagrams showing a part of the touch panel, but are shown in FIG. This indicates a wider range than the above range. Note that in FIG. 1B and FIG. 1C, in order to avoid complication of the drawing, a part of the configuration of the electrode portion is omitted.
 図1(a)、図1(b),図1(c)において、1、2、3は互いに平行に設けられた複数のストリップ状導電膜よりなる検出電極であり、検出電極1、2、3に直交してマトリックス状に配置された複数のストリップ状導電膜よりなる駆動電極4が設けられている。本発明の詳細を説明する都合上、検出電極に対してそれぞれ検出電極1、2、3と異なる番号を付与しているが、タッチパネルの図面左右の両端部分を除いて基本的には同様の構成であって良い。即ち、図1(b)の左端部分の検出電極1とその右側に隣接する検出電極2は異なる構成となっているが、端部部分以外の電極は基本的には同一の構成となっている。それらの構成については、図1(a)を参照して後で詳細に説明する。5は、検出電極1、2、3からの検出信号を引き出すための検出ラインである。 1 (a), 1 (b), and 1 (c), 1, 2, and 3 are detection electrodes made of a plurality of strip-like conductive films provided in parallel to each other. A driving electrode 4 made of a plurality of strip-like conductive films arranged in a matrix perpendicular to 3 is provided. For convenience of explaining the details of the present invention, the detection electrodes are numbered differently from the detection electrodes 1, 2, and 3, respectively, but basically the same configuration except for the left and right ends of the touch panel. It may be. That is, the detection electrode 1 at the left end portion in FIG. 1B and the detection electrode 2 adjacent to the right side thereof have different configurations, but the electrodes other than the end portion basically have the same configuration. . These configurations will be described in detail later with reference to FIG. Reference numeral 5 denotes a detection line for extracting detection signals from the detection electrodes 1, 2, and 3.
 なお、図1(a)、図1(b)、図1(c)では示されていないが、検出電極1、2、3と駆動電極4は、絶縁層によって互いに電気的に絶縁されており、また、検出電極1、2、3間もそれぞれ相互に電気的に絶縁されている。 Although not shown in FIGS. 1A, 1B, and 1C, the detection electrodes 1, 2, 3 and the drive electrode 4 are electrically insulated from each other by an insulating layer. The detection electrodes 1, 2, and 3 are also electrically insulated from each other.
 図1(a)は、図1(c)に対応した検出電極の構成を有するものを示しており、検出電極1、2、3の構成の詳細を示している。検出電極1は、本発明に従ったタッチパネルの左端部分に配置される検出電極であり、駆動電極4に直交して延びる主電極10と、前記主電極10から所定の距離を隔てて形成された複数の副電極11、12、13により構成されている。なお、19は、主電極10と副電極11、12、13を接続するための接続電極である。 FIG. 1A shows the configuration of the detection electrodes corresponding to FIG. 1C, and shows the details of the configuration of the detection electrodes 1, 2, and 3. FIG. The detection electrode 1 is a detection electrode arranged at the left end portion of the touch panel according to the present invention, and is formed with a main electrode 10 extending perpendicularly to the drive electrode 4 and a predetermined distance from the main electrode 10. A plurality of sub-electrodes 11, 12, and 13 are configured. Reference numeral 19 denotes a connection electrode for connecting the main electrode 10 and the sub-electrodes 11, 12, and 13.
 図1(a)からも見て取れるが、図1(c)に対応した検出電極では、副電極11、12、13は、長さ(図面の上下方向)が駆動電極4の幅方向(図面の上下方向)と同じ長さ(なお、「同じ長さ」については、多少の誤差が許されることは云うまでもない。以下、特に断らない限り、電極の大きさ、電極の間隔等については、何れも多少の誤差が許容されるものである。)に形成されており、幅方向の寸法(電極幅)が、それぞれ異なるように構成されている。より詳細には、前記複数の副電極11、12、13の幅は、主電極10から離れるに従って細くなるように構成されている。 As can be seen from FIG. 1 (a), in the detection electrode corresponding to FIG. 1 (c), the sub-electrodes 11, 12, and 13 have a length (vertical direction in the drawing) in the width direction (vertical direction in the drawing). It is needless to say that some errors are allowed for the same length (direction), as long as it is “the same length.” Hereinafter, unless otherwise noted, However, the dimension in the width direction (electrode width) is different from each other. More specifically, the widths of the plurality of sub-electrodes 11, 12, 13 are configured to become narrower as the distance from the main electrode 10 increases.
 より具体的には、副電極11の電極幅は、主電極10の電極幅よりの細く構成され、副電極12の電極幅は副電極11の電極幅よりも細く構成され、副電極13の電極幅は副電極12の電極幅よりも細く構成されている。細くする割合は、例えば、図1(a)に示すように副電極が3本の場合には、主電極10の幅を4等分して、副電極11の幅を主電極10の幅の3/4にし、副電極12の幅を主電極10の幅の半分(2/4)にし、副電極13の幅を主電極10の幅の1/4にする。一般的には、副電極の本数が決まると、主電極の幅に対して、均等に細くしていくことになる。 More specifically, the electrode width of the sub electrode 11 is configured to be narrower than the electrode width of the main electrode 10, the electrode width of the sub electrode 12 is configured to be narrower than the electrode width of the sub electrode 11, and the electrode of the sub electrode 13 The width is narrower than the electrode width of the sub electrode 12. For example, when the number of sub-electrodes is three as shown in FIG. 1A, the width of the main electrode 10 is divided into four equal parts, and the width of the sub-electrode 11 is set to the width of the main electrode 10. 3/4, the width of the sub-electrode 12 is made half (2/4) the width of the main electrode 10, and the width of the sub-electrode 13 is made 1/4 of the width of the main electrode 10. In general, when the number of sub-electrodes is determined, the width of the main electrode is made evenly thinner.
 電極の幅に関しては、図示されていないが検出電極1、2、3の上に設けられることになるカバーガラスの厚み等によって最適な値が異なり、また、実際には、タッチパネルのトータル性能として主電極、副電極の間隔、駆動電極の幅、駆動電極と検出電極の間隔等多くの条件を考慮して決められることになる。なお、カバーガラスの材質等については後で詳細に述べる。また、主電極1、主電極2の間に設けられる副電極の数も図示の本数に限られることはない。 The electrode width varies depending on the thickness of the cover glass that is not shown in the figure but is to be provided on the detection electrodes 1, 2, and 3. It is determined in consideration of many conditions such as the distance between the electrode and the sub electrode, the width of the drive electrode, the distance between the drive electrode and the detection electrode. The material of the cover glass will be described in detail later. Further, the number of sub-electrodes provided between the main electrode 1 and the main electrode 2 is not limited to the illustrated number.
 検出電極2は、主電極20と、主電極20の図面左側の副電極21、22、23と、主電極20の図面右側の副電極24、25、26により構成されている。29は、主電極20と副電極21、22、23、24、25、26を電気的に接続する接続電極である。検出電極2の構成は、副電極が主電極の図面の左右両方向に対照的に配置されているが、一方向部分を取り出すと、基本的には検出電極1と同一の構成となっている。 The detection electrode 2 includes a main electrode 20, sub-electrodes 21, 22 and 23 on the left side of the main electrode 20 in the drawing, and sub-electrodes 24, 25 and 26 on the right side of the main electrode 20 in the drawing. Reference numeral 29 denotes a connection electrode for electrically connecting the main electrode 20 and the sub-electrodes 21, 22, 23, 24, 25, and 26. The configuration of the detection electrode 2 is such that the sub-electrodes are arranged in contrast in the left and right directions of the drawing of the main electrode, but the configuration is basically the same as that of the detection electrode 1 when one direction portion is taken out.
 即ち、副電極21、22、23、24、25、26は主電極20から離れるに従って細くなるように構成されている。具体的には、副電極21、24の電極幅は副電極11の幅と等しくて良く、副電極22、25の電極幅は副電極12の電極幅と等しくて良く、副電極23、26の電極幅は副電極13の電極幅と等しくて良い。 That is, the sub-electrodes 21, 22, 23, 24, 25, and 26 are configured to become thinner as they move away from the main electrode 20. Specifically, the electrode widths of the sub-electrodes 21 and 24 may be equal to the width of the sub-electrode 11, the electrode widths of the sub-electrodes 22 and 25 may be equal to the electrode width of the sub-electrode 12, The electrode width may be equal to the electrode width of the sub electrode 13.
 そして、図1(a)に示すとおり、検出電極1の副電極11に対して、検出電極2の副電極23が極めて接近して配置され、同様、副電極12と副電極22が極めて接近して配置され、副電極13と副電極21が極めて接近して配置される。検出電極1、2、3には、一律の電圧が印加されているが、検出電極1、2、3間には電位差はない。従って、配置は、検出電極1側の副電極と検出電極2側の副電極との電気的な絶縁性が保たれる距離だけ離れて配置されていれば良く、極端な場合、例えば1μmでも良い。通常のタッチパネルでは、製造上の観点から、例えば、5~10μm程度の間隔に設計される。 As shown in FIG. 1A, the sub electrode 23 of the detection electrode 2 is arranged very close to the sub electrode 11 of the detection electrode 1, and similarly, the sub electrode 12 and the sub electrode 22 are extremely close to each other. The sub electrode 13 and the sub electrode 21 are arranged very close to each other. Although a uniform voltage is applied to the detection electrodes 1, 2, and 3, there is no potential difference between the detection electrodes 1, 2, and 3. Therefore, the arrangement is only required to be separated by a distance that can maintain the electrical insulation between the sub-electrode on the detection electrode 1 side and the sub-electrode on the detection electrode 2 side. In an extreme case, the arrangement may be 1 μm, for example. . A normal touch panel is designed with an interval of, for example, about 5 to 10 μm from the viewpoint of manufacturing.
 図1(a)からも理解されるが、副電極11は主電極10の3/4の電極幅に構成されている。具体的には、副電極23は主電極20の1/4の電極幅に構成されているので、接近して配置された副電極11と副電極23は合わせて、ほぼ主電極10、20の幅と同等になる。同様、副電極12と副電極22とが互いに近接して対になって配置され、副電極12と副電極22とは合わせて、ほぼ主電極10、20の幅と同等になる。副電極13と副電極21についても同様である。即ち、以上に述べた例では、隣接する2つの検出電極の副電極が互いに近接して対になって配置され、対になった副電極の幅は、合わせて主電極の幅にほぼ等しくなっていることになる。 As can be understood from FIG. 1A, the sub-electrode 11 is configured to have a 3/4 electrode width of the main electrode 10. Specifically, since the sub-electrode 23 is configured to have an electrode width that is ¼ of the main electrode 20, the sub-electrode 11 and the sub-electrode 23 that are arranged close to each other are substantially equal to the main electrodes 10 and 20. It is equivalent to the width. Similarly, the sub-electrode 12 and the sub-electrode 22 are disposed in close proximity to each other, and the sub-electrode 12 and the sub-electrode 22 are approximately equal in width to the main electrodes 10 and 20. The same applies to the sub electrode 13 and the sub electrode 21. That is, in the example described above, the sub-electrodes of two adjacent detection electrodes are arranged close to each other in pairs, and the widths of the paired sub-electrodes are almost equal to the width of the main electrode. Will be.
 なお、上記の検出電極の幅と、対になった副電極の幅に関する点は必須の条件ではなく、例えば、主電極500μmに対して、対になった副電極2本合計の幅を、400μmとする等、主電極の幅と副電極2本の合計の幅を異ならせても良い。この場合については、実施例7としてその詳細を後述する。 In addition, the point regarding the width | variety of said detection electrode and the width | variety of a subelectrode which became a pair is not an essential condition, For example, the width | variety of two subelectrodes which became a pair with respect to 500 micrometers of main electrodes is 400 micrometers. For example, the width of the main electrode and the total width of the two sub-electrodes may be different. Details of this case will be described later as a seventh embodiment.
