JP6609109B2 - Thermoelectric conversion element and method for manufacturing the same, thermoelectric power generation device and Peltier device - Google Patents

Thermoelectric conversion element and method for manufacturing the same, thermoelectric power generation device and Peltier device Download PDF

Info

Publication number
JP6609109B2
JP6609109B2 JP2015083899A JP2015083899A JP6609109B2 JP 6609109 B2 JP6609109 B2 JP 6609109B2 JP 2015083899 A JP2015083899 A JP 2015083899A JP 2015083899 A JP2015083899 A JP 2015083899A JP 6609109 B2 JP6609109 B2 JP 6609109B2
Authority
JP
Japan
Prior art keywords
material layer
layer
thermoelectric conversion
conversion element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015083899A
Other languages
Japanese (ja)
Other versions
JP2016207708A (en
Inventor
和也 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2015083899A priority Critical patent/JP6609109B2/en
Priority to PCT/JP2016/051215 priority patent/WO2016166997A1/en
Publication of JP2016207708A publication Critical patent/JP2016207708A/en
Application granted granted Critical
Publication of JP6609109B2 publication Critical patent/JP6609109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hall/Mr Elements (AREA)

Description

本実施の形態は、熱電変換素子およびその製造方法、および熱電発電装置およびペルチェ装置に関する。   The present embodiment relates to a thermoelectric conversion element, a manufacturing method thereof, a thermoelectric power generation device, and a Peltier device.

近年、地球規模での環境問題や資源問題から省エネ化やエネルギー利用の効率化は、人類の生活において重要な課題となっている。その全てのエネルギーは最終的には熱に変わることを考えると、熱として捨てられていたエネルギーを再利用できる熱電発電は、究極のエネルギーリサイクルと言える。そのため、熱電変換の性能を上げる技術開発や研究が進められている。   In recent years, energy saving and efficient use of energy have become important issues in human life due to environmental problems and resource problems on a global scale. Considering that all the energy will eventually turn into heat, thermoelectric power generation that can recycle energy that has been discarded as heat is the ultimate energy recycling. For this reason, technological development and research for improving the performance of thermoelectric conversion are being promoted.

ここで、わずかに、BiTe系材料を用いた熱電変換素子が産業化されている(例えば、特許文献1参照。)。BiTe系における性能の向上の例として、材料における熱伝導率κを小さくする手法が多く用いられている(例えば、非特許文献1参照。)。ここでは、材料中の多結晶のグレインサイズを小さくすることにより、フォノン散乱を増やすことで、熱の伝わりを小さくしている技術が報告されている。   Here, a thermoelectric conversion element using a BiTe-based material has been industrialized slightly (for example, refer to Patent Document 1). As an example of improving the performance in the BiTe system, a technique for reducing the thermal conductivity κ of a material is often used (see, for example, Non-Patent Document 1). Here, a technique has been reported in which the transmission of heat is reduced by increasing the phonon scattering by reducing the polycrystalline grain size in the material.

その他、スクッテルダイト化合物(例えば、非特許文献2参照)や層状マテリアル(例えば、非特許文献3および非特許文献4参照)を用いた材料開発も行われているが、特性が悪いか若しくは特性が良くても作製が困難であり、まだ基礎研究段階の報告などのために産業化には至っていない。   In addition, material development using a skutterudite compound (for example, see Non-Patent Document 2) and a layered material (for example, Non-Patent Document 3 and Non-Patent Document 4) has been carried out. It is difficult to produce even if it is good, and it has not yet been industrialized due to reports at the basic research stage.

一般的なBiTe系熱電変換素子は、レアメタルであるTeを含有し、Teは単体で毒性を有することが知られている。また、BiTeが動作できる一般的な使用温度は200℃程度までと低く、さらに高温での使用には適さない。また、大きなサイズの結晶を作ることが困難であるため、高温側と低温側の距離が近く、温度差を付けにくいという課題もある。また熱電変換素子はn型材料とp型材料の2種類を組み合わせて作られるため、それぞれの材料における熱膨張係数が同程度である必要がある。   A general BiTe-based thermoelectric conversion element contains Te, which is a rare metal, and Te is known to be toxic by itself. Moreover, the general use temperature at which BiTe can operate is as low as about 200 ° C., and is not suitable for use at a high temperature. In addition, since it is difficult to form a large-size crystal, there is a problem that the temperature difference between the high temperature side and the low temperature side is short and it is difficult to make a temperature difference. Moreover, since the thermoelectric conversion element is made by combining two types of n-type material and p-type material, the thermal expansion coefficients of the respective materials need to be approximately the same.

その他には、HicksとDresselhausによって提唱された『構造の次元を小さくする』ことで無次元性能指数ZTの向上を図る報告が非特許文献5に開示されている。これは構造の低次元化によってフォノン散乱を増大させ、熱伝導率を低減させる手法である。同様に、一次元構造を有するナノワイヤなどが開示されている(例えば、非特許文献6参照。)。しかし、ナノワイヤは、フォノン散乱増大による熱伝導率低減効果により特性は飛躍的に向上するものの、それ自体のハンドリングが難しく、デバイス化には向いていない。   In addition, Non-Patent Document 5 discloses a report proposed by Hicks and Dresselhaus for improving the dimensionless figure of merit ZT by “reducing the dimension of the structure”. This is a technique of increasing the phonon scattering by reducing the structure and reducing the thermal conductivity. Similarly, nanowires having a one-dimensional structure are disclosed (for example, see Non-Patent Document 6). However, although the characteristics of nanowires are drastically improved due to the effect of reducing thermal conductivity due to increased phonon scattering, the nanowires are difficult to handle and are not suitable for devices.

産業化しやすい低次元構造からのアプローチには、コントロールしやすい二次元構造からのアプローチがある。二次元構造における熱伝導率κの低減のアプローチは、量子井戸構造のPbTe/PbEuTe(非特許文献5)や超格子構造のBi2Te3/Sb2Te3(非特許文献7)、PbSeTe/PbTe(非特許文献8)、GaN/AlN/AlGaN(非特許文献9)などが開示されている。また、バルクGaNのゼーベック係数は、非特許文献10に開示されている。 The approach from a low-dimensional structure that is easy to industrialize includes an approach from a two-dimensional structure that is easy to control. The approaches for reducing the thermal conductivity κ in the two-dimensional structure are PbTe / PbEuTe (non-patent document 5) having a quantum well structure, Bi 2 Te 3 / Sb 2 Te 3 (non-patent document 7) having a superlattice structure, PbSeTe / PbTe (Non-Patent Document 8), GaN / AlN / AlGaN (Non-Patent Document 9), and the like are disclosed. The Seebeck coefficient of bulk GaN is disclosed in Non-Patent Document 10.

特開平03−16281号公報Japanese Patent Laid-Open No. 03-16281 特開2009−117430号公報JP 2009-117430 A

Bed Poudel et al.,“High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys”, Science 320,634(2008).Bed Poudel et al., “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys”, Science 320,634 (2008). B.C.Sales et al.,“Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials”, Science 272,1325(1996).B.C.Sales et al., “Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials”, Science 272, 1325 (1996). Li-Dong Zhao et al.,“Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals”, Nature 508,373(2014).Li-Dong Zhao et al., “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals”, Nature 508,373 (2014). S.Ishiwata et al.,“Extremely high electron mobility in a phonon-glass semimetal”, Nature Mater.12,512(2013).S. Ishiwata et al., “Extremely high electron mobility in a phonon-glass semimetal”, Nature Mater. 12, 512 (2013). L.D.Hicks et al.,“Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Phys.Rev.B 53,R10493(1996).L.D.Hicks et al., “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 53, R10493 (1996). Allon I. Hochbaum et al.,“Enhanced thermoelectric performance of rough silicon nanowires”,Nature 451,163(2007).Allon I. Hochbaum et al., “Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451, 163 (2007). Rama Venkatasubramanian et al.,“Thin-film thermoelectric devices with high room-temperature figures of merit”,Nature413,597(2001).Rama Venkatasubramanian et al., “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597 (2001). T.C.Harman et al.,“Quantum Dot Superlattice Thermoelectric Materials and Devices”,Science 297,2229(2002).T.C.Harman et al., “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229 (2002). Alexander Sztein et al.,“Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties”,Appl. Phys.Lett.104,042106(2014).Alexander Sztein et al., “Polarization field engineering of GaN / AlN / AlGaN superlattices for enhanced thermoelectric properties”, Appl. Phys. Lett. 104, 042106 (2014). B. Kucukgok, B. Wang, A. G. Melton, N. Lu, I. T. Ferguson, “Comparison of thermoelectric properties of GaN and ZnO samples”,Phys.Stat. Sol.C11, No.3-4,894-897 (2014).B. Kucukgok, B. Wang, A. G. Melton, N. Lu, I. T. Ferguson, “Comparison of thermoelectric properties of GaN and ZnO samples”, Phys. Stat. Sol. C11, No. 3-4, 894-897 (2014).

しかし、これらの低次元系材料でもTeが使われている、若しくは効率が低いなどの課題がある。   However, these low-dimensional materials have problems such as using Te or low efficiency.

一方で、Hicksと Dresselhausによって提唱された構造の次元を小さくした際に起きるもう一つの現象としてゼーベック係数Sの増大が非特許文献5などに開示されている。これは、電子を量子井戸ポテンシャルに閉じ込めることで、電子の状態密度が離散的になり、バルク状態よりもゼーベック係数Sが大きくなる現象である。しかし、この量子井戸におけるゼーベック係数Sは、バルクの同じキャリア濃度におけるゼーベック係数Sと比べると増大はしているものの、キャリア濃度が増えるに従い、ゼーベック係数Sが小さくなるトレードオフの関係は変わらない。   On the other hand, non-patent document 5 discloses an increase in Seebeck coefficient S as another phenomenon that occurs when the dimension of the structure proposed by Hicks and Dresselhaus is reduced. This is a phenomenon in which, by confining electrons in the quantum well potential, the density of states of the electrons becomes discrete, and the Seebeck coefficient S becomes larger than that in the bulk state. However, although the Seebeck coefficient S in this quantum well is increased as compared with the Seebeck coefficient S at the same carrier concentration in the bulk, the trade-off relationship in which the Seebeck coefficient S decreases as the carrier concentration increases does not change.

このトレードオフを打開する手法として、SrTiO3を用いた熱電変換素子が特許文献2に開示されている。これは、SrTiO3上に12CaO・7Al23などからなる絶縁膜を形成し、金属−絶縁物−半導体(MISFET:Metal-Insulator-Semiconductor Field Effect Transistor)のようにゲートバイアスを印加し、キャリアを誘起することで2次元電子ガス(2DEG:Two Dimensional Electron Gas)層を形成させている。SrTiO3の2DEGにおいては、100MV・cm-1以上という高い電界をかけることで、1014cm-2後半という非常に高い密度の電子を約2nmという膜厚に閉じ込めることで、ゼーベック係数SのV字回復が起こると開示されている。非特許文献5.7、8、9においては、ゼーベック係数SのV字回復は開示されていない。 As a technique for overcoming this trade-off, Patent Document 2 discloses a thermoelectric conversion element using SrTiO 3 . This is because an insulating film made of 12CaO · 7Al 2 O 3 or the like is formed on SrTiO 3 , a gate bias is applied like a metal-insulator-semiconductor field effect transistor (MISFET), and the carrier Is induced to form a two-dimensional electron gas (2DEG) layer. In 2DEG of SrTiO 3 , by applying a high electric field of 100 MV · cm −1 or more and confining very high density electrons of 10 14 cm −2 in the film thickness of about 2 nm, the V of Seebeck coefficient S It is disclosed that character recovery occurs. Non-patent documents 5.7, 8, and 9 do not disclose V-shaped recovery of the Seebeck coefficient S.

バルク材料での、ゼーベック係数Sと電気伝導率σはキャリア濃度に対して、トレードオフの関係にある。そのため、電気伝導率σを上げるためにキャリア濃度nを増やすとゼーベック係数Sが小さくなる。逆にゼーベック係数Sを大きくしようとするとキャリア濃度nを下げなければならず、結果的に電気伝導率σが低くなってしまう課題がある。   In the bulk material, the Seebeck coefficient S and the electrical conductivity σ are in a trade-off relationship with the carrier concentration. Therefore, when the carrier concentration n is increased to increase the electrical conductivity σ, the Seebeck coefficient S is decreased. Conversely, if the Seebeck coefficient S is to be increased, the carrier concentration n must be lowered, resulting in a problem that the electrical conductivity σ is lowered.

それを打開するための手法として、SrTiO3にゲートバイアスを印加することで形成した2DEGにおいてキャリア濃度の増加(印加バイアスを増やす)に伴い、ゼーベック係数SがV字回復することが特許文献2に開示されている。しかしながら、このゲート構造を有したSrTiO3の材料系では、積層することが非常に困難なために、電気伝導率σを高くできずに、ゼーベック係数Sと電気伝導率σのトレードオフを解決できない課題がある。 As a technique for overcoming this, Patent Document 2 discloses that the Seebeck coefficient S recovers to a V-shape as the carrier concentration increases (increases the applied bias) in 2DEG formed by applying a gate bias to SrTiO 3. It is disclosed. However, in the SrTiO 3 material system having this gate structure, since it is very difficult to stack, the electrical conductivity σ cannot be increased, and the trade-off between the Seebeck coefficient S and the electrical conductivity σ cannot be solved. There are challenges.

本実施の形態は、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子およびその製造方法、およびこの熱電変換素子を用いた熱電発電装置およびペルチェ装置を提供する。   The present embodiment improves the trade-off between Seebeck coefficient and carrier concentration, and the trade-off between Seebeck coefficient and electric conductivity, and can be stacked with high electric conductivity, a method for manufacturing the thermoelectric conversion element, and the thermoelectric conversion. A thermoelectric generator and a Peltier device using the element are provided.

本実施の形態の一態様によれば、第1材料層と、前記第1材料層に接触して配置された第2材料層と、前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と、前記第1材料層と前記第2材料層とによる単位構造体が形成される基板とを備え、前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が還元フェルミエネルギーの増加に応じて増加するような関係に設定されており、前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが垂直になるように複数層に亘って形成されている熱電変換素子が提供される。 According to one embodiment of the present embodiment, the first material layer, the second material layer disposed in contact with the first material layer, the first material layer, and the second material layer are electrically connected A connected first electrode; a second electrode electrically connected to the first material layer and the second material layer and spaced apart from the first electrode ; the first material layer; And a substrate on which a unit structure is formed by the second material layer, and an interface between the first material layer and the second material layer is between the first material layer and the second material layer. When the electric polarization is discontinuous, an electric conductive layer mainly responsible for electric conduction is generated, and the first electrode and the second electrode are electrically connected to the electric conductive layer when the electric conductive layer is generated. The electric polarization difference at the interface between the first material layer and the second material layer is Seebeck coefficient of the conductive layer is set in a relationship that increases with the increase in the reduction Fermi energy, the unit structure of the first material layer and the second material layer, the said first material layer the There is provided a thermoelectric conversion element formed over a plurality of layers so that the interface between the two material layers and the surface of the substrate are perpendicular to each other.

本実施の形態の他の態様によれば、第1材料層と、前記第1材料層に接触して配置された第2材料層と、前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と、前記第1材料層と前記第2材料層とによる単位構造体が形成される基板とを備え、前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されており、前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが垂直になるように複数層に亘って形成されている熱電変換素子が提供される。 According to another aspect of the present embodiment, the first material layer, the second material layer disposed in contact with the first material layer, the first material layer and the second material layer electrically A first electrode connected to the first electrode, a second electrode electrically connected to the first material layer and the second material layer and spaced apart from the first electrode, and the first material layer, A substrate on which a unit structure is formed by the second material layer, and the interface between the first material layer and the second material layer is between the first material layer and the second material layer. When the electric polarization of the electric conduction layer is discontinuous, an electric conduction layer mainly responsible for electric conduction is generated, and the first electrode and the second electrode are electrically connected to the electric conduction layer when the electric conduction layer is generated. The connected state, the difference in electric polarization at the interface between the first material layer and the second material layer is Seebeck coefficient of the gas conduction layer is set in a relationship such as increased according to the increase of the carrier concentration of the electrically conductive layer, a unit structure of the first material layer and the second material layer, the first There is provided a thermoelectric conversion element formed over a plurality of layers so that an interface between the material layer and the second material layer and a surface of the substrate are perpendicular to each other.

本実施の形態の他の態様によれば、第1材料層と、前記第1材料層に接触して配置された第2材料層と、前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と、前記第1材料層と前記第2材料層とによる単位構造体が形成される基板とを備え、前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層の無次元性能指数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されており、前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが垂直になるように複数層に亘って形成されている熱電変換素子が提供される。 According to another aspect of the present embodiment, the first material layer, the second material layer disposed in contact with the first material layer, the first material layer and the second material layer electrically A first electrode connected to the first electrode, a second electrode electrically connected to the first material layer and the second material layer and spaced apart from the first electrode, and the first material layer, A substrate on which a unit structure is formed by the second material layer, and the interface between the first material layer and the second material layer is between the first material layer and the second material layer. When the electric polarization of the electric conduction layer is discontinuous, an electric conduction layer mainly responsible for electric conduction is generated, and the first electrode and the second electrode are electrically connected to the electric conduction layer when the electric conduction layer is generated. The connected state, the difference in electric polarization at the interface between the first material layer and the second material layer is Gas dimensionless performance index of the conductive layer is set in a relationship such as increased according to the increase of the carrier concentration of the electrically conductive layer, a unit structure of the first material layer and the second material layer, the There is provided a thermoelectric conversion element formed over a plurality of layers so that an interface between the first material layer and the second material layer and a surface of the substrate are perpendicular to each other.

本実施の形態の他の態様によれば、上記の熱電変換素子を備える熱電発電装置が提供される。   According to another aspect of the present embodiment, a thermoelectric power generation device including the thermoelectric conversion element described above is provided.

本実施の形態の他の態様によれば、上記の熱電変換素子を備えるペルチェ装置が提供される。   According to the other aspect of this Embodiment, a Peltier device provided with said thermoelectric conversion element is provided.

本実施の形態の他の態様によれば、上記の熱電変換素子の製造方法であって、前記第1材料層と前記第2材料層を形成する前記基板を準備する工程と、前記前記第1材料層と前記第2材料層を形成する前記基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層をエッチングする工程とを有する熱電変換素子の製造方法が提供される。 According to another aspect of this embodiment, a manufacturing method of the thermoelectric conversion element, comprising the steps of preparing the substrate for forming the second material layer and the first material layer, wherein the first forming a Al a Ga b in 1-a -b N (0 ≦ a ≦ 1,0 ≦ b ≦ 1,0 ≦ a + b ≦ 1) layer on the substrate to form the material layer and the second material layer When the Al a Ga b in 1-a -b N (0 ≦ a ≦ 1,0 ≦ b ≦ 1,0 ≦ a + b ≦ 1) in layer Al c Ga d in 1-c -d N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) layers, and the Al a Ga b In 1 -abN (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦) a + b ≦ 1) layer and a step of etching the Al c Ga d In 1-cd N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) layer. Way provided That.

本実施の形態の他の態様によれば、上記の熱電変換素子の製造方法であって、前記第1材料層と前記第2材料層を形成する前記基板を準備する工程と、前記第1材料層と前記第2材料層を形成する前記基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を壁開で電極を形成する領域を作製する工程とを有する熱電変換素子の製造方法が提供される。
According to another aspect of this embodiment, a manufacturing method of the thermoelectric conversion element, comprising the steps of preparing the substrate for forming the second material layer and the first material layer, said first material forming a Al a Ga b in 1-a -b N (0 ≦ a ≦ 1,0 ≦ b ≦ 1,0 ≦ a + b ≦ 1) layer on the substrate forming the the layer second material layer the Al a Ga b in 1-a -b N (0 ≦ a ≦ 1,0 ≦ b ≦ 1,0 ≦ a + b ≦ 1) on a layer Al c Ga d in 1-c -d N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) layer, and the Al a Ga b In 1- abN (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b) ≦ 1) A step of forming a region in which an electrode is formed by opening a wall of the Al c Ga d In 1-cd N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) layer. Of thermoelectric conversion elements having Granulation method is provided.

本実施の形態によれば、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子およびその製造方法、およびこの熱電変換素子を用いた熱電発電装置およびペルチェ装置を提供することができる。   According to the present embodiment, the trade-off between Seebeck coefficient and carrier concentration, and the trade-off between Seebeck coefficient and electric conductivity, and a thermoelectric conversion element that can be stacked with high electric conductivity, and a method for manufacturing the thermoelectric conversion element, and this A thermoelectric generator and a Peltier device using a thermoelectric conversion element can be provided.

第1の実施の形態に係る熱電変換素子の模式的断面構造と、2DEG近傍における計算されたエネルギーバンド図。The typical cross-section of the thermoelectric conversion element which concerns on 1st Embodiment, and the energy band figure calculated in 2DEG vicinity. 第1の実施の形態に係る熱電変換素子において、シート電子濃度n(cm-2)および電子の移動度μ(cm2-1-1)を評価するためのホール効果測定用デバイス構成の模式的鳥瞰構造図。In the thermoelectric conversion element according to the first embodiment, a Hall effect measurement device configuration for evaluating sheet electron concentration n (cm −2 ) and electron mobility μ (cm 2 V −1 s −1 ) FIG. 第1の実施の形態に係る熱電変換素子において、Alモル分率Xを変化させたサンプルについて、測定されたシートキャリア濃度n(cm-2)、計算された2DEG層の厚さt2D、計算されたキャリア濃度n(cm-3)を示す図。In the thermoelectric conversion element according to the first embodiment, the measured sheet carrier concentration n (cm −2 ), the calculated 2DEG layer thickness t 2D , and the calculation for the sample in which the Al molar fraction X was changed The figure which shows the carrier density n (cm < -3 >) done. 第1の実施の形態に係る熱電変換素子において、2DEG層におけるキャリア移動度μおよび電気伝導率σと、キャリア濃度nとの関係を示す図。The figure which shows the relationship between the carrier mobility (micro | micron | mu) in the 2DEG layer, electrical conductivity (sigma), and carrier concentration n in the thermoelectric conversion element which concerns on 1st Embodiment. 第1の実施の形態に係る熱電変換素子をヒートシンク・ヒータ間に配置し、ゼーベック係数Sの測定系を説明する模式的鳥瞰構造図。FIG. 3 is a schematic bird's-eye view structure diagram illustrating a measurement system for the Seebeck coefficient S by disposing the thermoelectric conversion element according to the first embodiment between a heat sink and a heater. 第1の実施の形態に係る熱電変換素子において、図3に示されるサンプルD5についての熱電変換特性を示す図。The figure which shows the thermoelectric conversion characteristic about the sample D5 shown by FIG. 3 in the thermoelectric conversion element which concerns on 1st Embodiment. 第1の実施の形態に係る熱電変換素子において、ゼーベック係数Sの絶対値|S|を計算するためのパラメータおよび絶対値|S|の計算結果。The parameter for calculating the absolute value | S | of the Seebeck coefficient S and the calculation result of the absolute value | S | in the thermoelectric conversion element according to the first embodiment. 第1の実施の形態に係る熱電変換素子において、ゼーベック係数Sとキャリア濃度nとの関係を示す図。The figure which shows the relationship between Seebeck coefficient S and carrier concentration n in the thermoelectric conversion element which concerns on 1st Embodiment. 第1の実施の形態に係る熱電変換素子において、無次元性能指数ZTとキャリア濃度nとの関係を示す図。The figure which shows the relationship between the dimensionless figure of merit ZT and carrier concentration n in the thermoelectric conversion element which concerns on 1st Embodiment. (a)第2の実施の形態に係る熱電変換素子の模式的断面構造図、(b)第2の実施の形態の変形例に係る熱電変換素子の模式的断面構造図。(a) The typical cross-section figure of the thermoelectric conversion element which concerns on 2nd Embodiment, (b) The typical cross-section structure figure of the thermoelectric conversion element which concerns on the modification of 2nd Embodiment. 第3の実施の形態に係る熱電変換素子の模式的断面構造図。The typical cross-section figure of the thermoelectric conversion element which concerns on 3rd Embodiment. 第4の実施の形態に係る熱電変換素子の模式的断面構造図。The typical cross-section figure of the thermoelectric conversion element which concerns on 4th Embodiment. 第5の実施の形態に係る熱電変換素子の模式的断面構造図。The typical cross-section figure of the thermoelectric conversion element which concerns on 5th Embodiment. 第6の実施の形態に係る熱電変換素子の模式的断面構造図。The typical cross-section figure of the thermoelectric conversion element which concerns on 6th Embodiment. 第7の実施の形態に係る熱電変換素子の模式的断面構造図。The typical cross-section figure of the thermoelectric conversion element which concerns on 7th Embodiment. 第7の実施の形態に係る熱電変換素子の製造方法であって、(a)サファイア基板を準備する工程を示す模式的断面構造図、(b)サファイア基板上にGaN層を形成する工程を示す模式的断面構造図、(c)GaN層をエッチングする工程を示す模式的断面構造図、(d)サファイア基板上にAlGaN層を形成する工程を示す模式的断面構造図。It is a manufacturing method of the thermoelectric conversion element which concerns on 7th Embodiment, Comprising: (a) The typical cross-section figure which shows the process of preparing a sapphire substrate, (b) The process of forming a GaN layer on a sapphire substrate is shown. FIG. 2 is a schematic cross-sectional structure diagram, (c) a schematic cross-sectional structure diagram illustrating a process of etching a GaN layer, and (d) a schematic cross-sectional structure diagram illustrating a process of forming an AlGaN layer on a sapphire substrate. (a)基本技術に係る熱電発電装置の動作原理の説明図、(b)温度変化ΔTにおける熱電発電装置の電流電圧特性。(A) Explanatory drawing of the operation principle of the thermoelectric generator according to the basic technology, (b) Current-voltage characteristics of the thermoelectric generator at a temperature change ΔT. 基本技術に係る熱電発電装置の模式的構成図(低温側にヒートシンク、高温側に熱交換器を備える例)。The typical block diagram of the thermoelectric power generating apparatus which concerns on basic technology (example provided with a heat sink in the low temperature side, and a heat exchanger in the high temperature side). 基本技術に係る熱電発電装置の模式的構成図(複数の熱電発電装置を直列に配置した例)。The typical block diagram of the thermoelectric generator which concerns on basic technology (The example which has arrange | positioned the several thermoelectric generator in series). 第8の実施の形態に係る熱電発電装置であって、(a)模式的上面図、(b)模式的鳥瞰構成図。It is a thermoelectric power generating apparatus which concerns on 8th Embodiment, Comprising: (a) Typical top view, (b) Typical bird's-eye view block diagram. 第9の実施の形態に係る熱電発電装置であって、(a)模式的上面図、(b)模式的鳥瞰構成図。It is a thermoelectric power generation apparatus which concerns on 9th Embodiment, Comprising: (a) Typical top view, (b) Typical bird's-eye view block diagram. 第10の実施の形態に係る熱電発電装置であって、(a)模式的上面図、(b)模式的鳥瞰構成図。It is a thermoelectric power generation apparatus which concerns on 10th Embodiment, Comprising: (a) Typical top view, (b) Typical bird's-eye view block diagram.

次に、図面を参照して、本実施の形態を説明する。以下において、同じブロックまたは要素には同じ符号を付して説明の重複を避け、説明を簡略にする。図面は模式的なものであり、現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, the present embodiment will be described with reference to the drawings. In the following, the same reference numerals are assigned to the same blocks or elements to avoid duplication of explanation and simplify the explanation. It should be noted that the drawings are schematic and different from the actual ones. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の配置などを下記のものに特定するものでない。この実施の形態は、特許請求の範囲において、種々の変更を加えることができる。   The embodiment described below exemplifies an apparatus and a method for embodying the technical idea, and does not specify the arrangement of each component as described below. This embodiment can be modified in various ways within the scope of the claims.

[第1の実施の形態]
第1の実施の形態に係る熱電変換素子10の模式的断面構造と、2DEG層近傍における計算されたエネルギーバンド図は、図1に示すように表される。
[First embodiment]
A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the first embodiment and a calculated energy band diagram in the vicinity of the 2DEG layer are expressed as shown in FIG.

また、第1の実施の形態に係る熱電変換素子10において、シート電子濃度n(cm-2)および電子の移動度μ(cm2-1-1)を評価するためのホール効果測定用デバイス構成の模式的鳥瞰構造は、図2に示すように表される。 Further, in the thermoelectric conversion element 10 according to the first embodiment, for the Hall effect measurement for evaluating the sheet electron concentration n (cm −2 ) and the electron mobility μ (cm 2 V −1 s −1 ). A schematic bird's-eye view structure of the device configuration is expressed as shown in FIG.

第1の実施の形態に係る熱電変換素子10は、図1〜図2に示すように、第1材料層12と、第1材料層12に接触して配置された第2材料層14と、第1材料層12及び第2材料層14と電気的に接続された第1電極161・162と、第1材料層12及び第2材料層14と電気的に接続され、且つ第1電極161・162と離間して形成された第2電極181・182とを備える。 As shown in FIGS. 1 to 2, the thermoelectric conversion element 10 according to the first embodiment includes a first material layer 12, a second material layer 14 disposed in contact with the first material layer 12, and First electrodes 16 1 and 16 2 electrically connected to the first material layer 12 and the second material layer 14, and electrically connected to the first material layer 12 and the second material layer 14, and the first electrode 16 1 and 16 2 and second electrodes 18 1 and 18 2 formed apart from each other.

ここで、第1材料層12と第2材料層14との界面には、第1材料層12と第2材料層14との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、第1電極161・162および第2電極181・182は、電気伝導層が発生した場合に電気伝導層に電気的に接続された状態となり、第1材料層12と第2材料層14との界面における電気分極の差は、電気伝導層のゼーベック係数Sが還元フェルミエネルギーζの増加に応じて増加するような関係に設定されている。 Here, at the interface between the first material layer 12 and the second material layer 14, the electric polarization mainly between the first material layer 12 and the second material layer 14 is caused by the discontinuity of the electric polarization between the first material layer 12 and the second material layer 14. When the conductive layer is generated, the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 are electrically connected to the electrical conductive layer when the electrical conductive layer is generated. The difference in electric polarization at the interface between the first material layer 12 and the second material layer 14 is set so that the Seebeck coefficient S of the electric conductive layer increases as the reduced Fermi energy ζ increases.

第1の実施の形態に係る熱電変換素子10は、第1電極161・162および第2電極間181・182の温度差に伴う熱エネルギーを電気エネルギーに変換可能であり、また、第1電極161・162および第2電極181・182間に電流を印加することによる電気エネルギーを温度差に変換可能である。 The thermoelectric conversion element 10 according to the first embodiment is capable of converting thermal energy associated with a temperature difference between the first electrodes 16 1 , 16 2 and the second electrodes 18 1 , 18 2 into electrical energy, It is possible to convert electric energy by applying a current between the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 into a temperature difference.

ここで、第1電極161・162および第2電極間181・182の温度差は、例えば、図5に示すように、熱電変換素子10をヒートシンク200・ヒータ300間に配置することによって得ることができる。 Here, the temperature difference between the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 is, for example, that the thermoelectric conversion element 10 is disposed between the heat sink 200 and the heater 300 as shown in FIG. Can be obtained by:

ここで、第2材料層14は、半導体を備えていても良い。   Here, the second material layer 14 may include a semiconductor.

また、第1材料層12はGaN層を備え、第2材料層14はAlGaN層を備えていても良い。   The first material layer 12 may include a GaN layer, and the second material layer 14 may include an AlGaN layer.

また、第1材料層12は、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)を備え、第2材料層14は第1材料層12と組成が異なるAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)を備えていても良い。 The first material layer 12 includes Al a Ga b In 1 -abN (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1), and the second material layer 14 includes the first material layer 14. Al c Ga d In 1-cd N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) having a composition different from that of the material layer 12 may be provided.

また、第2材料層14はNを含まない材料で形成されていても良い。   The second material layer 14 may be formed of a material that does not contain N.

また、第1材料層12は、強誘電体を備えていても良い。   The first material layer 12 may include a ferroelectric material.

また、第1材料層12と第2材料層14とによる単位構造体が形成される基板を備え、第1材料層12と第2材料層14の単位構造体は、第1材料層12と第2材料層14との界面と基板の表面とが平行になるように複数層に亘って積層されていても良い。   In addition, a substrate on which a unit structure formed by the first material layer 12 and the second material layer 14 is formed is provided. A plurality of layers may be laminated so that the interface between the two material layers 14 and the surface of the substrate are parallel to each other.

また、第1材料層12と第2材料層14とによる単位構造体が形成される基板を備え、第1材料層12と第2材料層14の単位構造体は、第1材料層12と第2材料層14との界面と基板の表面とが垂直になるように複数層に亘って形成されていても良い。   In addition, a substrate on which a unit structure formed by the first material layer 12 and the second material layer 14 is formed is provided. It may be formed over a plurality of layers so that the interface between the two material layers 14 and the surface of the substrate are perpendicular to each other.

また、第1材料層12と第2材料層14の界面の面垂直方向に、必ずしも同じ層構成ではなく、かつ主として電気伝導を担う層が第1材料層12と第2材料層14に挟まれているという単位構造が繰り返し積層されていても良い。   In addition, in the direction perpendicular to the interface between the first material layer 12 and the second material layer 14, a layer that is not necessarily the same layer structure and mainly responsible for electrical conduction is sandwiched between the first material layer 12 and the second material layer 14. The unit structure may be repeatedly laminated.

また、第1材料層12と第2材料層14を形成する基板は、シリコンを含有していても良い。   Further, the substrate on which the first material layer 12 and the second material layer 14 are formed may contain silicon.

また、第1材料層12と第2材料層14を形成する基板は、サファイアを含有していても良い。   Moreover, the board | substrate which forms the 1st material layer 12 and the 2nd material layer 14 may contain sapphire.

また、第1電極161・162および第2電極181・182は、電気伝導層に接して形成されていても良い。 The first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be formed in contact with the electrically conductive layer.

また、第1電極161・162および第2電極181・182は、電気伝導層にオーミック接触されていても良い。 The first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be in ohmic contact with the electrically conductive layer.

また、第1電極161・162および第2電極181・182は、第2材料層14に接続されていても良い。 The first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be connected to the second material layer 14.

また、第1電極161・162および第2電極181・182は、同一材料から構成されていても良い。 The first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 may be made of the same material.

また、第1の実施の形態に係る熱電変換素子10は、第1材料層12と、第1材料層12に接触して配置された第2材料層14と、第1材料層12及び第2材料層14と電気的に接続された第1電極161・162と、第1材料層12及び第2材料層14と電気的に接続され、且つ第1電極161・162と離間して形成された第2電極181・182とを備え、第1材料層12と第2材料層14との界面には、第1材料層12と第2材料層14との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、第1電極161・162および第2電極181・182は、電気伝導層が発生した場合に電気伝導層に電気的に接続された状態となり、第1材料層12と第2材料層14との界面における電気分極の差は、電気伝導層のゼーベック係数Sが電気伝導層のキャリア濃度nの増加に応じて増加するような関係に設定されていても良い。 The thermoelectric conversion element 10 according to the first embodiment includes a first material layer 12, a second material layer 14 disposed in contact with the first material layer 12, the first material layer 12, and the second material layer 12. The first electrodes 16 1 , 16 2 electrically connected to the material layer 14 and the first electrodes 16 1 , 16 2 electrically connected to the first material layer 12 and the second material layer 14 are spaced apart from the first electrodes 16 1 , 16 2. And the second electrode 18 1 , 18 2 formed at the interface, the electric polarization between the first material layer 12 and the second material layer 14 at the interface between the first material layer 12 and the second material layer 14. When the electric conduction layer is generated, the first electrode 16 1 , 16 2 and the second electrode 18 1 , 18 2 are formed in the electric conduction layer when the electric conduction layer is generated. The difference in electrical polarization at the interface between the first material layer 12 and the second material layer 14 is due to the electrical connection. Seebeck coefficient S of the conductive layer may be set in relation to increase with an increase in the carrier concentration n of the electrically conductive layer.

本実施の形態の他の態様によれば、第1材料層12と、第1材料層12に接触して配置された第2材料層14と、第1材料層12及び第2材料層14と電気的に接続された第1電極161・162と、第1材料層12及び第2材料層14と電気的に接続され、且つ第1電極161・162と離間して形成された第2電極181・182とを備え、第1材料層12と第2材料層14との界面には、第1材料層12と第2材料層14との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、第1電極161・162および第2電極181・182は、電気伝導層が発生した場合に電気伝導層に電気的に接続された状態となり、第1材料層12と第2材料層14との界面における電気分極の差は、電気伝導層の無次元性能指数ZTが電気伝導層のキャリア濃度nの増加に応じて増加するような関係に設定されていても良い。 According to another aspect of the present embodiment, the first material layer 12, the second material layer 14 disposed in contact with the first material layer 12, the first material layer 12 and the second material layer 14, The first electrodes 16 1 and 16 2 that are electrically connected, and the first material layer 12 and the second material layer 14 are electrically connected and are spaced apart from the first electrodes 16 1 and 16 2 . The second electrodes 18 1 and 18 2 are provided, and the electric polarization between the first material layer 12 and the second material layer 14 is discontinuous at the interface between the first material layer 12 and the second material layer 14. As a result, an electric conduction layer mainly responsible for electric conduction is generated, and the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 are electrically connected to the electric conduction layer when the electric conduction layer is generated. The difference in electric polarization at the interface between the first material layer 12 and the second material layer 14 is the dimensionless property of the electric conduction layer. Index ZT may be set in relation to increase with an increase in the carrier concentration n of the electrically conductive layer.

また、第1の実施の形態に係る熱電変換素子10において、電気伝導を主として担う電気伝導層は、2DEG層若しくは2次元正孔ガス(2DHG:Two Dimensional Hole Gas)層、若しくは2DEG層と2DHG層の両方を備えていても良い。   In the thermoelectric conversion element 10 according to the first embodiment, the electrical conductive layer mainly responsible for electrical conduction is a 2DEG layer, a two-dimensional hole gas (2DHG) layer, or a 2DEG layer and a 2DHG layer. You may have both.

また、第1の実施の形態に係る熱電変換素子10において、第1電極161・162および第2電極181・182は、同一材料構成の電極であって、電気伝導を主として担う層にオーミック接触している。 In the thermoelectric conversion element 10 according to the first embodiment, the first electrodes 16 1 , 16 2 and the second electrodes 18 1 , 18 2 are electrodes of the same material configuration and are layers mainly responsible for electrical conduction. Is in ohmic contact.

また、第1の実施の形態に係る熱電変換素子10において、第1材料層12と第2材料層14は、互いに電気分極が異なり、第1材料層12と第2材料層14との界面において、電気分極不連続を備えていても良い。   Further, in the thermoelectric conversion element 10 according to the first embodiment, the first material layer 12 and the second material layer 14 have different electric polarizations, and at the interface between the first material layer 12 and the second material layer 14. The electric polarization may be discontinuous.

また、第1の実施の形態に係る熱電変換素子10において、第2材料層14内の電気分極は、図1に示すように、自発分極PSPとピエゾ電界に伴うピエゾ分極PPEとの和(PSP+PPE)で表され、第1材料層12内の電気分極は、自発分極PSPで表され、電気分極不連続を備えている。 Further, in the thermoelectric conversion element 10 according to the first embodiment, as shown in FIG. 1, the electric polarization in the second material layer 14 is the sum of the spontaneous polarization P SP and the piezo polarization P PE accompanying the piezo electric field. It is represented by (P SP + P PE ), and the electric polarization in the first material layer 12 is represented by spontaneous polarization P SP and has an electric polarization discontinuity.

また、第1の実施の形態に係る熱電変換素子10において、熱電変換素子10のゼーベック係数Sは、熱電変換素子10が保持するキャリア濃度の増加に呼応して増加する性能を備えていても良い。   Moreover, in the thermoelectric conversion element 10 which concerns on 1st Embodiment, the Seebeck coefficient S of the thermoelectric conversion element 10 may be provided with the performance which increases in response to the increase in the carrier concentration which the thermoelectric conversion element 10 hold | maintains. .

また、第1の実施の形態に係る熱電変換素子10において、熱電変換素子10のゼーベック係数Sは、2DEG層や2DHG層などの電気伝導を担う層のキャリア濃度nの増加に呼応して増加する性能を備えていても良い。   Further, in the thermoelectric conversion element 10 according to the first embodiment, the Seebeck coefficient S of the thermoelectric conversion element 10 increases in response to an increase in the carrier concentration n of a layer responsible for electrical conduction such as a 2DEG layer or a 2DHG layer. It may have performance.

また、第1の実施の形態に係る熱電変換素子10において、第1材料層12と第2材料層14は、2DEG層若しくは2DHG層の伝導度変調を目的とするドーピングが実施されていなくても良い。   Further, in the thermoelectric conversion element 10 according to the first embodiment, the first material layer 12 and the second material layer 14 may not be doped for the purpose of conductivity modulation of the 2DEG layer or the 2DHG layer. good.

また、第1の実施の形態に係る熱電変換素子10において、第1材料層12と第2材料層14の界面の面垂直方向に、必ずしも同じ層構成ではなく、かつ主として電気伝導を担う層が第1材料層12と第2材料層14に挟まれているという単位構造が繰り返し積層化されていても良い。   Further, in the thermoelectric conversion element 10 according to the first embodiment, a layer that is not necessarily the same layer configuration and mainly responsible for electrical conduction is provided in the direction perpendicular to the interface between the first material layer 12 and the second material layer 14. The unit structure sandwiched between the first material layer 12 and the second material layer 14 may be repeatedly laminated.

第1の実施の形態に係る熱電変換素子10においては、ゼーベック係数Sとキャリア濃度nのトレードオフ、およびゼーベック係数Sと電気伝導率σのトレードオフを打ち破る方法として、これまでにない新しいコンセプトである、積層化が可能な分極材料における分極不連続により二次元電気伝導層を形成する。分極材料の分極量を高くすることで、二次元電気伝導層のキャリア濃度を増加させ、それによってゼーベック係数SのV字回復現象を起させることができる。結果として、ゼーベック係数Sと電気伝導率σのトレードオフを解消することができる。   In the thermoelectric conversion element 10 according to the first embodiment, as a method of overcoming the trade-off between the Seebeck coefficient S and the carrier concentration n and the trade-off between the Seebeck coefficient S and the electric conductivity σ, an unprecedented new concept is used. A two-dimensional electrically conductive layer is formed by polarization discontinuity in a polarization material that can be laminated. By increasing the amount of polarization of the polarization material, the carrier concentration of the two-dimensional electrically conductive layer can be increased, thereby causing the V-shaped recovery phenomenon of the Seebeck coefficient S. As a result, the trade-off between the Seebeck coefficient S and the electrical conductivity σ can be eliminated.

(熱電変換素子の性能)
熱電変換素子の無次元性能指数ZTは、

ZT=S2σ/κ・T (1)

で表される。
ここで、Sはゼーベック係数、σは電気伝導率、κは熱伝導率を表す。
(Performance of thermoelectric conversion element)
The dimensionless figure of merit ZT of the thermoelectric conversion element is

ZT = S 2 σ / κ · T (1)

It is represented by
Here, S represents the Seebeck coefficient, σ represents electrical conductivity, and κ represents thermal conductivity.

また、一般的に用いられるn型のバルク材料におけるゼーベック係数Sは、

S=8π2κB 2T/3eh2・m*・(π/3n)2/3 (2)

で、表される。ただし、κB はボルツマン定数、Tは絶対温度、eは電子の電荷素量、hはプランク定数、m*は電子の有効質量、nはキャリア濃度である。
In addition, the Seebeck coefficient S in a commonly used n-type bulk material is

S = 8π 2 κ B 2 T / 3 eh 2 · m * · (π / 3n) 2/3 (2)

Is represented. Where κ B is the Boltzmann constant, T is the absolute temperature, e is the elementary charge of electrons, h is the Planck constant, m * is the effective mass of electrons, and n is the carrier concentration.

また、電気伝導率σは、

σ=neμ (3)

で表される。ただし、μは電子の移動度である。
The electrical conductivity σ is

σ = neμ (3)

It is represented by Where μ is the electron mobility.

熱電変換素子は、ゼーベック係数Sと電気伝導率σが、キャリア濃度nに対してトレードオフの関係にあることが上記の式(1)、式(2)から明らかである。つまり、キャリア濃度nが増えると、ゼーベック係数Sは小さくなることを意味している。また、キャリア濃度nは、熱伝導率κにも影響を及ぼすことから、一般的に熱電変換素子においては、1018〜1019(cm-3)のキャリア濃度において最も性能が良くなるとされている。 It is clear from the above formulas (1) and (2) that the Seebeck coefficient S and the electrical conductivity σ of the thermoelectric conversion element are in a trade-off relationship with the carrier concentration n. That is, it means that the Seebeck coefficient S decreases as the carrier concentration n increases. In addition, since the carrier concentration n also affects the thermal conductivity κ, it is generally said that the thermoelectric conversion element has the best performance at a carrier concentration of 10 18 to 10 19 (cm −3 ). .

本実施の形態に係る熱電変換素子においては、分極効果によって誘導される電子の閉じ込め効果によって、相対的に大きなキャリア濃度nにおいて、ゼーベック係数Sが増大するのみならず、ゼーベック係数Sとキャリア濃度nとの間のトレードオフ関係が破れ、V字回復特性を得ることができる。また、キャリアの増加は、ゲートバイアスによって誘起されるのではなく、分極効果の変化によって、実現されている。   In the thermoelectric conversion element according to the present embodiment, not only the Seebeck coefficient S increases at a relatively large carrier concentration n due to the electron confinement effect induced by the polarization effect, but also the Seebeck coefficient S and the carrier concentration n. The trade-off relationship is broken, and the V-shaped recovery characteristic can be obtained. Further, the increase in carriers is not induced by a gate bias, but is realized by a change in polarization effect.

ゼーベック係数Sとキャリア濃度nとの間のV字回復特性は、第1の実施の形態に係る熱電変換素子における電気的分極不連続構成による典型的な特徴である。   The V-shaped recovery characteristic between the Seebeck coefficient S and the carrier concentration n is a typical feature due to the electric polarization discontinuity configuration in the thermoelectric conversion element according to the first embodiment.

第1の実施の形態に係る熱電変換素子においては、分極不連続構造を採用し、その結果、ヘテロ接合界面に現れる2DEG構造(若しくは2DHG構造)を分極不連続構造として採用している。しかも、この2DEG構造(若しくは2DHG構造)による分極不連続構成では、不純物ドーピングもゲートバイアスによるキリア誘起も必要としない。   In the thermoelectric conversion element according to the first embodiment, a polarization discontinuous structure is adopted, and as a result, a 2DEG structure (or 2DHG structure) appearing at the heterojunction interface is adopted as the polarization discontinuous structure. In addition, the polarization discontinuous configuration based on the 2DEG structure (or 2DHG structure) does not require impurity doping or inducement of a clear by gate bias.

このような意図的なアンドープのマルチレイヤー構造によって、イオン化不純物散乱を低減することができるのみならず、キャリア移動度μの増大および電気伝導率σの増大を図ることができる。さらに、相対的に非常に薄い2DEG層(若しくは2DHG層)を除き、大部分のデバイス領域を、熱伝導率κの相対的に低い、熱伝導阻止領域とすることができる。   Such an intentionally undoped multilayer structure can not only reduce ionized impurity scattering, but also increase carrier mobility μ and increase electrical conductivity σ. Furthermore, except for the relatively very thin 2DEG layer (or 2DHG layer), most of the device region can be a heat conduction blocking region with a relatively low thermal conductivity κ.

さらに、第1の実施の形態に係る熱電変換素子は、2DEGヘテロ接合(若しくは2DHGヘテロ接合)の単位構造を容易に拡張し、多層構造に積層化可能であり、相対的に非常に薄い2DEG層に伴う低電気伝導特性を補うことができる。   Furthermore, the thermoelectric conversion element according to the first embodiment can easily extend the unit structure of the 2DEG heterojunction (or 2DHG heterojunction), and can be stacked in a multilayer structure, with a relatively very thin 2DEG layer. Can compensate for the low electrical conduction characteristics.

したがって、分極不連続構成を備える本実施の形態に係る熱電変換素子は、無次元性能指数ZTを増大すると同時に高電気伝導率σおよび低熱伝導率κ性能を達成することができる。   Therefore, the thermoelectric conversion element according to the present embodiment having the polarization discontinuous configuration can increase the dimensionless figure of merit ZT and at the same time achieve high electrical conductivity σ and low thermal conductivity κ performance.

したがって、第1の実施の形態に係る熱電変換素子は、優れた熱電変換性能と製造の容易さを併せ持つことができる。   Therefore, the thermoelectric conversion element according to the first embodiment can have both excellent thermoelectric conversion performance and ease of manufacture.

(材料および形成方法)
AlXGa1-XN/GaN(0.2<=X<=0.4)は、サファイア基板100上に形成されたGaNテンプレート11上に減圧有機金属気相エピタキシャル成長法(MOCVD:Metal Organic Vapor Phased Epitaxy)を用いて形成した。ここで、成長時の圧力は、例えば、約76Torr、成長温度は、例えば、約1333Kである。
(Material and forming method)
Al X Ga 1-X N / GaN (0.2 <= X <= 0.4) is formed on the GaN template 11 formed on the sapphire substrate 100 by a low pressure metal organic vapor phase epitaxy (MOCVD: Metal Organic Vapor). (Phased Epitaxy). Here, the growth pressure is, for example, about 76 Torr, and the growth temperature is, for example, about 1333K.

Gaの形成材料としては、トリメチルガリウム(TMG:Trimethylgallium )、Alの形成材料としては、トリメチルアルミニウム(TMAl:Trimethylaluminum)、Nの形成材料としては、アンモニア(NH3)を用いた。 Trimethylgallium (TMG) was used as a forming material for Ga, trimethylaluminum (TMAl) was used as a forming material for Al, and ammonia (NH 3 ) was used as a forming material for N.

(0001)面サファイア基板100上にGaN成長核を形成後、GaNテンプレート11は、厚さ約2μmに形成されている。   After forming GaN growth nuclei on the (0001) plane sapphire substrate 100, the GaN template 11 is formed to a thickness of about 2 μm.

GaNテンプレート11上には、意図的にアンドープのAlXGa1-XN/GaN(0.2<=X<=0.4)ヘテロ構造が形成されている。ここで、結晶成長は、0.23μmol/分の固定されたアンモニアフローで、水素雰囲気中で実施されている。 On the GaN template 11 is intentionally undoped Al X Ga 1-X N / GaN (0.2 <= X <= 0.4) heterostructure is formed. Here, crystal growth is carried out in a hydrogen atmosphere with a fixed ammonia flow of 0.23 μmol / min.

GaN成長のためのTMGのフローレートは、32.7μmol/分である。AlXGa1-XN/GaNエピタキシャル成長層のAlモル分率Xは、1.62μmol/分の固定されたTMAlフローで、TMGのフローレートを11.3μmol/分から5.78μmol/分に減少させることによって、適用可能である。 The flow rate of TMG for GaN growth is 32.7 μmol / min. The Al mole fraction X of the Al x Ga 1-x N / GaN epitaxial growth layer reduces the TMG flow rate from 11.3 μmol / min to 5.78 μmol / min with a fixed TMAl flow of 1.62 μmol / min. This is applicable.

AlXGa1-XN層14およびGaN層12の厚さは、例えば、それぞれ約30nmおよび約1μmである。 The thicknesses of the Al x Ga 1-x N layer 14 and the GaN layer 12 are, for example, about 30 nm and about 1 μm, respectively.

X線散乱の逆格子空間マッピングにより、Alモル分率Xを求めた。   The Al mole fraction X was determined by reciprocal space mapping of X-ray scattering.

また、van der Pauw構成のホール効果測定用として、第1電極161・162と第2電極181・182をAlXGa1-XN層14上に電子ビーム蒸着法により形成後、AlXGa1-XN/GaNヘテロ接合界面の2DEG層にオーミックコンタクトを取るために、例えば、約823K、約10分間アニールする。第1電極161・162と第2電極181・182は、Al/Ti構造(TiとTi上に形成されたAlの2層構造)を有する。ここで、Ti層の厚さは、約20nm、Al層の厚さは、約400nmである。結果として、図2に示すように、四角形状にパター二ング配置された円形の第1電極161・162と第2電極181・182がAlXGa1-XN層14上に形成される。 Further, for the measurement of the Hall effect of van der Pauw configuration, after the first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 are formed on the Al x Ga 1-x N layer 14 by electron beam evaporation, In order to make ohmic contact with the 2DEG layer at the Al x Ga 1-x N / GaN heterojunction interface, for example, annealing is performed at about 823 K for about 10 minutes. The first electrodes 16 1 and 16 2 and the second electrodes 18 1 and 18 2 have an Al / Ti structure (a two-layer structure of Al formed on Ti and Ti). Here, the thickness of the Ti layer is about 20 nm, and the thickness of the Al layer is about 400 nm. As a result, as shown in FIG. 2, the circular first electrodes 16 1 , 16 2 and the second electrodes 18 1 , 18 2 arranged in a square pattern are formed on the Al x Ga 1-x N layer 14. It is formed.

次に、リソグラフィー技術と、Cl2とSiCl4の混合ガスを用いた誘導結合プラズマ(ICP:nductively-Coupled Plasma)エッチング法により、図2に示すように、約3mm×3mm形状にAlXGa1-XN/GaNヘテロ接合からなるメサ形状をGaNテンプレート11上に形成する。Cl2とSiCl4のフローレートは、それぞれ15sccm(standard cubic centimeter)および5sccmである。13.56MHzのAC電力50Wがサンプルに供給され、また、50Wの電力がICPエッチング装置に供給されている。 Next, as shown in FIG. 2, Al x Ga 1 is formed into an approximately 3 mm × 3 mm shape by lithography and an inductively coupled plasma (ICP) etching method using a mixed gas of Cl 2 and SiCl 4 . A mesa shape made of -X N / GaN heterojunction is formed on the GaN template 11. The flow rates of Cl 2 and SiCl 4 are 15 sccm (standard cubic centimeter) and 5 sccm, respectively. A 13.56 MHz AC power of 50 W is supplied to the sample, and a power of 50 W is supplied to the ICP etching apparatus.

実験に用いた全てもサンプルで、エッチング深さは、例えば、約300nmとした。   All used in the experiment were also samples, and the etching depth was, for example, about 300 nm.

室温にてホール効果測定を実施し、シートキャリア濃度n(cm-2)、および電子の移動度μ(cm2-1-1)を測定した。 Hall effect measurement was performed at room temperature, and the sheet carrier concentration n (cm −2 ) and electron mobility μ (cm 2 V −1 s −1 ) were measured.

(電子の移動度μ(cm2-1-1)、シートキャリア濃度n(cm-2)、キャリア濃度n(cm-3)、電気伝導率σ)
第1の実施の形態に係る熱電変換素子10において、Alモル分率Xを変化させたサンプルについて、測定されたシートキャリア濃度n(cm-2)、計算された2DEG層の厚さt2D、計算されたキャリア濃度n(cm-3)は、図3に示すように表される。ここで、計算されたキャリア濃度n(cm-3)は測定されたシートキャリア濃度n(cm-2)を計算された2DEG層の厚さt2Dで割った値に等しい。
(Electron mobility μ (cm 2 V −1 s −1 ), sheet carrier concentration n (cm −2 ), carrier concentration n (cm −3 ), electrical conductivity σ)
In the thermoelectric conversion element 10 according to the first embodiment, for the sample in which the Al molar fraction X is changed, the measured sheet carrier concentration n (cm −2 ), the calculated 2DEG layer thickness t 2D , The calculated carrier concentration n (cm −3 ) is expressed as shown in FIG. Here, the calculated carrier concentration n (cm −3 ) is equal to the value obtained by dividing the measured sheet carrier concentration n (cm −2 ) by the calculated 2DEG layer thickness t 2D .

図3において、Alモル分率X=0.2のサンプルはA1〜A5に対応し、X=0.3のサンプルはB1〜B3に対応し、X=0.35のサンプルはC1〜C6に対応し、X=0.4のサンプルはD1〜D6に対応しており、各々の測定されたシートキャリア濃度n(cm-2)と、計算された2DEG層の厚さt2Dにより、キャリア濃度n(cm-3)が得られている。 In FIG. 3, samples with an Al molar fraction X = 0.2 correspond to A1-A5, samples with X = 0.3 correspond to B1-B3, and samples with X = 0.35 correspond to C1-C6. Correspondingly, the sample with X = 0.4 corresponds to D1 to D6, and the carrier concentration is determined by each measured sheet carrier concentration n (cm −2 ) and the calculated 2DEG layer thickness t 2D. n (cm −3 ) is obtained.

2DEG層の厚さt2Dを求めるために、特定のAlモル分率Xを有するサンプルに対して、300Kで外部バイアス電圧が0Vの条件において、AlXGa1-XN/GaN系システムのエネルギーバンド図をシミュレーションにより求めた。ここでは、ティーキャッド(TCAD:Technology Computer Aided Design)をシミュレータとして適用した。 In order to determine the thickness t 2D of the 2DEG layer, the energy of the Al X Ga 1-X N / GaN system is obtained for a sample having a specific Al mole fraction X under the conditions of 300 K and an external bias voltage of 0 V. The band diagram was obtained by simulation. Here, TCAD (Technology Computer Aided Design) was applied as a simulator.

次に、図1のバンド構造に示すように、GaN層12における伝導帯ECより上側にフェルミレベルEFが存在するバンド領域幅によって2DEG層の厚さt2Dを決定した。 Next, as shown in the band structure of Figure 1, to determine the thickness t 2D of the 2DEG layer by a band region width Fermi level E F is present above the conduction band E C in the GaN layer 12.

シミュレーションに用いたサンプルは、厚さ30nmのAlXGa1-XN層14と厚さ1μmのGaN層12とを備え、AlXGa1-XN層14・GaN層12の各層のキャリア濃度nは、1・0×1016(cm-3)とした。また、TCADシミュレーションにおいて、簡単化のため電子のトラップレベルは考慮していない。もっとも簡単な場合を考慮するべきであることと、AlXGa1-XN/GaN系システムの欠陥の物理現象は、未だ複雑なためである。 The sample used for the simulation includes an Al x Ga 1-x N layer 14 having a thickness of 30 nm and a GaN layer 12 having a thickness of 1 μm, and the carrier concentration of each layer of the Al x Ga 1-x N layer 14 and the GaN layer 12. n was set to 1.0 × 10 16 (cm −3 ). Also, in the TCAD simulation, the electron trap level is not considered for the sake of simplicity. This is because the simplest case should be considered and the physical phenomenon of defects in the Al x Ga 1-x N / GaN system is still complicated.

電気伝導率σ(Scm-1)を(2)式を用いて求めた。 The electrical conductivity σ (Scm −1 ) was determined using the formula (2).

これらの計算された2DEG層の厚さt2Dは、図3に示すように、Al0.2Ga0.8Nの5.7nm〜Al0.4Ga0.6Nの7.0nmの連続的範囲に表されている。これらの値は、キャリア濃度nを計算する上で用いられている。 These calculated 2DEG layer thicknesses t 2D are represented in a continuous range from 5.7 nm for Al 0.2 Ga 0.8 N to 7.0 nm for Al 0.4 Ga 0.6 N, as shown in FIG. These values are used in calculating the carrier concentration n.

(キャリア移動度μおよび電気伝導率σとキャリア濃度nとの関係)
第1の実施の形態に係る熱電変換素子10において、2DEG層におけるキャリア移動度μ(cm2-1-1)および電気伝導率σ(Scm-1)と、キャリア濃度n(cm-3)との関係は、図4に示すように表される。
(Relationship between carrier mobility μ, electrical conductivity σ, and carrier concentration n)
In the thermoelectric conversion element 10 according to the first embodiment, carrier mobility μ (cm 2 V −1 s −1 ) and electric conductivity σ (Scm −1 ) in the 2DEG layer, and carrier concentration n (cm −3). ) Is expressed as shown in FIG.

(ゼーベック係数Sの測定)
ホール効果測定後、図3に示されたサンプルについて、第1の実施の形態に係る熱電変換素子10の面内ゼーベック係数Sを室温状態において測定した。
(Measurement of Seebeck coefficient S)
After the Hall effect measurement, the in-plane Seebeck coefficient S of the thermoelectric conversion element 10 according to the first embodiment was measured at room temperature for the sample shown in FIG.

第1の実施の形態に係る熱電変換素子10をヒートシンク200・ヒータ300間に配置し、ゼーベック係数Sの測定系を説明する模式的鳥瞰構造は、図5に示すように表される。   A schematic bird's-eye view structure in which the thermoelectric conversion element 10 according to the first embodiment is arranged between the heat sink 200 and the heater 300 and the measurement system of the Seebeck coefficient S is expressed as shown in FIG.

第1の実施の形態に係る熱電変換素子10は、図5に示すように、特定の温度差を発生可能なように、ヒートシンク200・ヒータ300間に配置されている。   As shown in FIG. 5, the thermoelectric conversion element 10 according to the first embodiment is disposed between the heat sink 200 and the heater 300 so as to generate a specific temperature difference.

電圧プローブ22A・22Bと直径約150μmのタイプK熱電対24A・24Bを用いて、第1の実施の形態に係る熱電変換素子10の熱電特性を測定した。   The thermoelectric characteristics of the thermoelectric conversion element 10 according to the first embodiment were measured using the voltage probes 22A and 22B and the type K thermocouples 24A and 24B having a diameter of about 150 μm.

タイプK熱電対24A・24Bによって、ヒートシンク200側・ヒータ300側のサンプル温度を測定した。   The sample temperatures of the heat sink 200 side and the heater 300 side were measured using type K thermocouples 24A and 24B.

ヒータ300の温度は、直流電圧源によって制御可能である。直流電圧源の出力電圧は、5Vステップで0V〜30Vまで階段状に増加可能である。   The temperature of the heater 300 can be controlled by a DC voltage source. The output voltage of the DC voltage source can be increased stepwise from 0V to 30V in 5V steps.

第1の実施の形態に係る熱電変換素子10の低温側は、自然空冷されていても良い。   The low temperature side of the thermoelectric conversion element 10 according to the first embodiment may be naturally air-cooled.

ゼーベック係数Sの測定は、温度の安定化のために、十分な時間間隔を経た後に、実行された。   The measurement of the Seebeck coefficient S was carried out after a sufficient time interval for temperature stabilization.

(サンプルD5についての熱電変換特性)
第1の実施の形態に係る熱電変換素子10において、図3に示されるサンプルD5についての熱電変換特性は、図6に示すように表される。図6には、ゼーベック係数Sの測定結果が示されている。図6において、“Applied voltage (current)”は、直流電圧源の出力電圧(電流)を示している。Thigh(K)およびTlow(K)は、それぞれヒータ300側およびヒートシンク200側の測定温度を示す。
(Thermoelectric conversion characteristics for sample D5)
In the thermoelectric conversion element 10 according to the first embodiment, the thermoelectric conversion characteristics of the sample D5 shown in FIG. 3 are expressed as shown in FIG. FIG. 6 shows the measurement result of the Seebeck coefficient S. In FIG. 6, “Applied voltage (current)” indicates the output voltage (current) of the DC voltage source. T high (K) and T low (K) indicate measured temperatures on the heater 300 side and the heat sink 200 side, respectively.

ΔT(K)は、Thigh(K)−Tlow(K)に等しい。ΔV(μV)は、タイプK熱電対24A・24Bによって検出された測定電圧の差電圧を示す。 ΔT (K) is equal to T high (K) −T low (K). ΔV (μV) indicates a difference voltage between the measured voltages detected by the type K thermocouples 24A and 24B.

ゼーベック係数S(μV・K-1)は、ΔV/ΔTに等しい。 The Seebeck coefficient S (μV · K −1 ) is equal to ΔV / ΔT.

(ゼーベック係数Sの理論計算)
第1の実施の形態に係る熱電変換素子10において、ゼーベック係数Sの絶対値|S|を計算するためのパラメータおよび絶対値|S|の計算結果は、図7に示すように表される。
(Theoretical calculation of Seebeck coefficient S)
In the thermoelectric conversion element 10 according to the first embodiment, the parameters for calculating the absolute value | S | of the Seebeck coefficient S and the calculation results of the absolute value | S | are expressed as shown in FIG.

GaNのエネルギーギャップ(禁制帯幅)内におけるすべての電子のエネルギーレベルを考慮することができるならば、特定のAlモル分率Xによって、一義的にキャリア濃度nを決定することができる。しかしながら、図3に示される特定のAlモル分率Xによって得られるキャリア濃度nに比較して、実験的に得られるキャリア濃度nの値は、無視できない変位分を含んでいる。このことは、実験には、例えば、転位や、表面状態などの様々なファクタが含まれていることを意味している。したがって、直接的にキャリア濃度を計算することは、非現実的である。   If the energy level of all electrons in the energy gap (forbidden band width) of GaN can be considered, the carrier concentration n can be uniquely determined by the specific Al mole fraction X. However, compared with the carrier concentration n obtained by the specific Al mole fraction X shown in FIG. 3, the value of the carrier concentration n obtained experimentally includes a non-negligible displacement. This means that the experiment includes various factors such as dislocations and surface states. Therefore, it is impractical to calculate the carrier concentration directly.

したがって、ゼーベック係数Sの絶対値|S|とキャリア濃度nの関係を求めた図7において、特定のAlモル分率X(=0.2、0.3、0.4)に対しては、図3に示される実験的なキャリア濃度nの平均化された値(nバー)を用い、特定のAlモル分率X(=0.25、および0.35)に対しては、実験的なキャリア濃度nの平均化された値(nバー)の線形近似によって計算した。   Therefore, in FIG. 7 in which the relationship between the absolute value | S | of the Seebeck coefficient S and the carrier concentration n is obtained, for a specific Al mole fraction X (= 0.2, 0.3, 0.4), Using the averaged value (n bar) of the experimental carrier concentration n shown in FIG. 3, for a specific Al mole fraction X (= 0.25 and 0.35), the experimental It was calculated by linear approximation of the averaged value (n bar) of the carrier concentration n.

(ゼーベック係数Sとキャリア濃度nとの関係)
第1の実施の形態に係る熱電変換素子10において、ゼーベック係数Sとキャリア濃度nとの関係は、図8に示すように表される。図8においては、ゼーベック係数Sの絶対値|S|とキャリア濃度nとの関係が示されている。ここで、図8において、|S|2DEGは、実験に用いたAlGaN/GaN系サンプルに対するゼーベック係数Sの絶対値を表す。また、|S|film-GaNは、比較例として、非特許文献10に掲載されたバルクGaNのゼーベック係数Sの絶対値を表す。
(Relationship between Seebeck coefficient S and carrier concentration n)
In the thermoelectric conversion element 10 according to the first embodiment, the relationship between the Seebeck coefficient S and the carrier concentration n is expressed as shown in FIG. FIG. 8 shows the relationship between the absolute value | S | of the Seebeck coefficient S and the carrier concentration n. Here, in FIG. 8, | S | 2DEG represents the absolute value of the Seebeck coefficient S for the AlGaN / GaN-based sample used in the experiment. Further, | S | film-GaN represents the absolute value of Seebeck coefficient S of bulk GaN published in Non-Patent Document 10 as a comparative example.

図8に示すように、ゼーベック係数Sの絶対値|S|2DEGの値は、図8に示されるキャリア濃度nの範囲において、|S|film-GaNの値よりも実質的に大きい。このゼーベック係数Sの絶対値|S|2DEGの増大傾向は、物理理論上フェルミレベルEF近傍における電子の準位密度(DOS:density of states)のエネルギー微分値の量子サイズ効果による増大として説明される。すなわち、S∝[dDOS(E)/dE]E-EFが成立している。 As shown in FIG. 8, the absolute value | S | 2DEG of the Seebeck coefficient S is substantially larger than the value of | S | film-GaN in the range of the carrier concentration n shown in FIG. The absolute value of the Seebeck coefficient S | S | increasing tendency of the 2DEG, level density of the physical theory Fermi level E F electrons in the vicinity (DOS: density of states) is described as increased by the quantum size effect of the energy differential value of The That is, S∝ [dDOS (E) / dE] E-EF is established.

薄膜GaNの量子サイズ効果は、約20nm−約30nm以下の厚さにおいて生じるものとされており、実験に適用された第1の実施の形態に係る熱電変換素子10のサンプルでは、厚さt2Dは、十分にこの範囲に含まれている。 The quantum size effect of the thin film GaN is assumed to occur at a thickness of about 20 nm to about 30 nm or less. In the sample of the thermoelectric conversion element 10 according to the first embodiment applied to the experiment, the thickness t 2D Is well within this range.

第1の実施の形態に係る熱電変換素子10において、ゼーベック係数Sは、図8に示すように、キャリア濃度nが約3.5×1019cm-3よりも大きな値で、キャリア濃度nの増加にも関わらず、170(μV・K-1)から300(μV・K-1)まで増加するというV字回復特性を示している。 In the thermoelectric conversion element 10 according to the first embodiment, as shown in FIG. 8, the Seebeck coefficient S is such that the carrier concentration n is greater than about 3.5 × 10 19 cm −3 and the carrier concentration n Despite the increase, the V-shaped recovery characteristic of increasing from 170 (μV · K −1 ) to 300 (μV · K −1 ) is shown.

第1の実施の形態に係る熱電変換素子10においては、図1に示すような三角形状のポテンシャル内に閉じ込められた2DEGによって、ゼーベック係数Sの絶対値|S|2DEGのキャリア濃度nの増加に伴う増大傾向が生じている。 In the thermoelectric conversion element 10 according to the first embodiment, the 2DEG confined in the triangular potential as shown in FIG. 1 increases the carrier concentration n of the absolute value | S | 2DEG of the Seebeck coefficient S. There is an accompanying increasing trend.

(理論解析)
量子井戸(QW)に閉じ込められた電子のi番目のサブバンドのゼーベック係数Siは、

i=κB/e・[2Fji *)/F0i *)―ζi *] (4)

で表される。ここで、Fjは、以下の(5)式で与えられるフェルミ・ディラック分布関数を含む不定積分である。
(Theoretical analysis)
The Seebeck coefficient S i of the i-th subband of electrons confined in the quantum well (QW) is

S i = κ B / e · [2F ji * ) / F 0i * ) − ζ i * ] (4)

It is represented by Here, F j is an indefinite integral including a Fermi-Dirac distribution function given by the following equation (5).


jj *)=∫0 jdX/[exp(x−ζj *)+1] (5)

ここで、ζi *=(EF-Ei)/kBTであり、ζi *は、量子化されたi番目のサブバンドのエネルギーEiに対する還元フェルミエネルギーを表す。

F jj * ) = ∫ 0 x j dX / [exp (x−ζ j * ) + 1] (5)

Here, ζ i * = (E F −E i ) / k B T, and ζ i * represents the reduced Fermi energy with respect to the energy E i of the quantized i-th subband.

ここで、すべての電子がエネルギーレベルE0(量子化サブバンドの最小エネルギー)に存在すると仮定し、i=0と設定する。また、(4)式および(5)式を得るための理論的な前提条件は、理論的なゼーベック係数(Calculated |S|2DEG)を計算するために適用可能であると仮定する。ここで、第2の仮定は、電子散乱機構の単純化の仮定を含んでいる。極性光学(PO:Polar Optical)フォノン散乱と音響(AC:Acoustic)フォノン散乱は、GaN中における電子の主要な散乱機構である。 Here, it is assumed that all electrons exist at the energy level E 0 (minimum energy of the quantization subband), and i = 0 is set. It is also assumed that the theoretical preconditions for obtaining equations (4) and (5) are applicable for calculating the theoretical Seebeck coefficient (Calculated | S | 2DEG ). Here, the second assumption includes the assumption of simplification of the electron scattering mechanism. Polar optical (PO) phonon scattering and acoustic (AC) acoustic phonon scattering are the main electron scattering mechanisms in GaN.

POフォノン散乱の逆緩和時間1/τは、電子のエネルギーの代わりに摂動強度の関数として表される。一方、(5)式に現れるxjは、逆緩和時間1/τの電子のエネルギーの関数として展開される級数のj番目の累乗項として表される。このことは、(5)式がPOフォノンの効果を取り扱うものではなく、ゼーベック係数S理論計算では、ACフォノン散乱のみを取り扱うことを意味する。 The inverse relaxation time 1 / τ of PO phonon scattering is expressed as a function of perturbation intensity instead of electron energy. On the other hand, x j appearing in the equation (5) is expressed as a j-th power term of a series developed as a function of the energy of the electron having the inverse relaxation time 1 / τ. This means that equation (5) does not deal with the effects of PO phonons, and the Seebeck coefficient S theoretical calculation only deals with AC phonon scattering.

(4)式中の還元フェルミエネルギーζi *は、キャリア濃度nに関係するファクタであり、散乱機構には影響されない。各々のAlXGa1-XN/GaNサンプルの“EF-Ei”は、TCADシミュレーションによって計算される。計算されたゼーベック係数:Calculated |S|2DEGは、図8において、○プロットの破線で表されている。また、図8の横軸では、平均化されたキャリア濃度nバーがキャリア濃度nとして用いられている。 The reduced Fermi energy ζ i * in the equation (4) is a factor related to the carrier concentration n and is not affected by the scattering mechanism. “E F -E i ” of each Al X Ga 1-X N / GaN sample is calculated by TCAD simulation. The calculated Seebeck coefficient: Calculated | S | 2DEG is represented by a broken line in a circle plot in FIG. On the horizontal axis in FIG. 8, the averaged carrier concentration n bar is used as the carrier concentration n.

図8において、計算されたゼーベック係数:Calculated |S|2DEGとキャリア濃度nとの関係は、約2×1019cm-3以上のキャリア濃度nに対して定性的に再現化可能である。ここで、約2×1019cm-3のキャリア濃度nの値は、Al0.2Ga0.8N/GaNサンプルの平均化されたキャリア濃度バーnに対応している。 In FIG. 8, the relationship between the calculated Seebeck coefficient: Calculated | S | 2DEG and the carrier concentration n can be qualitatively reproduced for a carrier concentration n of about 2 × 10 19 cm −3 or more. Here, the value of the carrier concentration n of about 2 × 10 19 cm −3 corresponds to the averaged carrier concentration bar n of the Al 0.2 Ga 0.8 N / GaN sample.

(5)式の関数Fji *)は、非縮退型半導体におけるフェルミ・ディラック積分に対する漸近的な拡張を用いて、exp(ζi *)で近似可能であり、(4)式の“F11 *)/F01 *)”は、1に固定可能である。また、“EF−E0”は、上記のt2Dを計算した条件と同じ条件の下に、TCADシミュレーションによって計算可能である。結果として、(4)式を用いて、ゼーベック係数Sの絶対値|S|を計算することができる。 The function F ji * ) in equation (5) can be approximated by exp (ζ i * ) using an asymptotic extension to the Fermi-Dirac integral in a non-degenerate semiconductor, “F 11 * ) / F 01 * )” can be fixed to 1. Further, “E F −E 0 ” can be calculated by TCAD simulation under the same conditions as the above-described conditions for calculating t 2D . As a result, the absolute value | S | of the Seebeck coefficient S can be calculated using the equation (4).

一般的に熱電変換素子の性能は、材料選択によって制限される。すなわち、バルク材料の熱電特性は、材料に依存したファクタ、すなわち電気伝導率σとゼーベック係数Sによって理論的に決定される。(2)式および(3)式に示すように、キャリア濃度nを増加すると、電気伝導率σは増加するものの、ゼーベック係数Sが減少するという材料に依存するトレードオフ関係が共通に存在する。   In general, the performance of thermoelectric conversion elements is limited by material selection. That is, the thermoelectric properties of the bulk material are theoretically determined by a factor depending on the material, that is, the electric conductivity σ and the Seebeck coefficient S. As shown in the equations (2) and (3), when the carrier concentration n is increased, there is a common trade-off relationship depending on the material that the Seebeck coefficient S decreases although the electrical conductivity σ increases.

しかしながら、第1の実施の形態に係る熱電変換素子10においては、図8の●プロットで示すように、AlGaN/GaNヘテロ構造界面の2DEG層のキャリア濃度nが相対的に高い領域において、キャリア濃度nを増加すると、電気伝導率σは増加するものの、ゼーベック係数Sが減少するという特性が消滅し、V字回復する特性が得られている。   However, in the thermoelectric conversion element 10 according to the first embodiment, as shown by the ● plot in FIG. 8, in the region where the carrier concentration n of the 2DEG layer at the AlGaN / GaN heterostructure interface is relatively high, the carrier concentration When n is increased, the electrical conductivity σ increases, but the characteristic that the Seebeck coefficient S decreases disappears, and a characteristic of V-shaped recovery is obtained.

第1の実施の形態に係る熱電変換素子10においては、図8に示すように、ゼーベック係数Sは、キャリア濃度nの値が約3.5×1019cm-3以上において、キャリア濃度nを増加すると、ゼーベック係数Sが減少するという特性が消滅し、V字回復する特性が得られている。 In the thermoelectric conversion element 10 according to the first embodiment, as shown in FIG. 8, the Seebeck coefficient S is a carrier concentration n when the carrier concentration n is about 3.5 × 10 19 cm −3 or more. When it increases, the characteristic that the Seebeck coefficient S decreases disappears, and a characteristic of V-shaped recovery is obtained.

(無次元性能指数ZTとキャリア濃度nとの関係)
第1の実施の形態に係る熱電変換素子10において、300Kにおける無次元性能指数ZTとキャリア濃度nとの関係は、図9に示すように表される。ここで、GaNの熱伝導率κ=120W・m-1・K-1が維持されるものと仮定している。第1の実施の形態に係る熱電変換素子10において、AlGaN/GaNヘテロ構造は、意図的にアンドープであり、厚さ10nm以下の2DEG層を除くデバイスの大部分の領域は、実質的に電子に対するバルク材料と同等であるためである。2DEG層の厚さt2Dは、計算によって得ることができる。
(Relationship between dimensionless figure of merit ZT and carrier concentration n)
In the thermoelectric conversion element 10 according to the first embodiment, the relationship between the dimensionless figure of merit ZT at 300K and the carrier concentration n is expressed as shown in FIG. Here, it is assumed that the thermal conductivity κ of GaN is maintained at 120 W · m −1 · K −1 . In the thermoelectric conversion element 10 according to the first embodiment, the AlGaN / GaN heterostructure is intentionally undoped, and most regions of the device excluding the 2DEG layer having a thickness of 10 nm or less are substantially free from electrons. This is because it is equivalent to a bulk material. The 2DEG layer thickness t 2D can be obtained by calculation.

図9に示すように、300Kにおける最も高い無次元性能指数ZTの値は、キャリア濃度n=6.5×1019cm-3において、0.141として得られている。バルクGaNの無次元性能指数ZTの値は、0.002である。したがって、第1の実施の形態に係る熱電変換素子10において、300Kにおける無次元性能指数ZTは、70倍の改善効果が得られている。 As shown in FIG. 9, the highest dimensionless figure of merit ZT at 300K is obtained as 0.141 at the carrier concentration n = 6.5 × 10 19 cm −3 . The dimensionless figure of merit ZT of bulk GaN is 0.002. Therefore, in the thermoelectric conversion element 10 according to the first embodiment, the dimensionless figure of merit ZT at 300K has an improvement effect of 70 times.

(V字回復特性)
分極量やキャリア濃度nで記載するとGaN系材料だけの値になってしまうので、他の材料系での適用も考慮し、理論的な特徴を記載する。
(V-shaped recovery characteristics)
If it is described in terms of the amount of polarization and the carrier concentration n, it will be a value only for the GaN-based material, so the theoretical characteristics will be described in consideration of application in other material systems.

分極差がある材料間の2DEG層において、量子効果が起こることで、そのエネルギーバンドにおいてフェルミエネルギーがその量子準位の基底準位よりも高くなり、かつゼーベック係数Siを表す下記の(6)式における、還元フェルミエネルギーζi *がフェルミ・ディラック分布関数から計算される値(A+5/2)FA+3/2i *)/(A+3/2)FA+1/2i *)よりも大きくなる場合に、つまり(A+5/2)FA+3/2i *)/(A+3/2)FA+1/2i *)が負の値になるときゼーベック係数のV字回復が起こる。Aは、キャリア散乱の緩和時間に関連する式τ(E/kBT)=τ0(E/kBT)Aに適用される値である。 In the 2DEG layer between materials having a polarization difference, the quantum effect occurs, so that the Fermi energy becomes higher than the ground level of the quantum level in the energy band, and represents the Seebeck coefficient S i (6) ) In which the reduced Fermi energy ζ i * is calculated from the Fermi-Dirac distribution function (A + 5/2) F A + 3/2 (ζ i * ) / (A + 3/2) F A + 1/2 ( ζ i * ), that is, (A + 5/2) F A + 3/2 (ζ i * ) / (A + 3/2) F A + 1/2i * ) becomes a negative value. Then V-shape recovery of the Seebeck coefficient occurs. A is a value applied to the expression τ (E / k B T) = τ 0 (E / k B T) A related to the relaxation time of carrier scattering.


i=kB/e・[(A+5/2)FA+3/2i *)/(A+3/2)FA+1/2i *)−ζi *]
(6)

ここで、(4)式および(5)式の関係が同様に成立している。

S i = k B / e · [(A + 5/2) F A + 3/2 (ζ i *) / (A + 3/2) F A + 1/2 (ζ i *) -ζ i *]
(6)

Here, the relationship between the equations (4) and (5) is established similarly.

また、2DEG層の場合には、ζi *=(EF-Ei)/kBTであり、2DHG層の場合には、ζi *=−(EF-Ei)/kBTとなる。(6)式のeも正孔となるので、正の値となる。 In the case of the 2DEG layer, ζ i * = (E F −E i ) / k B T. In the case of the 2DHG layer, ζ i * = − (E F −E i ) / k B T. It becomes. Since e in equation (6) is also a hole, it is a positive value.

量子効果は、有効質量などによって決定するエキシトンのボーア半径の2倍程度で起こるとされている。GaNの場合、20nm−30nm以下で量子効果が起こるとされている。例えば、AlGaN/GaN系での2DEGでは、Alモル分率Xが0.2以上でキャリア濃度が2×1019cm-3以上である必要がある。 The quantum effect is said to occur at about twice the exciton Bohr radius determined by the effective mass. In the case of GaN, it is said that a quantum effect occurs at 20 nm to 30 nm or less. For example, in 2DEG in the AlGaN / GaN system, the Al molar fraction X needs to be 0.2 or more and the carrier concentration needs to be 2 × 10 19 cm −3 or more.

第1の実施の形態に係る熱電変換素子10は、フィルム積層化構造による形成が容易であり、また、低熱伝導率κを有する超格子構造若しくはフォノン結晶を適用可能である。   The thermoelectric conversion element 10 according to the first embodiment can be easily formed by a film laminated structure, and a superlattice structure or a phonon crystal having a low thermal conductivity κ can be applied.

したがって、第1の実施の形態によれば、上記V字回復性能を示す電気的分極不連続構造と低熱伝導率κを有する超格子構造若しくはフォノン結晶を融合させて、相対的に高い無次元性能指数ZTを有する熱電変換素子を提供することができる。   Therefore, according to the first embodiment, the electrical polarization discontinuity structure showing the V-shaped recovery performance and the superlattice structure or phonon crystal having a low thermal conductivity κ are fused to obtain a relatively high dimensionless performance. A thermoelectric conversion element having an index ZT can be provided.

第1の実施の形態によれば、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。   According to the first embodiment, the trade-off between the Seebeck coefficient and the carrier concentration and the trade-off between the Seebeck coefficient and the electric conductivity are improved, and a thermoelectric conversion element that can be stacked with a high electric conductivity is provided. it can.

第1の実施の形態によれば、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。   According to the first embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but also can be stacked. By forming a polarization discontinuity in the polarization material and laminating, the trade-off between the Seebeck coefficient S and the electrical conductivity σ is solved, and a thermoelectric conversion element that achieves a high dimensionless figure of merit ZT is provided. it can.

第1の実施の形態によれば、また、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。   According to the first embodiment, when a laminated structure is used, a thermoelectric conversion element that further improves electric conductivity σ by forming both n-type and p-type in one element Can be provided.

[第2の実施の形態]
(一つの電気伝導層を有する構造)
第2の実施の形態に係る熱電変換素子10の模式的断面構造は、図10(a)に示すように表され、第2の実施の形態の変形例に係る熱電変換素子10の模式的断面構造は、図10(b)に示すように表される。
[Second Embodiment]
(Structure with one electrically conductive layer)
The schematic cross-sectional structure of the thermoelectric conversion element 10 according to the second embodiment is expressed as shown in FIG. 10A, and the schematic cross-section of the thermoelectric conversion element 10 according to the modification of the second embodiment. The structure is represented as shown in FIG.

第2の実施の形態に係る熱電変換素子10は、図10(a)に示すように、基板100と、基板100上に配置されたGaN層12と、GaN層12上に配置され、GaN層12と分極不連続がおきるAlGaN層14と、GaN層12とAlGaN層14との界面に形成される2DEG層と、2DEG層と側面より接触する第1電極16・第2電極18とを備える。   As shown in FIG. 10A, the thermoelectric conversion element 10 according to the second embodiment includes a substrate 100, a GaN layer 12 disposed on the substrate 100, a GaN layer 12, and a GaN layer. 12, an AlGaN layer 14 having polarization discontinuity, a 2DEG layer formed at the interface between the GaN layer 12 and the AlGaN layer 14, and a first electrode 16 and a second electrode 18 that are in contact with the 2DEG layer from the side.

ここで、基板100は、サファイア基板であっても良い。   Here, the substrate 100 may be a sapphire substrate.

また、AlGaN層14が形成されるGaN層12面は、m面であっても良い。   The GaN layer 12 surface on which the AlGaN layer 14 is formed may be an m-plane.

第2の実施の形態の変形例に係る熱電変換素子10は、図10(b)に示すように、基板100と、基板100上に配置されたGaN層12と、GaN層12上に配置され、GaN層12と分極不連続がおきるAlGaN層14と、GaN層12とAlGaN層14との界面に形成される2DEG層と、AlGaN層14上に配置される第1電極16・第2電極18とを備える。同様に、基板100は、サファイア基板であっても良い。また、AlGaN層14が形成されるGaN層12面は、m面であっても良い。   As shown in FIG. 10B, the thermoelectric conversion element 10 according to the modification of the second embodiment is disposed on the substrate 100, the GaN layer 12 disposed on the substrate 100, and the GaN layer 12. The GaN layer 12 and the AlGaN layer 14 where polarization discontinuity occurs, the 2DEG layer formed at the interface between the GaN layer 12 and the AlGaN layer 14, and the first electrode 16 and the second electrode 18 disposed on the AlGaN layer 14 With. Similarly, the substrate 100 may be a sapphire substrate. The GaN layer 12 surface on which the AlGaN layer 14 is formed may be an m-plane.

例として、サファイア基板100上にAlGaN層14/GaN層12からなる構造を作製し、Ti/Al/Ni/Auなどの第1電極16・第2電極18を形成し、シンターすることによりオーミックを形成する。   As an example, a structure composed of an AlGaN layer 14 / GaN layer 12 is fabricated on a sapphire substrate 100, a first electrode 16 and a second electrode 18 such as Ti / Al / Ni / Au are formed, and ohmic is obtained by sintering. Form.

必要であれば、その後、素子分離を行うことが可能である。   If necessary, device isolation can be performed thereafter.

AlGaN層14の代わりにAlN層やAlInN層などを用いてもよい。   Instead of the AlGaN layer 14, an AlN layer, an AlInN layer, or the like may be used.

また、分極材料として、PZT、BiFeO3やBaTiO3などの強誘電体材料を用いてもよい。分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。 Further, a ferroelectric material such as PZT, BiFeO 3, or BaTiO 3 may be used as the polarization material. If the polarization discontinuity occurs, or a combination of different materials compositions as Al x Ga 1-x N / Al y Ga 1-y N (x ≠ y).

第2の実施の形態においても第1の実施の形態と同様に、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。   In the second embodiment, similarly to the first embodiment, the trade-off between the Seebeck coefficient and the carrier concentration, and the trade-off between the Seebeck coefficient and the electric conductivity can be improved, and stacking can be performed with high electric conductivity. A thermoelectric conversion element can be provided.

第2の実施の形態においても第1の実施の形態と同様に、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。   Also in the second embodiment, as in the first embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S. In addition to forming and stacking polarization discontinuities in polarization materials that can be laminated, the trade-off between the Seebeck coefficient S and the electrical conductivity σ is solved, and a high dimensionless figure of merit ZT is achieved. A thermoelectric conversion element can be provided.

第2の実施の形態においても第1の実施の形態と同様に、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。   Also in the second embodiment, as in the first embodiment, when a stacked structure is used, by forming both n-type / p-type in one element, further electrical conductivity σ A thermoelectric conversion element that can be improved can be provided.

[第3の実施の形態]
(一つの電気伝導層を有する構造で分極材料が連続しているもの)
第3の実施の形態に係る熱電変換素子10の模式的断面構造は、図11に示すように表される。
[Third embodiment]
(Structure with one electrically conductive layer with continuous polarization material)
A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the third embodiment is expressed as shown in FIG.

第3の実施の形態に係る熱電変換素子10は、図11に示すように、シリコン基板8と、シリコン基板8上に配置されたAlN層13と、シリコン基板8とAlN層13との界面に形成される2DEG層と、AlN層13上に配置されたAlGaN層14とを備える。ここで、図示は省略されているが、2DEG層と側面より接触する第1電極16・第2電極18とを備えていても良い。或いは、AlGaN層14上に配置される第1電極16・第2電極8とを備えていても良い。   As shown in FIG. 11, the thermoelectric conversion element 10 according to the third embodiment includes a silicon substrate 8, an AlN layer 13 disposed on the silicon substrate 8, and an interface between the silicon substrate 8 and the AlN layer 13. A 2DEG layer to be formed and an AlGaN layer 14 disposed on the AlN layer 13 are provided. Here, although not shown, the first electrode 16 and the second electrode 18 that are in contact with the 2DEG layer from the side surface may be provided. Alternatively, the first electrode 16 and the second electrode 8 disposed on the AlGaN layer 14 may be provided.

例として、シリコン基板8上にAlGaN層14/GaN層12のような分極材料が連続で形成されている構造で、AlGaN層14/GaN層12界面では電気伝導を主に担う層はできないが、AlN層13/Si界面に2DEG層が形成されている。   As an example, in a structure in which a polarization material such as the AlGaN layer 14 / GaN layer 12 is continuously formed on the silicon substrate 8, a layer mainly responsible for electrical conduction cannot be formed at the AlGaN layer 14 / GaN layer 12 interface. A 2DEG layer is formed at the AlN layer 13 / Si interface.

尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16・第2電極18とを備えていても良い。   Although not shown, the first electrode 16 and the second electrode 18 that are in contact with the 2DEG layer from the side surface may be provided as in the first embodiment (FIG. 10A). .

また、第1の実施の形態の変形例(図10(b))と同様に、AlGaN層14上に配置される第1電極16・第2電極18とを備えていても良い。   Moreover, you may provide the 1st electrode 16 and the 2nd electrode 18 arrange | positioned on the AlGaN layer 14 similarly to the modification (FIG.10 (b)) of 1st Embodiment.

例として、シリコン基板8上にAlGaN層14/AlN層13からなる構造を作製し、Ti/Al/Ni/Auなどの第1電極16・第2電極18を形成し、シンターすることによりオーミックを形成する。   As an example, a structure composed of an AlGaN layer 14 / AlN layer 13 is formed on a silicon substrate 8, a first electrode 16 and a second electrode 18 such as Ti / Al / Ni / Au are formed, and ohmic is obtained by sintering. Form.

必要であれば、その後、素子分離を行うことが可能である。   If necessary, device isolation can be performed thereafter.

AlGaN層14の代わりにAlInN層などを用いてもよい。   An AlInN layer or the like may be used instead of the AlGaN layer 14.

また、分極材料として、PZT、BiFeO3やBaTiO3などの強誘電体材料を用いてもよい。つまり分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。 Further, a ferroelectric material such as PZT, BiFeO 3, or BaTiO 3 may be used as the polarization material. If that is the polarization discontinuity occurs, or a combination of different materials compositions as Al x Ga 1-x N / Al y Ga 1-y N (x ≠ y).

第3の実施の形態においても第1の実施の形態と同様に、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。   In the third embodiment, similarly to the first embodiment, the trade-off between the Seebeck coefficient and the carrier concentration, and the trade-off between the Seebeck coefficient and the electric conductivity can be improved, and stacking can be performed with high electric conductivity. A thermoelectric conversion element can be provided.

第3の実施の形態においても第1の実施の形態と同様に、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。   In the third embodiment, as in the first embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S. In addition to forming and stacking polarization discontinuities in polarization materials that can be laminated, the trade-off between the Seebeck coefficient S and the electrical conductivity σ is solved, and a high dimensionless figure of merit ZT is achieved. A thermoelectric conversion element can be provided.

第3の実施の形態においても第1の実施の形態と同様に、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。   Also in the third embodiment, as in the first embodiment, when a stacked structure is used, by forming both n-type / p-type in one element, further electrical conductivity σ A thermoelectric conversion element that can be improved can be provided.

[第4の実施の形態]
(二つの以上の電気伝導層を有する積層構造)
第4の実施の形態に係る熱電変換素子10の模式的断面構造は、図12に示すように表される。
[Fourth embodiment]
(Laminated structure with two or more electrically conductive layers)
A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the fourth embodiment is expressed as shown in FIG.

第4の実施の形態に係る熱電変換素子10においては、図12に示すように、GaN層とAlGaN層のペアが多層化されている。   In the thermoelectric conversion element 10 according to the fourth embodiment, as shown in FIG. 12, a pair of a GaN layer and an AlGaN layer is multilayered.

第4の実施の形態に係る熱電変換素子10は、図12に示すように、GaN層121と、GaN層121上に配置されるAlGaN層141と、AlGaN層141上に配置されるGaN層122と、GaN層122上に配置されるAlGaN層142と、AlGaN層142上に配置されるGaN層123と、GaN層123上に配置されるAlGaN層143と、AlGaN層143上に配置されるGaN層124と、GaN層124上に配置されるAlGaN層144とを備える。 Thermoelectric conversion element 10 according to the fourth embodiment, as shown in FIG. 12, a GaN layer 12 1, and the AlGaN layer 14 1 disposed on the GaN layer 12 1 is disposed on the AlGaN layer 14 1 that the GaN layer 12 2, the AlGaN layer 14 2 disposed on the GaN layer 12 2, the GaN layer 12 3 is disposed on the AlGaN layer 14 2, AlGaN layer 14 3 is disposed on the GaN layer 12 3 When provided with a GaN layer 12 4 disposed on the AlGaN layer 14 3, and an AlGaN layer 14 4 disposed on the GaN layer 12 4.

ここで、GaN層121・AlGaN層141の界面には2DEG層が形成され、AlGaN層141とGaN層122との界面には2次元ホールガス(2DHG:Two Dimensional Hole Gas)層が形成される。 Here, 2DEG layer is formed at the interface between the GaN layer 12 1 · AlGaN layer 14 1, AlGaN layer 14 1 and the two-dimensional hole gas at the interface between the GaN layer 12 2 (2DHG: Two Dimensional Hole Gas) layer It is formed.

同様に、GaN層122とAlGaN層142との界面、GaN層123とAlGaN層143との界面、GaN層124とAlGaN層144との界面には2DEG層が形成される。 Similarly, a 2DEG layer is formed at the interface between the GaN layer 12 2 and the AlGaN layer 14 2 , the interface between the GaN layer 12 3 and the AlGaN layer 14 3, and the interface between the GaN layer 12 4 and the AlGaN layer 14 4 .

同様に、AlGaN層142とGaN層123との界面、AlGaN層143とGaN層124との界面には2DHG層が形成される。ここで、図示は、省略されているが、GaN層121は、サファイア基板などの基板上に形成される。 Similarly, a 2DHG layer is formed at the interface between the AlGaN layer 14 2 and the GaN layer 12 3 and at the interface between the AlGaN layer 14 3 and the GaN layer 12 4 . Here, illustration has been omitted, GaN layer 12 1 is formed on a substrate such as a sapphire substrate.

尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16E・第2電極18Eとを備えていても良い。また、2DHG層と側面より接触する第1電極16H・第2電極18Hとを備えていても良い。   Although not shown in the figure, the first electrode 16E and the second electrode 18E that are in contact with the 2DEG layer from the side surface may be provided as in the first embodiment (FIG. 10A). . Moreover, you may provide the 1st electrode 16H and the 2nd electrode 18H which contact a 2DHG layer from a side surface.

例として、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。   As an example, by laminating films such that AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / AlGaN / GaN /... GaN / substrate causes polarization discontinuity, a 2DEG layer at each AlGaN / GaN interface, or By forming the 2DHG layer or both, the electrical conductivity σ can be increased.

また、積層構造の場合、2DEG層と2DHG層の両方を形成可能であるために、一素子でp型・n型両方の熱電変換素子を形成することもできる。   In the case of a laminated structure, since both a 2DEG layer and a 2DHG layer can be formed, both p-type and n-type thermoelectric conversion elements can be formed with one element.

分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を形成することもできる。   Since it is important that polarization discontinuity occurs, it is possible to form a thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN.

また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を形成することもできる。   Moreover, a thermoelectric conversion element provided with the laminated structure which combined them like AlGaN / GaN / AlInN / GaN /.../ board | substrate can also be formed.

その他にも、使用する材料によってはスピンコートやゾルゲル法などで積層構造を形成することもできる。   In addition, depending on the material used, a laminated structure can also be formed by spin coating or sol-gel method.

第4の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。   Also in the fourth embodiment, the trade-off between Seebeck coefficient and carrier concentration and the trade-off between Seebeck coefficient and electric conductivity can be improved, and a thermoelectric conversion element that can be stacked with high electric conductivity can be provided. .

第4の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。   Also in the fourth embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked. By forming a polarization discontinuity in a polarization material and laminating it, it is possible to provide a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity σ and realizes a high dimensionless figure of merit ZT. .

第4実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。   Also in the fourth embodiment, when a laminated structure is used, a thermoelectric conversion element that further improves electric conductivity σ is provided by forming both n-type and p-type in one element. Can do.

[第5の実施の形態]
第5の実施の形態に係る熱電変換素子10の模式的断面構造は、図13に示すように表される。
[Fifth embodiment]
A schematic cross-sectional structure of a thermoelectric conversion element 10 according to the fifth embodiment is expressed as shown in FIG.

第5の実施の形態に係る熱電変換素子10は、図13に示すように、GaN層121と、GaN層121上に配置されるAlGaN層141と、AlGaN層141上に配置されるGaN層122と、GaN層122上に配置されるAlGaN層142と、AlGaN層142上に配置されるGaN層123と、GaN層123上に配置されるAlGaN層143と、AlGaN層143上に配置されるGaN層124と、GaN層124上に配置されるAlGaN層144とを備える。 Thermoelectric conversion element 10 according to the fifth embodiment, as shown in FIG. 13, a GaN layer 12 1, and the AlGaN layer 14 1 disposed on the GaN layer 12 1 is disposed on the AlGaN layer 14 1 that the GaN layer 12 2, the AlGaN layer 14 2 disposed on the GaN layer 12 2, the GaN layer 12 3 is disposed on the AlGaN layer 14 2, AlGaN layer 14 3 is disposed on the GaN layer 12 3 When provided with a GaN layer 12 4 disposed on the AlGaN layer 14 3, and an AlGaN layer 14 4 disposed on the GaN layer 12 4.

ここで、GaN層121・AlGaN層141の界面には2DEG層が形成される。同様に、GaN層122とAlGaN層142との界面、GaN層123とAlGaN層143との界面、GaN層124とAlGaN層144との界面には2DEG層が形成される。 Here, a 2DEG layer is formed at the interface between the GaN layer 12 1 and the AlGaN layer 14 1 . Similarly, a 2DEG layer is formed at the interface between the GaN layer 12 2 and the AlGaN layer 14 2 , the interface between the GaN layer 12 3 and the AlGaN layer 14 3, and the interface between the GaN layer 12 4 and the AlGaN layer 14 4 .

尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16・第2電極18とを備えていても良い。   Although not shown, the first electrode 16 and the second electrode 18 that are in contact with the 2DEG layer from the side surface may be provided as in the first embodiment (FIG. 10A). .

一方、AlGaN層142とGaN層123との界面、AlGaN層143とGaN層124との界面には2DHG層は形成されていない。ここで、図示は、省略されているが、GaN層121は、サファイア基板などの基板上に形成される。 On the other hand, no 2DHG layer is formed at the interface between the AlGaN layer 14 2 and the GaN layer 12 3 and at the interface between the AlGaN layer 14 3 and the GaN layer 12 4 . Here, illustration has been omitted, GaN layer 12 1 is formed on a substrate such as a sapphire substrate.

第5の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。   Also in the fifth embodiment, the trade-off between Seebeck coefficient and carrier concentration, and the trade-off between Seebeck coefficient and electric conductivity can be improved, and a thermoelectric conversion element that can be stacked with high electric conductivity can be provided. .

第5の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。   Also in the fifth embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked. By forming a polarization discontinuity in a certain polarization material and laminating it, it is possible to provide a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity σ and realizes a high dimensionless figure of merit ZT. .

第5実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。   Also in the fifth embodiment, when a laminated structure is used, a thermoelectric conversion element that further improves the electrical conductivity σ is provided by forming both n-type and p-type in one element. Can do.

[第6の実施の形態]
第6の実施の形態に係る熱電変換素子10の模式的断面構造は、図14に示すように表される。
[Sixth embodiment]
A schematic cross-sectional structure of the thermoelectric conversion element 10 according to the sixth embodiment is expressed as shown in FIG.

第6の実施の形態に係る熱電変換素子10は、図14に示すように、第1分極材料P1層201と、第1分極材料P1層201上に配置された第2材料B層20Bと、第2材料B層20B層20B上に配置された第3材料A層20Aと、第3材料A層20A上に配置された第2分極材料P2層202と、第1分極材料P1層201と第2材料B層20Bとの界面に形成された2DHG層と、第3材料A層20Aと第2分極材料P2層202との界面に形成された2DEG層とを備える。 As shown in FIG. 14, the thermoelectric conversion element 10 according to the sixth embodiment includes a first polarization material P1 layer 20 1 and a second material B layer 20B disposed on the first polarization material P1 layer 20 1. When the third and the material a layers 20A, and the second polarization material P2 layer 20 2 that are disposed on the third material a layer 20A, the first polarization material P1 layer disposed on the second material B layer 20B layer 20B comprising 20 1 and the 2DHG layer formed at the interface between the second material B layers 20B, and a third material a layer 20A and the 2DEG layer formed at the interface between the second polarization material P2 layer 20 2.

第1分極材料P1層201、第2分極材料P2層202は、PZT、BiFeO3やBaTiO3などの強誘電体材料を用いてもよい。また、分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。 The first polarization material P1 layer 20 1 and the second polarization material P2 layer 20 2 may use a ferroelectric material such as PZT, BiFeO 3 or BaTiO 3 . Further, if the polarization discontinuity occurs, or a combination of different materials compositions as Al x Ga 1-x N / Al y Ga 1-y N (x ≠ y).

また、第2材料B層20B・第3材料A層20Aは、AlGaN層・GaN層を用いても良い。   The second material B layer 20B and the third material A layer 20A may be AlGaN layers or GaN layers.

また、第1分極材料P1層201・第2材料B層20Bは、分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。 The first polarization material P1 layer 20 1, the second material B layer 20B is, if the polarization discontinuity occurs, as Al x Ga 1-x N / Al y Ga 1-y N (x ≠ y) Also, a combination of materials having different compositions may be used.

同様に、第3材料A層20A・第2分極材料P2層202は、分極不連続が起こるのであれば、AlxGa1-xN/AlyGa1-yN(x≠y)のように組成の異なる材料の組み合わせでもよい。 Similarly, the third material A layer 20A · second polarization material P2 layer 20 2, if the polarization discontinuity occurs, Al x Ga 1-x N / Al y Ga 1-y N in (x ≠ y) Thus, a combination of materials having different compositions may be used.

尚、図示は省略されているが、第1の実施の形態(図10(a))と同様に、2DEG層と側面より接触する第1電極16E・第2電極18Eを備えていても良い。また、2DHG層と側面より接触する第1電極16H・第2電極18Hを備えていても良い。   In addition, although illustration is abbreviate | omitted, you may provide the 1st electrode 16E and the 2nd electrode 18E which contact a 2DEG layer from a side surface similarly to 1st Embodiment (Fig.10 (a)). Moreover, you may provide the 1st electrode 16H and the 2nd electrode 18H which contact 2DHG layer from a side surface.

第6の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。   Also in the sixth embodiment, the trade-off between Seebeck coefficient and carrier concentration and the trade-off between Seebeck coefficient and electrical conductivity can be improved, and a thermoelectric conversion element that can be stacked with high electrical conductivity can be provided. .

第6の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。   Also in the sixth embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked. By forming a polarization discontinuity in a certain polarization material and laminating it, it is possible to provide a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity σ and realizes a high dimensionless figure of merit ZT. .

第6実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。   Also in the sixth embodiment, when a laminated structure is used, a thermoelectric conversion element that further improves the electrical conductivity σ is provided by forming both n-type and p-type in one element. Can do.

[第7の実施の形態]
(横型積層構造)
第1〜第6の実施の形態に係る熱電変換素子では、主に基板上に基板に垂直方向に積層する構造を備えている。しかしながら、必ずしも基板に垂直方向に積層する構造に限定されなくても良い。
[Seventh embodiment]
(Horizontal laminated structure)
The thermoelectric conversion elements according to the first to sixth embodiments mainly have a structure in which they are stacked on the substrate in a direction perpendicular to the substrate. However, the structure is not necessarily limited to a structure in which the substrate is stacked in the vertical direction.

第7の実施の形態に係る熱電変換素子の模式的断面構造は、図15に示すように表される。   A schematic cross-sectional structure of the thermoelectric conversion element according to the seventh embodiment is expressed as shown in FIG.

第7の実施の形態に係る熱電変換素子は、図15に示すように、基板100と、基板100上にパターン形成されたGaN層12と、GaN層12間の基板100上に配置され、GaN層12と分極不連続がおきる材料層(14)とを備える。   As shown in FIG. 15, the thermoelectric conversion element according to the seventh embodiment is disposed on the substrate 100, the GaN layer 12 patterned on the substrate 100, and the substrate 100 between the GaN layers 12. It comprises a layer 12 and a material layer (14) where polarization discontinuities occur.

ここで、基板100は、サファイア基板であっても良い。   Here, the substrate 100 may be a sapphire substrate.

また、GaN層12と分極不連続がおきる材料層(14)は、AlGaN層14であっても良い。この場合、GaN層12とAlGaN層14との界面には、2DEG層が形成されていても良い。   Further, the material layer (14) in which polarization discontinuity occurs with the GaN layer 12 may be the AlGaN layer 14. In this case, a 2DEG layer may be formed at the interface between the GaN layer 12 and the AlGaN layer 14.

また、AlGaN層14が形成されるGaN層12面は、m面であっても良い。   The GaN layer 12 surface on which the AlGaN layer 14 is formed may be an m-plane.

(熱電変換素子の製造方法)
第7の実施の形態に係る熱電変換素子の製造方法であって、サファイア基板100を準備する工程を示す模式的断面構造は、図16(a)に示すように表され、サファイア基板100上にGaN層12を形成する工程を示す模式的断面構造は、図16(b)に示すように表され、GaN層12をエッチングする工程を示す模式的断面構造は、図16(c)に示すように表され、GaN層12に挟まれたサファイア基板上にAlGaN層14を形成する工程を示す模式的断面構造は、図16(d)に示すように表される。
(Method for manufacturing thermoelectric conversion element)
In the method for manufacturing a thermoelectric conversion element according to the seventh embodiment, a schematic cross-sectional structure showing a step of preparing the sapphire substrate 100 is expressed as shown in FIG. A schematic cross-sectional structure showing the process of forming the GaN layer 12 is represented as shown in FIG. 16B, and a schematic cross-sectional structure showing the process of etching the GaN layer 12 is shown in FIG. 16C. A schematic cross-sectional structure showing the step of forming the AlGaN layer 14 on the sapphire substrate sandwiched between the GaN layers 12 is expressed as shown in FIG.

第7の実施の形態に係る熱電変換素子の製造方法は、第1材料層12と第2材料層14を形成する基板100を準備する工程と、第1材料層12と第2材料層14を形成する基板100上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層とAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層をエッチングする工程とを有していても良い。 The manufacturing method of the thermoelectric conversion element according to the seventh embodiment includes a step of preparing the substrate 100 on which the first material layer 12 and the second material layer 14 are formed, and the first material layer 12 and the second material layer 14. A step of forming an Al a Ga b In 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer on the substrate 100 to be formed; and Al a Ga b In 1− Al c Ga d In 1-cd N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, on the ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer, 0 ≦ c + d ≦ 1) layer formation, Al a Ga b In 1 -abN (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer and Al c Ga d In And a step of etching the 1-cdN (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) layer.

また、第7の実施の形態に係る熱電変換素子の製造方法は、第1材料層12と第2材料層14を形成する基板100を準備する工程と、第1材料層12と第2材料層14を形成する基板100上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層とAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を壁開で電極を形成する領域を作製する工程とを有していても良い。 Moreover, the manufacturing method of the thermoelectric conversion element which concerns on 7th Embodiment prepares the board | substrate 100 which forms the 1st material layer 12 and the 2nd material layer 14, and the 1st material layer 12 and the 2nd material layer Forming an Al a Ga b In 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer on the substrate 100 on which the layer 14 is formed, and Al a Ga b In Al c Ga d In 1-cd N (0 ≦ c ≦ 1, 0 ≦ d ≦) on the 1-a-b N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer 1, 0 ≦ c + d ≦ 1) layer formation, Al a Ga b In 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer and Al c Ga and d In 1- cdN (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1), and a step of forming a region for forming an electrode by opening the wall.

以下、図16(a)〜図16(d)を参照して、第7の実施の形態に係る熱電変換素子の製造方法を説明する。   Hereinafter, with reference to FIG. 16A to FIG. 16D, a method for manufacturing a thermoelectric conversion element according to the seventh embodiment will be described.

(a)まず、図16(a)に示すように、サファイア基板100を準備する。   (A) First, as shown in FIG. 16A, a sapphire substrate 100 is prepared.

(b)次に、図16(b)に示すように、サファイア基板100上にGaN層12を形成する。   (B) Next, as shown in FIG. 16B, a GaN layer 12 is formed on the sapphire substrate 100.

(c)次に、リソグラフィー法により、例えばラインアンドスペースのパターンを多数形成する。   (C) Next, a large number of, for example, line and space patterns are formed by lithography.

(d)次に、図16(c)に示すように、レジストやSiO2などをマスクとしてGaN層のエッチングを行う。 (D) Next, as shown in FIG. 16C, the GaN layer is etched using a resist, SiO 2 or the like as a mask.

(e)次に、形成したストライプパターンに垂直に、かつサファイア基板100に水平な方向に対して、GaN層12と分極不連続がおきる材料をエッチングした領域に形成する。例えば、図16(d)に示すように、m面GaN層12上にAlGaN層14を形成しても良い。結果として、図16(d)に示すように、m面GaN層12と、AlGaN層14との界面には、2DEG層が複数形成可能である。   (E) Next, a material having polarization discontinuity with the GaN layer 12 is formed in an etched region in a direction perpendicular to the formed stripe pattern and horizontal to the sapphire substrate 100. For example, an AlGaN layer 14 may be formed on the m-plane GaN layer 12 as shown in FIG. As a result, a plurality of 2DEG layers can be formed at the interface between the m-plane GaN layer 12 and the AlGaN layer 14 as shown in FIG.

その他にも、Pt上にゾルゲル法などでPZTを形成し、ラインアンドスペースの構造をリソグラフィー法で形成し、レジストをマスクとしてPZTのエッチングを行い、レジストを剥離する。その後、PZTをエッチングした領域に分極不連続がおきる材料を形成する手法などを用いても良い。スピンコートやゾルゲル法の場合、プロセス行程が簡単であるというメリットもある。スピンコートやゾルゲル法などを利用した場合は、異種材料を基板垂直方向に積層していくことも可能であり、基板面垂直方向に対して、n型/p型と積層することもできる。   In addition, PZT is formed on Pt by a sol-gel method or the like, a line and space structure is formed by a lithography method, PZT is etched using the resist as a mask, and the resist is peeled off. Thereafter, a method of forming a material in which polarization discontinuity occurs in a region where PZT is etched may be used. In the case of spin coating or sol-gel method, there is also an advantage that the process is simple. When spin coating or sol-gel method is used, different materials can be stacked in the direction perpendicular to the substrate, and n-type / p-type can be stacked in the direction perpendicular to the substrate surface.

第7の実施の形態においても、ゼーベック係数とキャリア濃度のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子を提供することができる。   Also in the seventh embodiment, the trade-off between Seebeck coefficient and carrier concentration and the trade-off between Seebeck coefficient and electric conductivity can be improved, and a thermoelectric conversion element that can be stacked with high electric conductivity can be provided. .

第7の実施の形態においても、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子を提供することができる。   Also in the seventh embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases is not only solved by using the V-shaped recovery phenomenon of the Seebeck coefficient S, but can also be stacked. By forming a polarization discontinuity in a certain polarization material and laminating it, it is possible to provide a thermoelectric conversion element that solves the trade-off between the Seebeck coefficient S and the electrical conductivity σ and realizes a high dimensionless figure of merit ZT. .

第7実施の形態においても、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子を提供することができる。   Also in the seventh embodiment, when a laminated structure is used, a thermoelectric conversion element that further improves electric conductivity σ is provided by forming both n-type and p-type in one element. Can do.

(熱電変換装置)
第1〜第7の実施の形態に係る熱電変換素子を用いて、熱電発電装置を提供することができる。また、第1〜第7の実施の形態に係る熱電変換素子を複数個直列に接続し、高出力化可能な熱電発電装置を提供することも可能である。
(Thermoelectric converter)
A thermoelectric generator can be provided by using the thermoelectric conversion elements according to the first to seventh embodiments. It is also possible to provide a thermoelectric generator capable of increasing the output by connecting a plurality of thermoelectric conversion elements according to the first to seventh embodiments in series.

基本技術に係る熱電発電装置400Aの動作原理の説明図は、図17(a)に示すように表され、温度変化ΔTにおける熱電発電装置400Aの出力電流IO―出力電圧VO特性例は、図17(b)に示すように表される。 An explanatory diagram of the operation principle of the thermoelectric generator 400A according to the basic technology is expressed as shown in FIG. 17A, and the output current I O -output voltage V O characteristic example of the thermoelectric generator 400A at the temperature change ΔT is It is expressed as shown in FIG.

基本技術に係る熱電発電装置400Aは、図17(a)に示すように、高温(温度Th)側に配置される結合電極30と低温(温度Tc)側に配置されるn側電極32との間に配置されたn型半導体28と、高温側に配置される結合電極30と低温側に配置されるp側電極34との間に配置されたp型半導体26と、n側電極32とp側電極34との間に接続される負荷36とを備える。n型半導体28中の電子(e)は、矢印で示すように、高温側に配置される結合電極30から低温側に配置されるn側電極32の方向に導通され、p型半導体26中の正孔(h)は、矢印で示すように、高温側に配置される結合電極30から低温側に配置されるp側電極34の方向に導通される。温度差ΔT=Th―Tcで表される。結果として、回路的に直列接続される負荷36・n型半導体28・p型半導体26には、矢印で示された方向に電流Iが導通する。負荷36と導通電流Iによって決まる負荷特性と、図17(b)に示された温度変化ΔTにおけるTEG10の出力電流IO―出力電圧VO特性例との交差点によって、動作点が決定される。 As shown in FIG. 17A, the thermoelectric generator 400A according to the basic technology includes a coupling electrode 30 disposed on the high temperature (temperature T h ) side and an n-side electrode 32 disposed on the low temperature (temperature T c ) side. N-type semiconductor 28 disposed between the p-type semiconductor 26 disposed between the coupling electrode 30 disposed on the high temperature side and the p-side electrode 34 disposed on the low-temperature side, and the n-side electrode 32. And a load 36 connected between the p-side electrode 34. The electrons (e) in the n-type semiconductor 28 are conducted in the direction from the coupling electrode 30 disposed on the high temperature side to the n-side electrode 32 disposed on the low temperature side, as indicated by an arrow, and in the p-type semiconductor 26. The holes (h) are conducted in the direction from the coupling electrode 30 disposed on the high temperature side to the p-side electrode 34 disposed on the low temperature side, as indicated by an arrow. The temperature difference ΔT = T h −T c . As a result, the current I is conducted in the direction indicated by the arrow through the load 36, the n-type semiconductor 28, and the p-type semiconductor 26 that are connected in series in circuit. The operating point is determined by the intersection of the load characteristic determined by the load 36 and the conduction current I and the TEG 10 output current I O -output voltage V O characteristic example at the temperature change ΔT shown in FIG.

基本技術に係る熱電発電装置400Aの模式的構成例であって、低温側にヒートシンク38、高温側に熱交換器40を備える例は、図18に示すように表される。さらに、結合電極30と熱交換器40との間に高温側伝熱部材44を配置し、n側電極32・p側電極34とヒートシンク38との間に低温側伝熱部材42を配置しても良い。n側電極32とp側電極34との間に配線45を介して負荷36を結合することで、負荷36には、矢印で示された方向に電流Iが導通する。   18 is a schematic configuration example of the thermoelectric generator 400A according to the basic technology, and an example including the heat sink 38 on the low temperature side and the heat exchanger 40 on the high temperature side is expressed as shown in FIG. Further, a high temperature side heat transfer member 44 is disposed between the coupling electrode 30 and the heat exchanger 40, and a low temperature side heat transfer member 42 is disposed between the n side electrode 32 and the p side electrode 34 and the heat sink 38. Also good. By coupling the load 36 between the n-side electrode 32 and the p-side electrode 34 via the wiring 45, the current I is conducted to the load 36 in the direction indicated by the arrow.

基本技術に係る熱電発電装置400Aの模式的構成であって、複数の熱電変換素子を直列に配置した例は、図19に示すように表される。   FIG. 19 shows an example of a schematic configuration of the thermoelectric power generation apparatus 400A according to the basic technology, in which a plurality of thermoelectric conversion elements are arranged in series.

基本技術に係る熱電発電装置400Aは、図19に示すように、高温(温度Th)側に配置される複数の結合電極301・302・…・30nと低温(温度Tc)側に配置される複数のn側電極321・322・…・32nとの間に配置された複数のn型半導体281・282・…・28nと、高温側に配置される複数の結合電極301・302・…・30nと低温側に配置される複数のp側電極341・342・…・34nとの間に配置された複数のp型半導体261・262・…・26nと、n側電極32nとp側電極341との間に接続される負荷36とを備える。低温側の互いに隣接配置される電極(321・342)・(322・343)・…・(32n-1・34n)は、共通電極として接続されている。温度差ΔT=Th―Tcで表される。結果として、回路的に直列接続される負荷36・n型半導体281・282・…・28n・p型半導体261・262・…・26nには、矢印で示された方向に電流Iが導通する。 Thermoelectric generator 400A according to the basic technique, as shown in FIG. 19, a high temperature (temperature T h) a plurality of coupling electrodes 30 1 · 30 2 · ... · 30 n and low temperature is disposed in the side (temperature T c) side a plurality of n-side electrodes 32 1, 32 2, ..., 32 a plurality of n-type semiconductor 28 disposed between the n 1-28 2, ..., 28 n arranged in a plurality arranged in a high temperature side a plurality of p-type semiconductor 26 1-disposed between the coupling electrode 30 1 · 30 2 · ... · 30 n and a plurality of p-side electrode 34 1 · 34 2 · ... · 34 n disposed on the low temperature side 26 comprises 2, ..., and 26 n, and a load 36 connected between the n-side electrode 32 n and p-side electrode 34 1. The electrodes (32 1 , 34 2 ), (32 2 , 34 3 ),..., (32 n−1 , 34 n ) arranged adjacent to each other on the low temperature side are connected as a common electrode. The temperature difference ΔT = T h −T c . As a result, the circuit in series connected load 36 · n-type semiconductor 28 1 · 28 2 · ... · 28 n · p -type semiconductor 26 1 · 26 2 · ... · 26 n, in the direction indicated by the arrow Current I is conducted.

基本技術に係る熱電発電装置400Aは、図19に示すように、複数のTEGを直列化配置することによって、熱電変換モジュールの高耐圧化を図ることができる。また、直列化配置構成を並列化して、大電流量・高出力化を図ることも可能である。   As shown in FIG. 19, the thermoelectric power generation apparatus 400A according to the basic technology can increase the withstand voltage of the thermoelectric conversion module by arranging a plurality of TEGs in series. Also, it is possible to increase the amount of current and output by parallelizing the serial arrangement arrangement.

(ペルチェ装置)
第1〜第7の実施の形態に係る熱電変換素子を用いた熱電変換装置は、第1電極12および第2電極14間の温度差に伴う熱エネルギーを電気エネルギーに変換可能であるが、一方、第1電極および第2電極間に電流を印加することによる電気エネルギーを温度差に変換可能である。したがって、第1〜第7の実施の形態に係る熱電変換素子を用いて、ペルチェ装置を提供することができる。
(Peltier device)
The thermoelectric conversion device using the thermoelectric conversion elements according to the first to seventh embodiments can convert the thermal energy accompanying the temperature difference between the first electrode 12 and the second electrode 14 into electric energy. The electric energy generated by applying a current between the first electrode and the second electrode can be converted into a temperature difference. Therefore, a Peltier device can be provided using the thermoelectric conversion elements according to the first to seventh embodiments.

また、第1〜第7の実施の形態に係る熱電変換素子を複数個直列接続し、高温度差を生じさせることが可能なペルチェ装置を提供することも可能である。   It is also possible to provide a Peltier device capable of producing a high temperature difference by connecting a plurality of thermoelectric conversion elements according to the first to seventh embodiments in series.

[第8の実施の形態]
第8の実施の形態に係る熱電発電装置400であって、模式的上面構成は、図20(a)に示すように表され、模式的鳥瞰構成は、図20(b)に示すように表される。
[Eighth embodiment]
In the thermoelectric generator 400 according to the eighth embodiment, a schematic upper surface configuration is represented as shown in FIG. 20 (a), and a schematic bird's-eye view configuration is represented as shown in FIG. 20 (b). Is done.

第8の実施の形態に係る熱電発電装置400は、図20(a)・図20(b)に示すように、二つの以上の電気伝導層(2DEG、2DHG)を有する積層構造を有する複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える。   As shown in FIGS. 20 (a) and 20 (b), the thermoelectric generator 400 according to the eighth embodiment includes a plurality of layers having a laminated structure having two or more electrically conductive layers (2DEG, 2DHG). It has a configuration in which thermoelectric conversion elements 10A, 10B, and 10C are connected in series.

第8の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、図20(a)・図20(b)に示すように、サファイア基板100と、サファイア基板100上に配置されるGaN層121A・121B・121Cと、GaN層121A・121B・121C上に配置されるAlGaN層141A・141B・141Cと、AlGaN層141A・141B・141C上に配置されるGaN層122A・122B・122Cと、GaN層122A・122B・122C上に配置されるAlGaN層142A・142B・142Cとを備える。 The thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the eighth embodiment include a sapphire substrate 100 and a sapphire substrate 100, as shown in FIGS. 20 (a) and 20 (b). and GaN layer 12 1 a · 12 1 B · 12 1 C disposed above, AlGaN layer 14 1 a · 14 1 B · 14 1 disposed on the GaN layer 12 1 a · 12 1 B · 12 on 1 C C, and the GaN layers 12 2 A, 12 2 B, 12 2 C and the GaN layers 12 2 A, 12 2 B, 12 2 C disposed on the AlGaN layers 14 1 A, 14 1 B, 14 1 C AlGaN layer 14 2 A · 14 2 B · 14 2 C disposed on the substrate.

また、GaN層121A・121B・121CとAlGaN層141A・141B・141Cとの界面に形成された2DEG層と、AlGaN層141A・141B・141CとGaN層122A・122B・122Cの界面に形成された2DHG層と、GaN層122A・122B・122CとAlGaN層142A・142B・142Cとの界面に形成された2DEG層とを備える。 Further, a 2DEG layer formed at the interface between the GaN layer 12 1 A · 12 1 B · 12 1 C and the AlGaN layer 14 1 A · 14 1 B · 14 1 C, and the AlGaN layer 14 1 A · 14 1 B · 2DHG layer formed at the interface between 14 1 C and GaN layer 12 2 A · 12 2 B · 12 2 C, GaN layer 12 2 A · 12 2 B · 12 2 C and AlGaN layer 14 2 A · 14 2 B A 2DEG layer formed at the interface with 14 2 C is provided.

また、積層構造の側壁部に配置され、2DEG層と側壁部でオーミック接触する第1電極16A・16B・16Cおよび第2電極18A・18B・18Cとを備える。ここで、第1電極16A・16B・16Cおよび第2電極18A・18B・18Cは、2DHG層とは、側壁部でオーミック接触することはなく、例えばショットキー接触している。このため、第8の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cの導通に寄与するキャリアは、2DEG層を導通する電子である。   In addition, the first electrodes 16A, 16B, and 16C and the second electrodes 18A, 18B, and 18C are disposed on the side wall portion of the stacked structure and are in ohmic contact with the 2DEG layer. Here, the first electrodes 16A, 16B, and 16C and the second electrodes 18A, 18B, and 18C are not in ohmic contact with the 2DHG layer at the side wall portion, and are in Schottky contact, for example. For this reason, the carriers that contribute to the conduction of the thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the eighth embodiment are electrons that conduct the 2DEG layer.

また、第1電極16Aと結合される主電極32Aと、第2電極18A・18B間を結合する結合電極30ABと、第1電極16B・16C間を結合する結合電極30BCと、第2電極18Cと結合される主電極32Cとを備える。   Also, the main electrode 32A coupled to the first electrode 16A, the coupling electrode 30AB coupling the second electrodes 18A and 18B, the coupling electrode 30BC coupling the first electrodes 16B and 16C, and the second electrode 18C Main electrode 32C to be coupled.

図示は省略されているが、主電極32A・32C間に負荷を接続し、第1電極16A・16B・16Cを例えばCOLD SIDE、第2電極18A・18B・18Cを例えばHOT SIDEに配置することで、複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える熱電発電装置400が得られる。   Although not shown, a load is connected between the main electrodes 32A and 32C, and the first electrodes 16A, 16B, and 16C are arranged in, for example, COLD SIDE, and the second electrodes 18A, 18B, and 18C are arranged in, for example, HOT SIDE. A thermoelectric generator 400 having a configuration in which a plurality of thermoelectric conversion elements 10A, 10B, and 10C are connected in series is obtained.

複数の熱電変換素子10A・10B・10Cは更に多層化され、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。   The plurality of thermoelectric conversion elements 10A, 10B, and 10C are further multilayered, and films are stacked so that polarization discontinuity occurs like AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / ... GaN / substrate. Thus, the 2DEG layer, the 2DHG layer, or both are formed at each AlGaN / GaN interface, whereby the electrical conductivity σ can be increased.

分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を適用しても良い。   Since it is important that polarization discontinuity occurs, a thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN may be applied.

また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を適用しても良い。   Moreover, you may apply the thermoelectric conversion element provided with the laminated structure which combined them like AlGaN / GaN / AlInN / GaN /.../ board | substrate.

また、第8の実施の形態によれば、上記の実施の形態のいずれかに開示された熱電変換素子を複数個直列に接続することによって、高出力化可能な熱電発電装置を提供することも可能である。   Moreover, according to the eighth embodiment, it is also possible to provide a thermoelectric power generator capable of increasing output by connecting a plurality of thermoelectric conversion elements disclosed in any of the above embodiments in series. Is possible.

[第9の実施の形態]
第9の実施の形態に係る熱電発電装置400であって、模式的上面構成は、図21(a)に示すように表され、模式的鳥瞰構成は、図21(b)に示すように表される。
[Ninth embodiment]
In the thermoelectric generator 400 according to the ninth embodiment, a schematic top surface configuration is represented as shown in FIG. 21 (a), and a schematic bird's-eye view configuration is represented as shown in FIG. 21 (b). Is done.

第9の実施の形態に係る熱電発電装置400は、図21(a)・図21(b)に示すように、二つの以上の電気伝導層(2DEG、2DHG)を有する積層構造を有する複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える。   As shown in FIGS. 21 (a) and 21 (b), the thermoelectric generator 400 according to the ninth embodiment includes a plurality of laminated structures having two or more electrically conductive layers (2DEG, 2DHG). It has a configuration in which thermoelectric conversion elements 10A, 10B, and 10C are connected in series.

第9の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、図21(a)・図21(b)に示すように、サファイア基板100と、サファイア基板100上に配置されるGaN層121A・121B・121Cと、GaN層121A・121B・121C上に配置されるAlGaN層141A・141B・141Cと、AlGaN層141A・141B・141C上に配置されるGaN層122A・122B・122Cと、GaN層122A・122B・122C上に配置されるAlGaN層142A・142B・142Cとを備える。 Thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the ninth embodiment include a sapphire substrate 100 and a sapphire substrate 100, as shown in FIGS. 21 (a) and 21 (b). and GaN layer 12 1 a · 12 1 B · 12 1 C disposed above, AlGaN layer 14 1 a · 14 1 B · 14 1 disposed on the GaN layer 12 1 a · 12 1 B · 12 on 1 C C, and the GaN layers 12 2 A, 12 2 B, 12 2 C and the GaN layers 12 2 A, 12 2 B, 12 2 C disposed on the AlGaN layers 14 1 A, 14 1 B, 14 1 C AlGaN layer 14 2 A · 14 2 B · 14 2 C disposed on the substrate.

また、GaN層121A・121B・121CとAlGaN層141A・141B・141Cとの界面に形成された2DEG層と、AlGaN層141A・141B・141CとGaN層122A・122B・122Cの界面に形成された2DHG層と、GaN層122A・122B・122CとAlGaN層142A・142B・142Cとの界面に形成された2DEG層とを備える。 Further, a 2DEG layer formed at the interface between the GaN layer 12 1 A · 12 1 B · 12 1 C and the AlGaN layer 14 1 A · 14 1 B · 14 1 C, and the AlGaN layer 14 1 A · 14 1 B · 2DHG layer formed at the interface between 14 1 C and GaN layer 12 2 A · 12 2 B · 12 2 C, GaN layer 12 2 A · 12 2 B · 12 2 C and AlGaN layer 14 2 A · 14 2 B A 2DEG layer formed at the interface with 14 2 C is provided.

また、積層構造の側壁部に配置され、2DEG層と側壁部でオーミック接触する第1電極16AE・16BE・16CEおよび第2電極18AE・18BE・18CEと、2DHG層と側壁部でオーミック接触する第1電極16AH・16BH・16CHおよび第2電極18AH・18BH・18CHとを備える。このため、第9の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cの導通に寄与するキャリアは、2DEG層を導通する電子・2DHGを導通する正孔である。   Further, the first electrodes 16AE, 16BE, and 16CE and the second electrodes 18AE, 18BE, and 18CE that are disposed on the side wall portion of the stacked structure and are in ohmic contact with the 2DEG layer on the side wall portion, and the first electrode that is in ohmic contact with the 2DHG layer on the side wall portion. Electrodes 16AH, 16BH, and 16CH and second electrodes 18AH, 18BH, and 18CH are provided. For this reason, carriers that contribute to the conduction of the thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric generator 400 according to the ninth embodiment are electrons that conduct the 2DEG layer and holes that conduct the 2DHG. .

また、第1電極16AE・16AHと結合される主電極32Aと、第2電極18AE・18AHと第2電極18BE・18BH間を結合する結合電極30ABと、第1電極16BE・16BHと第1電極16CE・16CH間を結合する結合電極30BCと、第2電極18CE・18CHと結合される主電極32Cとを備える。   Further, the main electrode 32A coupled to the first electrodes 16AE and 16AH, the coupling electrode 30AB coupling the second electrodes 18AE and 18AH and the second electrodes 18BE and 18BH, the first electrodes 16BE and 16BH, and the first electrode 16CE. A coupling electrode 30BC that couples 16CHs and a main electrode 32C coupled to the second electrodes 18CE and 18CH are provided.

図示は省略されているが、主電極32A・32C間に負荷を接続し、第1電極16AE・16AH・16BE・16BH・16CE・16CHを例えばCOLD SIDE、第2電極18AE・18AH・18BE・18BH・18CE・18CHを例えばHOT SIDEに配置することで、複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える熱電発電装置400が得られる。   Although not shown, a load is connected between the main electrodes 32A and 32C, and the first electrodes 16AE, 16AH, 16BE, 16BH, 16CE, and 16CH are, for example, COLD SIDE, and the second electrodes 18AE, 18AH, 18BE, 18BH, By arranging 18CE · 18CH in, for example, HOT SIDE, a thermoelectric generator 400 having a configuration in which a plurality of thermoelectric conversion elements 10A, 10B, and 10C are connected in series is obtained.

複数の熱電変換素子10A・10B・10Cは更に多層化され、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。   The plurality of thermoelectric conversion elements 10A, 10B, and 10C are further multilayered, and films are stacked so that polarization discontinuity occurs like AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / ... GaN / substrate. Thus, the 2DEG layer, the 2DHG layer, or both are formed at each AlGaN / GaN interface, whereby the electrical conductivity σ can be increased.

分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を適用しても良い。   Since it is important that polarization discontinuity occurs, a thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN may be applied.

また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を適用しても良い。   Moreover, you may apply the thermoelectric conversion element provided with the laminated structure which combined them like AlGaN / GaN / AlInN / GaN /.../ board | substrate.

また、第9の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、2DEG層と2DHG層の両方を形成可能であり、かつ両者を導通に寄与させることができるため、一素子でp型・n型両方の熱電変換素子を形成可能である。   Further, the thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the ninth embodiment can form both the 2DEG layer and the 2DHG layer, and can contribute to both conduction. Therefore, both p-type and n-type thermoelectric conversion elements can be formed with one element.

また、第9の実施の形態によれば、上記の実施の形態のいずれかに開示された熱電変換素子を複数個直列に接続することによって、高出力化可能な熱電発電装置を提供することも可能である。   Moreover, according to the ninth embodiment, it is also possible to provide a thermoelectric power generator capable of increasing output by connecting a plurality of thermoelectric conversion elements disclosed in any of the above embodiments in series. Is possible.

[第10の実施の形態]
第10の実施の形態に係る熱電発電装置400であって、模式的上面構成は、図22(a)に示すように表され、模式的鳥瞰構成は、図22(b)に示すように表される。
[Tenth embodiment]
In the thermoelectric generator 400 according to the tenth embodiment, a schematic upper surface configuration is represented as shown in FIG. 22 (a), and a schematic bird's-eye view configuration is represented as shown in FIG. 22 (b). Is done.

第10の実施の形態に係る熱電発電装置400は、図22(a)・図22(b)に示すように、二つの以上の電気伝導層(2DEG、2DHG)を有する積層構造を有する複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える。   As shown in FIGS. 22A and 22B, the thermoelectric power generation apparatus 400 according to the tenth embodiment includes a plurality of laminated structures having two or more electrically conductive layers (2DEG, 2DHG). It has a configuration in which thermoelectric conversion elements 10A, 10B, and 10C are connected in series.

第10の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10B・10Cは、図22(a)・図22(b)に示すように、サファイア基板100と、サファイア基板100上に配置されるGaN層121A・121B・121Cと、GaN層121A・121B・121C上に配置されるAlGaN層141A・141B・141Cと、AlGaN層141A・141B・141C上に配置されるGaN層122A・122B・122Cと、GaN層122A・122B・122C上に配置されるAlGaN層142A・142B・142Cとを備える。 The thermoelectric conversion elements 10A, 10B, and 10C applied to the thermoelectric power generation apparatus 400 according to the tenth embodiment include a sapphire substrate 100 and a sapphire substrate 100, as shown in FIGS. 22 (a) and 22 (b). and GaN layer 12 1 a · 12 1 B · 12 1 C disposed above, AlGaN layer 14 1 a · 14 1 B · 14 1 disposed on the GaN layer 12 1 a · 12 1 B · 12 on 1 C C, and the GaN layers 12 2 A, 12 2 B, 12 2 C and the GaN layers 12 2 A, 12 2 B, 12 2 C disposed on the AlGaN layers 14 1 A, 14 1 B, 14 1 C AlGaN layer 14 2 A · 14 2 B · 14 2 C disposed on the substrate.

また、GaN層121A・121B・121CとAlGaN層141A・141B・141Cとの界面に形成された2DEG層と、AlGaN層141A・141B・141CとGaN層122A・122B・122Cの界面に形成された2DHG層と、GaN層122A・122B・122CとAlGaN層142A・142B・142Cとの界面に形成された2DEG層とを備える。 Further, a 2DEG layer formed at the interface between the GaN layer 12 1 A · 12 1 B · 12 1 C and the AlGaN layer 14 1 A · 14 1 B · 14 1 C, and the AlGaN layer 14 1 A · 14 1 B · 2DHG layer formed at the interface between 14 1 C and GaN layer 12 2 A · 12 2 B · 12 2 C, GaN layer 12 2 A · 12 2 B · 12 2 C and AlGaN layer 14 2 A · 14 2 B A 2DEG layer formed at the interface with 14 2 C is provided.

また、積層構造の側壁部に配置され、2DEG層と側壁部でオーミック接触する第1電極16AE・16CEおよび第2電極18AE・18CEと、2DHG層と側壁部でオーミック接触する第1電極16BHおよび第2電極18BHとを備える。ここで、第1電極16AE・16CEおよび第2電極18AE・18CEは、2DHG層とは、側壁部でオーミック接触することはなく、例えばショットキー接触している。第1電極16BHおよび第2電極18BHは、2DEG層とは、側壁部でオーミック接触することはなく、例えばショットキー接触している。   In addition, the first electrodes 16AE and 16CE and the second electrodes 18AE and 18CE that are disposed on the side wall portion of the stacked structure and are in ohmic contact with the 2DEG layer on the side wall portion, the first electrode 16BH and the second electrode that are in ohmic contact with the 2DHG layer on the side wall portion 2 electrodes 18BH. Here, the first electrodes 16AE and 16CE and the second electrodes 18AE and 18CE are not in ohmic contact with the 2DHG layer at the side wall portion, and are in Schottky contact, for example. The first electrode 16BH and the second electrode 18BH are not in ohmic contact with the 2DEG layer at the side wall portion, and are in Schottky contact, for example.

このため、第10の実施の形態に係る熱電発電装置400に適用される熱電変換素子10A・10Cの導通に寄与するキャリアは、2DEG層を導通する電子であり、熱電変換素子10Bの導通に寄与するキャリアは、2DHG層を導通する正孔である。   Therefore, the carriers that contribute to the conduction of the thermoelectric conversion elements 10A and 10C applied to the thermoelectric power generation apparatus 400 according to the tenth embodiment are electrons that conduct the 2DEG layer, and contribute to the conduction of the thermoelectric conversion element 10B. The carriers to be carried are holes that conduct through the 2DHG layer.

また、第1電極16AEと結合される主電極32Aと、第2電極18AEと第2電極18BH間を結合する結合電極30ABと、第1電極16BHと第1電極16CE間を結合する結合電極30BCと、第2電極18CEと結合される主電極32Cとを備える。   Also, a main electrode 32A coupled to the first electrode 16AE, a coupling electrode 30AB coupling the second electrode 18AE and the second electrode 18BH, and a coupling electrode 30BC coupling the first electrode 16BH and the first electrode 16CE And a main electrode 32C coupled to the second electrode 18CE.

図示は省略されているが、主電極32A・32C間に負荷を接続し、第1電極16AE・16BH・16CEを例えばCOLD SIDE、第2電極18AE・18BH・18CEを例えばHOT SIDEに配置することで、複数の熱電変換素子10A・10B・10Cを直列に接続した構成を備える熱電発電装置400が得られる。   Although not shown, a load is connected between the main electrodes 32A and 32C, and the first electrodes 16AE, 16BH, and 16CE are arranged in, for example, COLD SIDE, and the second electrodes 18AE, 18BH, and 18CE are arranged in, for example, HOT SIDE. A thermoelectric generator 400 having a configuration in which a plurality of thermoelectric conversion elements 10A, 10B, and 10C are connected in series is obtained.

複数の熱電変換素子10A・10B・10Cは更に多層化され、AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/AlGaN/GaN/…GaN/基板のように分極不連続が起こるように膜を積層することで、各AlGaN/GaN界面に2DEG層、または2DHG層、もしくはその両方が形成されることで、電気伝導率σを上げることができる。   The plurality of thermoelectric conversion elements 10A, 10B, and 10C are further multilayered, and films are stacked so that polarization discontinuity occurs like AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / AlGaN / GaN / ... GaN / substrate. Thus, the 2DEG layer, the 2DHG layer, or both are formed at each AlGaN / GaN interface, whereby the electrical conductivity σ can be increased.

分極不連続が起こることが重要であるため、AlInN/GaNの積層構造やAlGaN/GaAs/Si/AlGaNなどのような積層構造を備える熱電変換素子を適用しても良い。   Since it is important that polarization discontinuity occurs, a thermoelectric conversion element having a laminated structure of AlInN / GaN or a laminated structure such as AlGaN / GaAs / Si / AlGaN may be applied.

また、AlGaN/GaN/AlInN/GaN/…/基板のようにそれらを組み合せた積層構造を備える熱電変換素子を適用しても良い。   Moreover, you may apply the thermoelectric conversion element provided with the laminated structure which combined them like AlGaN / GaN / AlInN / GaN /.../ board | substrate.

また、第10の実施の形態によれば、上記の実施の形態のいずれかに開示された熱電変換素子を複数個直列に接続することによって、高出力化可能な熱電発電装置を提供することも可能である。   Further, according to the tenth embodiment, it is also possible to provide a thermoelectric power generator capable of increasing the output by connecting a plurality of thermoelectric conversion elements disclosed in any of the above embodiments in series. Is possible.

本実施の形態によれば、キャリア濃度nが増加するとゼーベック係数Sが低減するトレードオフを、ゼーベック係数SのV字回復現象を利用することで、解決するだけでなく、積層化が可能である分極材料における分極不連続を形成し、積層させることにより、ゼーベック係数Sと電気伝導率σのトレードオフも解決し、高い無次元性能指数ZTの実現を図る熱電変換素子およびこの熱電変換素子を用いた熱電発電装置を提供することができる。   According to the present embodiment, the trade-off in which the Seebeck coefficient S decreases as the carrier concentration n increases can be solved as well as stacked by using the V-shaped recovery phenomenon of the Seebeck coefficient S. By forming and discontinuating polarization discontinuity in a polarization material, the trade-off between the Seebeck coefficient S and the electrical conductivity σ is also solved, and a thermoelectric conversion element that achieves a high dimensionless figure of merit ZT and the thermoelectric conversion element are used. The thermoelectric power generation apparatus that has been provided can be provided.

本実施の形態によれば、また、積層構造を利用した場合、1素子の中にn型/p型の両方を形成することで、更なる電気伝導率σの向上を図る熱電変換素子およびこの熱電変換素子を用いた熱電発電装置を提供することができる。   According to the present embodiment, when a laminated structure is used, a thermoelectric conversion element that further improves electric conductivity σ by forming both n-type and p-type in one element, and this A thermoelectric power generator using a thermoelectric conversion element can be provided.

以上説明したように、本実施の形態によれば、キャリア濃度とゼーベック係数のトレードオフ、およびゼーベック係数と電気伝導率のトレードオフを改善し、高電気伝導率で積層化可能な熱電変換素子およびこの熱電変換素子を用いた熱電発電装置およびペルチェ装置を提供することができる。   As described above, according to the present embodiment, the trade-off between the carrier concentration and the Seebeck coefficient, and the trade-off between the Seebeck coefficient and the electrical conductivity are improved, and the thermoelectric conversion element that can be stacked with high electrical conductivity and A thermoelectric generator and a Peltier device using this thermoelectric conversion element can be provided.

[その他の実施の形態]
上記のように、実施の形態について記載したが、この開示の一部をなす論述および図面は例示的なものであり、この実施の形態を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
[Other embodiments]
Although the embodiment has been described as described above, it should be understood that the discussion and the drawings that form a part of this disclosure are illustrative and do not limit the embodiment. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

このように、本実施の形態はここでは記載していない様々な実施の形態などを含む。   As described above, this embodiment includes various embodiments not described here.

本実施の形態の熱電変換素子および熱電発電装置は、熱電発電システムなど熱電変換素子により発電したエネルギーを効率よく供給する装置およびシステムに適用され、モバイル機器、車載機器、産業機器、医療機器などの幅広い分野に適用可能である。また、本実施の形態に係る熱電変換素子を適用したペルチェ装置においては、投入したエネルギーを効率良く温度差に変換する装置およびシステムに適用され、モバイル機器、車載機器、産業機器、医療機器などの幅広い分野に適用可能である。   The thermoelectric conversion element and the thermoelectric power generation apparatus of the present embodiment are applied to an apparatus and system that efficiently supplies energy generated by the thermoelectric conversion element such as a thermoelectric power generation system, and are applied to mobile devices, in-vehicle devices, industrial devices, medical devices, and the like. Applicable to a wide range of fields. In addition, in the Peltier device to which the thermoelectric conversion element according to the present embodiment is applied, it is applied to a device and a system that efficiently convert input energy into a temperature difference, such as a mobile device, an in-vehicle device, an industrial device, and a medical device. Applicable to a wide range of fields.

8…シリコン基板
10、10A、10B、10C…熱電変換素子
11…GaNテンプレート
12、121、122、123、124…第1材料層(GaN層)
13…AlN層
14、141、142、143、144、14A、14B、14C…第2材料層(AlGaN層)
16、161、162、16A、16B、16C、16AE、16BE、16CE、16AH、16BH、16CH…電極(COLD SIDE)
18、181、182、18A、18B、18C、18AE、18BE、18CE、18AH、18BH、18CH…電極(HOT SIDE)
201、202…分極材料層
20A、20B…材料層
22、22A、22B…電圧プローブ
24、24A、24B…熱電対
26、261、262、…、26n…p型半導体
28、281、282、…、28n…n型半導体
30、30AB、30BC…結合電極
32、321、322、…、32n…n側電極
32A、32C…主電極
34、341、342、…、34n…p側電極
36…負荷
38…ヒートシンク
40…熱交換器
42、44……伝熱部材
45…配線
100…サファイア基板
200…ヒートシンク
300…ヒータ
400A、400…熱電発電装置
ΔT…温度変化(温度差)
O…出力電流
O…出力電圧
μ…移動度
n…キャリア濃度
σ…電気伝導率
S…ゼーベック係数
ZT…無次元性能指数
κ…熱伝導率
8 ... Silicon substrates 10, 10A, 10B, 10C ... Thermoelectric conversion elements 11 ... GaN templates 12, 12 1 , 12 2 , 12 3 , 12 4 ... First material layer (GaN layer)
13... AlN layer 14, 14 1 , 14 2 , 14 3 , 14 4 , 14A, 14B, 14C ... second material layer (AlGaN layer)
16, 16 1 , 16 2 , 16A, 16B, 16C, 16AE, 16BE, 16CE, 16AH, 16BH, 16CH ... Electrode (COLD SIDE)
18, 18 1 , 18 2 , 18A, 18B, 18C, 18AE, 18BE, 18CE, 18AH, 18BH, 18CH ... electrode (HOT SIDE)
20 1 , 20 2 ... polarization material layers 20A, 20B ... material layers 22, 22A, 22B ... voltage probes 24, 24A, 24B ... thermocouples 26, 26 1 , 26 2 , ..., 26 n ... p-type semiconductors 28, 28 1, 28 2, ..., 28 n ... n -type semiconductor 30,30AB, 30BC ... coupling electrodes 32,32 1, 32 2, ..., 32 n ... n -side electrode 32A, 32C ... main electrodes 34 1, 34 2 , ... 34 n ... p-side electrode 36 ... load 38 ... heat sink 40 ... heat exchanger 42, 44 ... heat transfer member 45 ... wiring 100 ... sapphire substrate 200 ... heat sink 300 ... heater 400A, 400 ... thermoelectric generator ΔT ... Temperature change (temperature difference)
I O ... output current V O ... output voltage μ ... mobility n ... carrier concentration σ ... electrical conductivity S ... Seebeck coefficient ZT ... dimensionless figure of merit κ ... thermal conductivity

Claims (23)

第1材料層と、
前記第1材料層に接触して配置された第2材料層と、
前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、
前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と
前記第1材料層と前記第2材料層とによる単位構造体が形成される基板と
を備え、
前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、
前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、
前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が還元フェルミエネルギーの増加に応じて増加するような関係に設定されており、
前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが垂直になるように複数層に亘って形成されていることを特徴とする熱電変換素子。
A first material layer;
A second material layer disposed in contact with the first material layer;
A first electrode electrically connected to the first material layer and the second material layer;
A second electrode electrically connected to the first material layer and the second material layer and spaced apart from the first electrode ;
A substrate on which a unit structure is formed by the first material layer and the second material layer,
At the interface between the first material layer and the second material layer, there is an electric conductive layer mainly responsible for electric conduction due to discontinuous electric polarization between the first material layer and the second material layer. Occur,
The first electrode and the second electrode are electrically connected to the electrically conductive layer when the electrically conductive layer is generated,
The difference in electrical polarization at the interface between the first material layer and the second material layer is set to have a relationship such that the Seebeck coefficient of the electrically conductive layer increases as the reduced Fermi energy increases,
The unit structure of the first material layer and the second material layer is formed over a plurality of layers so that the interface between the first material layer and the second material layer and the surface of the substrate are perpendicular to each other. The thermoelectric conversion element characterized by the above-mentioned.
前記第2材料層は、半導体を備えることを特徴とする請求項1に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the second material layer includes a semiconductor. 前記第1材料層は、AlThe first material layer is made of Al. a GaGa b InIn 1-a-b1-ab N(0≦a≦1、0≦b≦1、0≦a+b≦1)を備え、N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1),
前記第2材料層は前記第1材料層と組成が異なるAl  The second material layer has an Al composition different from that of the first material layer. c GaGa d InIn 1-c-d1-cd N(0≦c≦1、0≦d≦1、0≦c+d≦1)を備えることを特徴とする請求項1または2に記載の熱電変換素子。The thermoelectric conversion element according to claim 1, comprising N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1).
前記第1材料層はGaN層を備え、前記第2材料層はAlGaN層を備えることを特徴とする請求項3に記載の熱電変換素子。The thermoelectric conversion element according to claim 3, wherein the first material layer includes a GaN layer, and the second material layer includes an AlGaN layer. 前記第2材料層はNを含まないことを特徴とする請求項2に記載の熱電変換素子。   The thermoelectric conversion element according to claim 2, wherein the second material layer does not contain N. 前記第1材料層は、強誘電体を備えることを特徴とする請求項1または2に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the first material layer includes a ferroelectric. 前記電気伝導層は、2次元電子ガス層若しくは2次元正孔ガス層、若しくは2次元電子ガス層と2次元正孔ガス層の両方を備えることを特徴とする請求項1〜6のいずれか1項に記載の熱電変換素子。   The electric conductive layer includes a two-dimensional electron gas layer, a two-dimensional hole gas layer, or both a two-dimensional electron gas layer and a two-dimensional hole gas layer. The thermoelectric conversion element according to item. 前記第1材料層と前記第2材料層とは、2次元電子ガス層若しくは2次元正孔ガス層の伝導度変調を目的とするドーピングが行われていないことを特徴とする請求項1〜7のいずれか1項に記載の熱電変換素子。   8. The first material layer and the second material layer are not doped for the purpose of conductivity modulation of a two-dimensional electron gas layer or a two-dimensional hole gas layer. The thermoelectric conversion element of any one of these. 前記第1材料層と前記第2材料層の界面の面垂直方向に、必ずしも同じ層構成ではなく、かつ主として電気伝導を担う層が前記第1材料層と前記第2材料層に挟まれているという単位構造が繰り返し積層されていることを特徴とする請求項1〜8のいずれか1項に記載の熱電変換素子。   In the direction perpendicular to the interface between the first material layer and the second material layer, a layer which is not necessarily the same layer structure and mainly responsible for electrical conduction is sandwiched between the first material layer and the second material layer. The thermoelectric conversion element according to claim 1, wherein the unit structure is repeatedly laminated. 前記第1材料層と前記第2材料層を形成する基板は、シリコンを含有していることを特徴とする請求項1〜9のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein a substrate on which the first material layer and the second material layer are formed contains silicon. 前記第1材料層と前記第2材料層を形成する基板は、サファイアを含有していることを特徴とする請求項1〜9のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 9, wherein the substrate on which the first material layer and the second material layer are formed contains sapphire. 前記第1電極および前記第2電極は、前記電気伝導層に接して形成されていることを特徴とする請求項1〜9のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the first electrode and the second electrode are formed in contact with the electric conductive layer. 前記第1電極および前記第2電極は、前記電気伝導層にオーミック接触されていることを特徴とする請求項1〜9のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 9, wherein the first electrode and the second electrode are in ohmic contact with the electric conductive layer. 前記第1電極および前記第2電極は、前記第2材料層に接続されていることを特徴とする請求項1〜9のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the first electrode and the second electrode are connected to the second material layer. 前記第1電極および前記第2電極とは、同一材料から構成されていることを特徴とする請求項1〜9のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the first electrode and the second electrode are made of the same material. 第1材料層と、
前記第1材料層に接触して配置された第2材料層と、
前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、
前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と、
前記第1材料層と前記第2材料層とによる単位構造体が形成される基板と
を備え、
前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、
前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、
前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層のゼーベック係数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されており、
前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが垂直になるように複数層に亘って形成されていることを特徴とする熱電変換素子。
A first material layer;
A second material layer disposed in contact with the first material layer;
A first electrode electrically connected to the first material layer and the second material layer;
A second electrode electrically connected to the first material layer and the second material layer and spaced apart from the first electrode;
A substrate on which a unit structure is formed by the first material layer and the second material layer,
At the interface between the first material layer and the second material layer, there is an electric conductive layer mainly responsible for electric conduction due to discontinuous electric polarization between the first material layer and the second material layer. Occur,
The first electrode and the second electrode are electrically connected to the electric conductive layer when the electric conductive layer is generated,
The difference in electrical polarization at the interface between the first material layer and the second material layer is set so that the Seebeck coefficient of the electrically conductive layer increases as the carrier concentration of the electrically conductive layer increases. And
The unit structure of the first material layer and the second material layer is formed over a plurality of layers so that the interface between the first material layer and the second material layer and the surface of the substrate are perpendicular to each other. The thermoelectric conversion element characterized by the above-mentioned.
第1材料層と、
前記第1材料層に接触して配置された第2材料層と、
前記第1材料層及び前記第2材料層と電気的に接続された第1電極と、
前記第1材料層及び前記第2材料層と電気的に接続され、且つ前記第1電極と離間して形成された第2電極と、
前記第1材料層と前記第2材料層とによる単位構造体が形成される基板と
を備え
前記第1材料層と前記第2材料層との界面には、前記第1材料層と前記第2材料層との間の電気分極が不連続であることによって電気伝導を主として担う電気伝導層が発生し、
前記第1電極および前記第2電極は、前記電気伝導層が発生した場合に前記電気伝導層に電気的に接続された状態となり、
前記第1材料層と前記第2材料層との界面における電気分極の差は、前記電気伝導層の無次元性能指数が前記電気伝導層のキャリア濃度の増加に応じて増加するような関係に設定されており、
前記第1材料層と前記第2材料層の単位構造体は、前記第1材料層と前記第2材料層との界面と前記基板の表面とが垂直になるように複数層に亘って形成されていることを特徴とする熱電変換素子。
A first material layer;
A second material layer disposed in contact with the first material layer;
A first electrode electrically connected to the first material layer and the second material layer;
A second electrode electrically connected to the first material layer and the second material layer and spaced apart from the first electrode;
A substrate on which a unit structure formed of the first material layer and the second material layer is formed. The interface between the first material layer and the second material layer includes the first material layer and the second material layer. An electric conduction layer mainly responsible for electric conduction is generated due to discontinuous electric polarization with the material layer,
The first electrode and the second electrode are electrically connected to the electrically conductive layer when the electrically conductive layer is generated,
The difference in electric polarization at the interface between the first material layer and the second material layer is set so that the dimensionless figure of merit of the electrically conductive layer increases as the carrier concentration of the electrically conductive layer increases. Has been
The unit structure of the first material layer and the second material layer is formed over a plurality of layers so that the interface between the first material layer and the second material layer and the surface of the substrate are perpendicular to each other. The thermoelectric conversion element characterized by the above-mentioned.
請求項1〜17のいずれか1項に記載の熱電変換素子を備えることを特徴とする熱電発電装置。   A thermoelectric power generation apparatus comprising the thermoelectric conversion element according to claim 1. 前記熱電変換素子を複数個直列に接続したことを特徴とする請求項18に記載の熱電発電装置。   The thermoelectric power generator according to claim 18, wherein a plurality of the thermoelectric conversion elements are connected in series. 請求項1〜17のいずれか1項に記載の熱電変換素子を備えることを特徴とするペルチェ装置。   A Peltier device comprising the thermoelectric conversion element according to claim 1. 前記熱電変換素子を複数個直列に接続したことを特徴とする請求項20に記載のペルチェ装置。   The Peltier device according to claim 20, wherein a plurality of the thermoelectric conversion elements are connected in series. 請求項1〜4、16、17のいずれか1項に記載の熱電変換素子の製造方法であって、
前記第1材料層と前記第2材料層を形成する前記基板を準備する工程と、
前記前記第1材料層と前記第2材料層を形成する前記基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、
前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、
前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層をエッチングする工程と
を有することを特徴とする熱電変換素子の製造方法。
It is a manufacturing method of the thermoelectric conversion element given in any 1 paragraph of Claims 1-4 , 16 , and 17 ,
Preparing the substrate for forming the first material layer and the second material layer;
Al a Ga b In 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer on the substrate forming the first material layer and the second material layer Forming a step;
The Al a Ga b In 1-a -b N (0 ≦ a ≦ 1,0 ≦ b ≦ 1,0 ≦ a + b ≦ 1) Al on the layer c Ga d In 1-c- d N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) forming a layer;
The Al a Ga b In 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer and the Al c Ga d In 1-cd N (0 ≦ c ≦ And 1. 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) etching the layer. A method for manufacturing a thermoelectric conversion element, comprising:
請求項1〜4、16、17のいずれか1項に記載の熱電変換素子の製造方法であって、
前記第1材料層と前記第2材料層を形成する前記基板を準備する工程と、
前記第1材料層と前記第2材料層を形成する前記基板上にAlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層を形成する工程と、
前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層上にAlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を形成する工程と、
前記AlGaIn1-a-bN(0≦a≦1、0≦b≦1、0≦a+b≦1)層と前記AlGaIn1-c-dN(0≦c≦1、0≦d≦1、0≦c+d≦1)層を壁開で電極を形成する領域を作製する工程と
を有することを特徴とする熱電変換素子の製造方法。
It is a manufacturing method of the thermoelectric conversion element given in any 1 paragraph of Claims 1-4 , 16 , and 17 ,
Preparing the substrate for forming the first material layer and the second material layer;
An Al a Ga b In 1 -abN (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer is formed on the substrate on which the first material layer and the second material layer are formed. Forming, and
The Al a Ga b In 1-a -b N (0 ≦ a ≦ 1,0 ≦ b ≦ 1,0 ≦ a + b ≦ 1) Al on the layer c Ga d In 1-c- d N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) forming a layer;
The Al a Ga b In 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1) layer and the Al c Ga d In 1-cd N (0 ≦ c ≦ 1. 0 ≦ d ≦ 1, 0 ≦ c + d ≦ 1) A step of forming a region in which an electrode is formed by opening a wall, and a method for manufacturing a thermoelectric conversion element.
JP2015083899A 2015-04-16 2015-04-16 Thermoelectric conversion element and method for manufacturing the same, thermoelectric power generation device and Peltier device Active JP6609109B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015083899A JP6609109B2 (en) 2015-04-16 2015-04-16 Thermoelectric conversion element and method for manufacturing the same, thermoelectric power generation device and Peltier device
PCT/JP2016/051215 WO2016166997A1 (en) 2015-04-16 2016-01-18 Thermoelectric conversion element and method for producing same, and thermoelectric power generation device and peltier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015083899A JP6609109B2 (en) 2015-04-16 2015-04-16 Thermoelectric conversion element and method for manufacturing the same, thermoelectric power generation device and Peltier device

Publications (2)

Publication Number Publication Date
JP2016207708A JP2016207708A (en) 2016-12-08
JP6609109B2 true JP6609109B2 (en) 2019-11-20

Family

ID=57126740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015083899A Active JP6609109B2 (en) 2015-04-16 2015-04-16 Thermoelectric conversion element and method for manufacturing the same, thermoelectric power generation device and Peltier device

Country Status (2)

Country Link
JP (1) JP6609109B2 (en)
WO (1) WO2016166997A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065306A1 (en) * 2015-10-16 2017-04-20 学校法人東京理科大学 Semiconductor material, method for generating carrier in electroconductive layer, thermoelectric conversion element, and switching element
JP6957420B2 (en) * 2018-07-18 2021-11-02 株式会社東芝 Power generation elements, power generation modules, power generation equipment and power generation systems
US11038048B2 (en) 2019-10-01 2021-06-15 Taiwan Semiconductor Manufacturing Company, Ltd. Gallium nitride-on-silicon devices
KR102508546B1 (en) * 2020-09-08 2023-03-09 한양대학교 에리카산학협력단 Thermoelectric device based on 2 Dimensional Electron Gas and 2 Dimensional Hole Gas, and method for manufacturing the same
WO2022055248A1 (en) * 2020-09-08 2022-03-17 한양대학교에리카산학협력단 Thermoelectric composite, preparation method therefor, and thermoelectric device and semiconductor device each comprising thermoelectric composite
KR102597072B1 (en) * 2020-09-08 2023-11-01 한양대학교 에리카산학협력단 Active cooling device based on binary oxide 2DEG and 2DHG thermoelectric device and manufacturing method thereof
WO2024010483A1 (en) * 2022-07-06 2024-01-11 Общество С Ограниченной Ответственностью "Технология Твердотельного Охлаждения" Solid-state cooling device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654828B2 (en) * 1989-05-22 1997-09-17 日本電信電話株式会社 Semiconductor device having quantum wires and method of manufacturing the same
JPH06310426A (en) * 1993-04-21 1994-11-04 Hitachi Ltd Quantum wire structure
JP4872050B2 (en) * 2007-11-02 2012-02-08 株式会社豊田中央研究所 Thermoelectric element
JP2010153748A (en) * 2008-12-26 2010-07-08 Sanken Electric Co Ltd Method of manufacturing field effect semiconductor device
JP2010238699A (en) * 2009-03-30 2010-10-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
WO2011016304A1 (en) * 2009-08-07 2011-02-10 日本碍子株式会社 Epitaxial substrate for semiconductor element, method for manufacturing epitaxial substrate for semiconductor element, and semiconductor element
JP2011071356A (en) * 2009-09-26 2011-04-07 Sanken Electric Co Ltd Semiconductor device
JP5672734B2 (en) * 2010-03-25 2015-02-18 富士通株式会社 Semiconductor device and manufacturing method thereof
US8716141B2 (en) * 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
WO2013137957A2 (en) * 2011-12-21 2013-09-19 The Regents Of The University Of California Enhancement of thermoelectric properties through polarization engineering

Also Published As

Publication number Publication date
WO2016166997A1 (en) 2016-10-20
JP2016207708A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6609109B2 (en) Thermoelectric conversion element and method for manufacturing the same, thermoelectric power generation device and Peltier device
KR100933967B1 (en) Phonon blocking electron permeation compact structure
Lin et al. Thermoelectric properties of superlattice nanowires
Shakouri Nanoscale thermal transport and microrefrigerators on a chip
US5955772A (en) Heterostructure thermionic coolers
Zide et al. Demonstration of electron filtering to increase the Seebeck coefficient in In 0.53 Ga 0.47 As∕ In 0.53 Ga 0.28 Al 0.19 As superlattices
KR101956278B1 (en) Heterogeneous laminate comprising graphene, thermoelectric material, thermoelectric module and thermoelectric apparatus comprising same
EP2784835B1 (en) Thermoelectric material, method for producing same, and thermoelectric conversion module using same
US8772785B2 (en) Semiconductor device, schottky barrier diode, electronic apparatus, and method of producing semiconductor device
Lu et al. Semimetal/semiconductor nanocomposites for thermoelectrics
JP5603495B2 (en) Thermoelectric module including thermoelectric element doped with nanoparticles and method for manufacturing the same
CN103682073B (en) Thermoelement
US9960249B2 (en) Semiconductor heterobarrier electron device and method of making
WO2010073391A1 (en) Thermoelectric conversion element, method for manufacturing thermoelectric conversion element and electronic device
Molina-Valdovinos et al. Low-dimensional thermoelectricity in graphene: The case of gated graphene superlattices
US8692105B2 (en) III-V nitride-based thermoelectric device
US20140373891A1 (en) Thermoelectric structure, and thermoelectric device and thermoelectric apparatus including the same
JP2004193200A (en) Superlattice thermoelectric material
Nagase et al. Thermoelectric enhancement in the two‐dimensional electron gas of AlGaN/GaN heterostructures
US20130180560A1 (en) Nanoscale, ultra-thin films for excellent thermoelectric figure of merit
Dresselhaus et al. Advances in 1D and 2D thermoelectric materials
Mohamed et al. Phonon-assisted reduction of hot spot temperature in AlInN ternaries
RU2788972C2 (en) Thermoelectric converter based on irregular solid-state superlattice
Shakouri et al. Solid-state and vacuum thermionic energy conversion
Praharaj Indium gallium nitride on silicon heterojunction Schottky barrier solar cell characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191025

R150 Certificate of patent or registration of utility model

Ref document number: 6609109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250