JP6610526B2 - Single wafer polishing method for silicon wafer - Google Patents

Single wafer polishing method for silicon wafer Download PDF

Info

Publication number
JP6610526B2
JP6610526B2 JP2016246910A JP2016246910A JP6610526B2 JP 6610526 B2 JP6610526 B2 JP 6610526B2 JP 2016246910 A JP2016246910 A JP 2016246910A JP 2016246910 A JP2016246910 A JP 2016246910A JP 6610526 B2 JP6610526 B2 JP 6610526B2
Authority
JP
Japan
Prior art keywords
polishing
relative speed
silicon wafer
wafer
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016246910A
Other languages
Japanese (ja)
Other versions
JP2018101695A (en
Inventor
一樹 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016246910A priority Critical patent/JP6610526B2/en
Priority to PCT/JP2017/040602 priority patent/WO2018116690A1/en
Publication of JP2018101695A publication Critical patent/JP2018101695A/en
Application granted granted Critical
Publication of JP6610526B2 publication Critical patent/JP6610526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Description

本発明は、シリコンウェーハの枚葉式片面研磨方法に関する。   The present invention relates to a single wafer single side polishing method for a silicon wafer.

半導体デバイスの基板として、シリコンウェーハが広く用いられている。シリコンウェーハは、一般的にシリコン単結晶インゴットの引き上げ工程に始まり、スライス工程、平面研削工程、エッチング工程および研磨工程を経て、最終洗浄されることにより、ポリッシュドウェーハに加工される。   Silicon wafers are widely used as substrates for semiconductor devices. In general, a silicon wafer is processed into a polished wafer by starting with a pulling process of a silicon single crystal ingot, going through a slicing process, a surface grinding process, an etching process, and a polishing process, and finally being cleaned.

ここで、シリコンウェーハの研磨工程では、粗研磨および仕上げ研磨などの複数段階で研磨を行うことが一般的である。この場合、粗研磨では、シリコンウェーハの両面を同時に研磨し(「両面研磨法」と呼ばれる)、研磨後のシリコンウェーハの平坦度を小さくする(平坦性を良好にする)。続く仕上げ研磨では、シリコンウェーハの片面のみを研磨(「片面研磨法」と呼ばれる)する。片面研磨では、両面研磨後の平坦性を少なからず悪化させるものの、両面研磨により生じ得る加工ダメージを除去し、また、シリコンウェーハの被研磨面の表面粗さを改善する。なお、研磨布の種類、研磨液中の砥粒サイズおよびアルカリ濃度を変更するなどして、複数段階に分けて片面研磨法を行うこともある。   Here, in the polishing process of the silicon wafer, it is common to perform polishing in a plurality of stages such as rough polishing and finish polishing. In this case, in rough polishing, both sides of the silicon wafer are simultaneously polished (referred to as “double-side polishing method”), and the flatness of the polished silicon wafer is reduced (flatness is improved). In the subsequent finish polishing, only one side of the silicon wafer is polished (referred to as “single-side polishing method”). In single-side polishing, although flatness after double-side polishing is deteriorated to some extent, processing damage that can be caused by double-side polishing is removed, and the surface roughness of the polished surface of the silicon wafer is improved. The single-side polishing method may be performed in a plurality of stages by changing the type of polishing cloth, the size of the abrasive grains in the polishing liquid, and the alkali concentration.

ここで、図1を用いて、従来用いられている片面研磨装置100による一般的な片面研磨方法を説明する。片面研磨装置100は、シリコンウェーハ10を把持する研磨ヘッド120と、研磨布150が貼付された回転定盤140とを有する。なお、片面研磨装置100は、研磨ヘッド120を回転させる回転機構と、研磨ヘッド120を回転定盤140の内外に移動させる移動機構を備える。片面研磨装置100においては、研磨ヘッド120が半導体ウェーハ10を保持しつつ回転定盤140の上面に貼付された研磨布150に対して半導体ウェーハ10の被研磨面(すなわち、回転定盤140側の面)を押圧し、研磨ヘッド120と回転定盤140を共に回転させることにより研磨ヘッド120と回転定盤140とを相対運動させ、研磨液供給手段160から研磨液170を供給しながらシリコンウェーハ10の被研磨面を化学機械研磨する。   Here, a general single-side polishing method by a conventionally used single-side polishing apparatus 100 will be described with reference to FIG. The single-side polishing apparatus 100 includes a polishing head 120 that holds the silicon wafer 10 and a rotating surface plate 140 to which a polishing cloth 150 is attached. The single-side polishing apparatus 100 includes a rotating mechanism that rotates the polishing head 120 and a moving mechanism that moves the polishing head 120 in and out of the rotating surface plate 140. In the single-side polishing apparatus 100, the surface to be polished of the semiconductor wafer 10 (that is, the side of the rotary platen 140 side) with respect to the polishing cloth 150 affixed to the upper surface of the rotary platen 140 while the polishing head 120 holds the semiconductor wafer 10. Surface) and rotating the polishing head 120 and the rotating surface plate 140 together to move the polishing head 120 and the rotating surface plate 140 relative to each other so that the polishing liquid 170 is supplied from the polishing liquid supply means 160 and the silicon wafer 10 The surface to be polished is subjected to chemical mechanical polishing.

本願出願人は、特許文献1において、シリコンウェーハと研磨布との相対速度を従来よりも大幅に高めて、研磨後のシリコンウェーハの表面粗さを顕著に低減する片面研磨方法を提案している。   In the patent document 1, the applicant of the present application has proposed a single-side polishing method that significantly increases the relative speed between the silicon wafer and the polishing cloth as compared with the conventional technique and significantly reduces the surface roughness of the polished silicon wafer. .

