JP6608441B2 - Power converter, harmonic current compensator, and air conditioner - Google Patents

Power converter, harmonic current compensator, and air conditioner Download PDF

Info

Publication number
JP6608441B2
JP6608441B2 JP2017521406A JP2017521406A JP6608441B2 JP 6608441 B2 JP6608441 B2 JP 6608441B2 JP 2017521406 A JP2017521406 A JP 2017521406A JP 2017521406 A JP2017521406 A JP 2017521406A JP 6608441 B2 JP6608441 B2 JP 6608441B2
Authority
JP
Japan
Prior art keywords
switching element
power
igbt
resistance
harmonic current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017521406A
Other languages
Japanese (ja)
Other versions
JPWO2016194153A1 (en
Inventor
貴之 橋本
将志 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Publication of JPWO2016194153A1 publication Critical patent/JPWO2016194153A1/en
Application granted granted Critical
Publication of JP6608441B2 publication Critical patent/JP6608441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Description

本発明は、電力変換装置、高調波電流補償装置および空気調和機に関する。   The present invention relates to a power converter, a harmonic current compensator, and an air conditioner.

従来、交流電源の電力を変換するために、スイッチング素子:IGBT(Insulated Gate Bipolar Transistor)が直列接続されてアームを構成し、このアームがさらに並列接続されてその両端に平滑コンデンサを接続された電力変換回路が知られている。この電力変換回路を含む装置として、例えば高調波電流抑制装置(アクティブフィルタ)が知られている。高調波電流抑制装置は、交流電源に接続されるモータ等の負荷と並列に接続され、負荷側で発生する高調波電流を抑制する(特許文献1)。   Conventionally, in order to convert AC power, switching elements: IGBTs (Insulated Gate Bipolar Transistors) are connected in series to form an arm, and this arm is further connected in parallel and connected to both ends with a smoothing capacitor. Conversion circuits are known. As a device including this power conversion circuit, for example, a harmonic current suppressing device (active filter) is known. The harmonic current suppression device is connected in parallel with a load such as a motor connected to an AC power source, and suppresses harmonic current generated on the load side (Patent Document 1).

また、電力変換回路の直流側には電源投入時に過大な突入電流が平滑コンデンサに流れることを防ぐために突防抵抗が設けられる(特許文献2)。これにより、後段に配置される負荷も保護することできる。   Further, a rush resistance is provided on the DC side of the power conversion circuit to prevent an excessive rush current from flowing through the smoothing capacitor when the power is turned on (Patent Document 2). Thereby, the load arrange | positioned in a back | latter stage can also be protected.

特開2012−143094JP2012-143094 特開平5−15170JP-A-5-15170

しかしながら、発明者らの実験によると、条件によっては電源投入時に交流電源に接続されるスイッチング素子が破損する現象が発生した。この問題について検討したところ、電源投入時にゲート電圧が変動することによりスイッチング素子の耐圧が低下するという問題点を見出した。これについてさらに検討した結果、スイッチング素子の耐圧はコレクタ電圧のdv/dtに依存することが分かり、dv/dtを下げることでゲート電圧の変動が抑制されスイッチング素子の耐圧が向上することが判明した。   However, according to experiments conducted by the inventors, a phenomenon occurs in which the switching element connected to the AC power supply is damaged when the power is turned on depending on conditions. As a result of examining this problem, the inventors have found that the breakdown voltage of the switching element is lowered due to the fluctuation of the gate voltage when the power is turned on. As a result of further investigation on this, it was found that the breakdown voltage of the switching element depends on the dv / dt of the collector voltage, and decreasing the dv / dt reduced the fluctuation of the gate voltage and improved the breakdown voltage of the switching element. .

本発明は、スイッチング素子の破損を抑制し信頼性を向上させた電力変換装置、高調波電流補償装置および空気調和機を提供することを目的とする。   An object of the present invention is to provide a power converter, a harmonic current compensator, and an air conditioner in which damage to a switching element is suppressed and reliability is improved.

前記課題を解決するため、本発明では、交流電源に接続されて電力を変換する電力変換装置であって、IGBTである上側スイッチング素子とIGBTである下側スイッチング素子とが直列接続されたアームが複数並列接続されて構成される電力変換部と、前記上側スイッチング素子および前記下側スイッチング素子に対して各々設けられ、電源投入時には前記上側スイッチング素子または前記下側スイッチング素子のコレクタ電圧の変化率が大きくなるほど、前記上側スイッチング素子または前記下側スイッチング素子の耐圧を低下させるように構成されている複数の駆動回路と、前記アームの両端に接続される平滑コンデンサと、前記上側スイッチング素子および前記下側スイッチング素子の中点と前記交流電源とが接続される間に設けられて突入電流を抑制する突防抵抗と、を備える。 In order to solve the above-described problems, the present invention provides a power conversion device that is connected to an AC power source and converts electric power, and includes an arm in which an upper switching element that is an IGBT and a lower switching element that is an IGBT are connected in series. A plurality of power converters configured to be connected in parallel, and provided for each of the upper switching element and the lower switching element, and when the power is turned on, the rate of change of the collector voltage of the upper switching element or the lower switching element is A plurality of drive circuits configured to reduce the withstand voltage of the upper switching element or the lower switching element, a smoothing capacitor connected to both ends of the arm, the upper switching element, and the lower Provided between the midpoint of the switching element and the AC power supply And an inrush resistance for suppressing an inrush current.

本発明によれば、スイッチング素子の破損を抑制し信頼性を向上させた電力変換装置、高調波電流補償装置および空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power converter device, harmonic current compensation apparatus, and air conditioner which suppressed the damage of the switching element and improved reliability can be provided.

