JP6612100B2 - Inspection equipment - Google Patents

Inspection equipment Download PDF

Info

Publication number
JP6612100B2
JP6612100B2 JP2015193817A JP2015193817A JP6612100B2 JP 6612100 B2 JP6612100 B2 JP 6612100B2 JP 2015193817 A JP2015193817 A JP 2015193817A JP 2015193817 A JP2015193817 A JP 2015193817A JP 6612100 B2 JP6612100 B2 JP 6612100B2
Authority
JP
Japan
Prior art keywords
light
light source
line sensor
wavelength
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015193817A
Other languages
Japanese (ja)
Other versions
JP2017067622A (en
Inventor
正 大橋
貴志 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2015193817A priority Critical patent/JP6612100B2/en
Publication of JP2017067622A publication Critical patent/JP2017067622A/en
Application granted granted Critical
Publication of JP6612100B2 publication Critical patent/JP6612100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、透光性を有する包装材に内容物が包まれた被検査物のシール領域における異常(例えば、内容物、内容物のかす、異物の噛み込み、シール不良(しわ発生による接着不良や破損)など)を検査する物品検査装置に関する。   The present invention relates to an abnormality in the seal area of an object to be inspected in which the contents are wrapped in a translucent packaging material (for example, the contents, the contents are debris, the foreign matter is bitten, the seal is poor (adhesion failure due to wrinkles) And the like).

例えば袋状の包装材に内容物を収容した製品の場合、包装材への内容物の収容後に開口部分にシールが施される。その際、包装材のシール領域に内容物、内容物のかす、異物が噛み込まれることがあり、このシール不良の製品は不良品として排除する必要がある。   For example, in the case of a product in which contents are stored in a bag-shaped packaging material, the opening portion is sealed after the contents are stored in the packaging material. At this time, the contents, the contents of the contents, or foreign matter may be caught in the seal area of the packaging material, and this defective seal product needs to be excluded as a defective product.

特に、透光性を有する包装材に内容物が包まれてシールが施された製品を被検査物とし、この被検査物のシール不良の有無を光を用いて検査するシール部不良検出装置としては、例えば下記特許文献1に開示されるものが知られている。   In particular, as a seal part defect detection device for inspecting the presence or absence of a seal failure of a test object by using a product in which the contents are wrapped in a translucent packaging material and sealed. For example, what is disclosed in Patent Document 1 below is known.

特許文献1に開示されるシール部不良検出装置は、投光手段と複数の光強度検出手段を設け、2個の光強度検出手段からの出力に基づく差分画像を用いたものである。   The seal portion defect detection device disclosed in Patent Document 1 includes a light projecting unit and a plurality of light intensity detection units, and uses a difference image based on outputs from the two light intensity detection units.

さらに説明すると、特許文献1に開示されるシール部不良検出装置51は、図5に示すように、投光手段52、複数の光強度検出手段53(53a,53b)、基準値設定手段54、差検出手段55、比較判定手段56を備えている。投光手段52は、包装物57のシール部58に光を投射している。複数の光強度検出手段53(53a,53b)は、包装物57のシール部58を間にして投光手段52と対向した位置に設けられる。この光強度検出手段53(53a,53b)は、投光手段52からの光の投射により包装物57のシール部58を透過した光を検出している。基準値設定手段54は、包装物57のシール部58における内容物の噛み込みの有無を判別するための基準値を予め設定している。差検出手段55は、複数の光強度検出手段53a,53bのうちの2個からの出力の差を算出している。比較判定手段56は、積分回路56aとコンパレータ56bを備えて構成され、差検出手段55からの出力を積分回路56aにより積分し、この積分出力と基準値設定手段54からの基準値とを比較し、積分出力が基準値設定手段54からの基準値よりも大きければ、包装物57のシール部58における内容物の噛み込みがあると判定している。 More specifically, as shown in FIG. 5, the seal portion defect detection device 51 disclosed in Patent Document 1 includes a light projecting means 52, a plurality of light intensity detecting means 53 (53a, 53b), a reference value setting means 54, Difference detection means 55 and comparison determination means 56 are provided. The light projecting means 52 projects light onto the seal portion 58 of the package 57. The plurality of light intensity detecting means 53 (53a, 53b) are provided at positions facing the light projecting means 52 with the seal portion 58 of the package 57 therebetween. The light intensity detecting means 53 (53a, 53b) detects light transmitted through the seal portion 58 of the package 57 by the projection of light from the light projecting means 52. The reference value setting means 54 sets in advance a reference value for determining whether or not the contents are caught in the seal portion 58 of the package 57. The difference detection means 55 calculates the difference in output from two of the plurality of light intensity detection means 53a, 53b. The comparison determination unit 56 includes an integration circuit 56a and a comparator 56b, integrates the output from the difference detection unit 55 by the integration circuit 56a, and compares this integration output with the reference value from the reference value setting unit 54. If the integrated output is larger than the reference value from the reference value setting means 54, it is determined that the contents are caught in the seal portion 58 of the package 57.

このように、上述した特許文献1に開示されるシール部不良検出装置51では、差検出手段55において複数の光強度検出手段53a,53bのうちの2個からの出力の差をとり、比較判定手段56が基準値設定手段54からの基準値と差検出手段55からの出力とを比較し、その比較結果に基づいて包装物57のシール部58における内容物の噛み込みの有無を判定している。   As described above, in the seal portion defect detection device 51 disclosed in Patent Document 1 described above, the difference detection unit 55 calculates the difference between the outputs from two of the plurality of light intensity detection units 53a and 53b, and performs comparison and determination. The means 56 compares the reference value from the reference value setting means 54 with the output from the difference detection means 55, and determines whether or not the contents are caught in the seal portion 58 of the package 57 based on the comparison result. Yes.

特開平7−146251号公報JP 7-146251 A

しかしながら、上述した特許文献1に開示されるシール部不良検出装置51は、包装物57の搬送方向に平行な方向の特定の高さ(位置)において、複数の光強度検出手段53a,53bのうちの2個からの出力の差と基準値との比較に基づいてシール部58における内容物の噛み込みの有無を判定する構成なので、シール部58の一部のみの検査であり、シール部58のシール領域を特定してシール領域全体における内容物の噛み込みの有無を検査することができなかった。   However, the seal portion defect detection device 51 disclosed in Patent Document 1 described above has a plurality of light intensity detection units 53a and 53b at a specific height (position) in a direction parallel to the conveyance direction of the package 57. In this configuration, the presence / absence of biting of the contents in the seal portion 58 is determined based on a comparison between the difference between the two outputs and the reference value. It was not possible to inspect the presence of biting of the contents in the entire seal area by specifying the seal area.

そこで、本件発明者等は、搬送される被検査物Wの上述したシール部のシール領域の特定とシール領域全体における内容物の噛み込みの有無を検査するため、光源とラインセンサによるイメージング技術を採用し、被検査物W(被検査物Wが搬送される搬送面)に対し発光面積が異なる面光源と線光源の2種類の光源を用いて噛み込み検査の実験を試みた。この実験によって得られた透過画像の一例を図6(a),(b)に示す。なお、面光源は面状の光を被検査物Wに向かって照射し、線光源は面光源よりも発光面積が小さい線状の光を被検査物Wに向かって照射するものである。図6(a)は光源を面光源にしたときの透過画像であり、図6(b)は光源を線光線にしたときの透過画像である。光源を面光源にした場合は、図6(a)に示すように、被検査物Wの内容物Wbやシール部Wcのシール領域に噛み込んだ異物Wdが鮮明に写る反面、包装材Waのシール部Wcの境界Weが判りにくいという特徴を示すことが判った。これに対し、光源を線光源にした場合は、図6(b)に示すように、被検査物Wのシール部Wcが鮮明に写り、シール領域の境界Weが明確に区別できる反面、シール部Wcのシール領域に噛み込んだ異物Wdとライン状のノイズXとの区別が付きにくいという特徴を示すことが判った。   Therefore, the inventors of the present invention use an imaging technique using a light source and a line sensor in order to specify the seal area of the above-described seal portion of the object to be conveyed W and to check whether or not the contents are bitten in the entire seal area. The test of bite inspection was attempted using two types of light sources, a surface light source and a line light source, having different light emission areas with respect to the inspection object W (conveying surface on which the inspection object W is conveyed). An example of the transmission image obtained by this experiment is shown in FIGS. The surface light source irradiates the inspection object W with planar light, and the line light source irradiates the inspection object W with linear light having a light emission area smaller than that of the surface light source. FIG. 6A is a transmission image when the light source is a surface light source, and FIG. 6B is a transmission image when the light source is a linear ray. When the light source is a surface light source, as shown in FIG. 6 (a), the contents Wb of the object W to be inspected and the foreign matter Wd caught in the seal area of the seal portion Wc are clearly visible, but the packaging material Wa It has been found that the boundary We of the seal portion Wc is difficult to understand. On the other hand, when the light source is a line light source, as shown in FIG. 6B, the seal portion Wc of the inspection object W is clearly visible and the boundary We of the seal region can be clearly distinguished, whereas the seal portion It was found that the foreign matter Wd caught in the Wc seal region and the line-shaped noise X are difficult to distinguish.