特開2000−15571号公報JP 2000-15571 A

ところで近年、シリコンウェーハの大口径化および該シリコンウェーハを用いて形成されるデバイスの微細化が進行しており、片面研磨法による仕上げ研磨後のシリコンウェーハでは、表面の平坦性および表面粗さに対する要求が益々厳しくなっている。特許文献1に記載の技術により、シリコンウェーハの表面粗さを大幅に低減することはできるものの、片面研磨を行えば、既述のとおり両面研磨後のシリコンウェーハの平坦度からは少なからず悪化してしまうため、平坦度の悪化を抑制する点では改善の余地がある。   By the way, in recent years, the diameter of a silicon wafer has been increased and the device formed using the silicon wafer has been miniaturized. In a silicon wafer after final polishing by a single-side polishing method, the surface flatness and surface roughness are reduced. Requests are getting stricter. Although the surface roughness of the silicon wafer can be significantly reduced by the technique described in Patent Document 1, if the single-side polishing is performed, the flatness of the silicon wafer after the double-side polishing is considerably deteriorated as described above. Therefore, there is room for improvement in terms of suppressing deterioration in flatness.

そこで本発明者は、枚葉式片面研磨方法において、リテーナリングを備える研磨ヘッドによりシリコンウェーハの被研磨面を研磨するときの、研磨後の平坦度および表面粗さに関しての相対速度の影響について検討した。図1を用いて既述の枚葉式片面研磨法において、リテーナリング124を備える研磨ヘッド120がシリコンウェーハ10を保持し、該シリコンウェーハの片面(すなわち、被研磨面)が研磨される際の模式図を図2に示す。図2において、研磨ヘッド120はシリコンウェーハ10をチャックするバッキングプレート122を備え、該バッキングプレート122の周縁部に研磨中のシリコンウェーハ10の飛び出しを防止するリテーナリング124が設けられている。シリコンウェーハ10の片面(被研磨面)は、リテーナリング124の下端よりも突出した状態で枚葉式片面研磨が行われ、弾性体である研磨布150は研磨ヘッド120からの押圧により、シリコンウェーハ10の下方において沈み込む。研磨布150上に供給される研磨液170は、回転定盤140の回転による遠心力により、回転定盤140および研磨布150の中心から周縁方向へと、シリコンウェーハ10およびリテーナリング124と、研磨布150との僅かな間隙に沈入して流れ込む。   Therefore, the present inventor examined the influence of relative speed on the flatness and surface roughness after polishing when polishing the polished surface of a silicon wafer by a polishing head equipped with a retainer ring in a single-wafer type single-side polishing method. did. In the single-wafer single-side polishing method described above with reference to FIG. 1, the polishing head 120 including the retainer ring 124 holds the silicon wafer 10, and one side of the silicon wafer (that is, the surface to be polished) is polished. A schematic diagram is shown in FIG. In FIG. 2, the polishing head 120 includes a backing plate 122 that chucks the silicon wafer 10, and a retainer ring 124 that prevents the silicon wafer 10 that is being polished from popping out is provided on the periphery of the backing plate 122. Single-sided single-side polishing is performed with one side (surface to be polished) of the silicon wafer 10 protruding from the lower end of the retainer ring 124, and the polishing cloth 150, which is an elastic body, is pressed by the polishing head 120, Sinks below 10 The polishing liquid 170 supplied onto the polishing cloth 150 is subjected to polishing by the centrifugal force generated by the rotation of the rotating surface plate 140 from the center of the rotating surface plate 140 and the polishing cloth 150 toward the peripheral edge, and the silicon wafer 10 and the retainer ring 124. It sinks and flows into a slight gap with the cloth 150.

平面視でのシリコンウェーハ10の中心位置と、回転定盤140(研磨布150)との相対速度(図3の相対速度Vを併せて参照)が低速化すると、研磨布150上での研磨液170への遠心力が低下する。当該遠心力が低下すれば、回転定盤140から零れ落ちる研磨液170の液量が減少し、回転定盤140上の研磨液170の高さが高くなる。当該高さが高くなると、リテーナリング124の、回転定盤140中心側のリテーナ面124Aに新たに流入しようとする研磨液170の液量が増加し、リテーナ面124Aに作用する研磨液170の液圧(すなわち、リテーナ面124Aの位置でのリテーナリング124の外周側から内周側に流入する研磨液170によるリテーナ面124Aへの液圧であり、以下「リテーナ液圧」と言う。)も高くなる。リテーナ液圧が高くなると、リテーナ面124A側では研磨布150の圧縮量(変形量)が増大するため、シリコンウェーハ10の周縁部に作用する研磨布150の面圧応力が低下する。この現象により、相対速度が低速の場合、片面研磨に伴うシリコンウェーハ10のエッジ部でのロールオフ量(エッジロールオフ)の悪化が比較的抑制されやすくなるため、外周平坦度の増大(平坦性は悪化)も抑制されやすくなる。ただし、上記相対速度の低下により化学機械研磨の作用も低下するため、表面粗さの低減効果も抑制されてしまう。   When the relative speed between the center position of the silicon wafer 10 in plan view and the rotating surface plate 140 (polishing cloth 150) (refer to the relative speed V in FIG. 3) decreases, the polishing liquid on the polishing cloth 150 is reduced. The centrifugal force to 170 is reduced. When the centrifugal force decreases, the amount of the polishing liquid 170 that spills from the rotating surface plate 140 decreases, and the height of the polishing liquid 170 on the rotating surface plate 140 increases. As the height increases, the amount of the polishing liquid 170 that is about to flow into the retainer surface 124A of the retainer ring 124 on the center side of the rotating surface plate 140 increases, and the liquid of the polishing liquid 170 that acts on the retainer surface 124A increases. The pressure (that is, the hydraulic pressure applied to the retainer surface 124A by the polishing liquid 170 flowing from the outer peripheral side to the inner peripheral side of the retainer ring 124 at the position of the retainer surface 124A, and hereinafter referred to as “retainer hydraulic pressure”) is also high. Become. As the retainer fluid pressure increases, the compressive amount (deformation amount) of the polishing pad 150 increases on the retainer surface 124A side, so that the surface pressure stress of the polishing pad 150 acting on the peripheral edge of the silicon wafer 10 decreases. Due to this phenomenon, when the relative speed is low, deterioration of the roll-off amount (edge roll-off) at the edge portion of the silicon wafer 10 due to single-side polishing is relatively easily suppressed, so that the outer peripheral flatness is increased (flatness). Is worse). However, since the action of chemical mechanical polishing is also reduced due to the decrease in the relative speed, the effect of reducing the surface roughness is also suppressed.