IGBTとドライバ出力段の回路図Circuit diagram of IGBT and driver output stage IGBTコレクタ電圧変化率とIGBT耐圧の関係を示す図The figure which shows the relationship between IGBT collector voltage change rate and IGBT breakdown voltage 突防抵抗とサージ電圧の関係を示す図A diagram showing the relationship between inrush resistance and surge voltage 突防抵抗と電圧変化率の関係を示す図A diagram showing the relationship between rush resistance and voltage change rate 突防抵抗と突入電流の関係を示す図Diagram showing the relationship between inrush resistance and inrush current 本発明の第1実施例の高調波電流補償装置の回路図1 is a circuit diagram of a harmonic current compensator according to a first embodiment of the present invention. 本発明の第2実施例の高調波電流補償装置の回路図Circuit diagram of harmonic current compensator of second embodiment of the present invention 本発明の第3実施例の高調波電流補償装置の回路図Circuit diagram of harmonic current compensator of third embodiment of the present invention 本発明の第4実施例の電力変換装置の回路図The circuit diagram of the power converter device of 4th Example of this invention 本発明の第5実施例の高調波電流補償装置を備えた空気調和機の回路図The circuit diagram of the air conditioner provided with the harmonic current compensation apparatus of 5th Example of this invention 本発明の第1実施例から第5実施例のうち少なくともひとつを実施した空気調和機の室外機の側面図The side view of the outdoor unit of the air conditioner which implemented at least one among 1st Example to 5th Example of this invention 本発明の第1実施例から第5実施例のうち少なくともひとつを実施した空気調和機の室外機の正面図The front view of the outdoor unit of the air conditioner which implemented at least one among 1st Example to 5th Example of this invention

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、スイッチング素子であるIGBTが破壊する現象について説明する。図1にIGBTとドライバ回路を示す。図1にはIGBT5とダイオード6、IGBT5を駆動するドライバ回路の出力段25と、出力段25のP型MOSFET21、N型MOSFET22、ゲート抵抗20、ドライバ電源の正極端子24、主回路電源の正極端子23が記載されている。IGBT5のゲート端子はゲート抵抗20とN型MOSFET22を介してIGBT5のエミッタ端子と接続される。ブレーカ投入時、ドライバ電源の正極端子24に電圧は供給されていないので、N型MOSFET22のインピーダンスは不定となる。   First, a phenomenon in which the IGBT that is a switching element is destroyed will be described. FIG. 1 shows an IGBT and a driver circuit. 1 shows an output stage 25 of a driver circuit for driving the IGBT 5 and the diode 6 and the IGBT 5, a P-type MOSFET 21, an N-type MOSFET 22, a gate resistor 20, a positive terminal 24 of the driver power supply, and a positive terminal of the main circuit power supply. 23 is described. The gate terminal of the IGBT 5 is connected to the emitter terminal of the IGBT 5 through the gate resistor 20 and the N-type MOSFET 22. Since no voltage is supplied to the positive terminal 24 of the driver power supply when the breaker is turned on, the impedance of the N-type MOSFET 22 becomes indefinite.

この場合IGBT5のゲートはエミッタに対してフローティングではなく、N型MOSFET22がオンしていないのでショートでもない。つまり、IGBTのゲートとエミッタはフローティングとショートの中間状態であると言える。IGBTのゲートとエミッタがショートされていない状態、つまりIGBTのゲートとエミッタはフローティングとショートの中間状態ではIGBTのコレクタとエミッタ間の耐圧は低下する。   In this case, the gate of the IGBT 5 is not floating with respect to the emitter, and is not short-circuited because the N-type MOSFET 22 is not turned on. In other words, it can be said that the gate and emitter of the IGBT are in an intermediate state between floating and short. When the IGBT gate and emitter are not short-circuited, that is, when the IGBT gate and emitter are in an intermediate state between floating and short-circuit, the breakdown voltage between the IGBT collector and emitter decreases.

図2にIGBTコレクタ電圧変化率と耐圧の関係を示す。縦軸の耐圧をBVcezとした理由はIGBTのゲートとエミッタがインピーダンスZを介して接続されているためである。インピーダンスZの構成要素はゲート抵抗20、N型MOSFET22に起因した寄生抵抗Rs、寄生インダクタンスLs、基板配線パターンとパワー半導体パッケージのピンに起因した寄生抵抗Rs、寄生インダクタンスLsである。なお、ゲートとエミッタをショートした耐圧はBVces、ゲートとエミッタがオープンの耐圧はBVceoと記載される。IGBTコレクタ電圧変化率dv/dtが増加するにしたがい、IGBTの耐圧は低下する。また、ゲートとエミッタ間の寄生抵抗Rsと寄生インダクタンスLsが大きいほど、耐圧の低下が著しい。   FIG. 2 shows the relationship between the IGBT collector voltage change rate and the breakdown voltage. The reason why the breakdown voltage on the vertical axis is BVcez is that the gate and emitter of the IGBT are connected via the impedance Z. The components of the impedance Z are a gate resistor 20, a parasitic resistance Rs caused by the N-type MOSFET 22, a parasitic inductance Ls, a parasitic resistance Rs caused by the substrate wiring pattern and the pins of the power semiconductor package, and a parasitic inductance Ls. The breakdown voltage when the gate and the emitter are short-circuited is described as BVces, and the breakdown voltage when the gate and the emitter are open is described as BVceo. As the IGBT collector voltage change rate dv / dt increases, the breakdown voltage of the IGBT decreases. In addition, as the parasitic resistance Rs and the parasitic inductance Ls between the gate and the emitter are larger, the breakdown voltage is significantly reduced.