 そして、「主電極10」と「互いに近接して対になって配置された副電極11、副電極23」との間隔、「互いに近接して対になって配置された副電極11、副電極23」と「互いに近接して対になって配置された副電極12、副電極22」との間隔、「互いに近接して対になって配置された副電極12、副電極22」と「互いに近接して対になって配置された副電極13、副電極21」との間隔、及び「互いに近接して対になって配置された副電極13、副電極21」と「主電極20」との間隔は、同一であることが好ましい。 The distance between the “main electrode 10” and “the sub electrode 11 and the sub electrode 23 arranged in pairs close to each other”, “the sub electrode 11 and the sub electrode arranged in pairs near each other” 23 ”and“ the sub-electrode 12 and the sub-electrode 22 arranged in pairs close to each other ”,“ the sub-electrode 12 and the sub-electrode 22 arranged in pairs close to each other ”and“ the mutual The distance between the sub-electrode 13 and the sub-electrode 21 arranged in close proximity to each other, and “the sub-electrode 13 and the sub-electrode 21 arranged in close proximity to each other and the sub-electrode 21” and the “main electrode 20” The intervals are preferably the same.
 既に述べたとおり、実際には、タッチパネルのトータル性能として主電極、副電極の間隔、駆動電極の幅、駆動電極と検出電極の間隔等が決定されるが、以下に、一つの設計例を示す。本願発明は、この設計例に限定されるものではないが、本発明者等はこの設計例のもので十分な性能を有していることを確認している。なお、既に述べたが、カバーガラスの厚さによって、主電極の幅、副電極の幅、主電極と副電極の間隔等の最適値が異なることが分かっている。 As already mentioned, the total performance of the touch panel is actually determined by the main electrode, sub-electrode spacing, drive electrode width, drive electrode-detection electrode spacing, etc. One design example is shown below. . The present invention is not limited to this design example, but the present inventors have confirmed that this design example has sufficient performance. As described above, it is known that the optimum values such as the width of the main electrode, the width of the sub electrode, and the distance between the main electrode and the sub electrode differ depending on the thickness of the cover glass.
 主電極の幅:400~500μm
 副電極2本の和の幅:400μm
 主電極と副電極の間隔:800μm
 カバーガラスの厚さ:700~800μm
 主電極間に設ける「副電極2本の対」の数:4、この場合、主電極は6mm間隔に配置されている。
Main electrode width: 400-500μm
The total width of the two sub-electrodes: 400 μm
Interval between main electrode and sub electrode: 800 μm
Cover glass thickness: 700-800μm
Number of “two pairs of sub-electrodes” provided between the main electrodes: 4, In this case, the main electrodes are arranged at intervals of 6 mm.
 図1(a)では、検出電極3は検出電極2の主電極20側の半分に対応する部分のみが示されているが、実際のタッチパネルにおいては、検出電極2と同一の構成とされている。即ち、検出電極3の主電極30、副電極31、32、33の構成は、検出電極2の主電極20、副電極21、22、23と同様な構成となっており、図示されていない副電極が主電極30の図面の右側にも形成されている。また、39は、主電極30と副電極31、32、33を電気的に接続する接続電極である。 In FIG. 1A, only the part corresponding to half of the detection electrode 2 on the main electrode 20 side of the detection electrode 2 is shown, but the actual touch panel has the same configuration as the detection electrode 2. . That is, the configuration of the main electrode 30 and the sub-electrodes 31, 32, 33 of the detection electrode 3 is the same as that of the main electrode 20, the sub-electrodes 21, 22, and 23 of the detection electrode 2. An electrode is also formed on the right side of the main electrode 30 in the drawing. Reference numeral 39 denotes a connection electrode that electrically connects the main electrode 30 and the sub-electrodes 31, 32, and 33.
 図1では、検出電極1、2、3等の副電極の数を3としているが、これに限られることはなく、例えば、副電極の数を4以上にすることもまた、更には、1又は2とすることも可能である。 In FIG. 1, the number of sub-electrodes such as detection electrodes 1, 2, and 3 is three. However, the number of sub-electrodes is not limited to this. For example, the number of sub-electrodes may be four or more. Or it can be set to 2.
 検出電極1、2、3、駆動電極4、接続電極19、29は何れもストリップ状の導電膜により構成されており、それらは何れも周知のフォトリソグラフィ技術によるパターニングによって容易に形成することができる。また、インクジェットを利用した印刷等によっても形成可能である。また、既に説明したとおり、図1には示されていないが、検出電極1、2、3等の上にはカバーガラスが設けられる。カバーガラスは、所謂ガラスに限られることは無く、一定の誘電率を有する絶縁体であればよい。例えば、ガラス以外にも、PETフィルム、アクリル板等を用いることができる。アクリル板の場合には、誘電率が3前後であり、密度も低いことから、厚みをガラスよりも薄く、且つ軽くすることができるという利点を有するが、ガラスに比べて透明度が多少悪くなる。 The detection electrodes 1, 2, 3, the drive electrode 4, and the connection electrodes 19, 29 are all formed of a strip-like conductive film, and any of them can be easily formed by patterning using a known photolithography technique. . It can also be formed by printing using ink jet. As already described, a cover glass is provided on the detection electrodes 1, 2, 3, etc., although not shown in FIG. The cover glass is not limited to so-called glass, and may be an insulator having a certain dielectric constant. For example, besides glass, a PET film, an acrylic plate, or the like can be used. In the case of an acrylic plate, since the dielectric constant is around 3 and the density is low, there is an advantage that the thickness can be made thinner and lighter than glass, but the transparency is somewhat worse than glass.
 なお、図1(b)は、副電極が主電極と同じ長さを持つように構成されているタッチパネルを示している。図1(c)では、前記副電極11、12、13等は、前記駆動電極4との交差部分において前記駆動電極4の幅に略等しい長さを持つ複数個の電極領域に分割されており、前記複数個に分割された電極領域がそれぞれ主電極10等に電気的に接続されている。これに対して、図1(b)に示した例では、副電極を複数個の電極領域に分割せずに、主電極と同じ長さにし、主電極とは少なくとも1箇所で電気的に接続される。 FIG. 1B shows a touch panel configured such that the sub electrode has the same length as the main electrode. In FIG. 1C, the sub-electrodes 11, 12, 13, etc. are divided into a plurality of electrode regions having a length substantially equal to the width of the drive electrode 4 at the intersection with the drive electrode 4. The electrode regions divided into a plurality are electrically connected to the main electrode 10 and the like, respectively. On the other hand, in the example shown in FIG. 1B, the sub-electrode is not divided into a plurality of electrode regions, but has the same length as the main electrode, and is electrically connected to the main electrode at at least one location. Is done.
 図1(b)に示した構成でも、後述するとおり図1(c)の場合と同様、副電極位置で指先等のタッチ位置の検出が可能となり、おり図1(c)の場合と同様の効果を奏する。 Even in the configuration shown in FIG. 1B, as will be described later, as in the case of FIG. 1C, it is possible to detect the touch position of the fingertip or the like at the sub-electrode position, which is the same as in the case of FIG. There is an effect.
 なお、特に図示していないが、副電極の長さ(図面の上下方向の寸法)を駆動電極4の複数個分の幅に等しく構成しても良い。 Although not particularly illustrated, the length of the sub-electrode (the vertical dimension in the drawing) may be configured to be equal to the width of a plurality of drive electrodes 4.
 図2は、以上に説明した検出電極を有する本発明に従ったタッチパネルの検出動作を説明するための図である。 FIG. 2 is a diagram for explaining the detection operation of the touch panel according to the present invention having the detection electrodes described above.
 図2において、図2(a)は、タッチパネルにおいて、指先等(以下、単に「指先」という)が置かれた状態を示す図であり、n本目の検出電極の主電極付近(位置0)に指先が置かれた状態と、前記位置0から少し右にずれた位置xに指先が置かれた状態を示している。 In FIG. 2, FIG. 2A is a diagram showing a state in which a fingertip or the like (hereinafter simply referred to as “fingertip”) is placed on the touch panel, near the main electrode (position 0) of the nth detection electrode. A state in which the fingertip is placed and a state in which the fingertip is placed at a position x slightly shifted to the right from the position 0 are shown.
 図2(a)から明らかなように、位置0では、指先はn本目の検出電極の主電極付近のみにある。これに対して、位置xでは、指先は、n本目の検出電極の主電極に一番近い副電極付近と、更に、隣接する検出電極(n+1本目の検出電極)の主電極から最も離れた
位置の副電極付近に達している。以下に、図2(b)を用いて説明するとおり、細くなった副電極からの検出出力と、それよりも太い副電極からの出力には、副電極の太さの差(面積の差)に応じた差あることから、副電極の位置にまで細分化された精度の高い指先位置の検出が可能となる。
As is clear from FIG. 2A, at position 0, the fingertip is only near the main electrode of the nth detection electrode. On the other hand, at position x, the fingertip is closest to the sub-electrode near the main electrode of the n-th detection electrode and further away from the main electrode of the adjacent detection electrode (n + 1 first detection electrode). It reaches the vicinity of the secondary electrode at the specified position. As will be described below with reference to FIG. 2B, there is a difference in the thickness of the sub-electrode (area difference) between the detection output from the narrower sub-electrode and the output from the thicker sub-electrode. Therefore, it is possible to detect the fingertip position with high accuracy subdivided to the position of the sub electrode.
 図2(b)は、指先等が置かれた位置によって、検出電極に出力される検出出力の状態を示す図である。なお、図2(b)に示したグラフは、本発明に従ったタッチパネルの動作原理を説明するために単純化したものであり、正確な特性を示すものではない。 FIG. 2B is a diagram showing a state of detection output output to the detection electrode depending on the position where the fingertip or the like is placed. Note that the graph shown in FIG. 2B is simplified for explaining the operation principle of the touch panel according to the present invention, and does not show an accurate characteristic.
 図2(b)において、縦軸は検出電極の出力信号の大きさを示しており、横軸はタッチパネル上の位置(紙面の横方向の位置)を、検出電極との関係を明示した形で示している。図2(b)中、実線(出力:n)は、n本目の検出電極の出力を示しており、主電極がある位置において最大出力となり、主電極から離れるに従って出力が小さくなることを示している。図2(b)中、破線(出力:n+1)は、n+1本目の検出電極の出力を示しており、実線(出力:n)の場合と同様、主電極がある位置において最大出力となり、主電極から離れるに従って出力が小さくなることを示している。 In FIG. 2 (b), the vertical axis indicates the magnitude of the output signal of the detection electrode, and the horizontal axis indicates the position on the touch panel (the position in the horizontal direction on the paper surface) in a form that clearly shows the relationship with the detection electrode. Show. In FIG. 2B, the solid line (output: n) indicates the output of the n-th detection electrode, indicating that the main electrode has the maximum output at a certain position, and the output decreases as the distance from the main electrode increases. Yes. In FIG. 2B, the broken line (output: n + 1) indicates the output of the (n + 1) th detection electrode, and the maximum output at the position where the main electrode is located as in the case of the solid line (output: n). Thus, the output decreases as the distance from the main electrode increases.
 図2(b)を参照すると、指先が位置0にあると、n本目の検出電極のみからS0の出力が得られることが分かる。指先が位置xに動くと、今度はn本目の検出電極からはS1の出力が得られ、同時に、n+1本目の検出電極からも出力S2が得られる。このように
して、指先が副電極の位置レベルの高精度で検出できることになる。
Referring to FIG. 2B, it can be seen that when the fingertip is at position 0, the output of S0 can be obtained only from the nth detection electrode. When the fingertip moves to the position x, an output S1 is obtained from the nth detection electrode and an output S2 is also obtained from the n + 1th detection electrode. In this way, the fingertip can be detected with high accuracy at the position level of the sub-electrode.
 本願によるパターンを用いれば、図2のように、非常に線形に近いシグナル強度を確保できるため、単純なシグナルの比率で位置xが特定されることから、位置座標を特定するためのアルゴリズムも単純なものにできるというメリットもある。 If the pattern according to the present application is used, a signal intensity close to linearity can be secured as shown in FIG. 2, and the position x is specified by a simple signal ratio. Therefore, the algorithm for specifying the position coordinates is also simple. There is also a merit that it can be made into something.