一方、上記相対速度を高速化すれば、特許文献1と同様に表面粗さを大幅に低減することができる。しかしながら、前述したリテーナ液圧が低下するため、相対速度が低速の場合に比べると、エッジロールオフが増大することとなり、外周平坦度の増大が比較的速くなってしまう。このように、リテーナリングを備える研磨ヘッドによりシリコンウェーハを枚葉式片面研磨する場合には、表面粗さの低減と外周平坦度の増大とが、トレードオフの関係にあることを本発明者は見出した。   On the other hand, if the relative speed is increased, the surface roughness can be greatly reduced as in Patent Document 1. However, since the retainer hydraulic pressure is reduced, the edge roll-off is increased as compared with the case where the relative speed is low, and the increase in the outer peripheral flatness is relatively fast. In this way, when the silicon wafer is single-sided polished with a polishing head equipped with a retainer ring, the present inventor found that there is a trade-off relationship between the reduction in surface roughness and the increase in outer flatness. I found it.

表面粗さと外周平坦度とはトレードオフの関係にあるものの、前述のとおりシリコンウェーハへの表面の平坦性および表面粗さに対する要求が益々厳しくなっている。上記相対速度を最適化することで、平坦性および表面粗さの両方をある程度は改善できることが見込めるものの、限界がある。   Although the surface roughness and the outer peripheral flatness are in a trade-off relationship, as described above, the requirements for the surface flatness and the surface roughness on the silicon wafer are becoming increasingly severe. Although it can be expected that both the flatness and the surface roughness can be improved to some extent by optimizing the relative speed, there is a limit.

そこで本発明は、シリコンウェーハの表面粗さを低減しつつ、外周平坦度の増大を従来よりも抑制することのできるシリコンウェーハの枚葉式片面研磨方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a single wafer single-side polishing method for a silicon wafer that can suppress an increase in outer peripheral flatness as compared with the conventional one while reducing the surface roughness of the silicon wafer.

本発明者は、上記課題を解決する方途について鋭意検討した。本発明者は、枚葉式片面研磨法における表面粗さの低減傾向と、外周平坦度の増大傾向の経時的変化に着目した。相対速度に伴うリテーナ液圧による外周平坦度への影響は前述のとおりであるものの、相対速度による表面粗さへの経時的な影響と、外周平坦度への経時的な影響とはその様相が大きく異なっていることに着目した。すなわち、片面研磨を始めると表面粗さが急速に低減し、研磨量が増大するにつれてその低減効果が飽和していく一方、外周平坦度は研磨量にほぼ比例して悪化していくことを本発明者は見出した。   The inventor has intensively studied how to solve the above problems. The inventor has paid attention to a change in the surface roughness in the single-wafer single-side polishing method and a change with time in an increase in the outer flatness. Although the influence of the retainer fluid pressure on the outer peripheral flatness due to the relative speed is as described above, the influence of the relative speed on the surface roughness over time and the influence on the outer flatness over time are different. We focused on the great differences. In other words, when the single-side polishing is started, the surface roughness decreases rapidly, and as the polishing amount increases, the reduction effect is saturated, while the outer peripheral flatness deteriorates in proportion to the polishing amount. The inventor found out.

従来、枚葉式片面研磨法では研磨時間が他の研磨工程に比べて比較的短いため、研磨中にシリコンウェーハ中心と研磨布との相対速度は一定としていた。しかしながら本発明者は、枚葉式片面研磨方法において相対速度を変更して、変更後に相対速度を高速化することで、変更後の高速な相対速度による表面粗さの低減効果が得られる共に、高速な相対速度による外周平坦度の増大を従来よりも抑制できることを知見し、本発明を完成するに至った。すなわち、本発明の要旨構成は以下のとおりである。   Conventionally, in the single-wafer single-side polishing method, the polishing time is relatively short compared to other polishing processes, and therefore the relative speed between the center of the silicon wafer and the polishing cloth is constant during polishing. However, the inventor changed the relative speed in the single-wafer single-side polishing method and increased the relative speed after the change, thereby obtaining the effect of reducing the surface roughness due to the high-speed relative speed after the change, It has been found that an increase in the outer peripheral flatness due to a high relative speed can be suppressed as compared with the prior art, and the present invention has been completed. That is, the gist configuration of the present invention is as follows.

(1)リテーナリングを備える研磨ヘッドによりシリコンウェーハを保持して前記シリコンウェーハの片面を前記リテーナリングの下端よりも突出させ、前記研磨ヘッドにより前記シリコンウェーハを回転させながら、研磨布が貼付された回転定盤に前記シリコンウェーハの前記片面を押圧しつつ、前記研磨布の面上に研磨液を供給して、前記シリコンウェーハの前記片面を研磨するシリコンウェーハの枚葉式片面研磨方法であって、
前記シリコンウェーハの中心位置と前記回転定盤との相対速度を1回以上変更し、該相対速度の変更を行う度に、該相対速度を増大させることを特徴とするシリコンウェーハの枚葉式片面研磨方法。
(1) A silicon wafer is held by a polishing head having a retainer ring so that one side of the silicon wafer protrudes from a lower end of the retainer ring, and a polishing cloth is adhered while rotating the silicon wafer by the polishing head. A single wafer single-side polishing method for a silicon wafer in which a polishing liquid is supplied onto the surface of the polishing cloth while pressing the one surface of the silicon wafer against a rotating surface plate to polish the one surface of the silicon wafer. ,
Single-sided silicon wafer, wherein the relative speed between the center position of the silicon wafer and the rotating platen is changed at least once, and the relative speed is increased each time the relative speed is changed. Polishing method.