IGBTコレクタ電圧の変化率dv/dtが増加するにしたがいIGBTの耐圧が低下する理由は、コレクタ電圧の変化が高周波化することで、IGBTのコレクタとゲート間の寄生容量を介してゲート電圧の変動が高周波化し、IGBTのゲートとエミッタ間のインピーダンスZが増加するためである。インピーダンスZが増加することでIGBTゲートの電圧がエミッタに対して変動しやすくなり、IGBTの耐圧が低下する。   The reason why the breakdown voltage of the IGBT decreases as the change rate dv / dt of the IGBT collector voltage increases is that the change in the collector voltage becomes higher in frequency, and the fluctuation of the gate voltage via the parasitic capacitance between the collector and the gate of the IGBT. This is because the frequency becomes higher and the impedance Z between the gate and the emitter of the IGBT increases. As the impedance Z increases, the voltage of the IGBT gate tends to fluctuate with respect to the emitter, and the breakdown voltage of the IGBT decreases.

ゲートとエミッタ間の寄生抵抗Rs、寄生インダクタンスLsの大小を問わず、dv/dtが低い時の耐圧は700Vに収斂している。これは、dv/dtが十分小さくなるとIGBTの耐圧はBVces、すなわちゲートとエミッタをショートした時の耐圧に一致することを示している。上述した、IGBTのゲートがドライバ出力段を介してエミッタと接続された状態では「IGBTコレクタ電圧変化率dv/dtが増加するにしたがいIGBTの耐圧が低下する」、「IGBTゲートとエミッタ間の寄生抵抗Rsと寄生インダクタンスLsが大きいほどIGBT耐圧の低下が著しい」、「dv/dtが十分小さいとIGBT耐圧はBVces(ゲートとエミッタをショートした時の耐圧)に一致する」ことを本発明の発明者らは見出した。さらに、本発明の発明者らは、これらの現象がアクティブフィルタの交流電源のブレーカ投入時に出現することを見出した。   Regardless of the parasitic resistance Rs between the gate and the emitter and the magnitude of the parasitic inductance Ls, the withstand voltage when dv / dt is low is converged to 700V. This indicates that when dv / dt is sufficiently small, the breakdown voltage of the IGBT matches BVces, that is, the breakdown voltage when the gate and the emitter are short-circuited. In the state where the gate of the IGBT is connected to the emitter via the driver output stage as described above, “the IGBT breakdown voltage decreases as the IGBT collector voltage change rate dv / dt increases”, “the parasitic between the IGBT gate and the emitter The invention shows that the greater the resistance Rs and the parasitic inductance Ls, the more the IGBT withstand voltage decreases, and “if dv / dt is sufficiently small, the IGBT withstand voltage matches BVces (withstand voltage when the gate and emitter are short-circuited)”. They found out. Furthermore, the inventors of the present invention have found that these phenomena appear when the breaker of the AC power source of the active filter is turned on.

図3に平滑コンデンサの正極端子または負極端子に突防抵抗を設ける場合における突防抵抗の抵抗値とIGBTコレクタのサージ電圧の関係を示す。突防抵抗の抵抗値を下げるにしたがいサージ電圧は低下する。これは突防抵抗を低減することで、平滑コンデンサのサージ電圧抑制効果が顕著となるためである。図4に突防抵抗の抵抗値とIGBTコレクタ電圧変化率dv/dtの関係を示す。突防抵抗の抵抗値を下げるにしたがいdv/dtは低下する。図中の点線以下の領域は図2から求めた耐圧700Vを確保できるdv/dtの範囲である。図4から分かるとおり、突防抵抗を低減しても耐圧700Vを確保できない。   FIG. 3 shows the relationship between the resistance value of the bump resistance and the surge voltage of the IGBT collector when the bump resistance is provided on the positive terminal or the negative terminal of the smoothing capacitor. The surge voltage decreases as the resistance value of the rush resistance decreases. This is because the surge voltage suppression effect of the smoothing capacitor becomes significant by reducing the rush resistance. FIG. 4 shows the relationship between the resistance value of the rush resistance and the IGBT collector voltage change rate dv / dt. The dv / dt decreases as the resistance value of the rush resistance decreases. A region below the dotted line in the figure is a range of dv / dt in which a withstand voltage of 700 V obtained from FIG. 2 can be secured. As can be seen from FIG. 4, even if the rush resistance is reduced, a withstand voltage of 700 V cannot be secured.

図5に突防抵抗の抵抗値と平滑コンデンサの突入電流の関係を示す。突防抵抗を小さくすると平滑コンデンサの突入電流が大きくなり、突入電流の目標範囲を満足しない。つまり、突防抵抗を小さくすることは突防抵抗の本来の役割である突入電流を補償するという機能を果たさなくなる。したがって、平滑コンデンサの正極端子または負極端子に突防抵抗を設ける手法ではIGBT耐圧と平滑コンデンサ突入電流の目標を両立できない。   FIG. 5 shows the relationship between the resistance value of the inrush resistance and the inrush current of the smoothing capacitor. If the inrush resistance is reduced, the inrush current of the smoothing capacitor increases, and the target range of the inrush current is not satisfied. That is, reducing the inrush resistance does not fulfill the function of compensating for the inrush current, which is the original role of the inrush resistance. Therefore, the method of providing the inrush resistance at the positive electrode terminal or the negative electrode terminal of the smoothing capacitor cannot achieve both the IGBT breakdown voltage and the smoothing capacitor inrush current target.