ところで、搬送ラインにおいて、搬送方向と垂直をなす方向にシール部が施された被検査物を搬送させながら検査する場合、上述したイメージング技術を採用することが可能である。その際、一般的には、被検査物に拡散した面状の光を照射し、シール性を高めるためのシール部の凹凸の影響を減らして異物検出の精度をあげることになる。ところが、上述した面光源の特徴を示す実験結果からも判るように、シール部の境界が判りにくくシール領域が特定できなくなる。一方、被検査物のシール領域が特定できるように線光源を用いると、上述した線光源の特徴を示す実験結果からも判るように、今度はシール領域における異常の検出精度が低下するという問題が生じる。   By the way, the above-described imaging technique can be employed when inspecting a transport line while transporting an object to be inspected with a seal portion in a direction perpendicular to the transport direction. In that case, generally, the surface light diffused to the object to be inspected is irradiated to reduce the influence of the unevenness of the seal portion for improving the sealing property, thereby improving the accuracy of foreign object detection. However, as can be seen from the experimental results showing the characteristics of the surface light source described above, the boundary of the seal portion is difficult to understand and the seal region cannot be specified. On the other hand, when a line light source is used so that the seal area of the object to be inspected can be identified, the detection accuracy of the abnormality in the seal area is lowered this time, as can be seen from the experimental results showing the characteristics of the line light source. Arise.

このため、被検査物のシール領域全体を精度良く検査するにあたって、面光源と線光源の両方を使用し、上述した両者の特徴の利点を活かすことも考えられるが、面光源と線光源のそれぞれからの光を受光するためのラインセンサも複数必要になり、機長(装置サイズ)やコスト面において問題があった。   For this reason, in inspecting the entire seal area of the inspection object with high accuracy, it is possible to use both the surface light source and the line light source and take advantage of the features of both of the above, but each of the surface light source and the line light source A plurality of line sensors for receiving the light from the light source are also required, and there are problems in terms of the captain (device size) and cost.

そこで、本発明は上記問題点に鑑みてなされたものであって、機長やコスト面の問題を解消し、被検査物のシール領域全体を高精度に検査することができる物品検査装置を提供することを目的としている。   Therefore, the present invention has been made in view of the above problems, and provides an article inspection apparatus that can solve the problem of the length and cost and can inspect the entire seal area of the inspection object with high accuracy. The purpose is that.

上記目的を達成するため、本発明の請求項1に記載された物品検査装置は、包装材Waに内容物Wbが包まれた被検査物Wを搬送させて該被検査物に光を照射し、その透過光を検出して得られる透過画像に基づいて前記包装材のシール領域内の検査を行う物品検査装置1であって、
前記透過光を検出する複数の素子が前記被検査物の搬送方向Aと交差する方向に配列されるラインセンサ4と、
前記ラインセンサの各素子を横切る面であって前記被検査物が搬送される搬送面2cに対して垂直方向の面を基準面Lとし、該基準面を中心とした複数の角度からの第1の光を照射する面光源として機能するとともに、少なくとも前記第1の光の波長λ2と異なる波長λ1を含む、前記基準面に沿った方向からの第2の光を照射する線光源として機能する光源部3と、
前記光源部が照射するそれぞれの波長の光に応じて前記ラインセンサから得られる検出信号に基づいて前記シール領域を特定し、該シール領域内の異常の有無を判定する処理部7と、を備えたことを特徴とする。
In order to achieve the above object, an article inspection apparatus according to claim 1 of the present invention transports an inspection object W in which a content Wb is wrapped in a packaging material Wa and irradiates the inspection object with light. , An article inspection apparatus 1 that performs an inspection in a sealing region of the packaging material based on a transmission image obtained by detecting the transmitted light,
A line sensor 4 in which a plurality of elements for detecting the transmitted light are arranged in a direction intersecting a transport direction A of the inspection object;
A surface that traverses each element of the line sensor and that is perpendicular to the transport surface 2c on which the object to be inspected is transported is defined as a reference surface L, and first from a plurality of angles centered on the reference surface. and it functions as a surface light source for irradiating light, a light source that serves as a line light source for irradiating at least said containing wavelengths λ1 different from the wavelength λ2 of the first light, a second light from a direction along the reference plane Part 3
A processing unit 7 that specifies the seal region based on a detection signal obtained from the line sensor according to light of each wavelength irradiated by the light source unit, and determines whether there is an abnormality in the seal region. It is characterized by that.

請求項2に記載された物品検査装置は、請求項1の物品検査装置において、
前記処理部7は、前記ラインセンサ4が前記基準面Lの光の波長λ1の光を受光したときの検出信号から前記シール領域を特定することを特徴とする。
The article inspection apparatus according to claim 2 is the article inspection apparatus according to claim 1,
The processing unit 7 is characterized in that the seal region is specified from a detection signal when the line sensor 4 receives light having a wavelength λ1 of light of the reference plane L.

請求項3に記載された物品検査装置は、請求項1又は2の物品検査装置において、
前記ラインセンサ4は、前記光源部3が照射する複数の光の波長λ1,λ2毎に対応した感度を有する複数のカメラ11,12からなることを特徴とする。
The article inspection apparatus according to claim 3 is the article inspection apparatus according to claim 1 or 2,
The line sensor 4 includes a plurality of cameras 11 and 12 having sensitivities corresponding to the wavelengths λ1 and λ2 of the plurality of lights emitted from the light source unit 3, respectively.

請求項4に記載された物品検査装置は、請求項1又は2の物品検査装置において、
前記ラインセンサ4は、分光機能を有する単一のカメラ13からなることを特徴とする。
The article inspection apparatus according to claim 4 is the article inspection apparatus according to claim 1 or 2,
The line sensor 4 includes a single camera 13 having a spectral function.

請求項5に記載された物品検査装置は、請求項1又は2の物品検査装置において、
前記ラインセンサ4は、前記光源部3が照射する複数の光の波長に感度を有する複数のカメラ14,15と、該複数のカメラの何れかの前面に設けられて前記基準面Lの光の波長λ1に対応させて前記基準面の光を通過させるフィルタ16とからなることを特徴とする。
The article inspection apparatus according to claim 5 is the article inspection apparatus according to claim 1 or 2,
The line sensor 4 is provided in front of any of the plurality of cameras 14 and 15 having sensitivity to the wavelengths of the plurality of lights emitted from the light source unit 3 and the light of the reference plane L. And a filter 16 that allows the light on the reference surface to pass through in correspondence with the wavelength λ1.

本発明に係る物品検査装置によれば、基準面に沿った光と基準面を中心とした複数の角度からの光が光源部から照射され、その光源部から照射される光のうち、基準面に沿った光が被検査物のシール部のシール領域の凹凸により散乱して透過する光の量が減少することを利用し、基準面に沿った光だけに含まれる波長の光を検出してシール部のシール領域を特定する。また、光源部の発光領域全体から照射される光によってシール部のシール領域の凹凸の影響を低減させ、シール部のシール領域に異物があった場合のみ遮光され、ラインセンサの素子が受光する受光量が減ることを利用し、光源部の発光領域全体の光に含まれる光を検出してシール部のシール領域における異常を検出する。かかる構成により、線光源と面光源を別々に構成して2種類の光源部を用意する必要がなく、機長を短くして装置の大型化を回避するとともにコスト削減を図りつつ、被検査物のシール領域全体を精度良く検査することができる。   According to the article inspection apparatus according to the present invention, light along a reference surface and light from a plurality of angles centered on the reference surface are irradiated from the light source unit, and among the light irradiated from the light source unit, the reference surface The light along the surface is scattered by the unevenness of the seal area of the seal part of the inspection object, and the amount of light transmitted is reduced, so that light having a wavelength included only in the light along the reference plane is detected. The seal area of the seal portion is specified. In addition, the light emitted from the entire light emitting region of the light source unit reduces the influence of the unevenness of the seal region of the seal portion, and is received only when there is a foreign object in the seal region of the seal portion, and the light received by the element of the line sensor Using the decrease in the amount, the light in the entire light emitting region of the light source unit is detected to detect an abnormality in the seal region of the seal unit. With such a configuration, it is not necessary to prepare a line light source and a surface light source separately to prepare two types of light source sections, shorten the length of the apparatus, avoid an increase in the size of the apparatus, and reduce the cost. The entire seal area can be inspected with high accuracy.