なお、本明細書において、シリコンウェーハの中心位置と回転定盤との相対速度とは、研磨中のシリコンウェーハを平面視した場合の、シリコンウェーハ中心の描く軌跡の接線方向の速度の大きさを指すものとして定義する。図1〜3を例により詳細に説明する。図1〜3において、シリコンウェーハ10は研磨ヘッド120による回転により反時計回りに回転(自転)する。また、回転定盤140上に貼付された研磨布150の回転に伴い、シリコンウェーハ10の中心位置は回転定盤140の中心位置Oを中心として反時計回りに回転し、軌跡Tを描く。この場合、軌跡Tの接線方向の速度の大きさが相対速度Vに相当し、回転定盤140の回転速度と、回転定盤140の中心Oからシリコンウェーハ10中心への距離とにより相対速度Vが定まる。なお、研磨ヘッド120の径方向での動きによりシリコンウェーハ10の中心位置が回転定盤140の径方向に揺動し、相対速度Vが周期的に変動する場合があるが、その場合は相対速度Vとしては、軌跡Tの接線方向の速度の大きさの平均値(平均速度)を用いることとする。   In the present specification, the relative speed between the center position of the silicon wafer and the rotating surface plate is the magnitude of the speed in the tangential direction of the locus drawn by the silicon wafer center when the silicon wafer being polished is viewed in plan. Define as pointing. 1-3 will be described in detail by way of example. 1 to 3, the silicon wafer 10 rotates (rotates) counterclockwise by the rotation of the polishing head 120. Further, with the rotation of the polishing cloth 150 affixed on the rotating surface plate 140, the center position of the silicon wafer 10 rotates counterclockwise around the center position O of the rotating surface plate 140, and the locus T is drawn. In this case, the magnitude of the tangential speed of the trajectory T corresponds to the relative speed V, and the relative speed V depends on the rotational speed of the rotating surface plate 140 and the distance from the center O of the rotating surface plate 140 to the center of the silicon wafer 10. Is determined. In addition, the center position of the silicon wafer 10 may swing in the radial direction of the rotating surface plate 140 due to the movement of the polishing head 120 in the radial direction, and the relative speed V may fluctuate periodically. As V, an average value (average speed) of tangential speeds of the trajectory T is used.

(2)前記相対速度の変更を1回のみ行う、上記(1)に記載のシリコンウェーハの枚葉式片面研磨方法。 (2) The single wafer polishing method for a silicon wafer according to (1), wherein the relative speed is changed only once.

(3)前記相対速度を変更する前の第1の相対速度が、前記相対速度を変更した後の第2の相対速度の40%以下である、上記(2)に記載のシリコンウェーハの枚葉式片面研磨方法。 (3) The single wafer of the above-mentioned (2), wherein the first relative speed before changing the relative speed is 40% or less of the second relative speed after changing the relative speed. Formula single-side polishing method.

(4)前記第1の相対速度による前記シリコンウェーハの研磨量が、前記第2の相対速度による前記シリコンウェーハの研磨量よりも大きい、上記(3)に記載のシリコンウェーハの枚葉式片面研磨方法。 (4) Single wafer polishing of a silicon wafer according to (3) above, wherein a polishing amount of the silicon wafer at the first relative speed is larger than a polishing amount of the silicon wafer at the second relative speed. Method.

本発明によれば、シリコンウェーハの表面粗さを低減しつつ、外周平坦度の増大を従来よりも抑制することのできるシリコンウェーハの枚葉式片面研磨方法を提供することができる。   According to the present invention, it is possible to provide a single wafer single-side polishing method for a silicon wafer that can suppress an increase in outer peripheral flatness as compared with the conventional one while reducing the surface roughness of the silicon wafer.

従来技術によるシリコンウェーハの枚葉式片面研磨方法を説明する模式図である。It is a schematic diagram explaining the single-wafer | sheet-fed single-side polishing method of the silicon wafer by a prior art. 従来技術の枚葉式片面研磨方法における研磨ヘッドのリテーナリングと研磨液との関係を説明する模式図である。It is a schematic diagram explaining the relationship between the retainer ring of the polishing head and the polishing liquid in the conventional single-wafer single-side polishing method. 本発明における相対速度を説明するための模式図である。It is a schematic diagram for demonstrating the relative speed in this invention. 本発明に従う相対速度の変化に伴う、表面粗さおよび外周平坦度への影響を説明する概念図である。It is a conceptual diagram explaining the influence on surface roughness and outer periphery flatness accompanying the change of the relative speed according to this invention. 実験例1において、研磨量に対する表面粗さおよび外周平坦度を示すグラフである。In Experimental example 1, it is a graph which shows the surface roughness and outer periphery flatness with respect to polishing amount.

(片面研磨方法)
以下、図面を参照しつつ、本発明の実施形態について説明する。本発明の一実施形態に従うシリコンウェーハ10の枚葉式片面研磨方法では、図1、2に示すように、リテーナリング124を備える研磨ヘッド120によりシリコンウェーハ10を保持してシリコンウェーハ10の片面(以下、「被研磨面」)をリテーナリング124の下端よりも突出させ、研磨ヘッド120によりシリコンウェーハ10を回転させながら、研磨布150が貼付された回転定盤140にシリコンウェーハ10の被研磨面を押圧しつつ、研磨布150の面上に研磨液170を供給して、シリコンウェーハ10の被研磨面を研磨する。そして、シリコンウェーハ10の中心位置と回転定盤140との相対速度を1回以上変更し、該相対速度の変更を行う度に、該相対速度を増大させる。なお、図1では研磨ヘッド120および回転定盤140を同じ方向(反時計回り)に回転させているが、互いに異なる方向に回転させてもよい。
(Single-side polishing method)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the single wafer single-side polishing method for a silicon wafer 10 according to an embodiment of the present invention, as shown in FIGS. 1 and 2, the silicon wafer 10 is held by a polishing head 120 having a retainer ring 124, and one side ( Hereinafter, the “surface to be polished” is projected from the lower end of the retainer ring 124 and the silicon wafer 10 is rotated by the polishing head 120 while the surface to be polished of the silicon wafer 10 is rotated on the rotating surface plate 140 to which the polishing cloth 150 is attached. While pressing, the polishing liquid 170 is supplied onto the surface of the polishing pad 150 to polish the surface to be polished of the silicon wafer 10. Then, the relative speed between the center position of the silicon wafer 10 and the rotating surface plate 140 is changed at least once, and the relative speed is increased each time the relative speed is changed. In FIG. 1, the polishing head 120 and the rotating surface plate 140 are rotated in the same direction (counterclockwise), but they may be rotated in different directions.