(実施例1)(アクティブフィルタ)
本発明の実施例1を図6を参照しながら説明する。図6は本実施例の高調波電流補償装置を含む高調波電流補償システムの構成の一例を示す回路ブロック図である。この高調波電流補償システムは交流電源1、交流電源1にブレーカ2を介して接続され、交流電力を直流電力に変換するダイオードブリッジ13、ダイオードブリッジ13の出力端子に接続された平滑コンデンサ14、モータなどの負荷42に交流電力を供給するインバータなどの電力変換装置15、およびダイオードブリッジ13と並列に交流電源1に接続され、ダイオードブリッジ13と電力変換装置15にて発生する高調波電流を補償するアクティブフィルタである高調波電流補償装置70を備えている。なお、以下では、主に交流電源1が三相の場合の構成例について説明する。
Example 1 (active filter)
A first embodiment of the present invention will be described with reference to FIG. FIG. 6 is a circuit block diagram showing an example of the configuration of a harmonic current compensation system including the harmonic current compensation apparatus of this embodiment. This harmonic current compensation system is connected to an AC power source 1, an AC power source 1 through a breaker 2, a diode bridge 13 for converting AC power into DC power, a smoothing capacitor 14 connected to an output terminal of the diode bridge 13, and a motor. A power conversion device 15 such as an inverter that supplies AC power to a load 42 such as an inverter and the diode bridge 13 are connected to the AC power source 1 in parallel to compensate for harmonic current generated in the diode bridge 13 and the power conversion device 15. A harmonic current compensator 70 that is an active filter is provided. In addition, below, the structural example in case AC power supply 1 is mainly three-phase is demonstrated.

IGBTなどの上側スイッチング素子5a〜5c、下側スイッチング素子5d〜5fがそれぞれ直列に接続されアームが構成される。このアームがさらに並列に接続されて電力変換部が構成される。上側スイッチング素子5a〜5cと逆並列に接続されるダイオード6a〜6c、下側スイッチング素子5d〜5fと逆並列に接続されるダイオード6d〜6fとがそれぞれ直列に接続される。各上側スイッチング素子5a〜5cと各下側スイッチング素子5d〜5fの中点はブレーカ2を介して交流電源1と接続される。スイッチング素子5a〜5fを駆動する駆動回路4a〜4f、上側スイッチング素子5a〜5cのコレクタ端子と下側スイッチング素子5d〜5fのエミッタ端子に接続された平滑コンデンサ3が設けられる。この平滑コンデンサ3の両端の電圧を降圧し高調波電流補償制御部11と駆動回路4a〜4fに電圧を供給するDC/DCコンバータ12が設けられる。 交流電源1と上側スイッチング素子および下側スイッチング素子の中点とが接続される間には突防抵抗8a,8bと、この突防抵抗8a,8bとそれぞれ並列に接続されるリレー7a,7bとが設けられる。以上のようにして高調波電流補償装置70が構成される。なお、突防抵抗8a,8bは、図6で示すように突入電流から全てのスイッチング素子を保護するため三相交流のうち少なくとも2つの相に設けることが望ましい。   Upper switching elements 5a to 5c such as IGBTs and lower switching elements 5d to 5f are connected in series to form an arm. This arm is further connected in parallel to constitute a power converter. Diodes 6a-6c connected in antiparallel with upper switching elements 5a-5c and diodes 6d-6f connected in antiparallel with lower switching elements 5d-5f are connected in series, respectively. The midpoints of the upper switching elements 5 a to 5 c and the lower switching elements 5 d to 5 f are connected to the AC power source 1 through the breaker 2. Driving circuits 4a to 4f for driving switching elements 5a to 5f, smoothing capacitors 3 connected to collector terminals of upper switching elements 5a to 5c and emitter terminals of lower switching elements 5d to 5f are provided. A DC / DC converter 12 is provided that steps down the voltage across the smoothing capacitor 3 and supplies the voltage to the harmonic current compensation controller 11 and the drive circuits 4a to 4f. While the AC power source 1 is connected to the middle point of the upper switching element and the lower switching element, the anti-resistance resistors 8a and 8b and the relays 7a and 7b connected in parallel to the anti-resistance resistors 8a and 8b, respectively Is provided. The harmonic current compensator 70 is configured as described above. In addition, as shown in FIG. 6, the inrush resistances 8a and 8b are preferably provided in at least two phases of the three-phase alternating current in order to protect all the switching elements from the inrush current.

ブレーカ投入時、リレー7a,7bはオフされており、平滑コンデンサ3の充電電流は突防抵抗8a,8bを介して流れる。これにより、突入電流が抑制され平滑コンデンサ3に流れるため、平滑コンデンサ3の破損が抑制される。さらに、スイッチング素子5a〜5fの交流側に突防抵抗8a,8bが接続されているため、スイッチング素子5a〜5fにかかる電圧の変化率dv/dtを大幅に低減することができる。これにより、スイッチング素子5a〜5fの破損を抑制することができる。   When the breaker is turned on, the relays 7a and 7b are turned off, and the charging current of the smoothing capacitor 3 flows via the anti-resistance resistors 8a and 8b. Thereby, since an inrush current is suppressed and it flows into the smoothing capacitor 3, damage to the smoothing capacitor 3 is suppressed. Furthermore, since the anti-resistance resistors 8a and 8b are connected to the alternating current side of the switching elements 5a to 5f, the rate of change dv / dt of the voltage applied to the switching elements 5a to 5f can be greatly reduced. Thereby, damage to switching elements 5a-5f can be controlled.

平滑コンデンサ3が充電された後、突防抵抗8a,8bに並列接続されたリレー7a,7bをオンする。そうすると、電流の流れは突防抵抗8a,8bからリレー7a,7bに切り替わり、通常運転時に突防抵抗8a,8bによる電力損失が発生しなくなる。   After the smoothing capacitor 3 is charged, the relays 7a and 7b connected in parallel to the anti-resistance resistors 8a and 8b are turned on. Then, the current flow is switched from the resistances 8a and 8b to the relays 7a and 7b, and power loss due to the resistances 8a and 8b does not occur during normal operation.

ダイオードブリッジ13に流れる電流値は電流検出器80a,80bで検出され、高調波電流補償制御部11に入力される。電流検出器80a,80bで検出した電流値を用いてアクティブフィルタ70はダイオードブリッジ13の電流に含まれる高調波電流を補償する電流を出力する。   The value of the current flowing through the diode bridge 13 is detected by the current detectors 80a and 80b and input to the harmonic current compensation control unit 11. Using the current values detected by the current detectors 80 a and 80 b, the active filter 70 outputs a current that compensates for the harmonic current included in the current of the diode bridge 13.