 既に述べたとおり、実際には、このように直線的に変化する単純な出力が得られる訳ではないが、本発明者等は、以上の説明がほぼ実際の動作に近似していることを確認している。 As already mentioned, a simple output that varies linearly in this way is not actually obtained, but the present inventors have confirmed that the above description is almost approximate to the actual operation. is doing.
 図3は、本発明の実施例1を示す図である。 FIG. 3 is a diagram showing Example 1 of the present invention.
 図3(a)、図3(b)、図3(c)、図3(d)、図3(e)は、本発明に従った実施例1のタッチパネルの構成を示す図であり、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示している。なお、図3において、図1と同一の構成部分には同一の番号を付与しているので、それらの部分に関する詳細な説明は省略する。 3 (a), FIG. 3 (b), FIG. 3 (c), FIG. 3 (d), and FIG. 3 (e) are diagrams showing the configuration of the touch panel according to the first embodiment of the present invention. Only the portion corresponding to the portion surrounded by the broken line 16 in 1 (b) and (c) is shown. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図3において、図3(a)は、検出電極1、2と駆動電極4の構成を平面で示した図であり、図3(b)は、検出電極1のみを取り出して示した図であり、図3(c)は、検出電極2のみを取り出して示した図であり、図3(d)は、駆動電極4のみを取り出して示した図である。また、図3(e)は、図3(a)の線分A-A’に沿った断面図を示している。なお、図3(e)においては、検出電極1、2の上に何も記載していないが、既に述べたとおり、実際のタッチパネルではカバーガラス等が設けられている。 3A is a plan view showing the configuration of the detection electrodes 1, 2 and the drive electrode 4, and FIG. 3B is a view showing only the detection electrode 1 taken out. FIG. 3C is a diagram showing only the detection electrode 2 taken out, and FIG. 3D is a diagram showing only the drive electrode 4 taken out. FIG. 3E shows a cross-sectional view along the line A-A ′ in FIG. In addition, in FIG.3 (e), although nothing is described on the detection electrodes 1 and 2, as already stated, the cover glass etc. are provided in the actual touch panel.
 図3において、検出電極1、検出電極2の構成は、図1で説明した検出電極1、検出電極2と同一構成である。即ち、検出電極1は、主電極10と主電極10に接続電極19で接続された副電極11、12、13により構成されており、副電極11、12、13は主電極10から離れるに従って電極幅が細くなるように構成されている。検出電極2の主電極20、副電極21、22、23も同様に主電極20から離れるに従って電極幅が細くなるように構成されている。なお、29は、主電極20と副電極21、22、23を接続するための接続電極である。 3, the configuration of the detection electrode 1 and the detection electrode 2 is the same as that of the detection electrode 1 and the detection electrode 2 described in FIG. That is, the detection electrode 1 is composed of a main electrode 10 and sub-electrodes 11, 12, 13 connected to the main electrode 10 by a connection electrode 19, and the sub-electrodes 11, 12, 13 are electrodes as they move away from the main electrode 10. It is comprised so that a width | variety may become thin. Similarly, the main electrode 20 and the sub-electrodes 21, 22, and 23 of the detection electrode 2 are configured such that the electrode width becomes narrower as the distance from the main electrode 20 increases. Reference numeral 29 denotes a connection electrode for connecting the main electrode 20 and the sub-electrodes 21, 22, and 23.
 そして、図3(a)に示すように、副電極11と副電極23が互いに近接して対になるように、前記検出電極1と前記検出電極2を配置する。その結果、検出電極1の副電極12と、検出電極2の副電極22が互いに近接して対になるように配置されることとなり、更に、検出電極1の副電極13と検出電極2の副電極21とが互いに近接して対になるように配置されることになる。互いに近接して対になるように配置された副電極同士が、互いに絶縁されていることは、既に図1を用いて説明したとおりである。 Then, as shown in FIG. 3A, the detection electrode 1 and the detection electrode 2 are arranged so that the sub-electrode 11 and the sub-electrode 23 are paired close to each other. As a result, the sub-electrode 12 of the detection electrode 1 and the sub-electrode 22 of the detection electrode 2 are arranged in close proximity to each other, and further, the sub-electrode 13 of the detection electrode 1 and the sub-electrode of the detection electrode 2 are arranged. The electrodes 21 are arranged so as to be paired close to each other. As already described with reference to FIG. 1, the sub-electrodes arranged so as to be paired close to each other are insulated from each other.
 実施例1のタッチパネルの場合、駆動電極4は、図3(d)に示すとおり、全面均一の導電膜として構成されており、検出電極1、検出電極2に対向して当該検出電極1、検出電極2の全面をカバーする形で設けられている。 In the case of the touch panel of Example 1, the drive electrode 4 is configured as a uniform conductive film on the entire surface as shown in FIG. 3D, and the detection electrode 1 and the detection electrode 2 are opposed to the detection electrode 1 and the detection electrode 2. The electrode 2 is provided so as to cover the entire surface.
 図3(e)は、図3(a)の線分A-A’に沿った断面図である。図3(e)において、7は基板であり、その基板7の上に駆動電極4が形成される。また、6は絶縁層であり、これにより駆動電極4と検出電極1、2、3との電気的な絶縁が達成される。図3(e)に示されているとおり、主電極10、及び副電極11、12、13によって検出電極1が構成され、主電極20、及び副電極21、22、23によって検出電極2が構成されている。図3(e)によれば、副電極11と副電極23、副電極12と副電極22、及び副電極13と副電極21とが互いに近接して対になるように配置されていることが分かる。 FIG. 3E is a cross-sectional view taken along the line A-A ′ in FIG. In FIG. 3 (e), reference numeral 7 denotes a substrate, and the drive electrode 4 is formed on the substrate 7. Reference numeral 6 denotes an insulating layer, which achieves electrical insulation between the drive electrode 4 and the detection electrodes 1, 2, and 3. As shown in FIG. 3E, the main electrode 10 and the sub-electrodes 11, 12, and 13 constitute the detection electrode 1, and the main electrode 20 and the sub-electrodes 21, 22, and 23 constitute the detection electrode 2. Has been. According to FIG. 3 (e), the sub-electrode 11 and the sub-electrode 23, the sub-electrode 12 and the sub-electrode 22, and the sub-electrode 13 and the sub-electrode 21 are arranged so as to be close to each other and to be paired. I understand.
 上記の検出電極1、2、3、駆動電極4、基板7、絶縁層6、図示しないカバーガラスは、タッチパネルが液晶表示装置等の表示装置の上に置かれて、表示装置の表示画像に関連付けられて用いられる場合には、何れも透明な部材であることが好ましい。この場合、駆動電極4、検出電極1、2、3には、透明電極としてよく知られたITO等を用いることができ、絶縁層6には、例えば、PET等の絶縁物を用いることができる。また、カバーガラスには各種の透明ガラスやアクリル板を用いることができる。 The detection electrodes 1, 2 and 3, the drive electrode 4, the substrate 7, the insulating layer 6, and the cover glass (not shown) are placed on a display device such as a liquid crystal display device and associated with the display image of the display device. In the case of being used, it is preferable that both are transparent members. In this case, ITO, which is well known as a transparent electrode, can be used for the drive electrode 4 and the detection electrodes 1, 2 and 3, and an insulating material such as PET can be used for the insulating layer 6. . Moreover, various transparent glass and an acrylic board can be used for a cover glass.
 駆動電極や検出電極の材料としては、ITOが一般的であるが、非常に微細なパターンであれば、金属も選択肢となり得る。金属では、液晶パネルに採用されているものであれば問題がなく、例えば、Ti、Al、Moや、その組み合わせ等でもよい。また、絶縁層に関しては、液晶工程で使用されている絶縁層や樹脂層を用いることも可能であり、例えばシリコン窒化膜(SiNx、)やシリコン酸化膜(SiO2)やアクリル系の樹脂とい
ったものを用いることが可能である。
As a material for the drive electrode and the detection electrode, ITO is generally used. However, if the pattern is very fine, metal may be an option. As long as the metal is employed in the liquid crystal panel, there is no problem. For example, Ti, Al, Mo, or a combination thereof may be used. As the insulating layer, it is also possible to use an insulating layer or a resin layer used in the liquid crystal process. For example, a silicon nitride film (SiNx), a silicon oxide film (SiO2), an acrylic resin, or the like can be used. It is possible to use.
 なお、以上に説明した実施例1において、各部材の具体的な設計例を以下に示す。以下の記載から明らかなとおり、図1に示した部材と同様な構成を有する主電極、副電極は、図1の説明の箇所で述べたとほぼ同様な値に設計されている。本願発明は、この実施例1の設計例に限定されるものではないが、本発明者等はこの設計例のもので十分な性能を有していることを確認している。 In addition, in Example 1 demonstrated above, the specific design example of each member is shown below. As is clear from the following description, the main electrode and the sub electrode having the same configuration as the member shown in FIG. 1 are designed to have substantially the same values as described in the explanation of FIG. The present invention is not limited to the design example of the first embodiment, but the present inventors have confirmed that the design example has sufficient performance.
 主電極の幅:400~500μm
 副電極2本の和の幅:400μm
 主電極と副電極の間隔:800μm
 カバーガラスの厚さ:700~800μm
 駆動電極4の幅:1.6~1.7mm
 絶縁層6の厚さ:2~3μm
 駆動電極、検出電極の厚さ:100μm
 なお、基板7については、主として強度上の考慮から決定すれば良い。
Main electrode width: 400-500μm
The total width of the two sub-electrodes: 400 μm
Interval between main electrode and sub electrode: 800 μm
Cover glass thickness: 700-800μm
Driving electrode 4 width: 1.6 to 1.7 mm
Insulating layer 6 thickness: 2-3 μm
Drive electrode and detection electrode thickness: 100 μm
Note that the substrate 7 may be determined mainly from consideration of strength.
 このように構成した場合、駆動電極4の構成が単純であり、また、駆動電極4自体が、良好なシールドの役割を果たすことから、液晶モジュール等と積層して使用された場合等には、液晶モジュールからのノイズに強いタッチパネルとなる。また、ペンのような先の細い検出対象に対する位置精度を向上させることもできるが、駆動電極と検出電極のクロス容量が大きくなるため、比較的小さいパネルに用いることが効果的である。 When configured in this way, the configuration of the drive electrode 4 is simple, and the drive electrode 4 itself serves as a good shield, so when it is used by being laminated with a liquid crystal module or the like, The touch panel resists noise from the LCD module. Moreover, although the positional accuracy with respect to a thin detection target such as a pen can be improved, since the cross capacitance between the drive electrode and the detection electrode becomes large, it is effective to use for a relatively small panel.
 図4は、本発明の実施例2を示している。図4は、本発明に従った実施例2のタッチパネルの構成を示す図であり、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示している。なお、図4に示した実施例2のタッチパネルにおいて、図1、図3と同一の構成部分には同一の番号を付与しているので、それらの部分の詳細な説明は省略する。 FIG. 4 shows a second embodiment of the present invention. FIG. 4 is a diagram showing the configuration of the touch panel according to the second embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. In addition, in the touch panel of Example 2 shown in FIG. 4, since the same number is provided to the same component as FIG. 1, FIG. 3, detailed description of those portions is abbreviate | omitted.
 図4において、図4(a)は、検出電極1、2と駆動電極40の構成を平面で示した図であり、図4(b)は、駆動電極40を取り出して示した図であり、図4(c)は、図4(a)の線分A-A’に沿った断面図である。また、図4(d)は、実施例2の変形例を示す図であって、図4(a)の線分A-A’に沿った断面図である。 In FIG. 4, FIG. 4 (a) is a diagram showing the configuration of the detection electrodes 1, 2 and the drive electrode 40 in a plan view, and FIG. 4 (b) is a diagram showing the drive electrode 40 taken out. FIG. 4C is a cross-sectional view taken along the line AA ′ in FIG. FIG. 4D is a diagram showing a modification of the second embodiment, and is a cross-sectional view taken along the line A-A ′ in FIG.