以下、本発明の好適実施形態である相対速度の変更を1回のみ行う実施形態を用いて、より詳細に説明する。説明の便宜上、相対速度を変更する前の第1の相対速度(研磨初期の相対速度)による研磨を第1研磨工程と称し、相対速度を変更した後の第2の相対速度による研磨を第2研磨工程と称する。第1研磨工程および第2研磨工程のそれぞれは、一般的な片面研磨装置により行うことができる。第1研磨工程における第1の相対速度を、第2研磨工程における第2の相対速度に変更し、第2の相対速度を第1の相対速度よりも増大させることが、本好適実施形態において肝要である。なお、回転定盤140の回転速度を上げる、あるいは研磨ヘッド120の回転定盤140中心からの距離を増大させるなど、一般的な手法により相対速度を増大させることが可能である。   Hereinafter, a preferred embodiment of the present invention will be described in more detail using an embodiment in which the relative speed is changed only once. For convenience of explanation, polishing at the first relative speed (relative speed at the initial stage of polishing) before changing the relative speed is referred to as a first polishing step, and polishing at the second relative speed after changing the relative speed is second. This is called a polishing process. Each of the first polishing step and the second polishing step can be performed by a general single-side polishing apparatus. In the present preferred embodiment, it is important to change the first relative speed in the first polishing step to the second relative speed in the second polishing step and increase the second relative speed more than the first relative speed. It is. It is possible to increase the relative speed by a general method such as increasing the rotational speed of the rotary platen 140 or increasing the distance of the polishing head 120 from the center of the rotary platen 140.

さて、図4を用いて、上述した相対速度を増加させることの技術的意義を説明する。前述のとおり、本発明者の検討により、所定の相対速度の下で片面研磨を始めると、表面粗さは急速に低減し始めるものの、研磨量が増大するにつれてその低減効果が飽和していく(図4中の破線)ことが見出された。一方、外周平坦度は研磨量にほぼ比例して増大(平坦性は悪化)することも見出された。また、相対速度が高速であるほど、表面粗さの低減効果が高いものの、外周平坦度の増大も速い。そこで、図4の実線に示すように、片面研磨を始める際には相対速度を比較的低速な相対速度Vとしておき、その後、相対速度を比較的高速な相対速度Vへと変更する。こうすることで、表面粗さについては、相対速度Vでは得ることの不可能な、相対速度Vによる低減した表面粗さを得ることができる。一方、外周平坦度については、相対速度を変更するまでは相対速度Vによる研磨によって外周平坦度の増大が抑制できるため、相対速度Vのみで研磨を行った場合よりも、外周平坦度の増大を抑制することができる。 Now, the technical significance of increasing the above-described relative speed will be described with reference to FIG. As described above, according to the study of the present inventor, when single-side polishing is started under a predetermined relative speed, the surface roughness starts to decrease rapidly, but the reduction effect is saturated as the polishing amount increases ( The broken line in FIG. 4 was found. On the other hand, it has also been found that the outer flatness increases almost in proportion to the polishing amount (flatness deteriorates). Also, the higher the relative speed, the higher the effect of reducing the surface roughness, but the faster the peripheral flatness increases. Therefore, as shown by the solid line in FIG. 4, when starting single-side polishing, the relative speed is set to a relatively low relative speed V L, and then the relative speed is changed to a relatively high relative speed V H. By doing so, it is possible to obtain a reduced surface roughness due to the relative speed V H that cannot be obtained at the relative speed V L. On the other hand, the outer peripheral flatness, because until you change the relative speed can be increased suppression of the outer peripheral flatness by polishing by the relative velocity V L, than was polished only at a relative speed V H, the outer peripheral flatness The increase can be suppressed.

なお、一定の相対速度の下で研磨を進めると表面粗さの低減効果は飽和するため、相対速度の大きさに対して、得られる表面粗さには限界がある。そのため、片面研磨を始める際には相対速度を比較的高速な相対速度Vとし、その後、相対速度を比較的低速な相対速度Vへと相対速度を変化させたとしても、図4の一点鎖線に示すように、表面粗さの改善には繋がらない。相対速度Vから相対速度Vへと変化させるのであれば、外周平坦度の増大を考慮すると、相対速度を変更せずに研磨を中止した方が好ましいと言える。 Note that, when polishing is performed under a constant relative speed, the effect of reducing the surface roughness is saturated, so that there is a limit to the surface roughness that can be obtained with respect to the magnitude of the relative speed. Therefore, even when the relative speed is changed to the relatively high relative speed V H when the single-side polishing is started and then the relative speed is changed to the relatively low relative speed V L , one point in FIG. As indicated by the chain line, the surface roughness is not improved. If the relative speed V H is changed to the relative speed V L , it can be said that it is preferable to stop the polishing without changing the relative speed in consideration of the increase in the outer peripheral flatness.

このように、本実施形態では相対速度の変更を行い、かつ、相対速度を増大させるため、シリコンウェーハの表面粗さを低減しつつ、外周平坦度の増大を従来よりも抑制することのできるシリコンウェーハの枚葉式片面研磨方法を提供することができる。   As described above, in this embodiment, the relative speed is changed and the relative speed is increased, so that silicon that can suppress the increase in the outer peripheral flatness while reducing the surface roughness of the silicon wafer as compared with the conventional silicon. A single wafer single side polishing method of a wafer can be provided.

ここで、相対速度を変更する前の第1の相対速度が、相対速度を変更した後の第2の相対速度の40%以下であることが好ましい。第1の相対速度をこの条件に規制することで、外周平坦度の増大を従来に比べて顕著に抑制しつつ、第2の相対速度による表面粗さの改善効果を享受することができる。   Here, it is preferable that the first relative speed before changing the relative speed is 40% or less of the second relative speed after changing the relative speed. By restricting the first relative speed to this condition, it is possible to enjoy the effect of improving the surface roughness due to the second relative speed while significantly suppressing the increase in the outer peripheral flatness as compared with the conventional case.

この場合、第1の相対速度によるシリコンウェーハの研磨量が、第2の相対速度によるシリコンウェーハの研磨量よりも大きいことが好ましい。こうすることで、相対速度を変化させた後、第2の相対速度によって表面粗さを急速に低減しつつ、第2の相対速度による外周平坦度の増大を最小限とすることができる。   In this case, the polishing amount of the silicon wafer at the first relative speed is preferably larger than the polishing amount of the silicon wafer at the second relative speed. By doing so, after the relative speed is changed, the surface roughness is rapidly reduced by the second relative speed, and the increase in the outer peripheral flatness due to the second relative speed can be minimized.