本発明に係る物品検査装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the article inspection apparatus which concerns on this invention. 本発明に係る物品検査装置の光源部に2波長λ1,λ2を用いて被検査物の検査を行う場合の概略説明図である。It is a schematic explanatory drawing in the case of inspecting an inspected object using two wavelengths λ1 and λ2 in the light source part of the article inspection apparatus according to the present invention. (a)本発明に係る物品検査装置におけるラインセンサの一例であって、中心波長λ1の波長の光に感度を有するカメラと中心波長λ2の波長の光に感度を有するカメラとをラインセンサとして用いた場合の概略説明図である。 (b)(a)における2つのカメラの光の強度を示す図である。(A) An example of a line sensor in an article inspection apparatus according to the present invention, in which a camera having sensitivity to light having a central wavelength λ1 and a camera having sensitivity to light having a central wavelength λ2 are used as line sensors. FIG. (B) It is a figure which shows the intensity | strength of the light of two cameras in (a). (a)本発明に係る物品検査装置におけるラインセンサの他の例であって、分光機能付きラインセンサをラインセンサとして用いた場合の概略説明図である。 (b)本発明に係る物品検査装置におけるラインセンサの他の例であって、中心波長λ1,λ2の波長の光に感度を有する2つのカメラのうちの一方のカメラに中心波長λ1の波長の光のみを通過させるフィルタを設けたラインセンサを用いた場合の概略説明図である。(A) It is another example of the line sensor in the article inspection apparatus according to the present invention, and is a schematic explanatory diagram when a line sensor with a spectral function is used as a line sensor. (B) Another example of the line sensor in the article inspection apparatus according to the present invention, in which one of the two cameras having sensitivity to the light having the center wavelengths λ1 and λ2 has the wavelength of the center wavelength λ1. It is a schematic explanatory drawing at the time of using the line sensor provided with the filter which lets only light pass. 従来技術として特許文献1に開示されるシール部不良検出装置の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the seal | sticker part defect detection apparatus disclosed by patent document 1 as a prior art. (a)光源部として線光源を用いたときの撮影画像の一例を示す図である。 (b)光源部として面光源を用いたときの撮影画像の一例を示す図である。(A) It is a figure which shows an example of the picked-up image when a linear light source is used as a light source part. (B) It is a figure which shows an example of the picked-up image when a surface light source is used as a light source part.

本発明に係る物品検査装置は、搬送ラインの一部や包装装置に組み込まれ、包装材に内容物が包まれた被検査物(物品)を搬送しながら光を照射し、その透過光を検出して得られる透過画像に基づいて包装材のシール領域内の異常(例えば、内容物、内容物のかす、異物の噛み込み、シール不良(しわ発生による接着不良や破損)など)の有無を検査するものである。   The article inspection apparatus according to the present invention is incorporated in a part of a conveyance line or a packaging apparatus, and irradiates light while conveying an object (article) whose contents are wrapped in a packaging material, and detects the transmitted light. Based on the transmission image obtained in this way, the presence or absence of abnormalities in the seal area of the packaging material (for example, contents, content debris, foreign matter biting, seal failure (adhesion failure or breakage due to wrinkles), etc.) is inspected. To do.

図1に示すように、物品検査装置1は、搬送部2、光源部3、ラインセンサ4、操作部5、駆動制御部6、処理部7、表示部8を備えて概略構成される。   As shown in FIG. 1, the article inspection apparatus 1 includes a transport unit 2, a light source unit 3, a line sensor 4, an operation unit 5, a drive control unit 6, a processing unit 7, and a display unit 8.

搬送部2は、例えばベルトコンベアで構成され、導入側コンベア2aと排出側コンベア2bとが所定の空隙Sをおいて搬送ライン上に配置される。搬送部2は、検査対象の被検査物Wを導入側コンベア2aにて導入搬送し、検査を終えた被検査物Wを排出側コンベア2bにて排出搬送する。   The conveyance unit 2 is configured by, for example, a belt conveyor, and the introduction-side conveyor 2a and the discharge-side conveyor 2b are arranged on the conveyance line with a predetermined gap S therebetween. The conveyance unit 2 introduces and conveys the inspection object W to be inspected by the introduction side conveyor 2a, and discharges and conveys the inspection object W after the inspection by the discharge side conveyor 2b.

検査対象の被検査物Wは、図2に示すように、光源部3から照射される光が透過可能な透光性を有する包装材Waに内容物Wbが収容される。被検査物Wは、包装材Waの対向する両端から所定幅だけ内側部分をシールし、包装材Waの両端からシール部分までの領域をシール部Wcのシール領域としている。被検査物Wは、図1に示すように、包装材Waの両側が搬送方向Aと垂直方向(紙面奥行き方向)にシールされた状態で搬送部2にて搬送される。   As shown in FIG. 2, the inspection object W to be inspected contains the contents Wb in a packaging material Wa having translucency through which light emitted from the light source unit 3 can pass. The inspected object W seals the inner part by a predetermined width from the opposite ends of the packaging material Wa, and the area from the both ends of the packaging material Wa to the sealing part is used as a sealing area of the seal portion Wc. As shown in FIG. 1, the inspection object W is transported by the transport unit 2 in a state where both sides of the packaging material Wa are sealed in the direction perpendicular to the transport direction A (the depth direction on the paper surface).

なお、検査対象の被検査物Wとしては、内容物Wbを収容した包装材Waがシール部Wcを介して複数連続して並ぶ、いわゆる連包品であってもよい。   Note that the inspection object W to be inspected may be a so-called continuous package in which a plurality of packaging materials Wa containing the contents Wb are continuously arranged via the seal portion Wc.

光源部3は、図1に示すように、空隙Sを介してラインセンサ4と対向して搬送部2の上方に設けられ、搬送部2にて搬送される被検査物Wに向けて所定波長の光(後述する中心波長λ1の光、中心波長λ2の光、中心波長λ1,λ2を含む光)を照射する。   As shown in FIG. 1, the light source unit 3 is provided above the transport unit 2 so as to face the line sensor 4 through the gap S, and has a predetermined wavelength toward the inspection object W transported by the transport unit 2. (Light having a center wavelength λ1, light having a center wavelength λ2, and light including center wavelengths λ1 and λ2 described later).

光源部3は、ラインセンサ4における長手(素子配列)方向の各素子(全ての素子)を横切る線を通る被検査物Wが搬送される搬送面2cに対して垂直方向の面を基準面L(図2の点線で示す面)にしたときに、基準面Lを中心として異なる角度(図1の搬送面2cに対する入射角度θ)の光と、この光の波長(本例ではλ2)と異なる波長(本例ではλ1)を含む基準面Lに沿った光を照射する。   The light source unit 3 has a surface in the direction perpendicular to the conveyance surface 2c on which the inspection object W passing through a line traversing each element (all elements) in the longitudinal (element arrangement) direction of the line sensor 4 is defined as a reference plane L. (The surface indicated by the dotted line in FIG. 2), the light at a different angle (incident angle θ with respect to the transport surface 2c in FIG. 1) around the reference plane L and the wavelength of this light (λ2 in this example) are different. Light is irradiated along the reference plane L including the wavelength (λ1 in this example).

光源部3は、図2に示すように、発光領域Eが領域E1と領域E2からなり、以下の照射パターン(照射パターン1又は照射パターン2)により光を被検査物Wに向けて照射する。   As shown in FIG. 2, the light source unit 3 irradiates light toward the inspection object W with the following irradiation pattern (irradiation pattern 1 or irradiation pattern 2).

照射パターン1の光源部3は、図3(a),(b)に示すように、発光領域Eの中央部分を中心波長λ1の光を発光する領域E1とし、この領域E1の両側を中心波長λ1の波長帯域と重ならない波長帯域の中心波長λ2の光を発光する領域E2としている。そして、領域E1のみからの中心波長λ1の光は、被検査物Wのシール部Wcのシール領域が特定可能な基準面Lを中心とする所定の入射角度範囲の線光源として機能する。また、発光領域E全体の領域E1,E2の両方からの中心波長λ1,λ2の光は、被検査物Wのシール部Wcのシール領域内の異常を判別するための所定の入射角度範囲の面光源として機能する。 As shown in FIGS. 3A and 3B, the light source unit 3 of the irradiation pattern 1 has a central portion of the light emitting region E as a region E1 that emits light having a central wavelength λ1, and both sides of the region E1 have a central wavelength. The region E2 emits light of the center wavelength λ2 in a wavelength band that does not overlap with the wavelength band of λ1. The light having the center wavelength λ1 from only the region E1 functions as a line light source having a predetermined incident angle range centered on the reference plane L that can identify the seal region of the seal portion Wc of the inspection object W. Further, the light having the center wavelengths λ1 and λ2 from both the regions E1 and E2 of the entire light emitting region E is a surface having a predetermined incident angle range for determining an abnormality in the seal region of the seal portion Wc of the inspection object W. Functions as a light source.

なお、上述した面光源と線光線は、被検査物Wに向かって照射される光の発光面積が異なり、線光源は面光源よりも発光面積が小さい線状の光を照射し、被検査物Wを透過した光がラインセンサ4の受光面4aに到達する。また、光源部3は、上述した面光源として機能する部分(領域E2の全体又は一部)を複数の線光源で構成してもよい。その際の線光源は、検査条件に応じて領域E2の範囲内の任意の位置に任意の数だけ設けることができる。さらに、光源部3における発光領域Eの搬送方向Aと直交する幅方向の長さは、少なくとも被検査物Wの検知領域以上あればよい。   Note that the surface light source and the line light described above have different light emission areas of light emitted toward the inspection object W, and the line light source emits linear light having a light emission area smaller than that of the surface light source. The light transmitted through W reaches the light receiving surface 4 a of the line sensor 4. Moreover, the light source part 3 may comprise the part (the whole or part of the area | region E2) which functions as a surface light source mentioned above with a some line light source. In that case, an arbitrary number of line light sources can be provided at arbitrary positions within the range of the region E2 according to the inspection conditions. Furthermore, the length in the width direction orthogonal to the transport direction A of the light emitting region E in the light source unit 3 may be at least equal to or greater than the detection region of the inspection object W.