 図4に示した実施例2のタッチパネルにおいては、図3で示した実施例1のタッチパネルとは、駆動電極の構成が大きく異なっている。実施例1のタッチパネルにおいては、駆動電極4は、検出電極1、検出電極2等の全面を覆う形で形成されているが、実施例2のタッチパネルにおいては、駆動電極40は図4(b)に示されるように櫛歯状に構成されており、図4(c)に示すように主電極10、20、及び副電極と重なる部分において取り除かれた構造となっている。なお、特に、櫛歯状に形成された駆動電極を「駆動電極40」として記載し、実施例1の駆動電極4と区別している。41は、櫛歯状に形成された駆動電極40の各櫛歯部分を相互に接続する櫛歯接続配線であり、駆動電極の長さ方向の一辺部分のみで接続されている。 The touch panel of the second embodiment shown in FIG. 4 is greatly different from the touch panel of the first embodiment shown in FIG. In the touch panel of the first embodiment, the drive electrode 4 is formed so as to cover the entire surface of the detection electrode 1, the detection electrode 2, and the like. However, in the touch panel of the second embodiment, the drive electrode 40 is formed as shown in FIG. As shown in FIG. 4, it is configured in a comb-like shape, and as shown in FIG. 4C, the structure is removed in a portion overlapping with the main electrodes 10, 20 and the sub electrode. In particular, the drive electrode formed in a comb-teeth shape is described as “drive electrode 40”, and is distinguished from the drive electrode 4 of the first embodiment. 41 is a comb-teeth connection wiring for mutually connecting each comb-teeth portion of the drive electrode 40 formed in a comb-teeth shape, and is connected only by one side portion in the length direction of the drive electrode.
 ここで、実施例1に示した駆動電極4から取り除かれることになる「副電極と重なる部分」とは、「互いに近接して対になって配置された副電極11と副電極23」の部分、「互いに近接して対になって配置された副電極12と副電極22」の部分、「互いに近接して対になって配置された副電極13と副電極21」の部分をそれぞれ意味している。図4(c)において、7は基板であり、6は絶縁層である。 Here, the “portion overlapping with the sub-electrode” to be removed from the drive electrode 4 shown in the first embodiment is a portion of “the sub-electrode 11 and the sub-electrode 23 arranged in a close proximity to each other”. , “Sub-electrode 12 and sub-electrode 22 arranged in pairs close to each other” and “sub-electrode 13 and sub-electrode 21 arranged in pairs close to each other” ing. In FIG.4 (c), 7 is a board | substrate and 6 is an insulating layer.
 図4(b)では、駆動電極40において櫛歯接続電極41を上辺部分(図面の一番上)に設け、駆動電極40を文字通りの櫛歯状に形成しているが、この櫛歯接続電極41をこの部分以外に設けても良く、また、複数個の櫛歯接続電極41を設けても良い。即ち、前記駆動電極は、前記検出電極と重なる部分において一部が取り除かれているように設けられていれば良い。 In FIG. 4B, the comb-tooth connection electrode 41 is provided on the upper side portion (the top of the drawing) of the drive electrode 40, and the drive electrode 40 is formed in a literal comb-tooth shape. 41 may be provided other than this part, and a plurality of comb-teeth connection electrodes 41 may be provided. That is, the drive electrode may be provided so that a part of the drive electrode is removed from the portion overlapping the detection electrode.
 なお、以下において、説明の簡略化のため、「互いに近接して対になって配置された副電極11と副電極23」の部分を「副電極対1123」と略称し、「互いに近接して対になって配置された副電極12と副電極22」の部分を「副電極対1222」、以下同様に「互いに近接して対になって配置された副電極13と副電極21」の部分を「副電極対1321」と略称する場合がある。 In the following, for simplification of description, a portion of “sub-electrode 11 and sub-electrode 23 arranged in pairs close to each other” is abbreviated as “sub-electrode pair 1123” and “close to each other”. The portion of the sub-electrode 12 and the sub-electrode 22 arranged as a pair is referred to as a “sub-electrode pair 1222”, and similarly, the portion of the “sub-electrode 13 and the sub-electrode 21 arranged as a pair close to each other”. May be abbreviated as “sub electrode pair 1321”.
 これにより検出電極と駆動電極の重なり部分(クロス部分)の面積をかなり減らすことができることとなり、その結果、この交差部分での容量を減少させることが可能となる。従って、検出電極における充電時間が短縮されることとなり、高周波での駆動が可能となる。これは、タッチパネルにおけるタッチ検出の回数を増やすことができることを意味しており、タッチパネルの検出性能を高めることになる。 Thus, the area of the overlapping portion (cross portion) between the detection electrode and the drive electrode can be considerably reduced, and as a result, the capacitance at this intersection portion can be reduced. Therefore, the charging time in the detection electrode is shortened, and driving at a high frequency is possible. This means that the number of touch detections on the touch panel can be increased, and the detection performance of the touch panel is improved.
 図4(d)は、実施例2の変形例である。図4(d)に示した実施例2の変形例では、検出電極と駆動電極が同一の平面上に互いに絶縁されて設けられている。図4(d)から明らかなように、主電極10と副電極対1123の間、副電極対1123と副電極対1222の間、副電極対1222と副電極対1321の間、副電極対1321と主電極20の間に櫛歯状の駆動電極40が、同一平面で、挟み込まれている。なお、検出電極1と検出電極2との間、更に、検出電極1、2と駆動電極40との間を絶縁する必要があることは云うまでもない。 FIG. 4D is a modification of the second embodiment. In the modification of the second embodiment shown in FIG. 4D, the detection electrode and the drive electrode are provided so as to be insulated from each other on the same plane. As apparent from FIG. 4D, between the main electrode 10 and the sub electrode pair 1123, between the sub electrode pair 1123 and the sub electrode pair 1222, between the sub electrode pair 1222 and the sub electrode pair 1321, and the sub electrode pair 1321. A comb-like drive electrode 40 is sandwiched between the main electrode 20 and the main electrode 20 in the same plane. Needless to say, it is necessary to insulate between the detection electrode 1 and the detection electrode 2 and further between the detection electrodes 1 and 2 and the drive electrode 40.
 この場合には、タッチパネル全体を薄く構成できる外、絶縁層をクロス部のみに配置することができるため、透過率の低下を抑える効果もある。 In this case, the entire touch panel can be made thin, and since the insulating layer can be disposed only in the cross portion, there is an effect of suppressing a decrease in transmittance.
 図5は、本発明の実施例3を示しており、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示している。なお、図5に示した実施例3のタッチパネルにおいて、図1、図3、図4と同一の構成部分には同一の番号を付与しているので、それらの構成部分の詳細な説明は省略する。 FIG. 5 shows a third embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. 1 (b) and 1 (c). In addition, in the touch panel of Example 3 shown in FIG. 5, since the same number is attached | subjected to the same component as FIG.1, FIG.3, FIG.4, detailed description of those components is abbreviate | omitted. .
 実施例3においては、図4を用いて説明した実施例2とは、駆動電極40の構成において異なるが、図5(a)に示しているとおり、検出電極1、2、主電極10、20、副電極11、12、13、副電極21、22、23、接続電極19、29の構成は実施例2と同様であって良く、図5(c)、(d)に示しているとおり、絶縁層6、基板7も同一の構成であってよい。また、図5(c)、(d)に示しているとおり、検出電極1、2と駆動電極40を、図5(c)に示すように、絶縁層6を介して対向するように配置したものでもよく、更には、図5(d)に示すように、検出電極1、2と駆動電極40を同一の平面上に配置したものでもよい。 The third embodiment differs from the second embodiment described with reference to FIG. 4 in the configuration of the drive electrode 40, but as shown in FIG. 5A, the detection electrodes 1, 2, the main electrodes 10, 20. The configurations of the sub-electrodes 11, 12, 13, the sub-electrodes 21, 22, 23, and the connection electrodes 19, 29 may be the same as those in the second embodiment, and as shown in FIGS. 5 (c) and 5 (d), The insulating layer 6 and the substrate 7 may have the same configuration. Further, as shown in FIGS. 5C and 5D, the detection electrodes 1 and 2 and the drive electrode 40 are arranged to face each other with the insulating layer 6 therebetween as shown in FIG. 5C. Further, as shown in FIG. 5D, the detection electrodes 1 and 2 and the drive electrode 40 may be arranged on the same plane.
 実施例3においては、図5(b)に示すとおり、櫛歯状に形成された駆動電極40の櫛歯接続配線41に隣接して高導電率の導体よりなる金属配線42が設けられている。即ち、駆動電極40は、前記検出電極と重なる部分であって前記駆動電極40の一部が取り除かれて狭くなり狭小部分となった櫛歯接続配線41の部分において、高導電率の導体よりなる金属配線42を有することになる。この金属配線42は、前記櫛歯接続配線41に電気的に接続されて設けられており、前記櫛歯接続配線41の抵抗値の低下を抑えることになる。 In the third embodiment, as shown in FIG. 5B, a metal wiring 42 made of a highly conductive conductor is provided adjacent to the comb connection wiring 41 of the drive electrode 40 formed in a comb shape. . That is, the drive electrode 40 is a portion that overlaps the detection electrode and is made of a high conductivity conductor at a portion of the comb-teeth connection wiring 41 that is narrowed by removing a part of the drive electrode 40. The metal wiring 42 is provided. The metal wiring 42 is provided so as to be electrically connected to the comb-teeth connection wiring 41 and suppresses a decrease in the resistance value of the comb-teeth connection wiring 41.
 金属配線42は、例えば、金、銀、銅等の金属配線の他、Ti、Al、Moやその複合といった液晶パネルに使用される代表的な金属とすることができるが、タッチパネル全体が透明である場合には、配線幅を狭くする等の対策により、金属配線の存在を目立たなくする必要がある。また、ITO等の透明導電膜の厚さを厚くすることによって対応しても良い。この場合には、櫛歯接続配線41の一部の厚さを厚くすること、或いは、櫛歯接続配線41の全体の厚さを厚くすることで対応しても良い。 The metal wiring 42 can be a typical metal used for liquid crystal panels such as Ti, Al, Mo, and composites in addition to metal wiring such as gold, silver, and copper, but the entire touch panel is transparent. In some cases, it is necessary to make the presence of metal wiring inconspicuous by taking measures such as narrowing the wiring width. Moreover, you may respond by increasing the thickness of transparent conductive films, such as ITO. In this case, a part of the comb-teeth connection wiring 41 may be thickened, or the entire thickness of the comb-teeth connection wiring 41 may be increased.
 これによれば、駆動電極40を櫛歯状としたことによる駆動電極40の抵抗値の増大を効果的に防止できることとなる。このため、タッチパネルを駆動するための時定数(容量c×抵抗R)が小さくなることから、タッチパネルの高速駆動が可能となり、タッチパネルとしての性能を向上させることができる。 According to this, it is possible to effectively prevent an increase in the resistance value of the drive electrode 40 due to the drive electrode 40 having a comb shape. For this reason, since the time constant (capacitance c × resistance R) for driving the touch panel becomes small, the touch panel can be driven at high speed, and the performance as the touch panel can be improved.
 図6は、本発明の実施例4を示している。実勢例4においては、櫛歯状の駆動電極40を形成するために駆動電極が取り除かれた箇所に、前記駆動電極から絶縁されたシールド用導電膜が設けられている。 FIG. 6 shows a fourth embodiment of the present invention. In Practical Example 4, a shield conductive film insulated from the drive electrode is provided at a location where the drive electrode is removed in order to form the comb-like drive electrode 40.