以上のように、突防抵抗8a,8bをスイッチング素子5a〜5fの交流側に設けることで、ブレーカ2を投入する時のスイッチング素子5a〜5fのコレクタ,エミッタ間の電圧の変化率dv/dtが低減し、スイッチング素子5a〜5fの耐圧が向上する。よって、スイッチング素子5a〜5fの破壊が抑制され、高信頼な高調波電流補償装置および高調波電流補償システムを提供できる。   As described above, by providing the resistances 8a and 8b on the AC side of the switching elements 5a to 5f, the rate of change dv / dt of the voltage between the collector and the emitter of the switching elements 5a to 5f when the breaker 2 is turned on. Is reduced, and the breakdown voltage of the switching elements 5a to 5f is improved. Therefore, destruction of the switching elements 5a to 5f is suppressed, and a highly reliable harmonic current compensation device and a harmonic current compensation system can be provided.

(実施例2)(交流Lとノイズフィルタを追加)
本発明の実施例2を図7を参照しながら説明する。図7が実施例1の図6と異なる点は交流電源1がダイオードブリッジ3とアクティブフィルタ70に分岐した後段に交流リアクトル30a〜30cとノイズフィルタ31を設けたことである。
(Example 2) (AC L and noise filter are added)
A second embodiment of the present invention will be described with reference to FIG. FIG. 7 differs from FIG. 6 of the first embodiment in that AC reactors 30 a to 30 c and a noise filter 31 are provided after the AC power source 1 branches to the diode bridge 3 and the active filter 70.

ノイズフィルタ31はコモンモードコイル32、Xコンデンサ33、Yコンデンサ34から構成される。交流リアクトル30a〜30cは、アクティブフィルタ70が発生する高調波を補償する。ノイズフィルタ31は雑音端子電圧などのノイズを抑制する。   The noise filter 31 includes a common mode coil 32, an X capacitor 33, and a Y capacitor 34. AC reactors 30a to 30c compensate for harmonics generated by active filter 70. The noise filter 31 suppresses noise such as a noise terminal voltage.

実施例1と同様に、突防抵抗8a,8bを交流側に設けることで、ブレーカ2を投入する時のスイッチング素子5a〜5fのコレクタ,エミッタ間の電圧の変化率dv/dtが低減し、スイッチング素子の耐圧が向上する。また、交流リアクトル30a〜30cおよびノイズフィルタ31は電流の変動を抑制するため、その後段に突防抵抗8a,8bを配置することで、スイッチング素子5a〜5fを保護する突防抵抗8a,8b自体の保護をすることもできる。よって、スイッチング素子5a〜5fおよび突防抵抗8a,8bの破壊を抑制することができ、信頼を向上させることができる。   Similar to the first embodiment, by providing the anti-resistance resistors 8a and 8b on the AC side, the rate of change dv / dt of the voltage between the collector and emitter of the switching elements 5a to 5f when the breaker 2 is turned on is reduced. The breakdown voltage of the switching element is improved. Further, the AC reactors 30a to 30c and the noise filter 31 are provided with anti-resistance resistors 8a and 8b at the subsequent stage in order to suppress fluctuations in current, so that the anti-resistance resistors 8a and 8b themselves protecting the switching elements 5a to 5f. Can also be protected. Therefore, the destruction of the switching elements 5a to 5f and the collision resistances 8a and 8b can be suppressed, and the reliability can be improved.

(実施例3)(単相)
本発明の実施例3を図8を参照しながら説明する。図7が実施例1の図6と異なる点は交流電源1が単相ということである。単相では突防抵抗8aとリレー7aは少なくとも1組設ける。
Example 3 (single phase)
A third embodiment of the present invention will be described with reference to FIG. FIG. 7 differs from FIG. 6 of the first embodiment in that the AC power source 1 is a single phase. In the single phase, at least one pair of the rush resistance 8a and the relay 7a is provided.

単相の場合には、交流電源1とスイッチング素子の中点とが接続されるどちらか一方の接続線に突防抵抗8aを設ければ全てのスイッチング素子を保護することができ、三相交流電源の場合と比較し、コストを低減してスイッチング素子の耐圧を向上できる。   In the case of a single phase, all the switching elements can be protected by providing an anti-impact resistor 8a on one of the connection lines connecting the AC power source 1 and the midpoint of the switching element. Compared to the case of a power supply, the cost can be reduced and the breakdown voltage of the switching element can be improved.

本実施例においても、突防抵抗8aを交流側に設けることで、ブレーカ2を投入する時のスイッチング素子5a〜5fのコレクタ,エミッタ間の電圧の変化率dv/dtが低減し、スイッチング素子の耐圧が向上する。よって、スイッチング素子の破壊が抑制され、高信頼な高調波調波電流補償装置および高調波電流補償システムを提供できる。   Also in the present embodiment, the provision of the resistance resistor 8a on the AC side reduces the rate of change dv / dt of the voltage between the collector and emitter of the switching elements 5a to 5f when the breaker 2 is turned on, and the switching element The breakdown voltage is improved. Therefore, the destruction of the switching element is suppressed, and a highly reliable harmonic current compensation device and harmonic current compensation system can be provided.

(実施例4)(コンバータ)
本発明の実施例4を図9を参照しながら説明する。図9が実施例1の図6と異なる点はダイオードブリッジ13の代わりにコンバータ71を設けたことである。ダイオードブリッジ13で整流し直流電流とする場合、ダイオード電流は正弦波と比較して波形が歪むので、高調波電流を補償するためのアクティブフィルタが必要となる。
(Example 4) (Converter)
A fourth embodiment of the present invention will be described with reference to FIG. 9 differs from FIG. 6 of the first embodiment in that a converter 71 is provided instead of the diode bridge 13. When the current is rectified by the diode bridge 13 to be a direct current, the diode current is distorted in waveform as compared with the sine wave, and therefore an active filter for compensating the harmonic current is required.

一方、コンバータ71はスイッチング素子5a〜5fを数kHzから20kHz程度のキャリア周波数でスイッチングすることで、平滑コンデンサ3の電流波形を正弦波に近づけ高調波電流を抑制することができる。インバータ72は平滑コンデンサ3の直流電流を交流に変換し負荷となるモータ42を駆動する。インバータ72はスイッチング素子40a〜40fとスイッチング素子と逆並列に接続されるダイオード41a〜41fから構成される。   On the other hand, the converter 71 switches the switching elements 5a to 5f at a carrier frequency of about several kHz to 20 kHz, thereby making the current waveform of the smoothing capacitor 3 close to a sine wave and suppressing the harmonic current. The inverter 72 converts the direct current of the smoothing capacitor 3 into alternating current and drives the motor 42 serving as a load. The inverter 72 includes switching elements 40a to 40f and diodes 41a to 41f connected in antiparallel with the switching elements.

本実施例においても、突防抵抗8a,8bを交流側に設けることで、ブレーカ2を投入する時のスイッチング素子5a〜5fのコレクタ,エミッタ間の電圧の変化率dv/dtが低減し、スイッチング素子の耐圧が向上する。よって、スイッチング素子の破壊が抑制され、高信頼な電力変換装置および電力変換システムを提供できる。   Also in this embodiment, by providing the anti-resistance resistors 8a and 8b on the AC side, the rate of change dv / dt of the voltage between the collector and emitter of the switching elements 5a to 5f when the breaker 2 is turned on is reduced, and switching is performed. The breakdown voltage of the element is improved. Therefore, destruction of a switching element is suppressed and a highly reliable power converter and power conversion system can be provided.

(実施例5)(空気調和機)
本発明の実施例5を図10から図12を参照しながら説明する。図10は本発明の実施例1から実施例3に係る高調波電流補償装置を空気調和機に適用した全体構成図である。図11は空気調和機の室外機の側面図である。図12は空気調和機の室外機の正面図である。
(Example 5) (Air conditioner)
A fifth embodiment of the present invention will be described with reference to FIGS. FIG. 10 is an overall configuration diagram in which the harmonic current compensator according to the first to third embodiments of the present invention is applied to an air conditioner. FIG. 11 is a side view of the outdoor unit of the air conditioner. FIG. 12 is a front view of the outdoor unit of the air conditioner.

図10で示されるようにインバータ15と、インバータ15によって駆動する圧縮機61が接続されている。この圧縮機61から、冷媒配管によって、凝縮器62、膨張装置63及び蒸発器64の順に接続され冷凍サイクルを構成している。   As shown in FIG. 10, an inverter 15 and a compressor 61 driven by the inverter 15 are connected. From this compressor 61, a condenser 62, an expansion device 63, and an evaporator 64 are connected in this order by refrigerant piping to constitute a refrigeration cycle.

本実施例に係る空気調和機は実施例1から実施例3の高調波電流補償装置を構成要素としている。冷凍サイクルにおいて圧縮機61によって圧縮され高温高圧となったガス冷媒は、凝縮器62において熱交換が実施され、放熱し凝縮する。凝縮された冷媒は、膨張装置63によって減圧及び膨張され、蒸発器64によって熱交換が実施され、吸熱し気化する。気化したガス冷媒は、再び圧縮機61において圧縮される。   The air conditioner according to the present embodiment includes the harmonic current compensator according to the first to third embodiments as a constituent element. The gas refrigerant compressed to high temperature and high pressure by the compressor 61 in the refrigeration cycle undergoes heat exchange in the condenser 62, dissipates heat and condenses. The condensed refrigerant is depressurized and expanded by the expansion device 63, heat exchange is performed by the evaporator 64, and the heat is absorbed and vaporized. The vaporized gas refrigerant is compressed again by the compressor 61.

図11の空気調和機の室外機はファンガード51、プロペラファン53、ファンモータ54、電気部品箱55、圧縮機56、アキュムレータ57、熱交換器58から構成される。室外機の正面52にサービス開口部がある。圧縮機56は冷媒を吸入して圧縮し、圧縮した冷媒を吐出する。圧縮機56にはスクロール圧縮機などの種々の圧縮機を採用できる。熱交換器58は冷媒を室外空気と熱交換させるための空気熱交換器であり、クロスフィン型のフィン・アンド・チューブ熱交換器などを採用できる。プロペラファン53は熱交換器58へ室外空気を送風する。アキュムレータ57は流入する冷媒を気液分離し分離したガス冷媒を圧縮機56に送る。図12に図11の正面図を示す。空気調和機の室外機正面のサービス開口部を開けると、電気部品箱55が正面に配置され、実施例1から実施例4のアクティブフィルタ60は電気箱55の横に配置される。   The outdoor unit of the air conditioner of FIG. 11 includes a fan guard 51, a propeller fan 53, a fan motor 54, an electric component box 55, a compressor 56, an accumulator 57, and a heat exchanger 58. There is a service opening in the front 52 of the outdoor unit. The compressor 56 sucks and compresses the refrigerant, and discharges the compressed refrigerant. Various compressors such as a scroll compressor can be adopted as the compressor 56. The heat exchanger 58 is an air heat exchanger for exchanging heat between the refrigerant and outdoor air, and a cross fin type fin-and-tube heat exchanger or the like can be adopted. The propeller fan 53 blows outdoor air to the heat exchanger 58. The accumulator 57 gas-liquid separates the incoming refrigerant and sends the separated gas refrigerant to the compressor 56. FIG. 12 shows a front view of FIG. When the service opening on the front side of the outdoor unit of the air conditioner is opened, the electric component box 55 is arranged on the front side, and the active filters 60 of the first to fourth embodiments are arranged beside the electric box 55.

本実施例においても、突防抵抗8a,8bを交流側に設けることで、ブレーカ2を投入する時のスイッチング素子5a〜5fのコレクタ,エミッタ間の電圧の変化率dv/dtが低減し、スイッチング素子の耐圧が向上する。よって、スイッチング素子の破壊が抑制され、高信頼な空気調和機および空気調和システムを提供できる。   Also in this embodiment, by providing the anti-resistance resistors 8a and 8b on the AC side, the rate of change dv / dt of the voltage between the collector and emitter of the switching elements 5a to 5f when the breaker 2 is turned on is reduced, and switching is performed. The breakdown voltage of the element is improved. Therefore, destruction of a switching element is suppressed and a highly reliable air conditioner and air conditioning system can be provided.

実施例1から実施例3の高調波補償装置および実施例4の電力変換器において、スイッチング素子またはダイオードにSiC(シリコンカーバイド)、GaN(窒化ガリウム)、ダイヤモンドなどのワイドギャップ半導体を用いることで電力損失が低減し、高調波電流補償装置を小形化し、図12のように室外機内部に実装することが可能となる。   In the harmonic compensator according to the first to third embodiments and the power converter according to the fourth embodiment, power is obtained by using a wide gap semiconductor such as SiC (silicon carbide), GaN (gallium nitride), or diamond for the switching element or the diode. Loss is reduced, and the harmonic current compensator can be miniaturized and mounted inside the outdoor unit as shown in FIG.

本願発明では、本願の課題を解決するために、幾つかの実施例を挙げて説明したが、これに限るものではない。矛盾のことがない限り、請求の範囲に記載の旨に従う変更実施、例えば、実施例の間の組み合わせ、実施例における特徴の組み合わせなどによって変更実施することができることは言うまでもない。   In the present invention, several embodiments have been described in order to solve the problems of the present application, but the present invention is not limited to this. As long as there is no contradiction, it cannot be overemphasized that it can change and implement by the change implementation according to the meaning of a claim, for example, the combination between Examples, the combination of the characteristic in an Example, etc.

1 交流電源
2 ブレーカ
3,14 平滑コンデンサ
42 負荷
4 駆動回路
5,40 スイッチング素子
6、41 ダイオード
7 リレー
8 突防抵抗
11 高調波電流補償制御部
12 DC/DCコンバータ
13 ダイオードブリッジ
15,71 電力変換装置
20 ゲート抵抗
21 P型MOSFET
22 N型MOSFET
23 主回路電源の正極端子
24 ドライバ電源の正極端子
25 ドライバ回路の出力段
30 交流リアクトル
31 ノイズフィルタ
55 電気部品箱
56,61 圧縮機
60,70 高調波電流補償装置(アクティブフィルタ)
70 コンバータ
80 電流検出器
DESCRIPTION OF SYMBOLS 1 AC power source 2 Breaker 3, 14 Smoothing capacitor 42 Load 4 Drive circuit 5, 40 Switching element 6, 41 Diode 7 Relay 8 Anti-shock resistance 11 Harmonic current compensation control part 12 DC / DC converter 13 Diode bridge 15, 71 Device 20 Gate resistance 21 P-type MOSFET
22 N-type MOSFET
23 Positive terminal of main circuit power supply 24 Positive terminal of driver power supply 25 Output stage 30 of driver circuit 31 AC reactor 31 Noise filter 55 Electrical component box 56, 61 Compressor 60, 70 Harmonic current compensator (active filter)
70 Converter 80 Current detector

Claims (6)

交流電源に接続されて電力を変換する電力変換装置であって、
IGBTである上側スイッチング素子とIGBTである下側スイッチング素子とが直列接続されたアームが複数並列接続されて構成される電力変換部と、
前記上側スイッチング素子および前記下側スイッチング素子に対して各々設けられ、電源投入時には前記上側スイッチング素子または前記下側スイッチング素子のコレクタ電圧の変化率が大きくなるほど、前記上側スイッチング素子または前記下側スイッチング素子の耐圧を低下させるように構成されている複数の駆動回路と、
前記アームの両端に接続される平滑コンデンサと、
前記上側スイッチング素子および前記下側スイッチング素子の中点と前記交流電源とが接続される間に設けられて突入電流を抑制する突防抵抗と、を備える電力変換装置。
A power conversion device that is connected to an AC power source and converts power,
A power converter configured by connecting in parallel a plurality of arms in which an upper switching element that is an IGBT and a lower switching element that is an IGBT are connected in series;
The upper switching element or the lower switching element is provided for each of the upper switching element and the lower switching element, and the higher the change rate of the collector voltage of the upper switching element or the lower switching element when the power is turned on, A plurality of drive circuits configured to reduce the breakdown voltage of
Smoothing capacitors connected to both ends of the arm;
A power converter comprising: a rush resistance provided between a middle point of the upper switching element and the lower switching element and the AC power supply connected to suppress an inrush current.
前記電力変換部は、前記アームが3つ並列接続されて構成され、
前記交流電源は、三相交流電源であり、
前記交流電源の各相は、前記上側スイッチング素子および前記下側スイッチング素子の各中点に対応してそれぞれ接続され、
複数の前記駆動回路は、各々、P型MOSFETと、前記P型MOSFETに接続されたN型MOSFETと、前記P型MOSFETおよびN型MOSFETの接続点と、前記上側スイッチング素子または前記下側スイッチング素子のゲート端子に接続されたゲート抵抗と、を備え、
前記各相および前記各中点の間の少なくとも2箇所に前記突防抵抗を備える請求項1の電力変換装置。
The power conversion unit is configured by connecting the three arms in parallel,
The AC power supply is a three-phase AC power supply,
Each phase of the AC power supply is connected to each middle point of the upper switching element and the lower switching element, respectively.
Each of the plurality of drive circuits includes a P-type MOSFET, an N-type MOSFET connected to the P-type MOSFET, a connection point of the P-type MOSFET and the N-type MOSFET, and the upper switching element or the lower switching element. A gate resistor connected to the gate terminal of
The power conversion device according to claim 1, wherein the rush resistance is provided at at least two locations between each phase and each midpoint.
前記上側スイッチング素子および前記下側スイッチング素子の中点と前記交流電源とが接続される間に交流リアクトルが設けられ、
前記突防抵抗は、前記交流リアクトルと前記中点との間に設けられる請求項1の電力変換装置。
An AC reactor is provided between the middle point of the upper switching element and the lower switching element and the AC power source is connected,
The power conversion device according to claim 1, wherein the collision prevention resistance is provided between the AC reactor and the midpoint.
前記上側スイッチング素子および前記下側スイッチング素子の中点と前記交流電源とが接続される間にノイズフィルタが設けられ、
前記突防抵抗は、前記ノイズフィルタと前記中点との間に設けられる請求項1の電力変換装置。
A noise filter is provided between the middle point of the upper switching element and the lower switching element and the AC power supply,
The power converter according to claim 1, wherein the rush resistance is provided between the noise filter and the midpoint.
請求項1の電力変換装置を備える高調波電流補償装置であって、
前記交流電源に前記電力変換装置と並列接続される負荷に供給される電流を検出する負荷電流検出器と、
前記負荷電流検出器が検出する負荷電流に基づき前記電力変換部を駆動し、前記負荷で発生する高調波を抑制する補償制御部と、を備える高調波電流補償装置。
A harmonic current compensator comprising the power converter of claim 1,
A load current detector for detecting a current supplied to a load connected in parallel with the power converter to the AC power source;
A harmonic current compensator comprising: a compensation control unit that drives the power converter based on a load current detected by the load current detector and suppresses harmonics generated in the load.
冷媒を圧縮する圧縮機と、膨張装置と、熱交換器と、が配管接続されて構成される冷凍サイクルと、
前記圧縮機を駆動するインバータにより生じる高調波を抑制する請求項5の高調波電流補償装置と、を備える空気調和機。
A refrigeration cycle configured by connecting a compressor for compressing a refrigerant, an expansion device, and a heat exchanger;
An air conditioner comprising: a harmonic current compensator according to claim 5 that suppresses harmonics generated by an inverter that drives the compressor.
JP2017521406A 2015-06-03 2015-06-03 Power converter, harmonic current compensator, and air conditioner Active JP6608441B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065969 WO2016194153A1 (en) 2015-06-03 2015-06-03 Power conversion device, high-frequency current compensation device, and air conditioner

Publications (2)

Publication Number Publication Date
JPWO2016194153A1 JPWO2016194153A1 (en) 2018-03-15
JP6608441B2 true JP6608441B2 (en) 2019-11-20

Family

ID=57440355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521406A Active JP6608441B2 (en) 2015-06-03 2015-06-03 Power converter, harmonic current compensator, and air conditioner

Country Status (2)

Country Link
JP (1) JP6608441B2 (en)
WO (1) WO2016194153A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260560B (en) * 2019-07-05 2023-12-19 松下知识产权经营株式会社 power conversion device
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2820622B2 (en) * 1994-06-17 1998-11-05 三菱電機株式会社 Power converter, AC / DC converter and frequency converter
JP5253523B2 (en) * 2011-01-04 2013-07-31 三菱電機株式会社 Harmonic current compensator
JP5749638B2 (en) * 2011-12-08 2015-07-15 アイダエンジニアリング株式会社 Press machine power supply

Also Published As

Publication number Publication date
JPWO2016194153A1 (en) 2018-03-15
WO2016194153A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP4760001B2 (en) Multiphase current supply circuit, driving device, compressor, and air conditioner
EP3174190A1 (en) Three level converter
JP4937281B2 (en) Motor drive control device, compressor, blower, air conditioner, refrigerator or freezer
US9800077B2 (en) DC power-supply device and refrigeration-cycle application device including the same
WO2006061977A1 (en) Multi-phase current supplying circuit, driving apparatus, compressor, and air conditioner
JP6132912B2 (en) Backflow prevention device, power conversion device and refrigeration air conditioner
JP2014165949A (en) Power conversion apparatus
WO2016098160A1 (en) Power converter, compressor, air blower, and air conditioner
JP6608441B2 (en) Power converter, harmonic current compensator, and air conditioner
JP2012050177A (en) Harmonic suppressor
JP6823573B2 (en) Power converter
KR102374725B1 (en) Inverter circuit, and air conditioner and refrigerator using the same
WO2020017008A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
JP6621913B2 (en) Electric motor drive device, refrigeration cycle device, and air conditioner
JP6847310B2 (en) Power converter
JP7118284B2 (en) DC power supplies, motor drives, blowers, compressors and air conditioners
CN107749708A (en) A kind of frequency converter IGBT control circuits, compressor and air-conditioning using the control circuit
WO2017187576A1 (en) Motor drive device, refrigeration cycle device, and air conditioner
JP6935015B2 (en) Harmonic current compensator and air conditioning system
JP5121906B2 (en) Inverter drive device and refrigeration air conditioner
JP5733138B2 (en) Inverter device
JP6518506B2 (en) POWER SUPPLY DEVICE AND AIR CONDITIONER USING SAME
JP7325673B2 (en) Power converter and air conditioner
WO2021260768A1 (en) Power conversion device
JP2023117714A (en) Power conversion device and power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6608441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150