これまで、相対速度の変更を1回のみ行う好適実施形態を用いて説明してきた。相対速度を複数回変更させ、該相対速度の変更を行う度に、該相対速度を増大させても、上述した相対速度の増大による表面粗さの改善効果および外周平坦度の増大抑制効果が得られることは当然に理解される。ただし、複数回変更を行なうと、変更を行う度に相対速度を高速化するか、第1の相対速度を低速化する必要がある。前者の場合、無限に高速化していけば、ハイドロプレーン現象が発生する状態となる為、その状態を回避する為に押圧を上げる必要があり、シリコンウェーハ10の周縁部に作用する研磨布150の面圧応力が増大することにより、エッジ部でのロールオフ量の増大が発生することとなる。また、後者の場合、低速化に伴う研磨レートの低下により、研磨時間が長くなり生産性が低下することとなる。このため、相対速度の変更は1回とすることが好ましい。   So far, the description has been made using a preferred embodiment in which the relative speed is changed only once. Even if the relative speed is changed a plurality of times and the relative speed is changed, even if the relative speed is increased, the above-described effect of improving the surface roughness and the effect of suppressing the increase in the outer peripheral flatness by increasing the relative speed are obtained. It is understood that this is done. However, if the change is made a plurality of times, it is necessary to increase the relative speed or to decrease the first relative speed each time the change is made. In the former case, if the speed is increased indefinitely, the hydroplane phenomenon will occur, so it is necessary to increase the pressure to avoid that condition, and the polishing cloth 150 acting on the peripheral edge of the silicon wafer 10 As the surface pressure stress increases, the amount of roll-off at the edge portion increases. In the latter case, the polishing time is lowered due to the lowering of the speed, and the polishing time becomes longer and the productivity is lowered. For this reason, it is preferable to change the relative speed once.

なお、本実施形態による枚葉式片面研磨方法では、研磨布の種類、研磨液中の砥粒サイズおよびアルカリ濃度などを変更することなく、相対速度のみを変更することによって、シリコンウェーハの表面粗さを低減しつつ、外周平坦度の増大を従来よりも抑制することができる。したがって、研磨液の変更を伴うような、複数段階で行う片面研磨方法とは明確に区別されるものである。ただし、本実施形態による枚葉式片面研磨方法を行った後、さらに研磨液などを変更して、片面研磨を行うことを排除するものではないし、研磨後に純水等による洗浄を行ってもよいことは当然に理解される。   In the single-wafer single-side polishing method according to the present embodiment, the surface roughness of the silicon wafer is changed by changing only the relative speed without changing the type of polishing cloth, the abrasive grain size and the alkali concentration in the polishing liquid, and the like. The increase in the outer peripheral flatness can be suppressed as compared with the conventional one while reducing the thickness. Therefore, it is clearly distinguished from a single-side polishing method performed in multiple stages, which involves changing the polishing liquid. However, after the single-wafer single-side polishing method according to the present embodiment is performed, it is not excluded to change the polishing liquid or the like to perform single-side polishing, and cleaning with pure water or the like may be performed after polishing. Of course it is understood.

以下、本実施形態による具体的な実施態様について、より詳細に説明する。   Hereinafter, specific embodiments according to the present embodiment will be described in more detail.

本実施形態に従う枚葉式片面研磨方法は、スウェード素材などの、比較的軟質な研磨布を用いて片面研磨を行う仕上げ研磨に供して特に好適であるが、研磨布の種類は何ら限定されない。   The single-wafer single-side polishing method according to the present embodiment is particularly suitable for use in final polishing in which single-side polishing is performed using a relatively soft polishing cloth such as a suede material, but the type of polishing cloth is not limited at all.

本実施形態において相対速度は制限されないが、最終的な相対速度を200m/分以下とすることが好ましく、100m/分以下とすることがより好ましい。   In the present embodiment, the relative speed is not limited, but the final relative speed is preferably 200 m / min or less, and more preferably 100 m / min or less.

また、シリコンウェーハ10への研磨荷重は400gf/cm以下とすることが好ましく、300gf/cm以下とすることがより好ましい。 Further, the polishing load to the silicon wafer 10 is preferably set to 400 gf / cm 2 or less, and more preferably to 300 gf / cm 2 or less.

研磨ヘッド120は片面研磨装置に用いられる一般的なものを用いることができ、バッキングプレート122のチャック方式は水等の液体による表面張力による吸着方式および真空チャック方式など、任意である。また、研磨ヘッド120へのリテーナリング124の取り付け方式が任意であることも、既述のとおりである。   As the polishing head 120, a general one used in a single-side polishing apparatus can be used, and the chucking method of the backing plate 122 is arbitrary, such as an adsorption method using a surface tension with a liquid such as water and a vacuum chuck method. Further, as described above, the attachment method of the retainer ring 124 to the polishing head 120 is arbitrary.

また、研磨液170の種類も特に制限されず、例えば遊離砥粒を含むアルカリ性水溶液、遊離砥粒を含まないアルカリ性水溶液などを用いることができる。   Further, the type of the polishing liquid 170 is not particularly limited, and for example, an alkaline aqueous solution containing free abrasive grains or an alkaline aqueous solution containing no free abrasive grains can be used.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to a following example at all.

[実験例1]
直径300mmのシリコンウェーハを用意し、スウェード素材の研磨布を定盤の表面に設置し、アルカリ研磨液を研磨液として供給しながら、図1,2に従う枚葉式片面研磨装置を用いて化学機械研磨による枚葉式片面研磨を行った。なお、研磨ヘッドおよび回転定盤の回転方向は同方向とした。回転定盤にシリコンウェーハを押圧する際の加圧力を200gf/cmとし、総研磨量を1μmと設定して、初期の相対速度を18.8m/分とし、研磨量が0.6μmとなる段階で、回転定盤の回転数のみを増大させ、相対速度を47m/分に増大させた。
[Experimental Example 1]
A silicon wafer having a diameter of 300 mm is prepared, a polishing cloth made of suede is placed on the surface of the surface plate, and an alkaline polishing liquid is supplied as the polishing liquid while using a single wafer single-side polishing apparatus according to FIGS. Single-wafer single-side polishing was performed. The rotating direction of the polishing head and the rotating surface plate was the same direction. The pressing force when pressing the silicon wafer against the rotating platen is 200 gf / cm 2 , the total polishing amount is set to 1 μm, the initial relative speed is 18.8 m / min, and the polishing amount is 0.6 μm. In the stage, only the rotational speed of the rotating platen was increased and the relative speed was increased to 47 m / min.

上記研磨条件のもと、研磨量が1μmに至るまでのシリコンウェーハの表面粗さおよび外周平坦度の変動の推移を観察した。すなわち、所定の研磨量が得られる研磨時間に到達したところで研磨を終了させ、その状態での研磨量、表面粗さおよび外周平坦度を以下のとおりにして測定した。なお、研磨量と研磨時間の関係は予め求めておいた。   Under the above polishing conditions, changes in the surface roughness and peripheral flatness of the silicon wafer until the polishing amount reached 1 μm were observed. That is, the polishing was terminated when the polishing time for obtaining a predetermined polishing amount was reached, and the polishing amount, surface roughness, and outer peripheral flatness in that state were measured as follows. The relationship between the polishing amount and the polishing time was determined in advance.

<表面粗さの測定>
表面粗さの測定においてはChapman社製MPSを用い、測定条件:HighPass Filter 80μm、測定項目:RMS(二乗平均平方根高さ)とした。
<Measurement of surface roughness>
In the measurement of the surface roughness, MPS manufactured by Chapman was used, and the measurement conditions were as follows: HighPass Filter 80 μm, measurement item: RMS (root mean square height).

<外周平坦度の測定>
外周平坦度の測定においてはKLA-Tencor社製Wafer Sight 1を用い、測定条件:Edge Exclusion 1mm、測定項目:ESFQR Maxとした。図5のグラフに、各研磨量の段階における表面粗さ(Å)およびESFQRの最大値(nm)を示す。
<Measurement of outer flatness>
In the measurement of the outer flatness, Wafer Sight 1 manufactured by KLA-Tencor was used, and the measurement condition was Edge Exclusion 1 mm, and the measurement item was ESFQR Max. The graph of FIG. 5 shows the surface roughness (Å) and the maximum value (nm) of ESFQR at each polishing level.

なお、ESFQR(Edge flatness metric, Sector based, Front surface referenced, least sQuares fit reference plane, Range of the data within sector)とは、SEMI規格に規定されるウェーハの平坦度を示す指標であり、ウェーハ全周の周縁領域に形成した扇形(ウェーハの外周から30mmの範囲で円周方向に72等分)の各領域のウェーハ厚みについて、最小二乗法により求められた基準面からの最大変位量の絶対値の和を算出することにより求めるものである。なお、ESFQRの値が小さいほど、ウェーハの平坦度が良好であることを意味する。   Note that ESFQR (Edge flatness metric, Sector based, Front surface referenced, least sQuares fit reference plane, Range of the data within sector) is an index indicating the flatness of the wafer as defined in the SEMI standard. The absolute value of the maximum displacement from the reference plane obtained by the least square method for the wafer thickness of each area of the sector (72 mm in the circumferential direction within the range of 30 mm from the outer periphery of the wafer) formed in the peripheral area of It is obtained by calculating the sum. In addition, it means that the flatness of a wafer is so favorable that the value of ESFQR is small.

図5から、相対速度を高速にする直前では、表面粗さの低減効果が飽和しつつあったが、相対速度を高速にしたことで表面粗さを更に低減できたことが確認された。また、外周平坦度の増加傾向は、相対速度が低速のときに比べて、高速のときの方が、増加が速い(平坦度の悪化が速い)ことも確認された。   From FIG. 5, immediately before the relative speed was increased, the effect of reducing the surface roughness was becoming saturated, but it was confirmed that the surface roughness could be further reduced by increasing the relative speed. It was also confirmed that the increase in the outer peripheral flatness was faster (the deterioration of the flatness was faster) at a higher speed than at a lower relative speed.

[実験例2]
相対速度の変更条件を下記表1のとおりとした以外は、実験例1と同様にしてシリコンウェーハの枚葉式片面研磨を行った。すなわち、総研磨量を1μmに設定し、研磨量が0.6μmに達する段階で、発明例1〜4においては表1のとおりの相対速度に変更した。一方、従来例1,2では相対速度の変更を行わなかった。さらに、測定条件は実験例1と同様にして、1μmの研磨を終えた後の、発明例1〜4および従来例1,2による外周平坦度と表面粗さを測定した。相対速度の変更条件と併せて、測定結果を下記表1に示す。
[Experiment 2]
Single wafer polishing of a silicon wafer was performed in the same manner as in Experimental Example 1 except that the conditions for changing the relative speed were as shown in Table 1 below. That is, the total polishing amount was set to 1 μm, and when the polishing amount reached 0.6 μm, the relative speeds as shown in Table 1 were changed in Invention Examples 1 to 4. On the other hand, the relative speed was not changed in Conventional Examples 1 and 2. Further, the measurement conditions were the same as in Experimental Example 1, and the flatness and surface roughness of the outer circumferences of Invention Examples 1 to 4 and Conventional Examples 1 and 2 after 1 μm polishing was measured. The measurement results are shown in Table 1 below together with the conditions for changing the relative speed.

Figure 0006610526
Figure 0006610526

以上の結果から、発明例1〜4のいずれも、従来例2の外周平坦度よりは良好な外周平坦度が得られ、かつ、従来例1の表面粗さよりも良好な表面粗さが得られたことが確認できた。特に、相対速度を変更する前の相対速度を、変更後の相対速度の40%以下とした発明例3,4では、従来例1,2の外周平坦度よりも良好な外周平坦度が得られつつ、表面粗さも大幅に低減できたことが確認され、良好な外周平坦度および良好な表面粗さを両立できたことが確認された。   From the above results, any of Invention Examples 1 to 4 can obtain the outer peripheral flatness better than that of Conventional Example 2, and the surface roughness better than that of Conventional Example 1 can be obtained. I was able to confirm. In particular, in Invention Examples 3 and 4 in which the relative speed before changing the relative speed is 40% or less of the changed relative speed, the outer periphery flatness better than that of Conventional Examples 1 and 2 is obtained. On the other hand, it was confirmed that the surface roughness could be greatly reduced, and it was confirmed that both good outer peripheral flatness and good surface roughness could be achieved.