 図6は、本発明に従った実施例4のタッチパネルの構成を示す図であり、図6(a)は、櫛歯状の駆動電極40に対して、櫛歯状に形成されたシールド用導電膜8を組み合わせた構造を示しており、図6(b)は、櫛歯状のシールド用導電膜8のみの構成を示しており、また、図6(c)は、図6(a)の線分A-A’に沿った断面図を示している。なお、図6では、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示している。また、図6に示した実施例4のタッチパネルにおいて、図1、図3~図5と同一の構成部分には同一の番号を付与しているので、それらの構成部分の詳細な説明は省略する。 FIG. 6 is a diagram showing the configuration of the touch panel according to the fourth embodiment of the present invention. FIG. 6A shows a conductive shield for a comb-like drive electrode 40 formed in a comb-like shape. FIG. 6B shows the structure of only the comb-shaped shielding conductive film 8, and FIG. 6C shows the structure of FIG. 6A. A cross-sectional view along line AA ′ is shown. In FIG. 6, only the portion corresponding to the portion surrounded by the broken line 16 in FIGS. 1B and 1C is shown. Further, in the touch panel according to the fourth embodiment shown in FIG. 6, the same components as those in FIGS. 1 and 3 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. .
 図6に示す実施例4においては、図4、図5で示した実施例2、3における櫛歯状に形成された駆動電極40の電極がない箇所(空白部分)であって前記駆動電極と同一の平面に、前記駆動電極40から絶縁されたシールド用導電膜8が設けられている。このシールド用導電膜8は、前記駆動電極40のない箇所(空白部分)の全体を埋めていることが好ましく、また、図6(b)に示すとおり、前記駆動電極40の空白部分を埋めたシールド用導電膜8は相互に電気的に接続されている。 In the fourth embodiment shown in FIG. 6, the drive electrode 40 formed in a comb-like shape in the second and third embodiments shown in FIG. 4 and FIG. A shielding conductive film 8 insulated from the drive electrode 40 is provided on the same plane. The shielding conductive film 8 preferably fills the entire portion (blank portion) where the drive electrode 40 is not present, and also fills the blank portion of the drive electrode 40 as shown in FIG. The shielding conductive films 8 are electrically connected to each other.
 実施例4のタッチパネルにおいては、図6(a)に示すように、櫛歯状に形成された駆動電極40の歯状の導体を接続する櫛歯接続配線41(図5(b)参照)に隣接して高導電率の導体よりなる金属配線42を有しているが、金属配線42は必須の構成要件ではなく、従って、金属配線42を設けずにシールド用導電膜8を設けてもよい。 In the touch panel of the fourth embodiment, as shown in FIG. 6A, the comb-teeth connection wiring 41 (see FIG. 5B) that connects the tooth-like conductors of the drive electrodes 40 formed in a comb-teeth shape. Although the metal wiring 42 made of a conductor having high conductivity is adjacent to the metal wiring 42, the metal wiring 42 is not an essential constituent element. Therefore, the shielding conductive film 8 may be provided without providing the metal wiring 42. .
 図6に示す実施例4のタッチパネルにおいては、シールド用導電膜8が設けられたことにより、外部からの電気的なノイズに強いタッチパネルが得られる。タッチパネルは、動作時に電気的なノイズを発生するような表示装置、例えば、液晶表示装置と重ねられて用いられることが多いが、このようなシールド用導電膜8を設けることによって液晶パネルからのノイズを遮蔽することができ、液晶パネルが強い電気的なノイズを発生するような場合にもタッチパネルの動作が不安定になることが防止できる。 In the touch panel of Example 4 shown in FIG. 6, since the conductive film 8 for shielding is provided, a touch panel resistant to external electrical noise can be obtained. The touch panel is often used in a manner overlapping with a display device that generates electrical noise during operation, for example, a liquid crystal display device. By providing such a conductive film 8 for shielding, noise from the liquid crystal panel is provided. It is possible to prevent the operation of the touch panel from becoming unstable even when the liquid crystal panel generates strong electrical noise.
 図6に示す実施例4のシールド用導電膜8を有するタッチパネルにおいて、駆動電極40とシールド用導電膜8を利用して、更に、ノイズの影響を低減することができる。具体的には、アクティブな駆動電極以外をシールド用導電膜8と同電位とすることで、例えば、タッチパネルの下に配置された液晶パネル等の表示装置が強い電気的なノイズを発生しても、これを効果的に遮蔽することができる。この結果、検出電極に対してノイズ成分が低減されることになる。即ち、タッチパネルにおいて、指先等のタッチを検出するために、駆動電極には選択的に駆動電圧が印加されるが、駆動電圧が印加されている駆動電極以外を、シールド用導電膜15と同電位にすることになる。 In the touch panel having the shielding conductive film 8 of Example 4 shown in FIG. 6, the influence of noise can be further reduced by using the drive electrode 40 and the shielding conductive film 8. Specifically, by setting the potential other than the active drive electrode to the same potential as that of the shielding conductive film 8, for example, even if a display device such as a liquid crystal panel disposed under the touch panel generates strong electrical noise. This can be effectively shielded. As a result, noise components are reduced with respect to the detection electrodes. That is, in the touch panel, a drive voltage is selectively applied to the drive electrode in order to detect a touch of a fingertip or the like, but other than the drive electrode to which the drive voltage is applied has the same potential as the shield conductive film 15. Will be.
 図7は、本発明の実施例5を示しており、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示している。図7は、本発明に従った実施例5のタッチパネルの概要を示す図であり、図7(a)は、検出電極1、2と駆動電極40の構成を示す図であり、図7(b)、図7(c)は、図7(a)の線分A-A’に沿った断面を示す図である。図4、図5と共に説明した実施例2、3の場合と同様、図7(b)は、検出電極1、2と駆動電極40とを絶縁層6を介して階層構造になるように設けた例を示しており、図7(c)は、検出電極1、2と駆動電極40を同一平面上に互いに絶縁して設けた例(実施例5の変形例)を示している。 FIG. 7 shows a fifth embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. 1 (b) and 1 (c). FIG. 7 is a diagram showing an outline of the touch panel according to the fifth embodiment of the present invention, and FIG. 7A is a diagram showing the configuration of the detection electrodes 1, 2 and the drive electrode 40, and FIG. 7C is a diagram showing a cross section taken along the line AA ′ in FIG. 7A. As in the case of the second and third embodiments described with reference to FIGS. 4 and 5, in FIG. 7B, the detection electrodes 1 and 2 and the drive electrode 40 are provided in a hierarchical structure with the insulating layer 6 interposed therebetween. FIG. 7C shows an example (a modification of the fifth embodiment) in which the detection electrodes 1 and 2 and the drive electrode 40 are insulated from each other on the same plane.
 なお、図7は、上述のとおり、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示しており、図7に示した実施例5のタッチパネルにおいて、図1、図3~図6と同一の構成部分には同一の番号を付与しているので、それらの構成部分の詳細な説明は省略する。 7 shows only a portion corresponding to the portion surrounded by the broken line 16 in FIGS. 1B and 1C as described above. In the touch panel of the fifth embodiment shown in FIG. 3 to 6, the same reference numerals are given to the same components, and detailed description of those components is omitted.
 この本発明の実施例5においては、図7(a)に示すとおり、検出電極1の主電極10と副電極11、12、13を接続する接続電極19と、検出電極2の主電極20と副電極21、22、23を接続する接続電極29の双方を、同じ側に設けている。図7(a)の場合には、前記接続電極19、29を、櫛歯状の駆動電極40の櫛歯接続配線41とは、反対の側に設けている。即ち、この実施例5では、前記検出電極における主電極と副電極を接続するための接続電極を、前記櫛歯状に形成された駆動電極の櫛歯接続配線とは、反対の側に設けている。 In the fifth embodiment of the present invention, as shown in FIG. 7A, a connection electrode 19 that connects the main electrode 10 of the detection electrode 1 and the sub-electrodes 11, 12, and 13, and a main electrode 20 of the detection electrode 2 Both connection electrodes 29 for connecting the sub-electrodes 21, 22, 23 are provided on the same side. In the case of FIG. 7A, the connection electrodes 19 and 29 are provided on the side opposite to the comb connection wiring 41 of the comb-shaped drive electrode 40. That is, in the fifth embodiment, the connection electrode for connecting the main electrode and the sub electrode in the detection electrode is provided on the side opposite to the comb connection wiring of the drive electrode formed in the comb shape. Yes.
 このように構成することにより、駆動電極40と検出電極1、2との交差に基づくクロス容量を更に減らすことができ、その結果、検出電極における充電時間が短縮されることとなり、高周波での駆動が可能となる。これは、既に述べたとおり、タッチパネルにおけるタッチ検出の回数を増やすことができることを意味しており、タッチパネルの検出性能を高めることになる。 With this configuration, the cross capacitance based on the intersection between the drive electrode 40 and the detection electrodes 1 and 2 can be further reduced. As a result, the charging time at the detection electrode is shortened, and driving at high frequency is performed. Is possible. As described above, this means that the number of touch detections on the touch panel can be increased, and the detection performance of the touch panel is improved.
 また、図7(b)に示す駆動電極40と検出電極1、2おいて、駆動電極40の櫛歯状部分を、前記検出電極1、2の主電極と副電極の間に作られた領域の全面に設ける必要はなく、意図的にスペースを介して設けても良い。即ち、図7(a)において、駆動電極40の櫛歯状部分と検出電極1、2の主電極、副電極との間に僅かなスペースが設けられていることが確認できるが、このように意図的にスペースを設けても良い。スペースは、例えば、200μm程度で良い。このようにスペースを設けることで、更に、クロス容量を減らすことができる。図4、図5に示した実施例2、3の場合にも、同様にこのようなスペースを設けて、更に、クロス容量を減らすことが可能となる。 Further, in the drive electrode 40 and the detection electrodes 1 and 2 shown in FIG. 7B, a comb-like portion of the drive electrode 40 is formed between the main electrode and the sub electrode of the detection electrodes 1 and 2. It is not necessary to provide it on the entire surface, and it may be provided intentionally through a space. That is, in FIG. 7A, it can be confirmed that a slight space is provided between the comb-like portion of the drive electrode 40 and the main electrode and the sub electrode of the detection electrodes 1 and 2. A space may be provided intentionally. For example, the space may be about 200 μm. By providing such a space, the cross capacitance can be further reduced. In the case of the second and third embodiments shown in FIGS. 4 and 5, such a space is similarly provided, and the cross capacitance can be further reduced.
 なお、検出電極1、2及び駆動電極40間の絶縁を保つため、それらの電極がクロスする部分には絶縁膜等により絶縁を施す必要があることは云うまでもない。 Needless to say, in order to maintain insulation between the detection electrodes 1 and 2 and the drive electrode 40, it is necessary to insulate the portion where these electrodes cross with an insulating film or the like.
 図8は、本発明の実施例6を示している。図8は、本発明に従った実施例6のタッチパネルの概要を示す図であり、図8(a)は、検出電極1、2と駆動電極40の構成を示す図、図8(b)は、図8(a)の線分A-A’に沿った断面を示す図であり、図8(c)は、実施例6のタッチパネルの効果を説明するための図である。なお、図8は、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示している。また、図8に示した実施例6のタッチパネルにおいて、図1、図3~図7と同一の構成部分には同一の番号を付与しているので、それらの構成部分の詳細な説明は省略する。 FIG. 8 shows Embodiment 6 of the present invention. FIG. 8 is a diagram showing an outline of the touch panel of Example 6 according to the present invention, FIG. 8A is a diagram showing the configuration of the detection electrodes 1 and 2 and the drive electrode 40, and FIG. FIG. 8A is a diagram showing a cross section taken along line AA ′ in FIG. 8A, and FIG. 8C is a diagram for explaining the effect of the touch panel according to the sixth embodiment. FIG. 8 shows only a portion corresponding to the portion surrounded by the broken line 16 in FIGS. Further, in the touch panel according to the sixth embodiment shown in FIG. 8, the same reference numerals are given to the same components as those in FIGS. 1 and 3 to 7, and detailed description of these components will be omitted. .