また、光源部3は、発光領域Eにおける領域E1の出射口と領域E2の出射口にそれぞれ光学フィルタを設け、領域E1から中心波長λ1の光を出射し、領域E2から中心波長λ2の光を出射するように光学フィルタの通過波長を適宜選択して構成することもできる。   In addition, the light source unit 3 is provided with an optical filter at each of the emission port of the region E1 and the emission port of the region E2 in the light emission region E, emits light with the central wavelength λ1 from the region E1, and emits light with the central wavelength λ2 from the region E2. It can also be configured by appropriately selecting the pass wavelength of the optical filter so as to emit light.

一方、照射パターン2の光源部3は、発光領域Eの全体領域(領域E1と領域E2)から中心波長λ1,λ2を含む白色光を出射し、領域E2の出射口に中心波長λ2のみを通過させる光学フィルタを設け、発光領域Eの領域E1から中心波長λ1,λ2を含む白色光を照射し、領域E2から光学フィルタを介して中心波長λ2のみの光を照射する。   On the other hand, the light source unit 3 of the irradiation pattern 2 emits white light including the center wavelengths λ1 and λ2 from the entire region (region E1 and region E2) of the light emitting region E, and passes only the center wavelength λ2 to the exit of the region E2. An optical filter is provided to irradiate white light including the center wavelengths λ1 and λ2 from the region E1 of the light emitting region E, and irradiate light having only the center wavelength λ2 through the optical filter from the region E2.

なお、光源部3は、上述した照射パターン1又は照射パターン2の光を照射するにあたって、光学フィルタを用いず、発光領域Eの領域E1と領域E2から出射される光の波長を適宜設定して構成することもできる。   In addition, when irradiating the light of the irradiation pattern 1 or the irradiation pattern 2 described above, the light source unit 3 appropriately sets the wavelength of light emitted from the regions E1 and E2 of the light emitting region E without using an optical filter. It can also be configured.

ラインセンサ4は、図1に示すように、空隙Sを介して光源部3と対向して搬送部2の下方に設けられる。ラインセンサ4は、例えば集光レンズとフォトダイオード(フォトトランジスタ)からなる素子を複数備えて構成され、被検査物Wの搬送方向(図1の矢印A)と直交する方向(搬送部2の搬送面2cと直交する面(基準面L)方向)に複数の素子が所定ピッチでライン状に配列される。   As shown in FIG. 1, the line sensor 4 is provided below the transport unit 2 so as to face the light source unit 3 with a gap S therebetween. The line sensor 4 includes a plurality of elements including, for example, a condensing lens and a photodiode (phototransistor), and is orthogonal to the direction in which the inspection object W is conveyed (arrow A in FIG. 1) (conveyed by the conveying unit 2). A plurality of elements are arranged in a line at a predetermined pitch in a plane (reference plane L) direction orthogonal to the plane 2c.

ラインセンサ4は、光源部3からの光を検出するもので、例えば図3(a)や図4(a),(b)に示す構成を採用することができる。   The line sensor 4 detects light from the light source unit 3, and for example, the configuration shown in FIG. 3A, FIG. 4A, or FIG.

図3(a)のラインセンサ4Aは、第1のカメラ11と第2のカメラ12とを搬送方向Aに並設して構成される。そして、第1のカメラ11は光源部3が照射する光のうち中心波長λ1の光に対応した感度を有し、第2のカメラ12は光源部3が照射する光のうち中心波長λ1と中心波長λ2の光に対応した感度を有する。これにより、光源部3から中心波長λ1の光と中心波長λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる中心波長λ1の光を第1のカメラ11と第2のカメラ12が受光し、被検査物Wを通過してくる中心波長λ2の光を第2のカメラ12が受光する。そして、第1のカメラ11は、受光した中心波長λ1の光の透過量に基づく検出信号を処理部7に出力する。また、第2のカメラ12は、受光した中心波長λ1と中心波長λ2の光の透過量に基づく検出信号を処理部7に出力する。   The line sensor 4A in FIG. 3A is configured by arranging a first camera 11 and a second camera 12 side by side in the transport direction A. The first camera 11 has sensitivity corresponding to the light with the center wavelength λ1 in the light emitted from the light source unit 3, and the second camera 12 has the center wavelength λ1 and the center in the light emitted from the light source unit 3. Sensitivity corresponding to light of wavelength λ2. As a result, when light of the central wavelength λ1 and light of the central wavelength λ2 are irradiated from the light source unit 3 onto the inspection object W, the light of the central wavelength λ1 passing through the inspection object W is transmitted to the first camera 11. The second camera 12 receives the light, and the second camera 12 receives the light having the center wavelength λ2 that passes through the inspection object W. Then, the first camera 11 outputs a detection signal based on the amount of transmitted light having the received center wavelength λ1 to the processing unit 7. Further, the second camera 12 outputs a detection signal based on the amount of transmitted light of the received center wavelength λ1 and center wavelength λ2 to the processing unit 7.

図4(a)のラインセンサ4Bは、分光機能を有する単一の第3のカメラ13で構成される。これにより、光源部3から中心波長λ1,λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる中心波長λ1,λ2の光が分光機能を有するカメラ4Cにて中心波長λ1の光と中心波長λ2の光に分光される。そして、これら分光された中心波長λ1の光の透過量に基づく検出信号と中心波長λ2の光の透過量に基づく検出信号を処理部7に出力する。   The line sensor 4B in FIG. 4A is configured by a single third camera 13 having a spectral function. As a result, when the light with the central wavelengths λ1 and λ2 is irradiated from the light source unit 3 onto the inspection object W, the light with the central wavelengths λ1 and λ2 passing through the inspection object W is reflected by the camera 4C having a spectroscopic function. The light is split into light having a central wavelength λ1 and light having a central wavelength λ2. Then, a detection signal based on the transmitted light amount of the center wavelength λ1 and a detection signal based on the transmitted light amount of the center wavelength λ2 are output to the processing unit 7.

図4(b)のラインセンサ4Cは、第4のカメラ14と第5のカメラ15とを搬送方向Aに並設し、一方のカメラ(図4(b)の例では、第5のカメラ15)の受光面の手前にフィルタ16が設けられて構成される。第4のカメラ14と第5のカメラ15は、光源部3が照射する中心波長λ1の光と中心波長λ2の光の両方に対応した感度を有する。また、フィルタ16は、光源部3が照射する光のうち中心波長λ1の光のみを通過させる特性を有する。これにより、光源部3から中心波長λ1,λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる中心波長λ1,λ2の光を第4のカメラ14が受光し、被検査物Wを通過してくる中心波長λ1,λ2の光のうち中心波長λ1の光のみがフィルタ16を通過して第5のカメラ15が受光する。そして、第4のカメラ14は、受光した中心波長λ1,λ2の光の透過量に基づく検出信号を処理部7に出力する。また、第5のカメラ15は、フィルタ16を介して受光した中心波長λ1の光の透過量に基づく検出信号を処理部7に出力する。   The line sensor 4C in FIG. 4B has a fourth camera 14 and a fifth camera 15 arranged side by side in the transport direction A, and one camera (the fifth camera 15 in the example of FIG. 4B). ) Is provided in front of the light receiving surface. The fourth camera 14 and the fifth camera 15 have sensitivities corresponding to both the light with the central wavelength λ1 and the light with the central wavelength λ2 irradiated by the light source unit 3. In addition, the filter 16 has a characteristic of allowing only light having the center wavelength λ1 to pass through the light emitted from the light source unit 3. As a result, when light of the center wavelengths λ1 and λ2 is irradiated from the light source unit 3 onto the inspection object W, the fourth camera 14 receives the light of the center wavelengths λ1 and λ2 passing through the inspection object W. Of the light having the center wavelengths λ1 and λ2 passing through the inspection object W, only the light having the center wavelength λ1 passes through the filter 16 and is received by the fifth camera 15. Then, the fourth camera 14 outputs a detection signal based on the amount of transmitted light having the received center wavelengths λ 1 and λ 2 to the processing unit 7. In addition, the fifth camera 15 outputs a detection signal based on the transmission amount of the light having the center wavelength λ 1 received through the filter 16 to the processing unit 7.

なお、図3(a)のラインセンサ4Aの第2のカメラ12と、図4(b)のラインセンサ4Cの第4のカメラ14は、光源部3が照射パターン2で光を照射する場合、光源部3が照射する光のうち中心波長λ2に対応した感度を有し、受光した中心波長λ2の光の透過量に基づく検出信号を処理部7に出力する。   Note that the second camera 12 of the line sensor 4A in FIG. 3A and the fourth camera 14 of the line sensor 4C in FIG. It has a sensitivity corresponding to the center wavelength λ <b> 2 of the light emitted by the light source unit 3, and outputs a detection signal based on the amount of transmitted light having the received center wavelength λ <b> 2 to the processing unit 7.