本発明によれば、シリコンウェーハの表面粗さを低減しつつ、外周平坦度の増大を従来よりも抑制することのできるシリコンウェーハの枚葉式片面研磨方法を提供することができ、半導体産業において有用である。   According to the present invention, it is possible to provide a single wafer single-side polishing method for a silicon wafer that can suppress an increase in outer peripheral flatness while reducing the surface roughness of the silicon wafer. Useful.

10 シリコンウェーハ
100 片面研磨装置
120 研磨ヘッド
122 バッキングプレート
124 リテーナリング
140 回転定盤
150 研磨布
160 研磨液供給手段
170 研磨液
O 回転定盤の中心
T シリコンウェーハ中心の軌跡
V 相対速度
DESCRIPTION OF SYMBOLS 10 Silicon wafer 100 Single-side polish apparatus 120 Polishing head 122 Backing plate 124 Retainer ring 140 Rotating surface plate 150 Polishing cloth 160 Polishing liquid supply means 170 Polishing liquid O Center of rotating surface plate T Trajectory of silicon wafer center V Relative speed

Claims (1)

リテーナリングを備える研磨ヘッドによりシリコンウェーハを保持して前記シリコンウェーハの片面を前記リテーナリングの下端よりも突出させ、前記研磨ヘッドにより前記シリコンウェーハを回転させながら、研磨布が貼付された回転定盤に前記シリコンウェーハの前記片面を押圧しつつ、前記研磨布の面上に研磨液を供給して、前記シリコンウェーハの前記片面を研磨するシリコンウェーハの枚葉式片面研磨方法であって、
前記シリコンウェーハの中心位置と前記回転定盤との相対速度を1回のみ変更し、該相対速度の変更を行うに、該相対速度を増大させつつ研磨加重を維持し、
前記相対速度を変更する前の第1の相対速度が、前記相対速度を変更した後の第2の相対速度の40%以下であり、
前記第1の相対速度による前記シリコンウェーハの研磨量が、前記第2の相対速度による前記シリコンウェーハの研磨量よりも大きいことを特徴とするシリコンウェーハの枚葉式片面研磨方法。
A rotating surface plate to which a polishing cloth is stuck while holding the silicon wafer by a polishing head having a retainer ring, causing one side of the silicon wafer to protrude from the lower end of the retainer ring, and rotating the silicon wafer by the polishing head. While pressing the one side of the silicon wafer, supplying a polishing liquid onto the surface of the polishing cloth, a single wafer single-side polishing method for a silicon wafer for polishing the one side of the silicon wafer,
Changing the relative speed between the center position of the silicon wafer and the rotating surface plate only once, when changing the relative speed , maintaining the polishing load while increasing the relative speed ,
The first relative speed before changing the relative speed is 40% or less of the second relative speed after changing the relative speed;
A single wafer single-side polishing method for a silicon wafer , wherein a polishing amount of the silicon wafer at the first relative speed is larger than a polishing amount of the silicon wafer at the second relative speed .
JP2016246910A 2016-12-20 2016-12-20 Single wafer polishing method for silicon wafer Active JP6610526B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016246910A JP6610526B2 (en) 2016-12-20 2016-12-20 Single wafer polishing method for silicon wafer
PCT/JP2017/040602 WO2018116690A1 (en) 2016-12-20 2017-11-10 Single-wafer one-side polishing method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246910A JP6610526B2 (en) 2016-12-20 2016-12-20 Single wafer polishing method for silicon wafer

Publications (2)

Publication Number Publication Date
JP2018101695A JP2018101695A (en) 2018-06-28
JP6610526B2 true JP6610526B2 (en) 2019-11-27

Family

ID=62626280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246910A Active JP6610526B2 (en) 2016-12-20 2016-12-20 Single wafer polishing method for silicon wafer

Country Status (2)

Country Link
JP (1) JP6610526B2 (en)
WO (1) WO2018116690A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467188B2 (en) * 2020-03-24 2024-04-15 キオクシア株式会社 CMP method and CMP cleaning agent
CN113843662B (en) * 2021-10-26 2023-07-21 中国航发贵州黎阳航空动力有限公司 Runway part grinding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688584B2 (en) * 1989-01-30 1997-12-10 信越半導体 株式会社 Thin plate polishing method
JP2850803B2 (en) * 1995-08-01 1999-01-27 信越半導体株式会社 Wafer polishing method
JP2004311506A (en) * 2003-04-02 2004-11-04 Shin Etsu Handotai Co Ltd Wafer polishing device, its polishing head, and method of polishing wafer

Also Published As

Publication number Publication date
JP2018101695A (en) 2018-06-28
WO2018116690A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
TWI585840B (en) Manufacturing method of semiconductor wafers
JP6312976B2 (en) Manufacturing method of semiconductor wafer
TWI541099B (en) Silicon wafer grinding method
JP6394337B2 (en) Adsorption chuck, chamfering polishing apparatus, and silicon wafer chamfering polishing method
JP6027346B2 (en) Manufacturing method of semiconductor wafer
JP6447332B2 (en) Method for manufacturing carrier for double-side polishing apparatus and double-side polishing method for wafer
JP6610526B2 (en) Single wafer polishing method for silicon wafer
JP5309692B2 (en) Polishing method of silicon wafer
JP4103808B2 (en) Wafer grinding method and wafer
TW201940759A (en) Method for producing silicon wafer
CN112372509B (en) Method and apparatus for changing initial state of polishing pad to hydrophilicity
TW201921472A (en) Method for manufacturing semiconductor wafer
WO2021100393A1 (en) Wafer polishing method and silicon wafer
WO2009110180A1 (en) Method for manufacturing template and polishing method wherein the template is used
WO2018012097A1 (en) Dual-surface polishing device
JP2002043257A (en) Method of polishing work
JP2001257183A (en) Polishing method of semiconductor wafer
JP2000015571A (en) Polishing method for semi-conductor wafer
JP2004106134A (en) Working substrate fixing device, and its manufacturing method
JP2013110322A (en) Formation method and formation apparatus of silicon oxide film and silicon wafer polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250