 図8に示した実施例6では、図7(c)に示した実施例5の構成とほぼ同様な構成となっているが、図8(b)に示すように、検出電極及び駆動電極から絶縁して、アース用導電膜9が設けられている。具体的には、検出電極及び駆動電極が形成された基板7の背面にアース用導電膜9が設けられている。タッチパネルが液晶表示装置等の上に置かれて使用される場合には、アース用導電膜9を含め、基板7、絶縁層6検出電極1、2、駆動電極40等は公知の透明絶縁体、透明導電膜で形成されることになる。 In the sixth embodiment shown in FIG. 8, the configuration is almost the same as that of the fifth embodiment shown in FIG. 7C. However, as shown in FIG. An insulating conductive film 9 is provided for insulation. Specifically, a ground conductive film 9 is provided on the back surface of the substrate 7 on which the detection electrode and the drive electrode are formed. When the touch panel is used by being placed on a liquid crystal display device or the like, the substrate 7, the insulating layer 6, the detection electrodes 1 and 2, the drive electrode 40, etc., including the ground conductive film 9, are known transparent insulators, It will be formed of a transparent conductive film.
 なお、図8(b)では、検出電極と駆動電極が同一の平面に形成されたタッチパネルの基板7の背面にアース用導電膜9を設けた構造が示されているが、図7(b)に示したとおりの検出電極と駆動電極を、絶縁層6を介して設けた構造のタッチパネルにおいても基板7の背面にアース用導電膜9を設けても良いことは言うまでもない。 FIG. 8B shows a structure in which a ground conductive film 9 is provided on the back surface of the substrate 7 of the touch panel in which the detection electrode and the drive electrode are formed on the same plane, but FIG. Needless to say, the ground conductive film 9 may be provided on the back surface of the substrate 7 even in a touch panel having a structure in which the detection electrode and the drive electrode as shown in FIG.
 図8(c)は、アース用導電膜9を設けたタッチパネルに駆動電圧を印加した場合の電気力線の様子を示している。図8(c)から明らかなとおり、基板7の下にアース用導電膜9があることにより、駆動電極40から検出電極1に向かう電気力線(図中の矢印参照)のうち、下側を回り込む電気力線が前記アース用導電膜9にトラップされ、クロス容量を低減できる。また、このアース用導電膜9は、液晶パネルや有機ELパネルといったノイズ発生源からのノイズに対するシールド効果も併せ持っている。 FIG. 8C shows a state of lines of electric force when a driving voltage is applied to the touch panel provided with the ground conductive film 9. As is clear from FIG. 8C, the grounding conductive film 9 is provided under the substrate 7, so that the lower side of the lines of electric force (see the arrows in the figure) from the drive electrode 40 to the detection electrode 1 is reduced. The electric lines of force that wrap around are trapped in the grounding conductive film 9 and the cross capacitance can be reduced. The conductive film 9 for earthing also has a shielding effect against noise from noise generation sources such as a liquid crystal panel and an organic EL panel.
 図9は本発明の実施例7を示しており、図1(b)、(c)の破線16で囲った部分に対応する部分のみを示している。図9に示す実施例7では、検出電極を構成している「主電極」の幅と、「対になった副電極の合計」の幅が異なるものを示しており、特に、「対になった副電極の合計」の幅を、「主電極」の幅よりも小さくしたものを示している。 FIG. 9 shows a seventh embodiment of the present invention, and shows only a portion corresponding to a portion surrounded by a broken line 16 in FIGS. 1 (b) and 1 (c). Example 7 shown in FIG. 9 shows a case where the width of the “main electrode” constituting the detection electrode is different from the width of the “total number of sub-electrodes paired”. In addition, the width of the “sub electrode total” is smaller than the width of the “main electrode”.
 図9において、検出電極1は、主電極10及び4つの副電極101、102、103、104により構成されており、検出電極2は主電極20及び4つの副電極201、202、203、204により構成されている。そして、図9から明らかなように、例えば、副電極101と副電極204が近接して対になって配置され、「対になった副電極」を構成している。また、駆動電極40が、「主電極」と「対になった副電極」の間、及び、「対になった副電極」相互の間に挿入されている。 In FIG. 9, the detection electrode 1 is composed of a main electrode 10 and four sub-electrodes 101, 102, 103, 104, and the detection electrode 2 is composed of a main electrode 20 and four sub-electrodes 201, 202, 203, 204. It is configured. As is apparent from FIG. 9, for example, the sub-electrode 101 and the sub-electrode 204 are arranged in close proximity to each other to constitute a “paired sub-electrode”. The drive electrode 40 is inserted between the “main electrode” and the “paired sub-electrode” and between the “paired sub-electrodes”.
 図9では、図面が煩雑になることを避けるため、主電極10と副電極101、102、103、104間を接続する接続電極、主電極20と副電極201、202、203、204間を接続する接続電極、及び複数の駆動電極40間を接続する接続電極は省略されているが、実際には、図1、図4、図5、図7等に示されるような構成によって夫々相互に接続されている。 In FIG. 9, in order to avoid the complexity of the drawing, the connection electrode connecting the main electrode 10 and the sub-electrodes 101, 102, 103, 104, and the connection between the main electrode 20 and the sub-electrodes 201, 202, 203, 204 are connected. The connection electrodes for connecting the drive electrodes 40 and the drive electrodes 40 are omitted, but in actuality, they are connected to each other by the configuration shown in FIG. 1, FIG. 4, FIG. 5, FIG. Has been.
 実施例7では、図9に示すとおり、主電極10、20の幅をそれぞれ500μmに設定し、対になった副電極の合計の幅を400μmに設定している。また、駆動電極40の幅を400μmに設定し、駆動電極40と主電極10、20との間、及び、駆動電極40と対になった副電極との間を200μmに設定している。更に、駆動電極40の長さ方向の寸法を5100μmにしている。なお、主電極の幅については、「対になった副電極の合計」の幅に対して、100μm~150μmの範囲で大きくすることで同様な効果があることを確認している。 In Example 7, as shown in FIG. 9, the width of the main electrodes 10 and 20 is set to 500 μm, and the total width of the paired sub-electrodes is set to 400 μm. Further, the width of the drive electrode 40 is set to 400 μm, and the distance between the drive electrode 40 and the main electrodes 10 and 20 and between the sub electrode paired with the drive electrode 40 is set to 200 μm. Furthermore, the dimension of the drive electrode 40 in the length direction is set to 5100 μm. Regarding the width of the main electrode, it has been confirmed that a similar effect can be obtained by increasing the width in the range of 100 μm to 150 μm with respect to the width of “the total of the paired sub electrodes”.
 本発明者等は、図9に示すように「対になった副電極の合計の幅」を、「主電極の幅」よりも小さくすることによって、検出出力を、図2(b)において出力n、出力n+1で示したような線形性のよい検出出力が得られることを見出した。即ち、主電極の幅と「対になった副電極の合計の幅」とをほぼ同一の幅に設計した場合、指先等の検出対象物が主電極から1本目の「対になった副電極」に移動した場合に得られる検出出力の変化が少なく、やや飽和したような検出出力になってしまったが、上記のような構成により検出出力の線形性を改善できることを確認している。 As shown in FIG. 9, the present inventors set the “total width of the paired sub-electrodes” to be smaller than the “width of the main electrode”, thereby outputting the detection output in FIG. It has been found that a detection output with good linearity as indicated by n and output n + 1 can be obtained. That is, when the width of the main electrode and the “total width of the paired sub-electrodes” are designed to be substantially the same width, the detection object such as a fingertip is the first “paired sub-electrode from the main electrode. The detection output obtained when moving to “” is small and the detection output is somewhat saturated. However, it has been confirmed that the linearity of the detection output can be improved by the above configuration.
 検出出力の線形性を改善できる理由は、以下のとおりであると考えられる。 The reason why the linearity of the detection output can be improved is considered as follows.
 指先等の検出対象物が主電極から1本目の「対になった副電極」に移動した場合に得られる検出出力の変化が少なくなる理由は、主電極から1本目の「対になった副電極」に向かう際の電気力線の差が小さいためと考えられる。そこで、「対になった副電極の合計の幅」を「主電極の幅」よりも小さくして、主電極上に置かれた指先やペン先が、主電極上から1本目の「対になった副電極」側に向かう際の電気力線の差が大きくなるように構成する。その結果、検出出力の変化が大きくなり、結果として、検出出力の直線性を改善できることとなった。 The reason why the change in detection output obtained when a detection object such as a fingertip moves from the main electrode to the first “paired sub-electrode” is reduced is that the first “paired sub-electrode” from the main electrode This is probably because the difference in the lines of electric force when going to the “electrode” is small. Therefore, the “total width of the paired sub-electrodes” is made smaller than the “main electrode width”, and the fingertip or pen tip placed on the main electrode is moved to the first “pair” from the main electrode. The difference of the electric lines of force when going to the “sub electrode” side is increased. As a result, the change in the detection output is increased, and as a result, the linearity of the detection output can be improved.
 図9に示した副電極の数、各部分の大きさ(寸法)は、1例であり、本願の発明がこの数、寸法に限定されるものではないが、本発明者等は、副電極の数を4本に設定し、各部分の大きさを図9に示したように設定した場合に、良好な検出出力が得られることを確認している。即ち、一般的には、各部分の大きさの最適値は、カバーガラスの厚さにも左右され、副電極の数によっても、更には、主電極の大きさ等によっても左右される等、各部分の大きさが複雑に影響し合うことが分かっているが、上記の値に設定した場合に、タッチパネルとして十分な精度で十分な検出出力が得られることを確認している。また、副電極の数を少なくすることは、検出出力の線形性が崩れる場合があって好ましくないが、上記のとおり4本に設定した場合、線形性の良い検出出力が得られることを確認している。 The number of sub-electrodes and the size (dimensions) of each part shown in FIG. 9 are examples, and the present invention is not limited to this number and size. It is confirmed that a good detection output can be obtained when the number of each is set to 4 and the size of each part is set as shown in FIG. That is, in general, the optimum value of the size of each part depends on the thickness of the cover glass, depends on the number of sub-electrodes, further depends on the size of the main electrode, etc. Although it is known that the size of each part affects each other in a complicated manner, it has been confirmed that sufficient detection output can be obtained with sufficient accuracy as a touch panel when set to the above values. In addition, it is not preferable to reduce the number of sub-electrodes because the linearity of the detection output may be lost. However, if the number of sub-electrodes is set to four as described above, it is confirmed that a detection output with good linearity can be obtained. ing.
 また、図9に示した実施例7では、主電極10の副電極101は、主電極20の副電極204に対して近接して配位置されて、副電極204と共に「対になった副電極」を構成しているが、副電極204が主電極10に近い側に配置され、副電極101が主電極10から離れた位置に配置されている。 Further, in the seventh embodiment shown in FIG. 9, the sub-electrode 101 of the main electrode 10 is disposed close to the sub-electrode 204 of the main electrode 20, and together with the sub-electrode 204, “a pair of sub-electrodes” The sub electrode 204 is disposed on the side close to the main electrode 10, and the sub electrode 101 is disposed at a position away from the main electrode 10.
 この点において、本願発明の基本的な構成として示した図1等に示された構成とは異なるが、実施例7のように構成した場合においても、基本的に、図1等に示されたものと同様な効果が得られることを確認しており、従って、副電極204が主電極10に近くなる構成としても良い。 In this respect, although different from the configuration shown in FIG. 1 and the like shown as the basic configuration of the present invention, the configuration shown in FIG. It has been confirmed that the same effect as the above can be obtained. Therefore, the sub electrode 204 may be close to the main electrode 10.
 更に、図9に示した「対になった副電極の合計の幅」を「主電極の幅」よりも小さくするという構成は、図3、図4、図5、図6、図7、図8に示した各実施例のタッチパネルにも適用可能である。 Further, the configuration in which the “total width of the paired sub-electrodes” shown in FIG. 9 is made smaller than the “width of the main electrode” is shown in FIGS. 3, 4, 5, 6, 7, and 7. The touch panel of each embodiment shown in FIG.
 [本願の作用効果について]
 図10は、本願の発明に係るタッチパネルの別の効果を、従来例との比較の上で説明するための図であり、図10(a)は、従来のタッチパネルを示しており、図10(b)は、本願の発明に係るタッチパネルの一例を示している。
[About the effect of this application]
FIG. 10 is a diagram for explaining another effect of the touch panel according to the invention of the present application in comparison with a conventional example. FIG. 10 (a) shows a conventional touch panel, and FIG. b) shows an example of a touch panel according to the invention of the present application.