また、本例では、光源部3における発光領域Eの領域E1から中心波長λ1の光を照射し、領域E2から中心波長λ2の光を照射する構成を主に説明しているが、これに限定されるものではない。すなわち、光源部3は、基準面Lを中心とした複数の異なる角度の光と、この光の波長と異なる波長を含む基準面Lに沿った光を照射すればよく、波長範囲の一部が重複していてもよい。その際、ラインセンサ4は、光源部3からの光が被検査物Wに照射されて通過してくる光を、基準面Lに沿った光と他の角度の光とを波長の違いにより分離して検出できる機能を有していればよい。例えば、基準面Lに沿った光の波長がλ1,λ2を有し、他の角度の光の波長がλ2のみである光を照射させるような構成とし、ラインセンサ4でλ1とλ2の光を分離して検出する。また、照射パターン2のように、白色光(λ1,λ2を含む)を照射する光源からの光に対し、波長領域Eの領域E2の出射口に波長λ2だけを通過させる光学フィルタを設けて被検査物Wに所望の波長の光を照射する構成とし、ラインセンサ4で波長λ1とλ2の光を分離して検出することもできる。   In this example, the configuration in which light having the central wavelength λ1 is emitted from the region E1 of the light emitting region E in the light source unit 3 and light having the central wavelength λ2 is emitted from the region E2 is mainly described. Is not to be done. That is, the light source unit 3 only has to irradiate a plurality of lights having different angles around the reference plane L and light along the reference plane L including a wavelength different from the wavelength of the light, and a part of the wavelength range is limited. It may be duplicated. At that time, the line sensor 4 separates the light passing through the reference surface L and the light at other angles by the difference in the wavelength, with the light from the light source unit 3 irradiating the inspection object W and passing therethrough. It is only necessary to have a function that can be detected. For example, it is configured to irradiate light having wavelengths λ1 and λ2 along the reference plane L and light having a wavelength of only λ2 at other angles, and the line sensor 4 emits light of λ1 and λ2. Separate and detect. Further, as in the irradiation pattern 2, an optical filter is provided to allow light from a light source that irradiates white light (including λ 1 and λ 2) to pass only the wavelength λ 2 at the exit port of the region E 2 of the wavelength region E. The inspection object W can be configured to irradiate light having a desired wavelength, and the line sensor 4 can detect the light having wavelengths λ1 and λ2 separately.

また、ラインセンサ4を構成する複数の素子の配列方向は、被検査物Wの搬送方向Aと直交する方向に限定されるものではなく、光源部3から照射される光の入射角度、被検査物Wの品種などに応じて適宜設定することができる。   The arrangement direction of the plurality of elements constituting the line sensor 4 is not limited to the direction orthogonal to the conveyance direction A of the inspection object W, but the incident angle of the light emitted from the light source unit 3, the inspection target It can be set as appropriate according to the type of the item W.

操作部5は、例えばユーザが操作する複数のキー、スイッチ、表示部9の表示画面上のソフトキーなどで構成される。操作部5は、物品検査装置1の運転の開始や停止の指示、被検査物Wの品種や検査数などの設定、搬送部2の搬送速度の設定、駆動制御部6や処理部7の起動などを行う際に操作される。   The operation unit 5 includes, for example, a plurality of keys and switches operated by the user, soft keys on the display screen of the display unit 9, and the like. The operation unit 5 instructs to start or stop the operation of the article inspection apparatus 1, sets the type and number of inspections of the inspection object W, sets the conveyance speed of the conveyance unit 2, and starts the drive control unit 6 and the processing unit 7. It is operated when performing etc.

駆動制御部6は、光源部3の照射パターンに応じて、被検査物Wに所望の波長の光を照射するように光源部3をオン・オフ制御する。   The drive control unit 6 performs on / off control of the light source unit 3 so as to irradiate the inspection target W with light having a desired wavelength according to the irradiation pattern of the light source unit 3.

なお、駆動制御部6は、光源部3の照射タイミングに同期した検出タイミングでラインセンサ4を制御してもよい。その場合、駆動制御部6は、光源部3における発光領域Eの領域E1,E2が点灯する照射タイミングに同期した検出タイミングで被検査物Wを通過してくる光を受光するようにラインセンサ4を制御する。   The drive control unit 6 may control the line sensor 4 at a detection timing synchronized with the irradiation timing of the light source unit 3. In that case, the drive control unit 6 receives the light passing through the inspection object W at the detection timing synchronized with the irradiation timing at which the regions E1 and E2 of the light emitting region E in the light source unit 3 are turned on. To control.

処理部7は、ラインセンサ4からの検出信号に基づく2種類の透過画像の取得、被検査物Wにおけるシール部Wcのシール領域の特定、シール領域内における異常の有無の判定、検査結果の表示などの各種処理を行うもので、記憶部7a、画像取得部7b、シール領域特定部7c、異常判定部7d、表示制御部7eを備えている。   The processing unit 7 acquires two types of transmission images based on the detection signal from the line sensor 4, specifies the seal region of the seal portion Wc in the inspection object W, determines whether there is an abnormality in the seal region, and displays the inspection result. The storage unit 7a, the image acquisition unit 7b, the seal area specifying unit 7c, the abnormality determination unit 7d, and the display control unit 7e are provided.

記憶部7aは、ラインセンサ4からの検出信号に基づく検出情報を逐次記憶する。すなわち、記憶部7aは、光源部3から照射される中心波長λ1の光を受光したときの受光量をラインセンサ4の線光源検出情報とし、光源部3から照射される中心波長λ1,λ2の光をラインセンサ4が受光したときの受光量をラインセンサ4の面光源検出情報として逐次記憶する。   The storage unit 7a sequentially stores detection information based on the detection signal from the line sensor 4. That is, the storage unit 7a uses the amount of received light when receiving light with the center wavelength λ1 emitted from the light source unit 3 as the line light source detection information of the line sensor 4, and uses the center wavelengths λ1 and λ2 emitted from the light source unit 3. The amount of light received when the line sensor 4 receives light is sequentially stored as surface light source detection information of the line sensor 4.

画像取得部7bは、記憶部7aに記憶されたラインセンサ4の検出情報(線光源検出情報、面光源検出情報)から2種類の透過画像を別々に画像化して取得する。2種類の透過画像は、被検査物Wにおけるシール部Wcのシール領域を特定するための線光源画像と、被検査物Wにおけるシール部Wcのシール領域内の異常(内容物Wb、内容物Wbのかす、異物の噛み込み、しわ発生によるシール不良など)の有無を判定するための面光源画像である。画像取得部7bは、記憶部7aに記憶された線光源検出情報を読み出して画像化することで線光源画像を取得する。また、画像取得部7bは、記憶部7aに記憶された面光源検出情報を読み出して画像化することで面光源画像を取得する。   The image acquisition unit 7b separately acquires two types of transmission images from the detection information (line light source detection information and surface light source detection information) of the line sensor 4 stored in the storage unit 7a. The two types of transmission images are a line light source image for specifying the seal area of the seal portion Wc in the inspection object W, and an abnormality (content Wb, content Wb in the seal area of the seal portion Wc in the inspection object W. It is a surface light source image for determining the presence or absence of defects such as fogging, foreign object biting, and sealing failure due to wrinkling. The image acquisition unit 7b acquires the line light source image by reading the line light source detection information stored in the storage unit 7a and imaging it. Moreover, the image acquisition part 7b acquires a surface light source image by reading the surface light source detection information memorize | stored in the memory | storage part 7a, and imaging it.

シール領域特定部7cは、画像取得部7bが取得した線光源画像から被検査物Wにおけるシール部Wcのシール領域を特定する。具体的には、画像取得部7bが取得した線光源画像(搬送方向を横軸とし、搬送方向と垂直で搬送面2cに並行な方向を縦軸とした画像)の各画素の濃淡値(輝度値)を2値化処理し、被検査物Wの輪郭と境界線を求め、輪郭から境界線までの領域をシール部Wcのシール領域として特定する。シール領域が例えば横方向の両端にある場合は、輪郭内に出現する縦線のうち一番内側の縦線から所定の距離(境界調整値)だけ内側に引いた縦線を境界線としそれぞれ求めてシール領域を特定する。   The seal area specifying unit 7c specifies the seal area of the seal part Wc in the inspection object W from the line light source image acquired by the image acquisition unit 7b. Specifically, the gray value (luminance) of each pixel of the line light source image acquired by the image acquisition unit 7b (an image in which the horizontal direction is the transport direction and the vertical axis is the direction perpendicular to the transport direction and parallel to the transport surface 2c). (Value) is binarized, the contour and boundary line of the inspection object W are obtained, and the region from the contour to the boundary line is specified as the seal region of the seal portion Wc. For example, when the seal area is at both ends in the horizontal direction, the vertical lines drawn inward from the innermost vertical line by a predetermined distance (boundary adjustment value) among the vertical lines appearing in the contour are obtained as boundary lines. To identify the seal area.

異常判定部7dは、画像取得部7bが取得した面光源画像から異常部分を検出し、この検出した異常部分が被検査物Wのシール部Wcのシール領域内に存在するか否かによりシール領域内の異常の有無を判定する。具体的には、画像取得部7bが取得した面光源画像の各画素の濃淡値(輝度値)を2値化処理し、「1」の画素の領域を異常部分として検出し、線光源画像からシール領域が特定された画像と面光源画像とを重ね合わせた重ね合わせ画像において、異常部分がシール領域特定部7cにて特定されたシール領域に存在するか否かに基づいてシール領域内の異常の有無を判定する。   The abnormality determination unit 7d detects an abnormal portion from the surface light source image acquired by the image acquisition unit 7b, and determines whether or not the detected abnormal portion exists in the seal region of the seal portion Wc of the inspection object W. The presence or absence of abnormality is determined. Specifically, the gray value (luminance value) of each pixel of the surface light source image acquired by the image acquisition unit 7b is binarized, and the area of the pixel “1” is detected as an abnormal portion, and the line light source image is detected. In the superimposed image obtained by superimposing the image in which the seal area is specified and the surface light source image, an abnormality in the seal area is determined based on whether or not the abnormal part exists in the seal area specified by the seal area specifying unit 7c. The presence or absence of is determined.

なお、被検査物Wにおけるシール部Wcのシール領域内の異常の有無を異常判定部7dで判定するにあたっては、シール部Wcのシール領域を特定するための閾値、境界調整値、シール部Wcのシール領域内の異常の有無を判定するため異常内容に応じた判定基準値を予め設定して記憶部7aに記憶させておくこともできる。この場合、シール領域特定部7cは、画像取得部7bが取得した線光源画像の各画素の濃淡値(輝度値)と閾値とを比較し、閾値を超える画素の画像から被検査物Wの輪郭と輪郭内に出現する縦線を抽出し、一番内側の縦線から境界調整値だけ内側を境界線として求め、輪郭から境界線までの領域をシール部Wcのシール領域として特定する。そして、異常判定部7dは、画像取得部7bが取得した線光源画像と面光源画像とを重ね合わせた重ね合わせ画像において、シール領域特定部7cにて特定されたシール領域内に判定基準値を超える画素が存在するか否かに基づいてシール領域内の異常の有無を判定する。なお、境界調整値は、輪郭内に出現する縦線の間隔から統計的手法(平均、最大値、中央値等)で算出するようにしてもよい。   Note that when the abnormality determination unit 7d determines whether there is an abnormality in the seal area of the seal portion Wc in the inspection object W, the threshold value, boundary adjustment value, and seal portion Wc for specifying the seal area of the seal portion Wc are determined. In order to determine whether or not there is an abnormality in the seal region, a determination reference value corresponding to the abnormality content can be set in advance and stored in the storage unit 7a. In this case, the seal area specifying unit 7c compares the gray value (luminance value) of each pixel of the line light source image acquired by the image acquisition unit 7b with a threshold value, and the contour of the inspection object W from the image of the pixel exceeding the threshold value. The vertical line appearing in the contour is extracted, the inner side of the innermost vertical line is obtained as the boundary line by the boundary adjustment value, and the region from the contour to the boundary line is specified as the seal region of the seal portion Wc. Then, the abnormality determination unit 7d sets a determination reference value in the seal area specified by the seal area specifying unit 7c in the superimposed image obtained by superimposing the line light source image and the surface light source image acquired by the image acquisition unit 7b. Whether or not there is an abnormality in the seal region is determined based on whether or not there are more pixels. The boundary adjustment value may be calculated by a statistical method (average, maximum value, median value, etc.) from the interval between vertical lines appearing in the contour.

表示制御部7eは、例えば画像取得部7bが取得した被検査物Wの2種類の透過画像(線光源画像、面光源画像)、異常判定部7dの判定に基づく被検査物Wの検査結果、総検査数、良品数、NG総数などの各種情報を表示するように表示部の表示を制御する。 The display control unit 7e includes, for example, two types of transmission images (line light source image and surface light source image) of the inspection object W acquired by the image acquisition unit 7b, the inspection result of the inspection object W based on the determination of the abnormality determination unit 7d, The display of the display unit 8 is controlled so as to display various information such as the total number of inspections, the number of non-defective products, and the total number of NG.

表示部は、例えば液晶表示器などの表示装置で構成され、表示制御部7eの制御により被検査物Wの検査結果を含む各種情報を表示する。 The display unit 8 is composed of a display device such as a liquid crystal display, for example, and displays various types of information including the inspection result of the inspection object W under the control of the display control unit 7e.

次に、上記構成による物品検査装置1において、光源部3から照射パターン1の光を照射して被検査物Wのシール部Wcの検査を行う場合の動作について説明する。   Next, in the article inspection apparatus 1 configured as described above, an operation in the case where the light of the irradiation pattern 1 is irradiated from the light source unit 3 to inspect the seal portion Wc of the inspection object W will be described.

検査対象の被検査物Wが搬送部2の導入側コンベア2aにて導入搬送されると、この被検査物Wに対し、光源部3の発光領域Eの領域E1から中心波長λ1の光を照射するとともに、領域E2から中心波長λ2の光を照射する。   When the inspection object W to be inspected is introduced and conveyed by the introduction-side conveyor 2a of the conveyance section 2, the inspection object W is irradiated with light having the center wavelength λ1 from the light emission area E1 of the light source section 3. At the same time, the region E2 is irradiated with light having the center wavelength λ2.

そして、ラインセンサ4は、光源部3から中心波長λ1の光と中心波長λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる光を受光し、受光した光を中心波長λ1,λ2の光に分光し、分光した中心波長λ1,λ2それぞれの光の透過量に基づく検出信号を処理部7に出力する。   The line sensor 4 receives the light passing through the inspection object W when the light of the center wavelength λ1 and the light of the center wavelength λ2 are irradiated from the light source unit 3 to the inspection object W, and receives the received light. Is split into light having the center wavelengths λ 1 and λ 2, and a detection signal based on the amount of transmitted light of each of the split center wavelengths λ 1 and λ 2 is output to the processing unit 7.

ここで、ラインセンサ4が図3(a)の構成の場合には、光源部3から中心波長λ1,λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる中心波長λ1の光を第1のカメラ11と第2のカメラ12が受光し、被検査物Wを通過してくる中心波長λ2の光を第2のカメラ12が受光する。そして、第1のカメラ11は、受光した中心波長λ1の光の透過量に基づく検出信号を処理部7に出力する。また、第2のカメラ12は、受光した中心波長λ1と中心波長λ2の光の透過量に基づく検出信号を処理部7に出力する。   Here, in the case where the line sensor 4 has the configuration of FIG. 3A, the light having the center wavelengths λ <b> 1 and λ <b> 2 is irradiated from the light source unit 3 to the inspection object W and passes through the inspection object W. The first camera 11 and the second camera 12 receive the light having the center wavelength λ1, and the second camera 12 receives the light having the center wavelength λ2 that passes through the inspection object W. Then, the first camera 11 outputs a detection signal based on the amount of transmitted light having the received center wavelength λ1 to the processing unit 7. Further, the second camera 12 outputs a detection signal based on the amount of transmitted light of the received center wavelength λ1 and center wavelength λ2 to the processing unit 7.

また、ラインセンサ4が図4(a)の構成の場合には、光源部3から中心波長λ1,λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる中心波長λ1,λ2の光が分光機能を有するカメラ4Cにて中心波長λ1の光と中心波長λ2の光に分光される。そして、これら分光された中心波長λ1の光の透過量に基づく検出信号と中心波長λ2の光の透過量に基づく検出信号を処理部7に出力する。   When the line sensor 4 has the configuration shown in FIG. 4A, the center passing through the inspection object W when the light of the center wavelengths λ <b> 1 and λ <b> 2 is irradiated from the light source unit 3. Lights with wavelengths λ1 and λ2 are split into light with central wavelength λ1 and light with central wavelength λ2 by camera 4C having a spectral function. Then, a detection signal based on the transmitted light amount of the center wavelength λ1 and a detection signal based on the transmitted light amount of the center wavelength λ2 are output to the processing unit 7.

さらに、ラインセンサ4が図4(b)の構成の場合には、光源部3から中心波長λ1,λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる中心波長λ1,λ2の光を第4のカメラ14が受光し、被検査物Wを通過してくる中心波長λ1,λ2の光のうち中心波長λ1の光のみがフィルタ16を通過して第5のカメラ15が受光する。そして、第4のカメラ14は、受光した中心波長λ1,λ2の光の透過量に基づく検出信号を処理部7に出力する。また、第5のカメラ15は、フィルタ16を介して受光した中心波長λ1の光の透過量に基づく検出信号を処理部7に出力する。   Further, in the case where the line sensor 4 has the configuration of FIG. 4B, the center passing through the inspection object W when the light of the center wavelengths λ 1 and λ 2 is irradiated from the light source unit 3 to the inspection object W. The fourth camera 14 receives the light with the wavelengths λ1 and λ2, and only the light with the center wavelength λ1 out of the light with the center wavelengths λ1 and λ2 passing through the inspection object W passes through the filter 16 and passes through the filter 16. The camera 15 receives light. Then, the fourth camera 14 outputs a detection signal based on the amount of transmitted light having the received center wavelengths λ 1 and λ 2 to the processing unit 7. In addition, the fifth camera 15 outputs a detection signal based on the transmission amount of the light having the center wavelength λ 1 received through the filter 16 to the processing unit 7.

処理部7では、ラインセンサ4から検出信号が入力されると、中心波長λ1の光の透過量をラインセンサ4の線光源検出情報として記憶部7aに逐次記憶する。また、中心波長λ1の光の透過量と中心波長λ2の光の透過量との総透過量(積算値)をラインセンサ4の面光源検出情報として記憶部7aに逐次記憶する。   When the detection signal is input from the line sensor 4, the processing unit 7 sequentially stores the transmission amount of light having the center wavelength λ <b> 1 in the storage unit 7 a as line light source detection information of the line sensor 4. Further, the total transmission amount (integrated value) of the transmission amount of the light having the central wavelength λ1 and the transmission amount of the light having the central wavelength λ2 is sequentially stored as the surface light source detection information of the line sensor 4 in the storage unit 7a.

そして、画像取得部7bは、記憶部7aに記憶された線光源検出情報から線光源画像を取得し、記憶部7aに記憶された面光源検出情報から面光源画像を取得する。   And the image acquisition part 7b acquires a line light source image from the line light source detection information memorize | stored in the memory | storage part 7a, and acquires a surface light source image from the surface light source detection information memorize | stored in the memory | storage part 7a.

続いて、シール領域特定部7cは、画像取得部7bが取得した線光源画像から被検査物Wにおけるシール部Wcのシール領域を特定する。   Subsequently, the seal area specifying unit 7c specifies the seal area of the seal part Wc in the inspection object W from the line light source image acquired by the image acquisition unit 7b.

次に、異常判定部7dは、画像取得部7bが取得した面光源画像から異常部分を検出し、この検出した異常部分がシール領域特定部7cで特定したシール部Wcのシール領域内に存在するか否かによりシール領域内の異常の有無を判定する。   Next, the abnormality determination unit 7d detects an abnormal part from the surface light source image acquired by the image acquisition unit 7b, and the detected abnormal part exists in the seal region of the seal unit Wc specified by the seal region specifying unit 7c. Whether or not there is an abnormality in the seal area is determined based on whether or not it is present.

そして、表示制御部7eは、異常判定部7dの判定に基づく被検査物Wの検査結果、総検査数、良品数、NG総数などの情報を表示するように表示部8の表示を制御する。 Then, the display control unit 7e controls the display of the display unit 8 to display information such as the inspection result of the inspection object W based on the determination of the abnormality determination unit 7d , the total number of inspections, the number of non-defective products, and the total number of NG.

次に、上記構成による物品検査装置1において、光源部3から照射パターン2の光を照射して被検査物Wのシール部Wcの検査を行う場合の動作について説明する。   Next, in the article inspection apparatus 1 having the above-described configuration, an operation when the light of the irradiation pattern 2 is irradiated from the light source unit 3 to inspect the seal portion Wc of the inspection object W will be described.

上述したように検査対象の被検査物Wが搬送部2の導入側コンベア2aにて導入搬送されると、この被検査物Wに対して光源部3の発光領域Eの領域E1から中心波長λ1,λ2を含む光を照射するとともに、領域E2から中心波長λ2の光を照射する。   As described above, when the inspection object W to be inspected is introduced and conveyed by the introduction-side conveyor 2a of the conveyance unit 2, the center wavelength λ1 from the region E1 of the light emitting region E of the light source unit 3 with respect to the inspection object W. , Λ2 and the central wavelength λ2 from the region E2.

そして、ラインセンサ4は、光源部3から中心波長λ1,λ2を含むの光と中心波長λ2の光が被検査物Wに照射されると、被検査物Wを通過してくる光を受光し、受光した光を中心波長λ1,λ2の光に分光し、上述した図3(a)、図4(a),(b)の何れかの構成において、分光した中心波長λ1,λ2それぞれの光の透過量に基づく検出信号を処理部7に出力する。   The line sensor 4 receives the light passing through the inspection object W when the light including the center wavelengths λ1 and λ2 and the light having the center wavelength λ2 are irradiated from the light source unit 3 to the inspection object W. Then, the received light is split into light having the center wavelengths λ1 and λ2, and the light having the center wavelengths λ1 and λ2 is split in any of the configurations shown in FIGS. 3A, 4A, and 4B. A detection signal based on the transmission amount of the signal is output to the processing unit 7.

処理部7では、上述した照射パターン1と同様に、線光源画像から被検査物Wにおけるシール部Wcのシール領域を特定し、面光源画像から異常部分を検出し、この検出した異常部分が特定したシール部Wcのシール領域内に存在するか否かによりシール領域内の異常の有無を判定する。   In the processing unit 7, similarly to the irradiation pattern 1 described above, the seal region of the seal portion Wc in the inspection object W is specified from the line light source image, the abnormal portion is detected from the surface light source image, and the detected abnormal portion is specified. Whether or not there is an abnormality in the seal area is determined based on whether or not it exists in the seal area of the sealed portion Wc.

そして、表示部8には、所定部7での判定に基づく被検査物Wの検査結果、総検査数、良品数、NG総数などの情報が表示される。   The display unit 8 displays information such as the inspection result of the inspection object W based on the determination in the predetermined unit 7, the total number of inspections, the number of non-defective products, and the total number of NG.

このように、本実施の形態の物品検査装置1では、1つの光源部3の発光領域Eを搬送方向Aに対して領域E1と領域E2とに分け、領域E1から中心波長λ1(又は中心波長λ1,λ2を含む)の光を照射するとともに、領域E2から中心波長λ2の光を照射する。そして、ラインセンサ4は、光源部3から照射されて被検査物Wを通過してくる光を受光し、中心波長λ1,λ2毎に分光した光の透過量に基づく検出信号を処理部7に出力する。そして、処理部7は、ラインセンサ4からの検出信号に基づく検出情報から線光源画像と面光源画像とを別々に画像化して2種類の透過画像を取得する。続いて、処理部7は、これら2種類の透過画像を用いて被検査物Wにおけるシール部Wcのシール領域を特定し、シール領域内の異常の有無を判別する。これにより、線光源と面光源を別々に構成して2種類の光源部を用意する必要がなく、機長を短くして装置の大型化を回避するとともにコスト削減を図りつつ、被検査物のシール領域の検査を精度良く行うことができる。   As described above, in the article inspection apparatus 1 according to the present embodiment, the light emitting region E of one light source unit 3 is divided into the region E1 and the region E2 with respect to the transport direction A, and the center wavelength λ1 (or the center wavelength) from the region E1. (including λ1 and λ2) and light having a central wavelength λ2 from the region E2. The line sensor 4 receives the light emitted from the light source unit 3 and passing through the inspection object W, and sends a detection signal based on the transmission amount of the light separated for each of the center wavelengths λ1 and λ2 to the processing unit 7. Output. Then, the processing unit 7 separates the line light source image and the surface light source image from the detection information based on the detection signal from the line sensor 4 and acquires two types of transmission images. Subsequently, the processing unit 7 specifies the seal region of the seal portion Wc in the inspection object W using these two types of transmission images, and determines whether there is an abnormality in the seal region. This eliminates the need to prepare two types of light source sections by separately configuring the line light source and the surface light source, shortens the length of the apparatus, avoids an increase in the size of the apparatus, and reduces costs while also sealing the object to be inspected. The region can be inspected with high accuracy.

その際、光源部3から照射される光のうち、基準面Lに沿った領域E1の光が被検査物Wのシール部Wcのシール領域の凹凸により散乱して透過する光の量が減少(ラインセンサ4の素子に光が到達せずに暗くなる)することを利用するので、基準面Lに沿った光だけに含まれる波長(λ1)の光を検出してシール部Wcのシール領域を高精度に特定することができる。   At that time, among the light irradiated from the light source unit 3, the amount of light transmitted in the region E1 along the reference plane L is scattered and transmitted by the unevenness of the seal region of the seal portion Wc of the object W to be inspected ( Since the light does not reach the element of the line sensor 4 and becomes dark), light having a wavelength (λ1) included only in the light along the reference plane L is detected, and the seal region of the seal portion Wc is detected. It can be specified with high accuracy.

また、光源部3から照射される基準面Lを含む複数の角度方向からの光、すなわち、光源部3の発光領域E全体(領域E1と領域E2)の光によってシール部Wcのシール領域の凹凸の影響を低減させ、シール部Wcのシール領域に異物があった場合のみ遮光され、ラインセンサ4の素子が受光する受光量が減ることを利用するので、光源部3の発光領域E全体の光に含まれる波長(λ1,λ2)の光を検出してシール部Wcのシール領域の異常を検出し、シール領域全体の異常の有無の検査を行うことができる。   The unevenness of the seal region of the seal portion Wc is caused by light from a plurality of angular directions including the reference plane L emitted from the light source unit 3, that is, light of the entire light emission region E (region E1 and region E2) of the light source unit 3. The light of the entire light emitting area E of the light source section 3 is utilized by utilizing the fact that the light receiving amount received by the element of the line sensor 4 is reduced. Can detect the abnormality of the seal region of the seal portion Wc by detecting the light of the wavelength (λ1, λ2) included in the, and inspect the entire seal region for abnormality.

以上、本発明に係る物品検査装置の最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。   The best mode of the article inspection apparatus according to the present invention has been described above, but the present invention is not limited by the description and drawings according to this mode. That is, it is a matter of course that all other forms, examples, operation techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.

1 物品検査装置
2 搬送部
2a 導入側コンベア
2b 排出側コンベア
2c 搬送面
3 光源部
4 ラインセンサ
4a 受光面
5 操作部
6 駆動制御部
7 処理部
7a 記憶部
7b 画像取得部
7c シール領域特定部
7d 異常判定部
7e 表示制御部
8 表示部
A 搬送方向
E 発光領域
E1,E2 領域
L 基準面
S 空隙
W 被検査物
Wa 包装材
Wb 内容物
Wc シール部
Wd 異物
We 境界
X ノイズ
λ1,λ2 中心波長
θ 搬送面に対する入射角度
DESCRIPTION OF SYMBOLS 1 Item inspection apparatus 2 Conveyance part 2a Introduction side conveyor 2b Discharge side conveyor 2c Conveyance surface 3 Light source part 4 Line sensor 4a Light receiving surface 5 Operation part 6 Drive control part 7 Processing part 7a Storage part 7b Image acquisition part 7c Seal area | region identification part 7d Abnormality judgment unit 7e Display control unit 8 Display unit A Transport direction E Light emission region E1, E2 region L Reference plane S Air gap W Inspected object Wa Packaging material Wb Contents Wc Sealing unit Wd Foreign material We Boundary X Noise λ1, λ2 Center wavelength θ Incident angle to the transfer surface

Claims (5)

包装材(Wa)に内容物(Wb)が包まれた被検査物(W)を搬送させて該被検査物に光を照射し、その透過光を検出して得られる透過画像に基づいて前記包装材のシール領域内の検査を行う物品検査装置(1)であって、
前記透過光を検出する複数の素子が前記被検査物の搬送方向(A)と交差する方向に配列されるラインセンサ(4)と、
前記ラインセンサの各素子を横切る面であって前記被検査物が搬送される搬送面(2c)に対して垂直方向の面を基準面(L)とし、該基準面を中心とした複数の角度からの第1の光を照射する面光源として機能するとともに、少なくとも前記第1の光の波長(λ2)と異なる波長(λ1)を含む、前記基準面に沿った方向からの第2の光を照射する線光源として機能する光源部3と、
前記光源部が照射するそれぞれの波長の光に応じて前記ラインセンサから得られる検出信号に基づいて前記シール領域を特定し、該シール領域内の異常の有無を判定する処理部(7)と、を備えたことを特徴とする物品検査装置。
The inspection object (W) in which the contents (Wb) are wrapped in the packaging material (Wa) is conveyed to irradiate the inspection object with light, and the transmitted light is detected based on the transmitted image. An article inspection apparatus (1) for inspecting a sealing area of a packaging material,
A line sensor (4) in which a plurality of elements for detecting the transmitted light are arranged in a direction intersecting a transport direction (A) of the inspection object;
A plane that intersects each element of the line sensor and is perpendicular to the transport surface (2c) on which the inspection object is transported is defined as a reference plane (L), and a plurality of angles with the reference plane as the center Second light from a direction along the reference plane, which functions as a surface light source for irradiating the first light from the light source and includes at least a wavelength (λ1) different from the wavelength (λ2) of the first light. A light source unit 3 that functions as a linear light source for irradiation;
A processing unit (7) that identifies the seal region based on a detection signal obtained from the line sensor in accordance with light of each wavelength emitted by the light source unit, and determines whether there is an abnormality in the seal region; An article inspection apparatus comprising:
前記処理部(7)は、前記ラインセンサ(4)が前記基準面(L)の光の波長(λ1)の光を受光したときの検出信号から前記シール領域を特定することを特徴とする請求項1記載の物品検査装置。 The said processing part (7) specifies the said seal | sticker area | region from the detection signal when the said line sensor (4) receives the light of the wavelength ((lambda) 1) of the light of the said reference plane (L), It is characterized by the above-mentioned. Item inspection apparatus according to Item 1. 前記ラインセンサ(4)は、前記光源部(3)が照射する複数の光の波長(λ1,λ2)毎に対応した感度を有する複数のカメラ(11,12)からなることを特徴とする請求項1又は2記載の物品検査装置。 The line sensor (4) comprises a plurality of cameras (11, 12) having sensitivities corresponding to the wavelengths (λ1, λ2) of a plurality of lights emitted from the light source unit (3). Item inspection apparatus according to Item 1 or 2. 前記ラインセンサ(4)は、分光機能を有する単一のカメラ(13)からなることを特徴とする請求項1又は2記載の物品検査装置。 3. The article inspection apparatus according to claim 1, wherein the line sensor (4) comprises a single camera (13) having a spectroscopic function. 前記ラインセンサ(4)は、前記光源部(3)が照射する複数の光の波長に感度を有する複数のカメラ(14,15)と、該複数のカメラの何れかの前面に設けられて前記基準面(L)の光の波長(λ1)に対応させて前記基準面の光を通過させるフィルタ(16)とからなることを特徴とする請求項1又は2記載の物品検査装置。 The line sensor (4) is provided on a front surface of a plurality of cameras (14, 15) having sensitivity to a plurality of wavelengths of light emitted from the light source unit (3) and any of the plurality of cameras. 3. The article inspection apparatus according to claim 1, further comprising a filter (16) that allows the light on the reference surface to pass through in correspondence with the wavelength (λ1) of the light on the reference surface (L).
JP2015193817A 2015-09-30 2015-09-30 Inspection equipment Active JP6612100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193817A JP6612100B2 (en) 2015-09-30 2015-09-30 Inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193817A JP6612100B2 (en) 2015-09-30 2015-09-30 Inspection equipment

Publications (2)

Publication Number Publication Date
JP2017067622A JP2017067622A (en) 2017-04-06
JP6612100B2 true JP6612100B2 (en) 2019-11-27

Family

ID=58494572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193817A Active JP6612100B2 (en) 2015-09-30 2015-09-30 Inspection equipment

Country Status (1)

Country Link
JP (1) JP6612100B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863056B2 (en) * 2017-04-28 2021-04-21 凸版印刷株式会社 Chucked film inspection method and chucked film inspection device, and film inspection method and inspection device
EP3730915B1 (en) * 2019-04-25 2021-12-22 Snack Engineering Ltd Seal tester apparatus and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168351A (en) * 1990-10-31 1992-06-16 Taiyo Eretsukusu Kk Detecting apparatus for defect of light transmitting body
JP2003291929A (en) * 2002-04-02 2003-10-15 Xiware Technology Kk Inspection method and apparatus for single-dose package sheet
JP4213108B2 (en) * 2004-10-21 2009-01-21 シーケーディ株式会社 Lighting device for visual inspection
JP2010223613A (en) * 2009-03-19 2010-10-07 Futec Inc Optical examining device
JP2012189563A (en) * 2011-03-10 2012-10-04 System Square Inc Optical inspection device
FR2977939B1 (en) * 2011-07-11 2013-08-09 Edixia METHOD FOR ACQUIRING MULTIPLE IMAGES OF THE SAME OBJECT USING A SINGLE LINEAR CAMERA

Also Published As

Publication number Publication date
JP2017067622A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US20120327227A1 (en) Package inspection apparatus
JP4523474B2 (en) Defect inspection device and PTP packaging machine
JP5526183B2 (en) Inspection device and PTP packaging machine
JP6677260B2 (en) Inspection system and inspection method
JP5896840B2 (en) Inspection device for packed products stuffed with eggs
JP2018087745A (en) Inspection device and ptp packing machine
JP4647643B2 (en) Defect inspection device and PTP packaging machine
KR20160047360A (en) System and method for defect detection
JP2012189563A (en) Optical inspection device
JP5873066B2 (en) PTP packaging machine
JP6596290B2 (en) Inspection equipment
JP6612100B2 (en) Inspection equipment
JP5993358B2 (en) Inspection device and PTP packaging machine
JP4472499B2 (en) Defect inspection device and PTP packaging machine
JP2010256313A (en) Seal defect inspection apparatus of light shielding thermal seal wrapping material and method of the same
JP6619547B2 (en) Inspection device
JP4424537B2 (en) Foreign matter inspection device
JP2019066274A (en) Article inspection device
JP2004003899A (en) Method and apparatus of visual inspection of packed foodstuff or the like
JP6043220B2 (en) Inspection equipment
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JP2020034345A (en) Inspection system and inspection method
JP6428554B2 (en) Inspection system, inspection method
JP2019039697A (en) Laminated sheet defect inspection device and sheet product manufacturing method
JP4788870B2 (en) Defect inspection device and PTP packaging machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191030

R150 Certificate of patent or registration of utility model

Ref document number: 6612100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250