 タッチパネルでは、検出電極に信号検出用の検出ラインを接続し、更に、この検出ラインをタッチパネルの端部にまで引き出す必要がある。図10(a)、図10(b)は、それぞれ同程度の検出精度を有するタッチパネルを示しており、それぞれのタッチパネルにおいて、必要な検出ラインを示している。 In the touch panel, it is necessary to connect a detection line for signal detection to the detection electrode, and further draw out this detection line to the end of the touch panel. FIG. 10A and FIG. 10B each show a touch panel having the same level of detection accuracy, and shows necessary detection lines in each touch panel.
 図10(a)に示す従来例の場合、検出電極の一つ一つに検出ラインを接続する必要があり、極めて多数の検出ラインをタッチパネルの端部にまで引き出す必要がある。このためタッチパネルの外縁部分に多数の検出ライン用のスペースを必要とすることを意味しており、結果として、所謂、狭額縁のタッチパネルを実現することが困難になる。 In the case of the conventional example shown in FIG. 10A, it is necessary to connect a detection line to each of the detection electrodes, and it is necessary to draw an extremely large number of detection lines to the end of the touch panel. This means that a large number of detection line spaces are required in the outer edge portion of the touch panel, and as a result, it becomes difficult to realize a so-called narrow frame touch panel.
 これに対して、本発明に係るタッチパネルでは、検出電極を構成する主電極と副電極の内、主電極のみから検出ラインを引き出すことで良く、検出ラインの本数を大幅に減ずることができる。図10(b)に示した例では、検出ラインの本数は、図10(a)に示した従来例に比較して、1/5の本数で良いことになる。このため、所謂、狭額縁のタッチパネルが容易に実現できることになる。 On the other hand, in the touch panel according to the present invention, it is only necessary to draw out the detection line from only the main electrode among the main electrode and the sub electrode constituting the detection electrode, and the number of detection lines can be greatly reduced. In the example shown in FIG. 10B, the number of detection lines may be 1/5 as compared with the conventional example shown in FIG. For this reason, a so-called narrow frame touch panel can be easily realized.
 [実施例2、実施例3、実施例5、実施例7の変形例について]
 なお、図4(a)~(b)で示した実施例2の場合、図5(a)~(c)で示した実施例3の場合、図7(a)、(b)で示した実施例5の場合、及び図9で示した実施例7の場合、櫛歯状に形成された駆動電極40は、図面の上の部分において、櫛歯接続配線41が設けられているが、これに限られることはない。即ち、櫛歯接続配線41を、更に、図面の下の部分にも設け、図面の上下両端で櫛歯状の駆動電極を接続しても良い。更に、中間部分のみに櫛歯接続配線41を設けて接続しても良い。要は、駆動電極4は、前記検出電極と重なる部分において一部が取り除かれていることでよい。これによっても、検出電極と駆動電極の重なり部分(クロス部分)の面積を減らすことができるので、上記の効果が期待できる。
[Modifications of Example 2, Example 3, Example 5, and Example 7]
In the case of Example 2 shown in FIGS. 4 (a) to 4 (b), the case of Example 3 shown in FIGS. 5 (a) to (c) is shown in FIGS. 7 (a) and 7 (b). In the case of the embodiment 5 and the embodiment 7 shown in FIG. 9, the comb-like drive electrode 40 is provided with the comb-teeth connection wiring 41 in the upper part of the drawing. It is not limited to. That is, the comb-teeth connection wiring 41 may be further provided in the lower part of the drawing, and the comb-like drive electrodes may be connected to the upper and lower ends of the drawing. Further, the comb connection wiring 41 may be provided and connected only to the intermediate portion. In short, the drive electrode 4 may be partially removed from the portion overlapping the detection electrode. Also by this, the area of the overlapping portion (cross portion) of the detection electrode and the drive electrode can be reduced, so that the above effect can be expected.
 [その他の構成]
 また、本発明の一態様に係るタッチパネルでは、さらに、前記副電極は、前記駆動電極との交差部分において前記駆動電極の幅に略等しい長さを持つ複数個の電極領域に分割されており、前記複数個に分割された電極領域がそれぞれ主電極に電気的に接続されていることが好ましい。
[Other configurations]
Further, in the touch panel according to one aspect of the present invention, the sub-electrode is further divided into a plurality of electrode regions having a length substantially equal to the width of the drive electrode at the intersection with the drive electrode, The electrode regions divided into a plurality are preferably electrically connected to the main electrode.
 これによれば、副電極は、前記駆動電極との交差部分において、前記駆動電極の幅に略等しい長さを持つ複数個の電極領域に分割されており、前記複数個に分割された電極領域がそれぞれ主電極に電気的に接続されているので、駆動電極とのクロス容量を低減できることとなり、駆動消費電力が少なくなるという効果を奏することになる。また、クロス容量を低減できることから、充電時間を短くできるため、充電に必要な時定数が下がることになり、その結果、駆動周波数を上げられるという効果も奏することになる。 According to this, the sub electrode is divided into a plurality of electrode regions having a length substantially equal to the width of the drive electrode at the intersection with the drive electrode, and the divided electrode region is divided into the plurality of electrode regions. Are electrically connected to the main electrode, so that the cross capacitance with the drive electrode can be reduced, and the drive power consumption can be reduced. Further, since the cross capacitance can be reduced, the charging time can be shortened, so that the time constant required for charging is lowered, and as a result, the driving frequency can be increased.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記駆動電極は、前記検出電極と重なる部分において一部が取り除かれていることが好ましい。 In the touch panel according to one embodiment of the present invention, it is preferable that a part of the drive electrode is removed in a portion overlapping with the detection electrode.
 これによれば、駆動電極と検出電極との重なり部分(クロス部分)を、更に減らすことができるので、駆動に際しての充電時間を更に短くすることが可能となり、より高周波数での駆動が可能になる。 According to this, since the overlapping part (cross part) of the drive electrode and the detection electrode can be further reduced, it becomes possible to further shorten the charging time during driving, and it is possible to drive at a higher frequency. Become.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記駆動電極は、前記検出電極と重なる部分において駆動電極の長さ方向の一辺部分のみで接続され、櫛歯状に形成されていることが好ましい。 In the touch panel according to one embodiment of the present invention, the drive electrode may be connected to only one side portion in the length direction of the drive electrode in a portion overlapping the detection electrode, and may be formed in a comb shape. preferable.
 これによれば、駆動電極と検出電極の重なりを最小限にすることができ、駆動に際しての充電時間の最短化が容易となる。 According to this, it is possible to minimize the overlap between the drive electrode and the detection electrode, and it is easy to minimize the charging time during driving.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記駆動電極は、前記検出電極と重なる部分において前記駆動電極の一部が取り除かれて狭くなった部分において高導電率の導体よりなる金属配線を有することが好ましい。 Further, in the touch panel according to one aspect of the present invention, the drive electrode further includes a metal wiring made of a high conductivity conductor in a portion where the drive electrode is partially removed and narrowed in a portion overlapping the detection electrode. It is preferable to have.
 これによれば、駆動電極において狭小部分ができたことによる抵抗値の増大を効果的に防止できることとなり、駆動信号の鈍りを回避することが可能となり、タッチパネルとしての性能の劣化を防止できる。即ち、抵抗値を下げることが可能となるため、その結果として、充電に必要な時定数を更に下げることができるということになる。 According to this, it is possible to effectively prevent an increase in the resistance value due to the narrowed portion in the drive electrode, it is possible to avoid a dull drive signal, and it is possible to prevent deterioration in performance as a touch panel. That is, the resistance value can be lowered, and as a result, the time constant required for charging can be further lowered.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記駆動電極と同一の平面であって、前記駆動電極が取り除かれた箇所に、前記駆動電極から絶縁されたシールド用導電膜が設けられていることが好ましい。 In the touch panel according to one embodiment of the present invention, a shield conductive film is provided on the same plane as the drive electrode, where the drive electrode is removed, and is insulated from the drive electrode. Preferably it is.
 これによれば、タッチパネルに入ってくるノイズ成分を最小とすることができ、タッチパネルとしての動作を安定にすることができる。 According to this, the noise component entering the touch panel can be minimized, and the operation as the touch panel can be stabilized.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記検出電極における主電極と副電極を接続するための接続電極を、前記櫛歯状に形成された駆動電極の櫛歯接続配線とは、反対の側に設けていることが好ましい。 Further, in the touch panel according to one aspect of the present invention, the connection electrode for connecting the main electrode and the sub electrode in the detection electrode, and the comb connection wiring of the drive electrode formed in the comb shape, It is preferable to provide on the opposite side.
 これによれば、駆動電極と検出電極の交差に基づくクロス容量を更に減らすことができ、より高周波での駆動が可能となる。これは、タッチパネルのタッチ検出の回数を増やすことを意味しており、タッチパネルの検出性能を高めることができる。 According to this, the cross capacitance based on the intersection of the drive electrode and the detection electrode can be further reduced, and the drive at a higher frequency becomes possible. This means that the number of touch detections of the touch panel is increased, and the detection performance of the touch panel can be improved.
 また、本発明の一態様に係るタッチパネルでは、さらに、検出電極及び駆動電極から絶縁して、アース用導電膜を設けていることを特徴としている。 The touch panel according to one embodiment of the present invention is further characterized in that a ground conductive film is provided so as to be insulated from the detection electrode and the drive electrode.
 これによれば、検出電極と駆動電極のクロス容量を更に低減できると共に、ノイズ発生源からのノイズを効果的にシールドすることもできる。 According to this, the cross capacitance between the detection electrode and the drive electrode can be further reduced, and noise from the noise generation source can be effectively shielded.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記検出電極及び前記駆動電極は何れも透明導電膜であり、前記検出電極と前記駆動電極を絶縁する絶縁層、前記検出電極と前記駆動電極を形成する基板は何れも透明絶縁体により構成されていることが好ましい。 In the touch panel according to one embodiment of the present invention, the detection electrode and the drive electrode are both transparent conductive films, an insulating layer that insulates the detection electrode and the drive electrode, the detection electrode, and the drive electrode. It is preferable that any of the substrates that form the layer is made of a transparent insulator.
 これによれば、液晶表示パネル等の表示装置上にタッチパネルを載せて、タッチパネルを表示装置の表示画像と協働して用いることができ、タッチパネルの利便性をより高めることができる。 According to this, a touch panel can be mounted on a display device such as a liquid crystal display panel, and the touch panel can be used in cooperation with a display image of the display device, and the convenience of the touch panel can be further enhanced.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記シールド用導電膜は透明であることが好ましい。 In the touch panel according to one embodiment of the present invention, it is preferable that the shielding conductive film is transparent.
 これによれば、シールド用導電膜を設けてノイズ耐性を高めたタッチパネルを、液晶表示装置等と共に用いることが可能であり、タッチパネルの利便性を高めることができる。 According to this, it is possible to use a touch panel provided with a conductive film for shielding to enhance noise resistance together with a liquid crystal display device or the like, and the convenience of the touch panel can be enhanced.
 また、本発明の一態様に係るタッチパネルでは、さらに、前記アース用導電膜は透明であることを特徴としている。 The touch panel according to one embodiment of the present invention is further characterized in that the ground conductive film is transparent.
 これによれば、アース用導電膜を設けたタッチパネルを、液晶表示装置等の上に設置して液晶表示装置等に表示される画像を確認しつつタッチパネルとしての動作を行わせることが可能となり、タッチパネルの利便性を高めることができる。 According to this, a touch panel provided with a conductive film for grounding can be installed on a liquid crystal display device or the like, and an operation as a touch panel can be performed while checking an image displayed on the liquid crystal display device or the like. The convenience of the touch panel can be improved.
 また、本願の一態様に係るタッチパネルでは、隣接する2つの検出電極の副電極が互いに近接して対になって配置され、対になった副電極の合計の幅を、前記主電極の幅よりも小さくしたことが好ましい。これによれば、検出電極における検出出力の直線性を改善できる。 Further, in the touch panel according to one aspect of the present application, the sub-electrodes of the two adjacent detection electrodes are arranged in close proximity to each other, and the total width of the paired sub-electrodes is greater than the width of the main electrode. It is preferable to make it smaller. According to this, the linearity of the detection output at the detection electrode can be improved.
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 The specific embodiments or examples made in the detailed description section of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted in a narrow sense. It should be understood that various modifications may be made within the spirit of the invention and the scope of the following claims.
 本発明は、指先等のタッチによって情報を入力することができるタッチパネルにおいてその消費電力を増加させることなく検出精度を改善することができるものであり、マン・マシンインターフェースにおける情報入力装置として各種携帯機器、パソコン等に適用することができ、産業上の利用可能性は高い。 INDUSTRIAL APPLICABILITY The present invention can improve detection accuracy without increasing power consumption in a touch panel that can input information by touching a fingertip or the like. Various portable devices are used as information input devices in man-machine interfaces. It can be applied to personal computers and the like, and its industrial applicability is high.
 1、2、3 検出電極
 4 駆動電極
 5 検出ライン
 6 絶縁層
 7 基板
 8 シールド用導電膜
 9 アース用導電膜
 10 主電極
 11、12、13 副電極
 19 接続電極
 20 主電極
 21、22、23、24、25、26 副電極
 29 接続電極
 30 主電極
 31、32、33 副電極
 39 接続電極
 40 櫛歯状に形成された駆動電極
 41 櫛歯接続配線
 42 金属配線
 101、102、103、104 副電極
 201、202、203、204 副電極
1, 2, 3 Detection electrode 4 Drive electrode 5 Detection line 6 Insulating layer 7 Substrate 8 Shielding conductive film 9 Grounding conductive film 10 Main electrode 11, 12, 13 Sub electrode 19 Connection electrode 20 Main electrode 21, 22, 23, 24, 25, 26 Sub-electrode 29 Connecting electrode 30 Main electrode 31, 32, 33 Sub-electrode 39 Connecting electrode 40 Comb-shaped drive electrode 41 Comb-connecting wiring 42 Metal wiring 101, 102, 103, 104 Sub-electrode 201, 202, 203, 204 Sub-electrode

Claims (12)

  1.  互いに平行に設けられた複数のストリップ状導電膜よりなる駆動電極と、
     前記駆動電極とは絶縁体を介して絶縁され、互いに平行に設けられた複数のストリップ状導電膜よりなる検出電極とを有するタッチパネルであって、
     前記駆動電極と前記検出電極は、互いに直交するマトリックス状に配置されており、
     前記検出電極は、前記駆動電極に直交して延びる主電極と、前記主電極に対して一定の間隔を隔てて設けられた複数の副電極とにより構成されており、
     前記複数の副電極は、主電極から離れるに従って電極幅が細くなるものであって、且つ、隣接する2つの検出電極の副電極が互いに近接して対になって配置されており、
     前記主電極と前記副電極とは、少なくとも1箇所で電気的に接続されていることを特徴とするタッチパネル。
    Drive electrodes made of a plurality of strip-like conductive films provided in parallel to each other;
    The drive electrode is a touch panel having a detection electrode made of a plurality of strip-like conductive films insulated from each other through an insulator and provided in parallel to each other,
    The drive electrode and the detection electrode are arranged in a matrix shape orthogonal to each other,
    The detection electrode is composed of a main electrode extending orthogonally to the drive electrode and a plurality of sub-electrodes provided at a constant interval with respect to the main electrode,
    The plurality of sub-electrodes are arranged such that the electrode width becomes narrower as they move away from the main electrode, and the sub-electrodes of two adjacent detection electrodes are arranged close to each other in pairs,
    The touch panel, wherein the main electrode and the sub electrode are electrically connected at least at one place.
  2.  前記副電極は、前記駆動電極との交差部分において前記駆動電極の幅に略等しい長さを持つ複数個の電極領域に分割されており、前記複数個に分割された電極領域がそれぞれ主電極に電気的に接続されていることを特徴とする請求項1に記載のタッチパネル。 The sub-electrode is divided into a plurality of electrode regions having a length substantially equal to the width of the drive electrode at an intersection with the drive electrode, and each of the divided electrode regions serves as a main electrode. The touch panel according to claim 1, wherein the touch panel is electrically connected.
  3.  前記駆動電極は、前記検出電極と重なる部分において一部が取り除かれていることを特徴とする請求項1又は2に記載のタッチパネル。 The touch panel according to claim 1 or 2, wherein a part of the drive electrode is removed in a portion overlapping the detection electrode.
  4.  前記駆動電極は、前記検出電極と重なる部分において駆動電極の長さ方向の一辺部分のみで接続され、櫛歯状に形成されていることを特徴とする請求項3に記載のタッチパネル。 4. The touch panel according to claim 3, wherein the drive electrode is connected to only one side portion in the length direction of the drive electrode in a portion overlapping with the detection electrode, and is formed in a comb shape.
  5.  前記駆動電極は、前記検出電極と重なる部分において前記駆動電極の一部が取り除かれて狭くなった狭小部分において高導電率の導体よりなる金属配線を有することを特徴とする請求項3又は4に記載のタッチパネル。 5. The drive electrode according to claim 3, wherein the drive electrode has a metal wiring made of a highly conductive conductor in a narrow portion narrowed by removing a part of the drive electrode in a portion overlapping the detection electrode. The touch panel described.
  6.  前記駆動電極と同一の平面であって、前記駆動電極が取り除かれた箇所に、前記駆動電極から絶縁されたシールド用導電膜が設けられていることを特徴とする請求項3~5のいずれか一項に記載のタッチパネル。 6. The shield conductive film insulated from the drive electrode is provided at a location on the same plane as the drive electrode from which the drive electrode is removed. The touch panel according to one item.
  7.  前記検出電極における主電極と副電極を接続するための接続電極を、前記櫛歯状に形成された駆動電極の櫛歯接続配線とは、反対の側に設けていることを特徴とする請求項4に記載のタッチパネル。 The connection electrode for connecting the main electrode and the sub electrode in the detection electrode is provided on a side opposite to the comb connection wiring of the drive electrode formed in the comb shape. 4. The touch panel according to 4.
  8.  検出電極及び駆動電極から絶縁して、アース用導電膜を設けていることを特徴とする請求項2~7のいずれか一項に記載のタッチパネル。 The touch panel according to any one of claims 2 to 7, further comprising an earth conductive film insulated from the detection electrode and the drive electrode.
  9.  前記検出電極及び前記駆動電極は何れも透明導電膜であり、前記検出電極と前記駆動電極を絶縁する絶縁層、前記検出電極と前記駆動電極を形成する基板は何れも透明絶縁体により構成されていることを特徴とした請求項1~5、7のいずれか一項に記載のタッチパネル。 The detection electrode and the drive electrode are both transparent conductive films, the insulating layer that insulates the detection electrode and the drive electrode, and the substrate that forms the detection electrode and the drive electrode are both made of a transparent insulator. The touch panel according to any one of claims 1 to 5, wherein the touch panel is provided.
  10.  前記シールド用導電膜は透明であることを特徴とした請求項6に記載のタッチパネル。 The touch panel according to claim 6, wherein the conductive film for shielding is transparent.
  11.  前記アース用導電膜は透明であることを特徴とした請求項8に記載のタッチパネル。 9. The touch panel according to claim 8, wherein the ground conductive film is transparent.
  12.  隣接する2つの検出電極の副電極が互いに近接して対になって配置され、対になった副電極の合計の幅を、前記主電極の幅よりも小さくしたことを特徴とした請求項1~11のいずれか一項に記載のタッチパネル。 2. The sub-electrodes of two adjacent detection electrodes are arranged close to each other in pairs, and the total width of the paired sub-electrodes is made smaller than the width of the main electrode. The touch panel according to any one of items 11 to 11.
PCT/JP2012/064846 2011-06-15 2012-06-08 Touch panel WO2012173068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011133651 2011-06-15
JP2011-133651 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012173068A1 true WO2012173068A1 (en) 2012-12-20

Family

ID=47357057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064846 WO2012173068A1 (en) 2011-06-15 2012-06-08 Touch panel

Country Status (1)

Country Link
WO (1) WO2012173068A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149705A (en) * 2013-02-01 2014-08-21 Toppan Printing Co Ltd Touch sensor, touch panel and display device
JP2015122067A (en) * 2013-12-11 2015-07-02 新益先創科技股▲分▼有限公司 Control-point sensing panel and design method of control-point sensing panel
JP2015152995A (en) * 2014-02-12 2015-08-24 凸版印刷株式会社 touch panel device
WO2015129614A1 (en) * 2014-02-26 2015-09-03 日本写真印刷株式会社 Touch panel and method for detecting pressed position on touch panel
US9430103B2 (en) 2013-05-08 2016-08-30 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel
US10310683B2 (en) 2013-05-08 2019-06-04 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039515A (en) * 2008-07-31 2010-02-18 Dmc:Kk Touch panel
JP2012128618A (en) * 2010-12-15 2012-07-05 Smk Corp Electrostatic capacitance type touch panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039515A (en) * 2008-07-31 2010-02-18 Dmc:Kk Touch panel
JP2012128618A (en) * 2010-12-15 2012-07-05 Smk Corp Electrostatic capacitance type touch panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149705A (en) * 2013-02-01 2014-08-21 Toppan Printing Co Ltd Touch sensor, touch panel and display device
US9430103B2 (en) 2013-05-08 2016-08-30 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel
US10310683B2 (en) 2013-05-08 2019-06-04 Touchplus Information Corp. Method and device for sensing control point on capacitive-type panel
JP2015122067A (en) * 2013-12-11 2015-07-02 新益先創科技股▲分▼有限公司 Control-point sensing panel and design method of control-point sensing panel
JP2015152995A (en) * 2014-02-12 2015-08-24 凸版印刷株式会社 touch panel device
WO2015129614A1 (en) * 2014-02-26 2015-09-03 日本写真印刷株式会社 Touch panel and method for detecting pressed position on touch panel
JP2015179486A (en) * 2014-02-26 2015-10-08 日本写真印刷株式会社 Touch panel and pressure location detection method of touch panel
US9921705B2 (en) 2014-02-26 2018-03-20 Nissha Co., Ltd. Resistive film type touch panel having electrode grouping and routing wires arranged to miniaturize the touch panel, and a method of detecting a pressing position on the touch panel

Similar Documents

Publication Publication Date Title
US9898132B2 (en) Electrode sheet and touch input device
JP5531768B2 (en) Information input device
KR101031120B1 (en) Electrical capacitance input device, display apparatus with input function and electronic apparatus
US10394404B2 (en) Touch display panel
KR101410584B1 (en) Touch panel and a manufacturing method thereof
US8681120B2 (en) Input apparatus and display apparatus
KR101452042B1 (en) Touch screen panel and touch screen apparatus
WO2012173068A1 (en) Touch panel
JP2009169720A (en) Touch sensor
WO2013080638A1 (en) Touch panel
JP5472858B2 (en) Touch switch
EP2690534B1 (en) Touch screen panel and fabrication method thereof
KR20160004242A (en) Touch input device and touch detecting method
EP2461240B1 (en) Detecting sensor, indicator position detecting device, and method for manufacturing detecting sensor
JP2012221098A (en) Coordinate detection device and display device
KR20100074820A (en) Touch screen panel and method of manufacturing the same
JP2011128896A (en) Electrostatic capacitance touch panel and method of manufacturing the same
TW201807549A (en) Touch display panel
JP6012532B2 (en) Touch screen and touch panel provided with the same
US9285935B2 (en) Touch screen device
US20150212620A1 (en) Touch Panel And Touch Screen Having The Same
WO2012067074A1 (en) Touch panel and touch panel drive method
JP6612123B2 (en) Capacitive input device
JP2013156949A (en) Touch panel
US10691278B1 (en) Reduced line count touch panel for mutual capacitance measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP