WO2021260768A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2021260768A1
WO2021260768A1 PCT/JP2020/024377 JP2020024377W WO2021260768A1 WO 2021260768 A1 WO2021260768 A1 WO 2021260768A1 JP 2020024377 W JP2020024377 W JP 2020024377W WO 2021260768 A1 WO2021260768 A1 WO 2021260768A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power conversion
carrier
inverter
conversion device
Prior art date
Application number
PCT/JP2020/024377
Other languages
French (fr)
Japanese (ja)
Inventor
憲嗣 岩崎
康彦 和田
和憲 坂廼邉
護 神蔵
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/024377 priority Critical patent/WO2021260768A1/en
Priority to JP2022531260A priority patent/JP7309070B2/en
Priority to DE112020007351.3T priority patent/DE112020007351T5/en
Publication of WO2021260768A1 publication Critical patent/WO2021260768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • This disclosure relates to a power conversion device that supplies electric power received from an AC power supply to a load such as a permanent magnet type synchronous motor.
  • an inverter is a device that can generate variable voltage and variable frequency alternating current by turning on and off switching elements from direct current, and can operate an electric motor at variable speed.
  • the process of receiving AC power from an AC power source, converting it to DC power, creating AC power from DC power, and operating the motor at variable speed may be collectively referred to as an "inverter".
  • the inverter is composed of a rectifying unit that performs rectification, an inverter unit that performs DC-AC conversion, and a DC link unit that connects the rectifying unit and the inverter unit.
  • rectification is performed in a rectifying section composed of a diode or a transistor to create a pulsating DC voltage. Further, by smoothing the pulsating DC voltage with a smoothing capacitor provided in the DC link portion, a pulsating DC voltage is created. Using this DC voltage, an AC voltage is created by turning on and off the semiconductor switch in the inverter section. The AC voltage output from the inverter is supplied to a load such as a motor.
  • an electrolytic capacitor is used as a smoothing capacitor.
  • the electrolytic capacitor has the disadvantages that it has a high risk of failure among the components constituting the inverter and has a short life such as dry-up due to aging deterioration.
  • the electrolytic capacitor used as a smoothing capacitor in the DC link portion needs to have a high withstand voltage and a large capacity, and therefore has a demerit that the size is large and the cost is high.
  • inverter there is a method that does not use an electrolytic capacitor in the DC link part.
  • inverter of this type by providing a capacitor with a small capacity such as a film capacitor in the DC link section, the pulsation output from the rectifying section is not smoothed and is output to the inverter section.
  • This type of inverter is called an electrolytic capacitorless inverter.
  • an inverter in which a large-capacity electrolytic capacitor is mounted on a conventional DC link unit is referred to as a "conventional inverter”.
  • an inverter equipped with a small capacity capacitor such as a film capacitor without providing a large capacity electrolytic capacitor in the DC link portion is referred to as an “electrolytic capacitorless inverter”.
  • the rectifying unit is often composed of four or six diodes. While the diode of the rectifying section is on, the charging current flows through the large-capacity electrolytic capacitor mounted on the DC link section, so that the power supply current rises sharply. If the rise of the power supply current is steep, it may cause a failure due to overcurrent, or the power factor and the power supply harmonics may deteriorate. Therefore, a reactor is inserted between the rectifying unit and the electrolytic capacitor for the purpose of slowing the change in the power supply current.
  • the position of the reactor is not limited to this, and can be attached to both the AC (Alternating Current) side and the DC (Direct Current) side depending on the purpose of use such as the power supply environment, the inverter method, and the electric power.
  • the reactor inserted on the AC side is called ACL (Alternating Current Reactor), and the reactor inserted on the DC side is called DCL (Direct Current Reactor).
  • the reactor Regardless of whether the reactor is ACL or DCL, it is necessary that the reactor has a high inductance in order to moderate the current change. Therefore, the reactor tends to be a particularly large and high-cost component among the components constituting the inverter.
  • the capacitor capacity of the DC link is small, so the charging current is small and the rise of the current after rectification is relatively small. Therefore, the risk of capacitor failure can be reduced, and the inductance of the reactor can be made relatively small. Therefore, the reactor constituting the DCL or ACL can be reduced in inductance and size, and the cost can be suppressed.
  • the “electrolytic capacitorless inverter” has merits such as reduction of failure risk, miniaturization, and cost reduction.
  • the noise flowing out to the power supply system may increase due to its configuration.
  • the reactor In the “conventional inverter", a reactor with a large inductance is used. When the inductance of the reactor is large, it has a high impedance for high frequency current. Therefore, noise in the high frequency band such as noise caused by switching generated in the inverter section is unlikely to flow out to the power supply side. Further, in the “conventional inverter”, since a large-capacity capacitor is mounted on the DC link portion, noise and voltage ripple generated in the inverter portion are easily absorbed by the DC link portion.
  • the inverter unit performs DC-AC conversion, and when the DC-AC conversion operation is performed, a switching operation for turning on / off the switching element provided in the inverter unit is performed. Due to these switching operations, voltage ripple occurs. Since the voltage ripple basically depends on the carrier frequency, it often becomes noise on the order of kHz.
  • Noise is divided into radiation noise and conduction noise.
  • conduction noise the emission limit value in the band of 150 kHz to 30 MHz is defined by the standard (EN61000-6-3, etc.).
  • the noise current I common of the common mode noise which occupies a large proportion of the conduction noise, is expressed by the following equation (1).
  • C stray capacitance
  • v voltage
  • the magnitude of the noise current I common of the common mode noise is determined by the stray capacitance C between the inverter circuit board and the motor and the ground, and the change in the voltage v applied thereto.
  • a method of suppressing the outflow of noise there is a method of providing a snubber with a film capacitor or a ceramic capacitor in the DC link portion, or a method of providing a noise filter composed of a reactor and a capacitor on the power supply side.
  • the noise filter can suppress the outflow of noise in a specific band to the power supply side by combining a reactor and a capacitor.
  • Patent Document 1 has a configuration in which, in a power conversion device, the capacity of a film capacitor provided in a DC link portion is selected to a value at which a carrier component can be removed to suppress the influence of switching of the inverter portion on a power supply. It has been disclosed.
  • the carrier frequency used in normal motor control is higher than that of the carrier frequency.
  • the switching element of the inverter section is switched at a high carrier frequency.
  • the carrier frequency used is the carrier frequency of normal motor control
  • the capacitor of the DC link section and the noise filter of the power supply section are designed, the carrier ripple of a higher frequency is performed. , And its harmonic components cannot be sufficiently removed.
  • This disclosure is made to solve such a problem, and while maintaining the advantages of the electrolytic capacitorless inverter such as miniaturization, cost reduction, and long life, it does not significantly increase the cost.
  • the purpose is to obtain a power conversion device capable of reducing carrier ripple and noise.
  • the power conversion device has a rectifying unit for rectifying a voltage supplied from a power source and a power conversion element, and the voltage rectified by the rectifying unit is converted by switching of the power conversion element to load.
  • a DC link unit connected between the rectifying unit and the inverter unit and provided with a capacitor having a capacity that does not smooth the voltage rectified by the rectifying unit, and an inverter unit.
  • a control unit that controls the switching of the power conversion element based on the switching carrier frequency and a carrier variable unit that outputs a command to change the switching carrier frequency based on a preset change pattern to the control unit are provided. It is a thing.
  • carrier ripple and noise can be achieved without significantly increasing the cost while maintaining the advantages of the electrolytic capacitorless inverter such as miniaturization, cost reduction, and long life. It can be reduced.
  • FIG. It is a circuit diagram which shows the structure of the power conversion apparatus 8 which concerns on Embodiment 1.
  • FIG. It is an image diagram explaining the difference of the noise component superimposed on the power supply current in the carrier variable ONOFF. It is an image diagram explaining the difference of the noise component superimposed on the power supply current in the carrier variable ONOFF. It is a figure which shows an example of the actual measurement result of the output voltage from the inverter part 5. It is a figure which shows an example of the actual measurement result of the output voltage from the inverter part 5.
  • FIG. It is a circuit diagram which shows the modification of the power conversion apparatus 8 which concerns on Embodiment 2.
  • An example of the change pattern of the carrier frequency based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment is shown.
  • An example of the change pattern of the carrier frequency based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment is shown.
  • An example of the change pattern of the carrier frequency based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment is shown. It is a block diagram which shows an example of the structure of the refrigerating cycle device 50 to which the power conversion device 8 which concerns on Embodiment 1 is applied.
  • FIG. 1 is a circuit diagram showing the configuration of the power conversion device 8 according to the first embodiment.
  • the power conversion device 8 includes a rectifying unit 2, a reactor 3, a DC link unit 4, an inverter unit 5, a control device 7, and a DC voltage detecting unit 9.
  • the power conversion device 8 is applied to, for example, a refrigeration cycle device 50 (see FIG. 11) such as an air conditioner together with the motor 6.
  • FIG. 11 is a configuration diagram showing an example of the configuration of the refrigeration cycle device 50 to which the power conversion device 8 according to the first embodiment is applied.
  • the refrigeration cycle device 50 includes an outdoor unit 60 and an indoor unit 70.
  • the outdoor unit 60 and the indoor unit 70 are connected to each other via a refrigerant pipe 52.
  • the outdoor unit 60 is provided with a compressor 61, a four-way valve 62, a heat exchanger 63, a blower fan 64, and an expansion valve 65.
  • the indoor unit 70 is provided with a heat exchanger 71 and a blower fan 72.
  • the compressor 61 sucks in the refrigerant flowing in the refrigerant pipe 52.
  • the compressor 61 compresses the sucked refrigerant and discharges it to the refrigerant pipe 52.
  • the compressor 61 is, for example, an inverter compressor.
  • the refrigerant discharged from the compressor 61 flows into the heat exchanger 63 of the outdoor unit 60 or the heat exchanger 71 of the indoor unit 70.
  • the heat exchangers 63 and 71 exchange heat between the refrigerant flowing inside and the air.
  • the heat exchangers 63 and 71 are, for example, fin-and-tube heat exchangers.
  • the blower fan 64 has a fan motor 64a and a blade portion 64b.
  • the blower fan 72 has a fan motor 72a and a wing portion 72b.
  • the blower fans 64 and 72 blow air to the heat exchangers 63 and 71, respectively.
  • the four-way valve 62 is configured to switch the state between the case of the cooling operation of cooling the indoor unit 70 side and the case of the heating operation of heating the indoor unit 70 side. In the case of cooling operation, the four-way valve 62 is in a state shown by a solid line, and the refrigerant discharged from the compressor 61 flows into the heat exchanger 63 of the outdoor unit 60. At this time, the heat exchanger 63 of the outdoor unit 60 acts as a condenser, and the heat exchanger 71 of the indoor unit 70 acts as an evaporator.
  • the four-way valve 62 is in the state shown by the broken line, and the refrigerant discharged from the compressor 61 flows into the heat exchanger 71.
  • the heat exchanger 63 of the outdoor unit 60 acts as an evaporator
  • the heat exchanger 71 of the indoor unit 70 acts as a condenser.
  • the expansion valve 65 is a pressure reducing device for reducing the pressure of the refrigerant, and is composed of, for example, an electronic expansion valve.
  • the expansion valve 65 is provided between the heat exchanger 63 of the outdoor unit 60 and the heat exchanger 71 of the indoor unit 70.
  • the compressor 61, the four-way valve 62, the heat exchanger 63, the expansion valve 65, and the heat exchanger 71 are connected by a refrigerant pipe 52 to form a refrigerant circuit.
  • the power conversion device 8 is connected to the AC power supply 1.
  • the AC power supply 1 is, for example, a three-phase AC power supply. Not limited to this case, the AC power supply 1 may be composed of a power supply other than the three-phase power supply such as a single-phase power supply.
  • the rectifying unit 2 rectifies the AC voltage input from the AC power supply 1 and converts it into a DC voltage.
  • the DC voltage is applied to the DC link unit 4 through the reactor 3.
  • the rectifying unit 2 is composed of, for example, a full bridge circuit including six rectifying diodes.
  • the six rectifying diodes are connected in series by two to form a total of three series circuits.
  • the three series circuits are connected in parallel.
  • the three series circuits are provided corresponding to the U phase, V phase, and W phase of the AC power supply 1, respectively.
  • the connection points of the two rectifying diodes constituting each series circuit are connected to the U phase, V phase and W phase of the AC power supply 1, respectively.
  • the rectifying unit 2 may use a switching element such as a transistor instead of the rectifying diode.
  • the reactor 3 is provided for the purpose of suppressing a steep rise in the power supply current from the AC power supply 1 and slowing down the current change.
  • the reactor 3 is provided in the rear stage of the rectifying unit 2, but may be provided in the front stage of the rectifying unit 2.
  • the DC link unit 4 has a small-capacity capacitor 4a.
  • the small capacity capacitor 4a is, for example, a film capacitor or a ceramic capacitor.
  • the capacity of the small-capacity capacitor 4a is smaller than the capacity of the smoothing electrolytic capacitor provided in the "conventional inverter".
  • the capacity of the small-capacity capacitor 4a is such that the waveform of the DC voltage rectified by the rectifying unit 2 is not smoothed.
  • the capacity of the electrolytic capacitor for smoothing provided in the "conventional inverter” is such that the low-order harmonic component that pulsates greatly at a frequency twice or six times the voltage frequency of the commercial power supply is removed. Set.
  • the capacitance of the small-capacity capacitor 4a does not remove the low-order harmonic component that pulsates greatly at a frequency twice or six times the voltage frequency of the commercial power supply, but removes the carrier frequency component of the inverter section 5. Is set to. Since the small-capacity capacitor 4a of the DC link portion 4 has a small capacitor capacity, the charging current is small and the rise of the current after rectification is relatively small. Therefore, the inductance of the reactor 3 may be relatively small. Therefore, the reactor 3 can be reduced in inductance and size, and the cost can be suppressed.
  • the power conversion device 8 has merits such as reduction of failure risk, miniaturization, and cost reduction of the "electrolytic capacitorless inverter".
  • the DC link unit 4 outputs the DC voltage input from the rectifying unit 2 to the inverter unit 5 without smoothing it.
  • the voltage waveform of the voltage Vdc output from the DC link unit 4 has the voltage waveform 11 shown in the rectangular frame 10 of FIG. If the voltage Vdc is smoothed, it becomes a linear line with a constant value, but since it is not smoothed, the voltage waveform 11 of the voltage Vdc contains a pulsating component 11a that fluctuates up and down as shown in FIG. ing.
  • the inverter unit 5 converts the direct current input from the DC link unit 4 into alternating current by the operation of the power conversion element, and outputs it to the motor 6 which is a load.
  • the inverter unit 5 has, for example, three upper arm switching elements 5a and three lower arm switching elements 5b as power conversion elements.
  • the inverter unit 5 is composed of, for example, a full bridge circuit.
  • One upper arm switching element 5a and one lower arm switching element 5b are connected in series, and the connection point thereof is a midpoint.
  • a series circuit composed of one upper arm switching element 5a and one lower arm switching element 5b is called an arm.
  • the inverter unit 5 has three arms. The three arms are connected in parallel.
  • the three arms are provided corresponding to the U-phase, V-phase, and W-phase of the motor 6, respectively.
  • the midpoint of each arm is connected to the U phase, V phase and W phase of the motor 6, respectively.
  • a reflux diode 5c is connected to each of the upper arm switching elements 5a in antiparallel.
  • a freewheeling diode 5c is connected to each of the lower arm switching elements 5b in antiparallel.
  • the switching elements 5a and 5b used in the inverter unit 5 are, for example, an IGBT, a MOSFET, a self-extinguishing thyristor, a bipolar transistor, and the like.
  • the switching elements 5a and 5b of the inverter unit 5 perform on / off operations according to the PWM drive command signal described later from the control device 7. By the on / off operation, the direct current input from the DC link unit 4 is converted into alternating current.
  • the power obtained by switching the switching elements 5a and 5b may be high frequency power.
  • the load may be any other device as long as it is a device driven by the electric power from the power conversion device 8.
  • the inverter unit 5 may be mounted on an inverter device that drives a load.
  • the present invention is not limited to this case, and other power conversion elements may be used.
  • the motor 6 is, for example, a three-phase AC motor.
  • the motor 6 is not limited to this, and may be a motor other than the three-phase, for example, a single-phase AC motor. Further, the motor 6 may be an AC motor or a DC motor.
  • the motor 6 is mounted on the compressor 61 of the refrigeration cycle device 50, for example.
  • the power conversion device 8 may be mounted on the inverter device for driving the compressor 61.
  • the motor 6 may be used as the fan motors 64a and 72a of the blower fans 64 and 72. In that case, the power conversion device 8 may be mounted on the inverter device that drives the blower fans 64 and 72.
  • the motor 6 is given as an example as the load, but the load is not limited to this, and the load may be another device.
  • the control device 7 has a control unit 7a, a carrier variable unit 7b, and a storage unit 7c.
  • the control unit 7a receives a voltage signal from the DC voltage detection unit 9.
  • the DC voltage detection unit 9 will be described later.
  • the control unit 7a performs a PWM control operation based on the voltage signal, a command value input from the outside, and a switching carrier frequency, and outputs a PWM drive command signal to the inverter unit 5.
  • PWM is an abbreviation for Pulse Width Modulation.
  • the PWM drive command signal is a control signal for switching the on / off states of the U-phase, V-phase, and W-phase switching elements 5a and 5b of the inverter unit 5.
  • the command value input from the outside is a command value that specifies a waveform (hereinafter, referred to as a modulated wave) to be output by the inverter unit 5.
  • the carrier variable unit 7b outputs a command for changing the switching carrier frequencies of the switching elements 5a and 5b of the inverter unit 5 to the control unit 7a based on a preset change pattern.
  • the switching carrier frequencies of the switching elements 5a and 5b are simply referred to as carrier frequencies.
  • the carrier frequency changes within a preset carrier frequency variable range.
  • the carrier frequency variable range is stored in advance in the storage unit 7c of the control device 7.
  • the format of the command output from the carrier variable unit 7b to the control unit 7a may be a control signal for changing the carrier frequency, or may be the carrier frequency change pattern itself.
  • the lower graphs of FIGS. 8 to 10 show an example of a change pattern in which the carrier frequency changes based on the command of the carrier variable portion 7b in the first embodiment.
  • the carrier variable portion 7b may output a command for linearly changing the carrier frequency 41 in a triangular wave shape, or as shown in FIG. 9, the carrier frequency 41 is a curve such as a sine wave shape. A command to change the frequency may be output.
  • the carrier variable unit 7b may output a command for changing the carrier frequency 41 in a stepwise manner.
  • the change pattern of the carrier frequency 41 is not limited to the examples of FIGS. 8 to 10, and may be another pattern as long as it is a pattern that changes in the form of a repeating waveform.
  • the change pattern of the carrier frequency 41 is not determined to be one, but is selected in advance according to the purpose of use, the environment of use, and the like, and the selected change pattern is preset in the carrier variable portion 7b.
  • the carrier variable unit 7b sets the carrier frequency 41 of the switching elements 5a and 5b of the inverter unit 5 in accordance with the carrier frequency variable range 40.
  • a pattern for changing the average value of the above so as to match the carrier frequency when the carrier is not changed is output to the control unit 7a.
  • the carrier variable unit 7b can hear a part or all of the carrier frequency change pattern according to the carrier frequency variable range 40.
  • a pattern for changing the carrier frequency 41 of the switching elements 5a and 5b of the inverter unit 5 so as to pass outside the frequency range is output to the control unit 7a.
  • the audible frequency band is generally set to 20 Hz to 20 kHz, the carrier frequency is set to be higher than the audible frequency band.
  • the frequency that is efficient for heating the refrigerant for example, 16 kHz
  • the frequency outside the audible frequency range are exchanged.
  • the carrier variable unit 7b outputs a command for changing the carrier frequency to the control unit 7a based on the change pattern selected according to the problem to be solved such as the amount of noise or sound.
  • the control unit 7a performs a PWM control operation using a carrier frequency that changes according to the change pattern.
  • the DC voltage detection unit 9 detects the voltage Vdc of the DC link unit 4. Specifically, the DC voltage detection unit 9 detects the voltage across the small-capacity capacitor 4a of the DC link unit 4 as the voltage Vdc.
  • the voltage Vdc has the voltage waveform 11 shown in the rectangular frame 10 of FIG. Since the voltage Vdc is not smoothed, the voltage waveform 11 of the voltage Vdc contains a pulsating component 11a that fluctuates up and down as shown in the rectangular frame 10 of FIG.
  • the DC voltage detection unit 9 transmits a voltage signal indicating the detected voltage Vdc of the DC link unit 4 to the control unit 7a of the control device 7. As described above, the control unit 7a performs PWM control based on the voltage signal.
  • the DC voltage detection unit 9 is provided between the control device 7 and the DC link unit 4 in the example of FIG. 1, but the DC voltage detection unit 9 is not limited to this case and is one of the components of the control device 7. It may be one of the constituent elements of the DC link part 4.
  • the processing circuit is composed of dedicated hardware or a processor.
  • the dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the processor executes a program stored in the storage unit 7c.
  • the storage unit 7c is composed of a memory.
  • the memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk. be.
  • FIGS. 2 and 3 are image diagrams illustrating the difference in noise components superimposed on the power supply current in carrier variable ON / OFF.
  • FIG. 2 shows a noise component when the carrier is variable OFF. That is, FIG. 2 shows a noise component when the carrier variable portion 7b does not perform carrier variable.
  • FIG. 3 shows a noise component in the case of carrier variable ON. That is, FIG. 3 shows a noise component when the carrier is variable by the carrier variable portion 7b.
  • the horizontal axis represents frequency and the vertical axis represents amplitude.
  • FIGS. 4 and 5 are diagrams showing an example of the actual measurement result of the output voltage from the inverter unit 5.
  • FIG. 4 shows the actual measurement result in the case of carrier variable OFF. That is, FIG. 4 shows the actual measurement results when the carrier variable portion 7b does not perform carrier variable.
  • FIG. 5 shows the actual measurement result in the case of carrier variable ON. That is, FIG. 5 shows the actual measurement result when the carrier is variable by the carrier variable portion 7b.
  • the horizontal axis indicates the frequency and the vertical axis indicates the magnitude of conduction noise.
  • FIG. 2 shows harmonic components from the first order to the nth order.
  • the carrier ripple 20 having the carrier frequency component f carrier shown in FIG. 2 is superimposed as a noise component on the output of the inverter unit 5.
  • the second harmonic 2f carrier which is the harmonic component of the carrier ripple 20, to the nth harmonic n * f carrier are superimposed.
  • the noise component may fall within the conduction noise regulation range.
  • FIG. 4 shows a case where constrained energization is performed at a carrier frequency of 16 kHz, as shown by an arrow. The restraint energization will be described later.
  • a component having an integral multiple of the frequency of 16 kHz appears as a peak of the noise component.
  • the harmonic component 33 of the 10th or higher order of 16 kHz is within the conduction noise regulation range in the region higher than 150 kHz.
  • the dotted line 32 shows the conduction noise envelope when the carrier is variable OFF.
  • FIG. 3 shows harmonic components from the first order to the nth order.
  • the carrier variable unit 7b changes the carrier frequency within a preset carrier frequency variable range.
  • the carrier ripple 21 having the carrier frequency component (f carrier) shown in FIG. 3 and its harmonic component are superimposed on the output from the inverter unit 5 as the noise component 22.
  • the width of the mountain hem portion of the noise component 22 is widened, but the apex of the noise component 22 is lowered, and the amplitude of the noise component 22 as a whole is reduced. Level is down.
  • FIG. 5 is an actual measurement result in the case of carrier variable ON.
  • the harmonic component 33 of the carrier ripple appearing in FIG. 4 is no longer visible, and the peak level of the noise component 22 is lowered.
  • the dotted line 32 shows the conduction noise envelope when the carrier variable is OFF, as in FIG. 4.
  • the carrier variable unit 7b of the control device 7 outputs a command for changing the carrier frequency 41 based on the predetermined carrier frequency variable range 40.
  • the maximum value f max and the minimum value f min of the carrier frequency 41 to be changed are determined, and the minimum value f min and the maximum value are determined.
  • the carrier frequency variable range 40 is defined as the range between f max and f max.
  • the carrier variable portion 7b changes the carrier frequency 41 so as to complement between the maximum value f max and the minimum value f min.
  • the ⁇ 1 kHz from the central value or mean value f typ of the carrier frequency 41 may be the carrier frequency variable range 40.
  • the increase / decrease range is not limited to ⁇ 1 kHz, and may be appropriately set to any value.
  • the carrier frequency variable range 40 is predetermined and stored in the storage unit 7c of the control device 7. However, if necessary, the carrier frequency variable range 40 may be appropriately changed by input from the outside or the like.
  • a refrigerant stagnation phenomenon may occur in which the refrigerant accumulates in the compressor 61 due to a temperature difference or a pressure difference of the refrigerant.
  • the starting load of the compressor 61 becomes large.
  • a large amount of the mixed liquid of the refrigerating machine oil and the refrigerant in the compressor 61 is blown out from the compressor 61 in a short time, and the refrigerating machine oil in the compressor 61 is depleted, causing problems such as shaft breakage. there's a possibility that.
  • the inside of the compressor 61 is heated by the heater while the operation of the compressor 61 is stopped.
  • the inverter unit 5 applies a restraint energization (a voltage that does not drive the motor 6 of the compressor 61 is applied) to the winding of the motor 6 of the compressor 61 to heat the inside of the compressor 61.
  • the heating effect of the refrigerant may be most obtained at a specific carrier frequency (for example, 16 kHz).
  • a specific carrier frequency is referred to as a first carrier frequency.
  • the carrier variable unit 7b changes the carrier frequency so that the average value or the median value of the switching carrier frequencies of the switching elements 5a and 5b of the inverter unit 5 becomes the first carrier frequency.
  • 16 kHz is set as the first carrier frequency
  • the carrier frequency variable range 40 is determined in the range from 15 kHz to 17 kHz.
  • the carrier variable unit 7b changes the carrier frequency 41 in the carrier frequency variable range 40.
  • the carrier variable frequency such as how many times the carrier frequency is changed per second by the carrier variable unit 7b may be determined in advance in consideration of the total noise amount, the sound heard due to switching, and the like. ..
  • the inverter unit 5 may have a function of outputting high frequency power due to switching of the switching elements 5a and 5b to the motor 6 which is a load to heat the load. Specifically, the inverter unit 5 may have a function of performing restraint energization as a measure to prevent falling into the compressor 61. Further, the power conversion device 8 may be used as an inverter device having a function of heating the refrigerant in the compressor 61 by energizing the motor 6 mounted on the compressor 61.
  • the control device 7 has the carrier variable unit 7b, and changes the switching carrier frequency of the switching elements 5a and 5b of the inverter unit 5.
  • the carrier variable unit 7b changes the carrier frequency 41 in accordance with the preset carrier frequency variable range 40, for example, so that the noise component 22 emitted by the power conversion device 8 is reduced. Thereby, the noise component 22 due to the switching of the switching elements 5a and 5b can be dispersed. As a result, the influence of noise on the AC power supply 1 can be suppressed.
  • the carrier variable unit 7b changes the carrier frequency 41 in accordance with the preset carrier frequency variable range 40, for example, so that the high frequency component of the sound produced by the power conversion device 8 is reduced. This makes it possible to reduce noise such as electromagnetic noise of the motor 6 due to harmonic components included in the output waveform of the inverter unit 5.
  • the carrier variable unit 7b changes the carrier frequency 41 itself by using a change pattern selected in advance according to a problem such as noise amount or sound, so that the noise of the carrier frequency, which is the frequency to be suppressed, and the noise of the carrier frequency. , The noise level of the harmonic component can be lowered.
  • the influence of noise on the AC power supply 1 side can be suppressed even if high frequency switching is performed. As a result, it is possible to prevent malfunction or failure of other devices connected to the AC power supply 1 side.
  • the carrier variable portion 7b is provided to change the carrier frequency, it is not necessary to mount a noise filter corresponding to a plurality of carrier frequencies for suppressing the influence of noise. As a result, it becomes possible to use the refrigerant heating in the compressor by high frequency switching at low cost. As described above, according to the first embodiment, it is possible to carry out the restraint energization by the electrolytic capacitorless inverter.
  • a carrier variable portion 7b is provided and the carrier frequency is changed to a triangular wave shape or a sinusoidal shape. I'm changing.
  • the electrolytic capacitor-less inverter it becomes possible to perform restraint energization while suppressing the outflow of high-frequency noise to the power supply side.
  • FIG. 6 is a circuit diagram showing the configuration of the power conversion device 8 according to the second embodiment. As shown in FIG. 6, in the second embodiment, the Vdc synchronization unit 7d is added to the control device 7.
  • an AC power supply 1A is provided instead of the AC power supply 1 of FIG.
  • the AC power supply 1A is a single-phase AC power supply. Therefore, in FIG. 6, a rectifying unit 2A is provided instead of the rectifying unit 2 of FIG.
  • the rectifying unit 2A includes four six rectifying diodes. The four rectifying diodes are connected in series two by two to form a total of two series circuits. The two series circuits are connected in parallel.
  • the rectifying unit 2A rectifies the AC voltage input from the AC power supply 1A and converts it into a DC voltage. The DC voltage is applied to the DC link unit 4 through the reactor 3.
  • FIG. 7 is a circuit diagram showing a modified example of the power conversion device 8 according to the second embodiment.
  • the AC power supply 1 is connected to the rectifying unit 2 as in FIG. 1.
  • a voltage signal indicating the voltage of the DC link unit 4 detected by the DC voltage detection unit 9 is input to the Vdc synchronization unit 7d.
  • the Vdc synchronization unit 7d detects the pulsating component 11a from the voltage signal, synchronizes with the pulsating component 11a, and outputs a Vdc synchronization command.
  • the Vdc synchronization command is input to the carrier variable unit 7b.
  • the carrier variable unit 7b changes the carrier frequency 41 in synchronization with the pulsating component 11a based on the Vdc synchronization command.
  • the Vdc synchronization unit 7d realizes the carrier variation synchronized with the pulsating component 11a of the voltage Vdc of the DC link unit 4 by inputting the Vdc synchronization command to the carrier variable unit 7b. ..
  • the noise current Icommon of the common mode noise depends on the stray capacitance C between the inverter circuit board or the motor 6 and the ground and the change of the voltage v applied thereto. Therefore, noise is likely to occur in the inverter section 5 and the motor 6 whose voltage frequently changes due to switching.
  • the center value or the average value ftyp of the carrier frequency variable range 40 that changes the carrier frequency is adjusted to the timing when the voltage Vdc of the DC link portion 4 becomes low, so that noise is generated. Lower the level of ingredients.
  • FIGS. 8 to 10 show an example of a carrier frequency change pattern based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment.
  • the carrier variable unit 7b changes the carrier frequency 41 in the carrier frequency variable range 40 of 16 kHz ⁇ 1 kHz.
  • the carrier frequency variable range 40 is in the range from 15 kHz to 17 kHz.
  • the center value or the average value ftype of the carrier frequency variable range 40 is 16 kHz.
  • the Vdc synchronization unit 7d issues a Vdc synchronization command indicating the timing of the valley 11b so that the timing t1 at which the carrier frequency 41 becomes 16 kHz coincides with the valley 11b of the pulsation component 11a of the voltage Vdc of the DC link unit 4.
  • the timing t1 is the timing for every 1/2 cycle of the carrier frequency 41.
  • the carrier variable unit 7b matches the timing t1 at which the carrier frequency becomes 16 kHz with the valley 11b of the pulsating component 11a of the voltage Vdc of the DC link unit 4 according to the Vdc synchronization command.
  • the carrier variable unit 7b allocates another frequency of the carrier frequency, that is, a frequency of 16 kHz ⁇ f carrier ⁇ 17 kHz and 15 kHz ⁇ f carrier ⁇ 16 kHz to a frequency other than the valley 11b of the pulsating component 11a.
  • the center value or the average value ftype of the carrier frequency 41 remains at 16 kHz, and the noise coming from the ripple of the component of 16 kHz itself and its harmonic component becomes small, so that the ripple and noise caused by the carrier decrease on average. Will be.
  • the carrier variable by the carrier variable portion 7b may be performed so as to be linear as shown in FIG. 8, and FIG. 9 shows. As shown, it may be performed in a curved shape such as a sinusoidal shape. Further, as shown in FIG. 10, the carrier variable may be performed in a stepped manner.
  • the change pattern of the carrier variable is not determined to be one, but is selected in advance according to the purpose of use or the environment of use, and the selected change. The pattern is preset in the carrier variable portion 7b.
  • the second embodiment can be applied regardless of the number of phases of the AC power supply 1 and the AC power supply 1A, but is particularly suitable for a single-phase electrolytic capacitorless inverter.
  • the fluctuation of the voltage of the DC link portion 4 is larger than that in the case of the three phase, and the voltage value becomes close to 0V in the valley 11b portion of the pulsating component 11a of the voltage Vdc of the DC link portion 4. Therefore, when the carrier frequency 41 is changed in synchronization with the pulsation component 11a of the voltage Vdc, the frequency component assigned to the valley 11b portion of the pulsation component 11a has a voltage change of almost 0, so that the common mode noise is further reduced. Become.
  • the carrier variable frequency of how many times the carrier is changed per second depends on the frequency of the pulsating component 11a of the voltage Vdc. In that case, it is 6 times the power supply cycle.
  • control device 7 has the carrier variable unit 7b to make the switching carrier frequencies of the switching elements 5a and 5b variable, as in the first embodiment. Therefore, the same effect as that of the first embodiment can be obtained in the second embodiment.
  • the control device 7 has a Vdc synchronization unit 7d.
  • the Vdc synchronization unit 7d outputs a Vdc synchronization command in synchronization with the pulsation component 11a of the voltage Vdc of the DC link unit 4.
  • the carrier variable portion 7b makes the carrier frequency 41 variable in synchronization with the pulsating component 11a, so that the average value of the noise itself can be lowered. Further, by changing the carrier frequency 41 in synchronization with the pulsation of the AC power supply 1, the average value of noise can be further reduced.
  • the power conversion element, the switching element, and the diode used in the rectifying unit 2 and the inverter unit 5 may be configured by a wideband gap semiconductor.
  • Wide bandgap semiconductors have a larger bandgap than silicon (Si). Examples of the wide bandgap semiconductor include silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), and diamond.
  • the power conversion element, switching element and diode formed by such a wide bandgap semiconductor have high withstand voltage resistance and high allowable current density. Therefore, the power conversion element, the switching element, and the diode can be miniaturized. Further, by using these miniaturized power conversion elements, switching elements and diodes, it is possible to miniaturize the semiconductor module incorporating these power conversion elements, switching elements and diodes.
  • the heat dissipation fins of the heat sink can be miniaturized, and the water-cooled portion can be air-cooled, so that the semiconductor module can be further miniaturized. ..
  • the wide bandgap semiconductor has a low power loss, it is possible to improve the efficiency of power conversion elements, switching elements and diodes, and by extension, it is possible to improve the efficiency of semiconductor modules.
  • the power conversion element, switching element and diode are formed of a wide bandgap semiconductor.
  • any one of them may be formed of a wide bandgap semiconductor, and even in that case, the above effect can be obtained.
  • the power conversion device according to the present disclosure can be widely used not only for refrigeration cycle devices such as air conditioners, but also for devices that drive loads such as compressors or motors.

Abstract

This power conversion device comprises: a rectifier unit for rectifying voltage supplied from a power supply; an inverter unit having power conversion elements, converting the voltage rectified by the rectifier unit by switching of the power conversion elements, and outputting the converted voltage to a load; a DC link unit connected between the rectifier unit and the inverter unit and provided with a capacitor with a capacity having an extent of not smoothing the voltage rectified by the rectifier unit; a control unit for controlling the switching of the power conversion elements of the inverter unit on the basis of a switching carrier frequency; and a carrier variable unit for outputting a command to the control unit, said command allowing the switching carrier frequency to change on the basis of a preset change pattern.

Description

電力変換装置Power converter
 本開示は、交流電源から受電した電力を永久磁石型同期電動機などの負荷に供給する電力変換装置に関する。 This disclosure relates to a power conversion device that supplies electric power received from an AC power supply to a load such as a permanent magnet type synchronous motor.
 一般に、インバータは、直流からスイッチング素子のオンオフによって可変電圧および可変周波数交流を作り出し、電動機を可変速運転することができる装置である。 In general, an inverter is a device that can generate variable voltage and variable frequency alternating current by turning on and off switching elements from direct current, and can operate an electric motor at variable speed.
 また、交流電源から交流電力を受電し、直流電力に変換し、直流電力から交流電力を作り出してモータを可変速運転するまでをひとまとめにして、「インバータ」と呼称する場合もある。この場合、インバータは、整流を行う整流部と、直流交流変換を行うインバータ部と、整流部とインバータ部とを繋ぐDCリンク部とで構成される。 In addition, the process of receiving AC power from an AC power source, converting it to DC power, creating AC power from DC power, and operating the motor at variable speed may be collectively referred to as an "inverter". In this case, the inverter is composed of a rectifying unit that performs rectification, an inverter unit that performs DC-AC conversion, and a DC link unit that connects the rectifying unit and the inverter unit.
 一般的なインバータでは、ダイオードまたはトランジスタ等で構成された整流部において整流を行い、脈動する直流電圧を作り出す。また、当該脈動する直流電圧を、DCリンク部に備えられた平滑用コンデンサで平滑することで、脈動の無い直流電圧を作り出す。この直流電圧を使用し、インバータ部において半導体スイッチのオンオフを行うことで、交流電圧を作り出す。インバータから出力された交流電圧は、モータなどの負荷に供給される。 In a general inverter, rectification is performed in a rectifying section composed of a diode or a transistor to create a pulsating DC voltage. Further, by smoothing the pulsating DC voltage with a smoothing capacitor provided in the DC link portion, a pulsating DC voltage is created. Using this DC voltage, an AC voltage is created by turning on and off the semiconductor switch in the inverter section. The AC voltage output from the inverter is supplied to a load such as a motor.
 DCリンク部においては、平滑用コンデンサとして電解コンデンサが用いられる。しかしながら、電解コンデンサは、インバータを構成する部品の中で、故障リスクが高く、且つ、経年劣化によるドライアップ等、寿命も短いというデメリットがある。また、特にDCリンク部において平滑用コンデンサとして用いられる電解コンデンサは、高耐圧且つ大容量であることが必要なため、サイズが大きく、高コストになるという、デメリットがある。 In the DC link section, an electrolytic capacitor is used as a smoothing capacitor. However, the electrolytic capacitor has the disadvantages that it has a high risk of failure among the components constituting the inverter and has a short life such as dry-up due to aging deterioration. Further, in particular, the electrolytic capacitor used as a smoothing capacitor in the DC link portion needs to have a high withstand voltage and a large capacity, and therefore has a demerit that the size is large and the cost is high.
 一方、インバータの一種として、DCリンク部に電解コンデンサを用いない方式のものが存在する。当該方式のインバータでは、DCリンク部にフィルムコンデンサなどの小容量のコンデンサを設けることで、整流部から出力される脈動を平滑せずに、インバータ部へ出力する。当該方式のインバータは、電解コンデンサレスインバータと呼ばれる。 On the other hand, as a kind of inverter, there is a method that does not use an electrolytic capacitor in the DC link part. In the inverter of this type, by providing a capacitor with a small capacity such as a film capacitor in the DC link section, the pulsation output from the rectifying section is not smoothed and is output to the inverter section. This type of inverter is called an electrolytic capacitorless inverter.
 本開示では、従来のDCリンク部に大容量の電解コンデンサを搭載したインバータを「従来のインバータ」と呼称する。また、DCリンク部に大容量の電解コンデンサを設けずに、フィルムコンデンサ等の小容量コンデンサを搭載したインバータを「電解コンデンサレスインバータ」と呼称する。 In this disclosure, an inverter in which a large-capacity electrolytic capacitor is mounted on a conventional DC link unit is referred to as a "conventional inverter". Further, an inverter equipped with a small capacity capacitor such as a film capacitor without providing a large capacity electrolytic capacitor in the DC link portion is referred to as an "electrolytic capacitorless inverter".
 「従来のインバータ」では、整流部が、4つまたは6つのダイオードから構成されていることが多い。整流部のダイオードがオンしている間、DCリンク部に搭載している大容量の電解コンデンサに対して、充電電流が流れるため、電源電流が急峻に立ち上がる。電源電流の立ち上がりが急峻であると、そのことが、過電流による故障の原因となったり、あるいは、電源力率および電源高調波が悪化したりする。そのため、電源電流の電流変化を緩やかにする目的として、整流部と電解コンデンサとの間に、リアクタが挿入される。リアクタの位置は、これに限定されず、電源環境、インバータの方式、電力等の使用目的により、AC(Alternating Current)側にもDC(Direct Current)側にも取り付けられる。AC側に挿入されるリアクタはACL(Alternating Current Reactor)と呼ばれ、DC側に挿入されるリアクタはDCL(Direct Current Reactor)と呼ばれる。 In a "conventional inverter", the rectifying unit is often composed of four or six diodes. While the diode of the rectifying section is on, the charging current flows through the large-capacity electrolytic capacitor mounted on the DC link section, so that the power supply current rises sharply. If the rise of the power supply current is steep, it may cause a failure due to overcurrent, or the power factor and the power supply harmonics may deteriorate. Therefore, a reactor is inserted between the rectifying unit and the electrolytic capacitor for the purpose of slowing the change in the power supply current. The position of the reactor is not limited to this, and can be attached to both the AC (Alternating Current) side and the DC (Direct Current) side depending on the purpose of use such as the power supply environment, the inverter method, and the electric power. The reactor inserted on the AC side is called ACL (Alternating Current Reactor), and the reactor inserted on the DC side is called DCL (Direct Current Reactor).
 リアクタが、ACLの場合もDCLの場合も、電流変化を緩やかにするためには、当該リアクタが高インダクタンスであることが必要である。そのため、リアクタは、インバータを構成する部品の中で、特に大型で高コストの部品となりやすい。 Regardless of whether the reactor is ACL or DCL, it is necessary that the reactor has a high inductance in order to moderate the current change. Therefore, the reactor tends to be a particularly large and high-cost component among the components constituting the inverter.
 一方、「電解コンデンサレスインバータ」では、DCリンク部のコンデンサ容量が小さいため、充電電流が小さく、整流後の電流の立ち上がりが比較的小さい。そのため、コンデンサの故障リスクが低減され、且つ、リアクタのインダクタンスを比較的小さくすることができる。そのため、DCLまたはACLを構成するリアクタを、低インダクタンスおよび小型化することができ、コストも抑えられる。 On the other hand, in the "electrolytic capacitorless inverter", the capacitor capacity of the DC link is small, so the charging current is small and the rise of the current after rectification is relatively small. Therefore, the risk of capacitor failure can be reduced, and the inductance of the reactor can be made relatively small. Therefore, the reactor constituting the DCL or ACL can be reduced in inductance and size, and the cost can be suppressed.
 以上の理由から、「電解コンデンサレスインバータ」には、故障リスク低減、小型化、低コスト化等のメリットが存在する。 For the above reasons, the "electrolytic capacitorless inverter" has merits such as reduction of failure risk, miniaturization, and cost reduction.
 しかしながら、一方で、「電解コンデンサレスインバータ」においては、その構成上、電源系統に流出するノイズが増大する場合がある。 However, on the other hand, in the "electrolytic capacitorless inverter", the noise flowing out to the power supply system may increase due to its configuration.
 「従来のインバータ」では、インダクタンスの大きいリアクタが使用される。リアクタのインダクタンスが大きい場合、高周波の電流に対して高いインピーダンスを持つ。そのため、インバータ部で発生したスイッチング起因のノイズ等の高周波帯のノイズが、電源側に流出しにくい。さらに、「従来のインバータ」では、DCリンク部に大容量のコンデンサが搭載されているため、インバータ部で発生したノイズおよび電圧リプル等がDCリンク部で吸収されやすくなっている。 In the "conventional inverter", a reactor with a large inductance is used. When the inductance of the reactor is large, it has a high impedance for high frequency current. Therefore, noise in the high frequency band such as noise caused by switching generated in the inverter section is unlikely to flow out to the power supply side. Further, in the "conventional inverter", since a large-capacity capacitor is mounted on the DC link portion, noise and voltage ripple generated in the inverter portion are easily absorbed by the DC link portion.
 ここで、インバータ部で発生するノイズおよび電圧リプルについて簡単に説明する。 Here, the noise and voltage ripple generated in the inverter section will be briefly explained.
 はじめに、電圧リプルについて説明する。インバータ部では直流交流変換を行うが、当該直流交流変換動作を行う際には、インバータ部に設けられたスイッチング素子をオンオフさせるスイッチング動作が行われる。それらのスイッチング動作により、電圧リプルが発生する。電圧リプルは、基本的にはキャリア周波数に依存するため、kHzオーダのノイズとなることが多い。 First, the voltage ripple will be explained. The inverter unit performs DC-AC conversion, and when the DC-AC conversion operation is performed, a switching operation for turning on / off the switching element provided in the inverter unit is performed. Due to these switching operations, voltage ripple occurs. Since the voltage ripple basically depends on the carrier frequency, it often becomes noise on the order of kHz.
 次に、ノイズについて説明する。ノイズは、放射ノイズと伝導ノイズとに分けられる。伝導ノイズの場合は150kHz~30MHzの帯域におけるエミッションの限度値が規格(EN61000-6-3等)により定められている。 Next, noise will be explained. Noise is divided into radiation noise and conduction noise. In the case of conduction noise, the emission limit value in the band of 150 kHz to 30 MHz is defined by the standard (EN61000-6-3, etc.).
 また、伝導ノイズの中で大きな割合を占めるコモンモードノイズのノイズ電流Icommonは、下記の(1)式によって表される。 Further, the noise current I common of the common mode noise, which occupies a large proportion of the conduction noise, is expressed by the following equation (1).
  Icommon=Cdv/dt ・・・ (1) Icommon = CDv / dt ... (1)
 ここで、C:浮遊容量、v:電圧である。 Here, C: stray capacitance, v: voltage.
 (1)式から分かるように、コモンモードノイズのノイズ電流Icommonの大きさは、インバータ回路基板およびモータとグラウンドとの間の浮遊容量Cと、そこに印加される電圧vの変化とによって決まる。 As can be seen from the equation (1), the magnitude of the noise current I common of the common mode noise is determined by the stray capacitance C between the inverter circuit board and the motor and the ground, and the change in the voltage v applied thereto.
 ノイズの流出を抑制する方法としては、DCリンク部にフィルムコンデンサまたはセラミックコンデンサ等によるスナバを設ける方法、または、電源側にリアクタおよびコンデンサで構成されたノイズフィルタを設ける方法がある。ノイズフィルタは、リアクタおよびコンデンサの組み合わせによって特定帯域のノイズの電源側への流出を抑制することができる。 As a method of suppressing the outflow of noise, there is a method of providing a snubber with a film capacitor or a ceramic capacitor in the DC link portion, or a method of providing a noise filter composed of a reactor and a capacitor on the power supply side. The noise filter can suppress the outflow of noise in a specific band to the power supply side by combining a reactor and a capacitor.
 例えば、特許文献1には、電力変換装置において、DCリンク部に設けられたフィルムコンデンサの容量をキャリア成分が除去できる値に選定することで、インバータ部のスイッチングによる電源への影響を抑える構成が開示されている。 For example, Patent Document 1 has a configuration in which, in a power conversion device, the capacity of a film capacitor provided in a DC link portion is selected to a value at which a carrier component can be removed to suppress the influence of switching of the inverter portion on a power supply. It has been disclosed.
特開2009-219267号公報Japanese Unexamined Patent Publication No. 2009-219267
 しかしながら、「電解コンデンサレスインバータ」において、通常のモータ制御よりも高いキャリア周波数でスイッチングする場合、従来の対策の効果が小さくなる場合が存在する。そのような理由から、「電解コンデンサレスインバータ」においては、所謂冷媒寝込み現象の発生を防止するための圧縮機内の冷媒を加熱する拘束通電は行われていない。 However, in the "electrolytic capacitorless inverter", when switching at a carrier frequency higher than that of normal motor control, the effect of conventional measures may be reduced. For that reason, in the "electrolytic capacitorless inverter", restraint energization for heating the refrigerant in the compressor for preventing the occurrence of the so-called refrigerant stagnation phenomenon is not performed.
 例えば、空調機において、圧縮機に搭載されたモータに発生する鉄損を利用して圧縮機内の冷媒を加熱するために、高周波で拘束通電を行う場合、通常のモータ制御で使用するキャリア周波数よりも高いキャリア周波数でインバータ部のスイッチング素子をスイッチングする可能性がある。 For example, in an air conditioner, when restrained energization is performed at a high frequency in order to heat the refrigerant in the compressor by utilizing the iron loss generated in the motor mounted on the compressor, the carrier frequency used in normal motor control is higher than that of the carrier frequency. There is a possibility of switching the switching element of the inverter section at a high carrier frequency.
 このとき、使用されるキャリア周波数が、通常のモータ制御のキャリア周波数であると仮定して、DCリンク部のコンデンサおよび電源部のノイズフィルタを設計していた場合には、より高い周波数のキャリアリプル、および、その高調波成分を十分に除去できないことが想定される。 At this time, assuming that the carrier frequency used is the carrier frequency of normal motor control, if the capacitor of the DC link section and the noise filter of the power supply section are designed, the carrier ripple of a higher frequency is performed. , And its harmonic components cannot be sufficiently removed.
 高周波ノイズが電源側に流出すると、電源側に接続された他の機器の誤動作または故障を招く。 If high frequency noise leaks to the power supply side, it causes malfunction or failure of other devices connected to the power supply side.
 また、ノイズの影響を抑制するためには、複数の周波数帯に対応するノイズフィルタを設けるなどの対策が必要となり、コストが上昇するなどの課題が存在する。 In addition, in order to suppress the influence of noise, it is necessary to take measures such as providing noise filters corresponding to multiple frequency bands, and there are problems such as cost increase.
 本開示は、かかる課題を解決するためになされたものであり、小型化、低コスト化、および、長寿命化といった、電解コンデンサレスインバータが備えたメリットを維持しつつ、コストを大きく上昇させずにキャリアリプルおよびノイズの低減を図ることが可能な、電力変換装置を得ることを目的とする。 This disclosure is made to solve such a problem, and while maintaining the advantages of the electrolytic capacitorless inverter such as miniaturization, cost reduction, and long life, it does not significantly increase the cost. The purpose is to obtain a power conversion device capable of reducing carrier ripple and noise.
 本開示に係る電力変換装置は、電源から供給される電圧を整流する整流部と、電力変換素子を有し、前記整流部によって整流された前記電圧を前記電力変換素子のスイッチングにより変換して負荷に出力するインバータ部と、前記整流部と前記インバータ部との間に接続され、前記整流部によって整流された前記電圧を平滑しない容量を有するコンデンサが設けられたDCリンク部と、前記インバータ部の前記電力変換素子の前記スイッチングをスイッチングキャリア周波数に基づいて制御する制御部と、予め設定された変化パターンに基づいて前記スイッチングキャリア周波数を変化させる指令を前記制御部に出力するキャリア可変部とを備えたものである。 The power conversion device according to the present disclosure has a rectifying unit for rectifying a voltage supplied from a power source and a power conversion element, and the voltage rectified by the rectifying unit is converted by switching of the power conversion element to load. A DC link unit connected between the rectifying unit and the inverter unit and provided with a capacitor having a capacity that does not smooth the voltage rectified by the rectifying unit, and an inverter unit. A control unit that controls the switching of the power conversion element based on the switching carrier frequency and a carrier variable unit that outputs a command to change the switching carrier frequency based on a preset change pattern to the control unit are provided. It is a thing.
 本開示に係る電力変換装置によれば、小型化、低コスト化、および、長寿命化といった、電解コンデンサレスインバータが備えたメリットを維持しつつ、コストを大きく上昇させずにキャリアリプルおよびノイズの低減を図ることができる。 According to the power conversion device according to the present disclosure, carrier ripple and noise can be achieved without significantly increasing the cost while maintaining the advantages of the electrolytic capacitorless inverter such as miniaturization, cost reduction, and long life. It can be reduced.
実施の形態1に係る電力変換装置8の構成を示す回路図である。It is a circuit diagram which shows the structure of the power conversion apparatus 8 which concerns on Embodiment 1. FIG. キャリア可変ONOFFにおける、電源電流に重畳するノイズ成分の違いを説明するイメージ図である。It is an image diagram explaining the difference of the noise component superimposed on the power supply current in the carrier variable ONOFF. キャリア可変ONOFFにおける、電源電流に重畳するノイズ成分の違いを説明するイメージ図である。It is an image diagram explaining the difference of the noise component superimposed on the power supply current in the carrier variable ONOFF. インバータ部5からの出力電圧の実測結果の一例を示す図である。It is a figure which shows an example of the actual measurement result of the output voltage from the inverter part 5. インバータ部5からの出力電圧の実測結果の一例を示す図である。It is a figure which shows an example of the actual measurement result of the output voltage from the inverter part 5. 実施の形態2に係る電力変換装置8の構成を示す回路図である。It is a circuit diagram which shows the structure of the power conversion apparatus 8 which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置8の変形例を示す回路図である。It is a circuit diagram which shows the modification of the power conversion apparatus 8 which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置8の制御装置7に設けられたVdc同期部7dのVdc同期指令に基づくキャリア周波数の変化パターンの一例を示す。An example of the change pattern of the carrier frequency based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment is shown. 実施の形態2に係る電力変換装置8の制御装置7に設けられたVdc同期部7dのVdc同期指令に基づくキャリア周波数の変化パターンの一例を示す。An example of the change pattern of the carrier frequency based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment is shown. 実施の形態2に係る電力変換装置8の制御装置7に設けられたVdc同期部7dのVdc同期指令に基づくキャリア周波数の変化パターンの一例を示す。An example of the change pattern of the carrier frequency based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment is shown. 実施の形態1に係る電力変換装置8が適用される冷凍サイクル装置50の構成の一例を示す構成図である。It is a block diagram which shows an example of the structure of the refrigerating cycle device 50 to which the power conversion device 8 which concerns on Embodiment 1 is applied.
 以下、本開示に係る電力変換装置の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 Hereinafter, embodiments of the power conversion device according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common to the whole text of the specification. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る電力変換装置8の構成を示す回路図である。図1に示すように、電力変換装置8は、整流部2と、リアクタ3と、DCリンク部4と、インバータ部5と、制御装置7と、DC電圧検出部9とを備える。なお、電力変換装置8は、モータ6とともに、例えば、空気調和装置などの冷凍サイクル装置50(図11参照)などに適用される。
Embodiment 1.
FIG. 1 is a circuit diagram showing the configuration of the power conversion device 8 according to the first embodiment. As shown in FIG. 1, the power conversion device 8 includes a rectifying unit 2, a reactor 3, a DC link unit 4, an inverter unit 5, a control device 7, and a DC voltage detecting unit 9. The power conversion device 8 is applied to, for example, a refrigeration cycle device 50 (see FIG. 11) such as an air conditioner together with the motor 6.
 図11は、実施の形態1に係る電力変換装置8が適用される冷凍サイクル装置50の構成の一例を示す構成図である。図11に示すように、冷凍サイクル装置50は、室外機60と室内機70とを有している。室外機60と室内機70とは、冷媒配管52を介して接続されている。室外機60には、圧縮機61と、四方弁62と、熱交換器63と、送風ファン64と、膨張弁65とが設けられている。一方、室内機70には、熱交換器71と送風ファン72とが設けられている。圧縮機61は、冷媒配管52の中を流れる冷媒を吸入する。圧縮機61は、吸入した冷媒を圧縮して、冷媒配管52に吐出する。圧縮機61は、例えば、インバータ圧縮機である。圧縮機61から吐出された冷媒は、室外機60の熱交換器63または室内機70の熱交換器71に流入される。熱交換器63および71は、内部を流れる冷媒と、空気との間で、熱交換を行う。熱交換器63および71は、例えば、フィンアンドチューブ型熱交換器である。また、送風ファン64は、ファン用モータ64aと翼部64bとを有している。同様に、送風ファン72は、ファン用モータ72aと翼部72bとを有している。送風ファン64および72は、それぞれ、熱交換器63および71に対して、空気を送風する。四方弁62は、室内機70側を冷房する冷房運転の場合と室内機70側を暖房する暖房運転の場合とで状態が切り替わるように構成されている。冷房運転の場合は、四方弁62は実線で示す状態になり、圧縮機61から吐出された冷媒が、室外機60の熱交換器63に流入する。このとき、室外機60の熱交換器63は凝縮器として作用し、室内機70の熱交換器71は蒸発器として作用する。一方、暖房運転の場合は、四方弁62は破線で示す状態になり、圧縮機61から吐出された冷媒が、熱交換器71に流入する。このとき、室外機60の熱交換器63は蒸発器として作用し、室内機70の熱交換器71は凝縮器として作用する。膨張弁65は、冷媒を減圧する減圧装置で、例えば、電子膨張弁で構成されている。膨張弁65は、室外機60の熱交換器63と室内機70の熱交換器71との間に設けられている。圧縮機61、四方弁62、熱交換器63、膨張弁65、および、熱交換器71は、冷媒配管52によって接続されて、冷媒回路を構成している。 FIG. 11 is a configuration diagram showing an example of the configuration of the refrigeration cycle device 50 to which the power conversion device 8 according to the first embodiment is applied. As shown in FIG. 11, the refrigeration cycle device 50 includes an outdoor unit 60 and an indoor unit 70. The outdoor unit 60 and the indoor unit 70 are connected to each other via a refrigerant pipe 52. The outdoor unit 60 is provided with a compressor 61, a four-way valve 62, a heat exchanger 63, a blower fan 64, and an expansion valve 65. On the other hand, the indoor unit 70 is provided with a heat exchanger 71 and a blower fan 72. The compressor 61 sucks in the refrigerant flowing in the refrigerant pipe 52. The compressor 61 compresses the sucked refrigerant and discharges it to the refrigerant pipe 52. The compressor 61 is, for example, an inverter compressor. The refrigerant discharged from the compressor 61 flows into the heat exchanger 63 of the outdoor unit 60 or the heat exchanger 71 of the indoor unit 70. The heat exchangers 63 and 71 exchange heat between the refrigerant flowing inside and the air. The heat exchangers 63 and 71 are, for example, fin-and-tube heat exchangers. Further, the blower fan 64 has a fan motor 64a and a blade portion 64b. Similarly, the blower fan 72 has a fan motor 72a and a wing portion 72b. The blower fans 64 and 72 blow air to the heat exchangers 63 and 71, respectively. The four-way valve 62 is configured to switch the state between the case of the cooling operation of cooling the indoor unit 70 side and the case of the heating operation of heating the indoor unit 70 side. In the case of cooling operation, the four-way valve 62 is in a state shown by a solid line, and the refrigerant discharged from the compressor 61 flows into the heat exchanger 63 of the outdoor unit 60. At this time, the heat exchanger 63 of the outdoor unit 60 acts as a condenser, and the heat exchanger 71 of the indoor unit 70 acts as an evaporator. On the other hand, in the case of the heating operation, the four-way valve 62 is in the state shown by the broken line, and the refrigerant discharged from the compressor 61 flows into the heat exchanger 71. At this time, the heat exchanger 63 of the outdoor unit 60 acts as an evaporator, and the heat exchanger 71 of the indoor unit 70 acts as a condenser. The expansion valve 65 is a pressure reducing device for reducing the pressure of the refrigerant, and is composed of, for example, an electronic expansion valve. The expansion valve 65 is provided between the heat exchanger 63 of the outdoor unit 60 and the heat exchanger 71 of the indoor unit 70. The compressor 61, the four-way valve 62, the heat exchanger 63, the expansion valve 65, and the heat exchanger 71 are connected by a refrigerant pipe 52 to form a refrigerant circuit.
 図1の説明に戻る。電力変換装置8は、図1に示すように、交流電源1に接続されている。交流電源1は、例えば、三相交流電源である。なお、この場合に限らず、交流電源1は、単相電源など、三相以外の電源から構成されていてもよい。 Return to the explanation in Fig. 1. As shown in FIG. 1, the power conversion device 8 is connected to the AC power supply 1. The AC power supply 1 is, for example, a three-phase AC power supply. Not limited to this case, the AC power supply 1 may be composed of a power supply other than the three-phase power supply such as a single-phase power supply.
 整流部2は、交流電源1から入力される交流電圧を整流して直流電圧に変換する。直流電圧は、リアクタ3を通して、DCリンク部4に印加される。整流部2は、例えば、6つの整流用ダイオードを備えたフルブリッジ回路から構成されている。6つの整流用ダイオードは、2つずつ直列に接続されて、合計3つの直列回路を形成している。3つの直列回路は並列に接続されている。3つの直列回路は、それぞれ、交流電源1のU相、V相およびW相に対応して設けられている。各直列回路を構成する2つの整流用ダイオードの接続点は、それぞれ、交流電源1のU相、V相およびW相に接続されている。なお、整流部2は、整流用ダイオードの代わりに、トランジスタなどのスイッチング素子を用いてもよい。 The rectifying unit 2 rectifies the AC voltage input from the AC power supply 1 and converts it into a DC voltage. The DC voltage is applied to the DC link unit 4 through the reactor 3. The rectifying unit 2 is composed of, for example, a full bridge circuit including six rectifying diodes. The six rectifying diodes are connected in series by two to form a total of three series circuits. The three series circuits are connected in parallel. The three series circuits are provided corresponding to the U phase, V phase, and W phase of the AC power supply 1, respectively. The connection points of the two rectifying diodes constituting each series circuit are connected to the U phase, V phase and W phase of the AC power supply 1, respectively. The rectifying unit 2 may use a switching element such as a transistor instead of the rectifying diode.
 リアクタ3は、交流電源1からの電源電流の急峻な立ち上がりを抑制し、電流変化を緩やかにする目的で設けられている。図1の例では、リアクタ3は、整流部2の後段に設けられているが、整流部2の前段に設けてもよい。 The reactor 3 is provided for the purpose of suppressing a steep rise in the power supply current from the AC power supply 1 and slowing down the current change. In the example of FIG. 1, the reactor 3 is provided in the rear stage of the rectifying unit 2, but may be provided in the front stage of the rectifying unit 2.
 DCリンク部4は、小容量コンデンサ4aを有している。小容量コンデンサ4aは、例えば、フィルムコンデンサまたはセラミックコンデンサである。小容量コンデンサ4aの容量は、「従来のインバータ」に設けられた平滑用の電解コンデンサの容量よりも小さい。小容量コンデンサ4aの容量は、整流部2によって整流された直流電圧の波形を平滑しない程度の大きさの容量である。具体的には、「従来のインバータ」に設けられた平滑用の電解コンデンサの容量は、商用電源の電圧周波数の2倍または6倍の周波数で大きく脈動する低次高調波成分を除去するように設定される。これに対し、小容量コンデンサ4aの容量は、商用電源の電圧周波数の2倍または6倍の周波数で大きく脈動する低次高調波成分は除去せず、インバータ部5のキャリア周波数成分を除去するように設定される。DCリンク部4の小容量コンデンサ4aは、コンデンサ容量が小さいため、充電電流が小さく、整流後の電流の立ち上がりが比較的小さい。そのため、リアクタ3のインダクタンスは比較的小さくてもよい。従って、リアクタ3を、低インダクタンスおよび小型化することができ、コストも抑えられる。これにより、実施の形態1に係る電力変換装置8は、「電解コンデンサレスインバータ」の故障リスク低減、小型化、低コスト化等のメリットを有する。DCリンク部4は、整流部2から入力された直流電圧を平滑せずに、インバータ部5へ出力する。 The DC link unit 4 has a small-capacity capacitor 4a. The small capacity capacitor 4a is, for example, a film capacitor or a ceramic capacitor. The capacity of the small-capacity capacitor 4a is smaller than the capacity of the smoothing electrolytic capacitor provided in the "conventional inverter". The capacity of the small-capacity capacitor 4a is such that the waveform of the DC voltage rectified by the rectifying unit 2 is not smoothed. Specifically, the capacity of the electrolytic capacitor for smoothing provided in the "conventional inverter" is such that the low-order harmonic component that pulsates greatly at a frequency twice or six times the voltage frequency of the commercial power supply is removed. Set. On the other hand, the capacitance of the small-capacity capacitor 4a does not remove the low-order harmonic component that pulsates greatly at a frequency twice or six times the voltage frequency of the commercial power supply, but removes the carrier frequency component of the inverter section 5. Is set to. Since the small-capacity capacitor 4a of the DC link portion 4 has a small capacitor capacity, the charging current is small and the rise of the current after rectification is relatively small. Therefore, the inductance of the reactor 3 may be relatively small. Therefore, the reactor 3 can be reduced in inductance and size, and the cost can be suppressed. As a result, the power conversion device 8 according to the first embodiment has merits such as reduction of failure risk, miniaturization, and cost reduction of the "electrolytic capacitorless inverter". The DC link unit 4 outputs the DC voltage input from the rectifying unit 2 to the inverter unit 5 without smoothing it.
 従って、DCリンク部4から出力される電圧Vdcの電圧波形は、図1の矩形枠10の中に示されている電圧波形11を有している。電圧Vdcは平滑されていれば、一定値の直線状になるが、平滑されていないので、電圧Vdcの電圧波形11には、図1に示すように、上下に変動する脈動成分11aが含まれている。 Therefore, the voltage waveform of the voltage Vdc output from the DC link unit 4 has the voltage waveform 11 shown in the rectangular frame 10 of FIG. If the voltage Vdc is smoothed, it becomes a linear line with a constant value, but since it is not smoothed, the voltage waveform 11 of the voltage Vdc contains a pulsating component 11a that fluctuates up and down as shown in FIG. ing.
 インバータ部5は、DCリンク部4から入力された直流を、電力変換素子の動作によって交流に変換し、負荷であるモータ6に出力する。インバータ部5は、電力変換素子として、例えば、3つの上アームスイッチング素子5aと、3つの下アームスイッチング素子5bとを有している。インバータ部5は、例えば、フルブリッジ回路から構成されている。1つの上アームスイッチング素子5aと1つの下アームスイッチング素子5bとは、直列に接続され、その接続点が中点となっている。1つの上アームスイッチング素子5aと1つの下アームスイッチング素子5bとで構成される直列回路は、アームと呼ばれる。インバータ部5は、3つのアームを有している。3つのアームは並列に接続されている。3つのアームは、それぞれ、モータ6のU相、V相およびW相に対応して設けられている。各アームの中点は、それぞれ、モータ6のU相、V相およびW相に接続されている。また、上アームスイッチング素子5aのそれぞれには、還流用ダイオード5cが逆並列で接続されている。また、同様に、下アームスイッチング素子5bのそれぞれには、還流用ダイオード5cが逆並列で接続されている。なお、インバータ部5に用いられるスイッチング素子5aおよび5bは、例えば、IGBT、MOSFET、自己消弧型サイリスタ、バイポーラトランジスタなどである。インバータ部5のスイッチング素子5aおよび5bは、制御装置7からの後述するPWM駆動指令信号に従って、オンオフ動作を行う。当該オンオフ動作により、DCリンク部4から入力された直流が交流に変換される。スイッチング素子5aおよび5bのスイッチングにより得られる電力は、高周波電力であってもよい。なお、ここでは、負荷がモータ6である場合を説明したが、負荷は、電力変換装置8からの電力で駆動される装置であれば、他のいずれの装置でもよい。また、インバータ部5は、負荷を駆動するインバータ装置に搭載されていてもよい。 The inverter unit 5 converts the direct current input from the DC link unit 4 into alternating current by the operation of the power conversion element, and outputs it to the motor 6 which is a load. The inverter unit 5 has, for example, three upper arm switching elements 5a and three lower arm switching elements 5b as power conversion elements. The inverter unit 5 is composed of, for example, a full bridge circuit. One upper arm switching element 5a and one lower arm switching element 5b are connected in series, and the connection point thereof is a midpoint. A series circuit composed of one upper arm switching element 5a and one lower arm switching element 5b is called an arm. The inverter unit 5 has three arms. The three arms are connected in parallel. The three arms are provided corresponding to the U-phase, V-phase, and W-phase of the motor 6, respectively. The midpoint of each arm is connected to the U phase, V phase and W phase of the motor 6, respectively. Further, a reflux diode 5c is connected to each of the upper arm switching elements 5a in antiparallel. Similarly, a freewheeling diode 5c is connected to each of the lower arm switching elements 5b in antiparallel. The switching elements 5a and 5b used in the inverter unit 5 are, for example, an IGBT, a MOSFET, a self-extinguishing thyristor, a bipolar transistor, and the like. The switching elements 5a and 5b of the inverter unit 5 perform on / off operations according to the PWM drive command signal described later from the control device 7. By the on / off operation, the direct current input from the DC link unit 4 is converted into alternating current. The power obtained by switching the switching elements 5a and 5b may be high frequency power. Although the case where the load is the motor 6 has been described here, the load may be any other device as long as it is a device driven by the electric power from the power conversion device 8. Further, the inverter unit 5 may be mounted on an inverter device that drives a load.
 なお、ここでは、インバータ部5が、電力変換素子として、スイッチング素子5aおよび5bを有している例について説明したが、この場合に限らず、他の電力変換素子であってもよい。 Although the example in which the inverter unit 5 has the switching elements 5a and 5b as the power conversion element has been described here, the present invention is not limited to this case, and other power conversion elements may be used.
 モータ6は、例えば、三相交流モータである。モータ6は、これに限定されず、例えば、単相交流モータなど、3相以外のモータでもよい。また、モータ6は、交流モータでもよく、あるいは、直流モータでもよい。モータ6は、例えば、冷凍サイクル装置50の圧縮機61に搭載される。なお、モータ6が圧縮機61に搭載されたモータで、圧縮機61がインバータ圧縮機である場合、電力変換装置8は、圧縮機61を駆動するインバータ装置に搭載されていてもよい。また、モータ6は、送風ファン64および72のファン用モータ64aおよび72aとして用いられていてもよい。その場合、電力変換装置8は、送風ファン64および72を駆動するインバータ装置に搭載されていてもよい。なお、図1では、負荷としてモータ6が例に挙げられているが、これに限らず、負荷は他の装置でもよい。 The motor 6 is, for example, a three-phase AC motor. The motor 6 is not limited to this, and may be a motor other than the three-phase, for example, a single-phase AC motor. Further, the motor 6 may be an AC motor or a DC motor. The motor 6 is mounted on the compressor 61 of the refrigeration cycle device 50, for example. When the motor 6 is a motor mounted on the compressor 61 and the compressor 61 is an inverter compressor, the power conversion device 8 may be mounted on the inverter device for driving the compressor 61. Further, the motor 6 may be used as the fan motors 64a and 72a of the blower fans 64 and 72. In that case, the power conversion device 8 may be mounted on the inverter device that drives the blower fans 64 and 72. In FIG. 1, the motor 6 is given as an example as the load, but the load is not limited to this, and the load may be another device.
 制御装置7は、制御部7aと、キャリア可変部7bと、記憶部7cとを有している。 The control device 7 has a control unit 7a, a carrier variable unit 7b, and a storage unit 7c.
 制御部7aは、DC電圧検出部9から電圧信号を受信する。DC電圧検出部9については、後述する。制御部7aは、当該電圧信号と外部から入力される指令値とスイッチングキャリア周波数とに基づいて、PWM制御演算を行い、インバータ部5に対して、PWM駆動指令信号を出力する。PWMはPulseWidthModulation(パルス幅変調)の略である。PWM駆動指令信号は、インバータ部5のU相、V相およびW相のスイッチング素子5aおよび5bのオンオフ状態を切り替えるための制御信号である。また、外部から入力される指令値とは、インバータ部5が出力すべき波形(以下、変調波と呼ぶ)を指定する指令値である。 The control unit 7a receives a voltage signal from the DC voltage detection unit 9. The DC voltage detection unit 9 will be described later. The control unit 7a performs a PWM control operation based on the voltage signal, a command value input from the outside, and a switching carrier frequency, and outputs a PWM drive command signal to the inverter unit 5. PWM is an abbreviation for Pulse Width Modulation. The PWM drive command signal is a control signal for switching the on / off states of the U-phase, V-phase, and W- phase switching elements 5a and 5b of the inverter unit 5. Further, the command value input from the outside is a command value that specifies a waveform (hereinafter, referred to as a modulated wave) to be output by the inverter unit 5.
 キャリア可変部7bは、予め設定された変化パターンに基づいて、インバータ部5のスイッチング素子5aおよび5bのスイッチングキャリア周波数を変化させる指令を、制御部7aに対して出力する。以下では、スイッチング素子5aおよび5bのスイッチングキャリア周波数を、単に、キャリア周波数と呼ぶ。キャリア周波数は、予め設定されたキャリア周波数可変範囲内で変化する。キャリア周波数可変範囲は、制御装置7の記憶部7cに、予め記憶されている。なお、キャリア可変部7bから制御部7aに対して出力される指令の形式は、キャリア周波数を変化させる制御信号でもよいが、キャリア周波数の変化パターンそのものであってもよい。 The carrier variable unit 7b outputs a command for changing the switching carrier frequencies of the switching elements 5a and 5b of the inverter unit 5 to the control unit 7a based on a preset change pattern. Hereinafter, the switching carrier frequencies of the switching elements 5a and 5b are simply referred to as carrier frequencies. The carrier frequency changes within a preset carrier frequency variable range. The carrier frequency variable range is stored in advance in the storage unit 7c of the control device 7. The format of the command output from the carrier variable unit 7b to the control unit 7a may be a control signal for changing the carrier frequency, or may be the carrier frequency change pattern itself.
 図8~図10の下段のグラフは、実施の形態1におけるキャリア可変部7bの指令に基づいてキャリア周波数が変化する変化パターンの一例を示す。キャリア可変部7bは、図8に示すように、キャリア周波数41を三角波状に線形に変化させる指令を出力してもよいし、図9に示すように、キャリア周波数41を、正弦波状などの曲線的に変化させる指令を出力してもよい。また、図10に示すように、キャリア可変部7bは、キャリア周波数41を階段状に変化させる指令を出力してもよい。なお、キャリア周波数41の変化パターンは、図8~図10の例に限定されるものではなく、繰り返し波形のような形で変化するパターンであれば、他のパターンでもよい。このように、キャリア周波数41の変化パターンはひとつに決まるものではなく、使用目的または使用環境などに応じて事前に選択され、選択された変化パターンが、キャリア可変部7bに予め設定される。例えば、電力変換装置8が発生するノイズが減少するようにしたい場合、キャリア可変部7bは、キャリア周波数可変範囲40に合わせて、インバータ部5のスイッチング素子5aおよび5bのキャリア周波数41を、キャリア周波数の平均値が、キャリア可変をしない場合のキャリア周波数と一致するように変化させるパターンを制御部7aに対して出力する。あるいは、電力変換装置8が発する音のうち、高周波成分が減少するようにしたい場合は、キャリア可変部7bは、キャリア周波数可変範囲40に合わせて、キャリア周波数の変化パターンの一部または全部が可聴周波数の範囲外を通過するようにインバータ部5のスイッチング素子5aおよび5bのキャリア周波数41を変化させるパターンを制御部7aに対して出力する。この場合、一般に、可聴周波数帯域は20Hz~20kHzとされているので、キャリア周波数を当該可聴周波数帯域よりも高くなるように設定する。キャリア周波数の変化パターンの一部または全部が可聴周波数の範囲外を通過する場合の一例としては、例えば、冷媒の加熱に対して効率の良い周波数(例えば16kHz)と可聴周波数の範囲外とを行き来する変化パターンが挙げられる。あるいは、他の例として、キャリア周波数の平均値を、冷媒の加熱に対して効率の良い周波数(例えば16kHz)にして、キャリア周波数の一部を可聴周波数の範囲外にする変化パターンなどが挙げられる。以上のように、キャリア可変部7bは、ノイズ量または音などの解決したい課題によって選択された変化パターンに基づいてキャリア周波数を変化させる指令を、制御部7aに出力する。制御部7aは、当該変化パターンに従って変化するキャリア周波数を用いて、PWM制御演算を行う。 The lower graphs of FIGS. 8 to 10 show an example of a change pattern in which the carrier frequency changes based on the command of the carrier variable portion 7b in the first embodiment. As shown in FIG. 8, the carrier variable portion 7b may output a command for linearly changing the carrier frequency 41 in a triangular wave shape, or as shown in FIG. 9, the carrier frequency 41 is a curve such as a sine wave shape. A command to change the frequency may be output. Further, as shown in FIG. 10, the carrier variable unit 7b may output a command for changing the carrier frequency 41 in a stepwise manner. The change pattern of the carrier frequency 41 is not limited to the examples of FIGS. 8 to 10, and may be another pattern as long as it is a pattern that changes in the form of a repeating waveform. As described above, the change pattern of the carrier frequency 41 is not determined to be one, but is selected in advance according to the purpose of use, the environment of use, and the like, and the selected change pattern is preset in the carrier variable portion 7b. For example, when it is desired to reduce the noise generated by the power conversion device 8, the carrier variable unit 7b sets the carrier frequency 41 of the switching elements 5a and 5b of the inverter unit 5 in accordance with the carrier frequency variable range 40. A pattern for changing the average value of the above so as to match the carrier frequency when the carrier is not changed is output to the control unit 7a. Alternatively, if it is desired to reduce the high frequency component of the sound emitted by the power converter 8, the carrier variable unit 7b can hear a part or all of the carrier frequency change pattern according to the carrier frequency variable range 40. A pattern for changing the carrier frequency 41 of the switching elements 5a and 5b of the inverter unit 5 so as to pass outside the frequency range is output to the control unit 7a. In this case, since the audible frequency band is generally set to 20 Hz to 20 kHz, the carrier frequency is set to be higher than the audible frequency band. As an example of the case where a part or all of the change pattern of the carrier frequency passes outside the range of the audible frequency, for example, the frequency that is efficient for heating the refrigerant (for example, 16 kHz) and the frequency outside the audible frequency range are exchanged. There is a change pattern to be made. Alternatively, as another example, there is a change pattern in which the average value of the carrier frequencies is set to a frequency (for example, 16 kHz) that is efficient with respect to the heating of the refrigerant, and a part of the carrier frequency is out of the audible frequency range. .. As described above, the carrier variable unit 7b outputs a command for changing the carrier frequency to the control unit 7a based on the change pattern selected according to the problem to be solved such as the amount of noise or sound. The control unit 7a performs a PWM control operation using a carrier frequency that changes according to the change pattern.
 DC電圧検出部9は、DCリンク部4の電圧Vdcを検出する。具体的には、DC電圧検出部9は、DCリンク部4の小容量コンデンサ4aの両端電圧を、電圧Vdcとして検出する。電圧Vdcは、図1の矩形枠10の中に示されている電圧波形11を有している。電圧Vdcは、平滑されていないため、電圧Vdcの電圧波形11には、図1の矩形枠10に示すように、上下に変動する脈動成分11aが含まれている。DC電圧検出部9は、検出したDCリンク部4の電圧Vdcを示す電圧信号を、制御装置7の制御部7aに送信する。上述したように、制御部7aは、当該電圧信号に基づいて、PWM制御を行う。なお、DC電圧検出部9は、図1の例では、制御装置7とDCリンク部4との間に設けられているが、その場合に限らず、制御装置7の構成要素の1つであってもよく、あるいは、DCリンク部4の構成要素の1つであってもよい。 The DC voltage detection unit 9 detects the voltage Vdc of the DC link unit 4. Specifically, the DC voltage detection unit 9 detects the voltage across the small-capacity capacitor 4a of the DC link unit 4 as the voltage Vdc. The voltage Vdc has the voltage waveform 11 shown in the rectangular frame 10 of FIG. Since the voltage Vdc is not smoothed, the voltage waveform 11 of the voltage Vdc contains a pulsating component 11a that fluctuates up and down as shown in the rectangular frame 10 of FIG. The DC voltage detection unit 9 transmits a voltage signal indicating the detected voltage Vdc of the DC link unit 4 to the control unit 7a of the control device 7. As described above, the control unit 7a performs PWM control based on the voltage signal. The DC voltage detection unit 9 is provided between the control device 7 and the DC link unit 4 in the example of FIG. 1, but the DC voltage detection unit 9 is not limited to this case and is one of the components of the control device 7. It may be one of the constituent elements of the DC link part 4.
 なお、ここで、制御装置7のハードウェア構成について説明する。制御装置7の制御部7aおよびキャリア可変部7bの各機能は、処理回路によって実現される。処理回路は、専用のハードウェア、または、プロセッサから構成される。専用のハードウェアは、例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などである。プロセッサは、記憶部7cに記憶されるプログラムを実行する。記憶部7cはメモリから構成される。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)などの不揮発性または揮発性の半導体メモリ、もしくは、磁気ディスク、フレキシブルディスク、光ディスクなどのディスクである。 Here, the hardware configuration of the control device 7 will be described. Each function of the control unit 7a and the carrier variable unit 7b of the control device 7 is realized by a processing circuit. The processing circuit is composed of dedicated hardware or a processor. The dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). The processor executes a program stored in the storage unit 7c. The storage unit 7c is composed of a memory. The memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk. be.
 図2および図3は、キャリア可変ONOFFにおける、電源電流に重畳するノイズ成分の違いを説明するイメージ図である。図2は、キャリア可変OFFの場合のノイズ成分を示している。すなわち、図2は、キャリア可変部7bによるキャリア可変を行わない場合のノイズ成分を示している。一方、図3は、キャリア可変ONの場合のノイズ成分を示している。すなわち、図3は、キャリア可変部7bによるキャリア可変を行った場合のノイズ成分を示している。図2および図3において、横軸は周波数を示し、縦軸は振幅を示す。 2 and 3 are image diagrams illustrating the difference in noise components superimposed on the power supply current in carrier variable ON / OFF. FIG. 2 shows a noise component when the carrier is variable OFF. That is, FIG. 2 shows a noise component when the carrier variable portion 7b does not perform carrier variable. On the other hand, FIG. 3 shows a noise component in the case of carrier variable ON. That is, FIG. 3 shows a noise component when the carrier is variable by the carrier variable portion 7b. In FIGS. 2 and 3, the horizontal axis represents frequency and the vertical axis represents amplitude.
 図4および図5は、インバータ部5からの出力電圧の実測結果の一例を示す図である。図4は、キャリア可変OFFの場合の実測結果を示している。すなわち、図4は、キャリア可変部7bによるキャリア可変を行わない場合の実測結果を示している。一方、図5は、キャリア可変ONの場合の実測結果を示している。すなわち、図5は、キャリア可変部7bによるキャリア可変を行った場合の実測結果を示している。図4および図5において、横軸は周波数を示し、縦軸は伝導ノイズの大きさを示す。 4 and 5 are diagrams showing an example of the actual measurement result of the output voltage from the inverter unit 5. FIG. 4 shows the actual measurement result in the case of carrier variable OFF. That is, FIG. 4 shows the actual measurement results when the carrier variable portion 7b does not perform carrier variable. On the other hand, FIG. 5 shows the actual measurement result in the case of carrier variable ON. That is, FIG. 5 shows the actual measurement result when the carrier is variable by the carrier variable portion 7b. In FIGS. 4 and 5, the horizontal axis indicates the frequency and the vertical axis indicates the magnitude of conduction noise.
 まず、図2および図4を用いて、キャリア可変OFFの場合について説明する。図2は、1次からn次までの高調波成分が示されている。キャリア可変OFFの場合、インバータ部5の出力に、図2に示すキャリア周波数成分fcarrierを持つキャリアリプル20が、ノイズ成分として重畳する。また、さらに、キャリアリプル20の高調波成分である、2次高調波2fcarrierから、n次高調波n*fcarrierまでが重畳する。この場合、ノイズ成分が、伝導ノイズ規制範囲にかかることがある。図4では、矢印で示すように、キャリア周波数16kHzで拘束通電を行った場合を示している。拘束通電については、後述する。図4の破線枠31で示されるように、周波数16kHzの整数倍の成分が、ノイズ成分のピークとして現れている。図4では、16kHzの10次以上の次数の高調波成分33が、150kHzより高い領域で、伝導ノイズ規制範囲にかかっていることが示されている。図4において、点線32は、キャリア可変OFFのときの伝導ノイズ包絡線を示す。 First, the case of carrier variable OFF will be described with reference to FIGS. 2 and 4. FIG. 2 shows harmonic components from the first order to the nth order. In the case of carrier variable OFF, the carrier ripple 20 having the carrier frequency component f carrier shown in FIG. 2 is superimposed as a noise component on the output of the inverter unit 5. Further, the second harmonic 2f carrier , which is the harmonic component of the carrier ripple 20, to the nth harmonic n * f carrier are superimposed. In this case, the noise component may fall within the conduction noise regulation range. FIG. 4 shows a case where constrained energization is performed at a carrier frequency of 16 kHz, as shown by an arrow. The restraint energization will be described later. As shown by the broken line frame 31 in FIG. 4, a component having an integral multiple of the frequency of 16 kHz appears as a peak of the noise component. In FIG. 4, it is shown that the harmonic component 33 of the 10th or higher order of 16 kHz is within the conduction noise regulation range in the region higher than 150 kHz. In FIG. 4, the dotted line 32 shows the conduction noise envelope when the carrier is variable OFF.
 次に、図3および図5を用いて、キャリア可変ONの場合について説明する。図3は、1次からn次までの高調波成分が示されている。図3においては、キャリア可変部7bが、予め設定されたキャリア周波数可変範囲で、キャリア周波数を変化させている。キャリア可変ONの場合においても、インバータ部5からの出力に、図3に示すキャリア周波数成分(fcarrier)を持つキャリアリプル21およびその高調波成分が、ノイズ成分22として重畳する。しかしながら、図3と図2とを比較すると分かるように、図3の場合は、ノイズ成分22の山裾部分の幅は広がるが、ノイズ成分22の頂点が下がり、全体的に、ノイズ成分22の振幅のレベルが下がっている。ここで、ノイズ成分22の山裾部分の幅とは、図3に示すように、各ノイズ成分22の最小周波数fcminと最大周波数fcmaxとの差である。また、図5は、キャリア可変ONの場合の実測結果である。図5の実測結果では、図4で現れていたキャリアリプルの高調波成分33が見えなくなり、ノイズ成分22のピークレベルが下がっていることがわかる。図5において、点線32は、図4と同様に、キャリア可変OFFのときの伝導ノイズ包絡線を示す。 Next, the case of carrier variable ON will be described with reference to FIGS. 3 and 5. FIG. 3 shows harmonic components from the first order to the nth order. In FIG. 3, the carrier variable unit 7b changes the carrier frequency within a preset carrier frequency variable range. Even in the case of carrier variable ON, the carrier ripple 21 having the carrier frequency component (f carrier) shown in FIG. 3 and its harmonic component are superimposed on the output from the inverter unit 5 as the noise component 22. However, as can be seen by comparing FIGS. 3 and 2, in the case of FIG. 3, the width of the mountain hem portion of the noise component 22 is widened, but the apex of the noise component 22 is lowered, and the amplitude of the noise component 22 as a whole is reduced. Level is down. Here, the width of the mountain skirt portion of the noise component 22 is the difference between the minimum frequency fcmin and the maximum frequency fcmax of each noise component 22 as shown in FIG. Further, FIG. 5 is an actual measurement result in the case of carrier variable ON. In the actual measurement results of FIG. 5, it can be seen that the harmonic component 33 of the carrier ripple appearing in FIG. 4 is no longer visible, and the peak level of the noise component 22 is lowered. In FIG. 5, the dotted line 32 shows the conduction noise envelope when the carrier variable is OFF, as in FIG. 4.
 制御装置7のキャリア可変部7bは、上述したように、予め決められたキャリア周波数可変範囲40に基づいて、キャリア周波数41を変化させる指令を出力する。キャリア周波数可変範囲40の決定方法としては、例えば、図8~図10に示すように、変化させるキャリア周波数41の最大値fmaxと最小値fminとを決めて、最小値fminと最大値fmaxとの間をキャリア周波数可変範囲40とする。この場合、キャリア可変部7bは、最大値fmaxと最小値fminとの間を補完するように、キャリア周波数41を変化させる。あるいは、キャリア周波数41の中心値または平均値ftypから±1kHzを、キャリア周波数可変範囲40としてもよい。なお、この場合、増減幅は、±1kHzに限定されず、適宜、任意の値に設定してよいこととする。キャリア周波数可変範囲40は、予め決定されて、制御装置7の記憶部7cに記憶されている。ただし、必要に応じて、外部からの入力などにより、キャリア周波数可変範囲40を適宜変更できる構成にしてもよい。 As described above, the carrier variable unit 7b of the control device 7 outputs a command for changing the carrier frequency 41 based on the predetermined carrier frequency variable range 40. As a method for determining the carrier frequency variable range 40, for example, as shown in FIGS. 8 to 10, the maximum value f max and the minimum value f min of the carrier frequency 41 to be changed are determined, and the minimum value f min and the maximum value are determined. The carrier frequency variable range 40 is defined as the range between f max and f max. In this case, the carrier variable portion 7b changes the carrier frequency 41 so as to complement between the maximum value f max and the minimum value f min. Alternatively, the ± 1 kHz from the central value or mean value f typ of the carrier frequency 41, may be the carrier frequency variable range 40. In this case, the increase / decrease range is not limited to ± 1 kHz, and may be appropriately set to any value. The carrier frequency variable range 40 is predetermined and stored in the storage unit 7c of the control device 7. However, if necessary, the carrier frequency variable range 40 may be appropriately changed by input from the outside or the like.
 また、電力変換装置8を冷凍サイクル装置に適用させた場合について説明する。冷凍サイクル装置においては、圧縮機61の運転停止中に、冷媒の温度差または圧力差によって、圧縮機61内に冷媒が溜まりこむ冷媒寝込み現象が発生することがある。冷媒寝込み現象が発生すると、圧縮機61の起動負荷が大きくなる。また、起動時に、圧縮機61内の冷凍機油と冷媒との混合液が短時間に大量に圧縮機61から吹き出されて、圧縮機61内の冷凍機油が枯渇して軸破損などの不具合を発生する可能性がある。そこで、圧縮機61への寝込み防止対策として、圧縮機61の運転停止中は、ヒーターによって圧縮機61内を加熱する。あるいは、インバータ部5によって、圧縮機61のモータ6の巻線に拘束通電(圧縮機61のモータ6を駆動しない電圧を印加)して、圧縮機61内を加熱する。拘束通電においては、或る特定のキャリア周波数(例えば、16kHz)で、冷媒の加熱効果が最も得られる場合がある。ここでは、或る特定のキャリア周波数を、第1キャリア周波数と呼ぶ。このとき、キャリア可変部7bは、インバータ部5のスイッチング素子5aおよび5bのスイッチングのキャリア周波数の平均値または中央値が、第1キャリア周波数となるように、キャリア周波数を変化させる。例えば、16kHzが最も加熱効果を得やすい場合、16kHzを第1キャリア周波数に設定し、キャリア可変部7bは、キャリア周波数可変範囲40を、16kHz±1kHzの範囲に設定する。このことを、図8を例にして説明する。図8において、16kHzが第1キャリア周波数である。そのため、キャリア周波数可変範囲40の最小値fminは、16kHz-1kHz=15kHzである。また、キャリア周波数可変範囲40の最大値fmaxは、16kHz+1kHz=17kHzである。その結果、キャリア周波数可変範囲40は、15kHzから17kHzまでの範囲に決定される。このとき、キャリア可変部7bは、キャリア周波数41を、キャリア周波数可変範囲40で変化させる。 Further, a case where the power conversion device 8 is applied to the refrigeration cycle device will be described. In the refrigeration cycle apparatus, while the operation of the compressor 61 is stopped, a refrigerant stagnation phenomenon may occur in which the refrigerant accumulates in the compressor 61 due to a temperature difference or a pressure difference of the refrigerant. When the refrigerant stagnation phenomenon occurs, the starting load of the compressor 61 becomes large. Further, at the time of startup, a large amount of the mixed liquid of the refrigerating machine oil and the refrigerant in the compressor 61 is blown out from the compressor 61 in a short time, and the refrigerating machine oil in the compressor 61 is depleted, causing problems such as shaft breakage. there's a possibility that. Therefore, as a measure to prevent falling into the compressor 61, the inside of the compressor 61 is heated by the heater while the operation of the compressor 61 is stopped. Alternatively, the inverter unit 5 applies a restraint energization (a voltage that does not drive the motor 6 of the compressor 61 is applied) to the winding of the motor 6 of the compressor 61 to heat the inside of the compressor 61. In the constrained energization, the heating effect of the refrigerant may be most obtained at a specific carrier frequency (for example, 16 kHz). Here, a specific carrier frequency is referred to as a first carrier frequency. At this time, the carrier variable unit 7b changes the carrier frequency so that the average value or the median value of the switching carrier frequencies of the switching elements 5a and 5b of the inverter unit 5 becomes the first carrier frequency. For example, when 16 kHz is the easiest to obtain the heating effect, 16 kHz is set as the first carrier frequency, and the carrier variable unit 7b sets the carrier frequency variable range 40 in the range of 16 kHz ± 1 kHz. This will be described by taking FIG. 8 as an example. In FIG. 8, 16 kHz is the first carrier frequency. Therefore, the minimum value f min of the carrier frequency variable range 40 is 16 kHz-1 kHz = 15 kHz. Further, the maximum value f max of the carrier frequency variable range 40 is 16 kHz + 1 kHz = 17 kHz. As a result, the carrier frequency variable range 40 is determined in the range from 15 kHz to 17 kHz. At this time, the carrier variable unit 7b changes the carrier frequency 41 in the carrier frequency variable range 40.
 また、キャリア可変部7bが、1秒間に何回キャリア周波数を変化させるかなどのキャリア可変頻度に関しては、全体のノイズ量、または、スイッチングに伴って聞こえる音などを考慮してあらかじめ決定すればよい。 Further, the carrier variable frequency such as how many times the carrier frequency is changed per second by the carrier variable unit 7b may be determined in advance in consideration of the total noise amount, the sound heard due to switching, and the like. ..
 なお、インバータ部5は、スイッチング素子5aおよび5bのスイッチングによる高周波電力を、負荷であるモータ6に対して出力し、負荷を加熱する機能を有していてもよい。具体的には、インバータ部5が、圧縮機61への寝込み防止対策として、拘束通電を行う機能を有していてもよい。また、電力変換装置8は、圧縮機61に搭載されたモータ6に通電することで圧縮機61内の冷媒を加熱する機能を有するインバータ装置として、使用されてもよい。 The inverter unit 5 may have a function of outputting high frequency power due to switching of the switching elements 5a and 5b to the motor 6 which is a load to heat the load. Specifically, the inverter unit 5 may have a function of performing restraint energization as a measure to prevent falling into the compressor 61. Further, the power conversion device 8 may be used as an inverter device having a function of heating the refrigerant in the compressor 61 by energizing the motor 6 mounted on the compressor 61.
 以上のように、実施の形態1においては、制御装置7が、キャリア可変部7bを有し、インバータ部5のスイッチング素子5aおよび5bのスイッチングのキャリア周波数を変化させている。キャリア可変部7bは、予め設定されたキャリア周波数可変範囲40に合わせて、例えば、電力変換装置8が出すノイズ成分22が減少するように、キャリア周波数41を変化させる。これにより、スイッチング素子5aおよび5bのスイッチングによるノイズ成分22を分散させることができる。その結果、交流電源1へのノイズの影響を抑制することができる。あるいは、キャリア可変部7bは、予め設定されたキャリア周波数可変範囲40に合わせて、例えば、電力変換装置8が出す音のうち、高周波成分が減少するように、キャリア周波数41を変化させる。これにより、インバータ部5の出力波形に含まれる高調波成分によるモータ6の電磁騒音などの騒音を低減させることができる。 As described above, in the first embodiment, the control device 7 has the carrier variable unit 7b, and changes the switching carrier frequency of the switching elements 5a and 5b of the inverter unit 5. The carrier variable unit 7b changes the carrier frequency 41 in accordance with the preset carrier frequency variable range 40, for example, so that the noise component 22 emitted by the power conversion device 8 is reduced. Thereby, the noise component 22 due to the switching of the switching elements 5a and 5b can be dispersed. As a result, the influence of noise on the AC power supply 1 can be suppressed. Alternatively, the carrier variable unit 7b changes the carrier frequency 41 in accordance with the preset carrier frequency variable range 40, for example, so that the high frequency component of the sound produced by the power conversion device 8 is reduced. This makes it possible to reduce noise such as electromagnetic noise of the motor 6 due to harmonic components included in the output waveform of the inverter unit 5.
 実施の形態1においては、ノイズ量または音などの課題によって予め選択された変化パターンを用いて、キャリア可変部7bがキャリア周波数41自体を変化させることで、抑制したい周波数であるキャリア周波数のノイズと、その高調波成分のノイズのレベルを落とすことができる。 In the first embodiment, the carrier variable unit 7b changes the carrier frequency 41 itself by using a change pattern selected in advance according to a problem such as noise amount or sound, so that the noise of the carrier frequency, which is the frequency to be suppressed, and the noise of the carrier frequency. , The noise level of the harmonic component can be lowered.
 これにより、電解コンデンサレスインバータを採用した電力変換装置8において、高周波スイッチングを行っても、交流電源1側へのノイズの影響を抑制することができる。その結果、交流電源1側に接続された他の機器の誤動作または故障を防ぐことができる。また、実施の形態1では、キャリア可変部7bを設けてキャリア周波数を変化させるようにしたので、ノイズの影響を抑制するための複数のキャリア周波数に対応したノイズフィルタを搭載しなくてもよい。その結果、低コストで高周波スイッチングによる圧縮機内の冷媒加熱等が利用できるようになる。このように、実施の形態1によれば、電解コンデンサレスインバータでの拘束通電の実施を可能にしている。また、その際に、高周波ノイズの電源側への流出が課題となるが、実施の形態1では、それを防ぐ方法として、キャリア可変部7bを設けて、キャリア周波数を三角波状または正弦波状などに変化させている。これにより、電解コンデンサレスインバータにおいて、高周波ノイズの電源側への流出を抑制した、拘束通電を行うことが可能となる。 As a result, in the power conversion device 8 that employs an electrolytic capacitorless inverter, the influence of noise on the AC power supply 1 side can be suppressed even if high frequency switching is performed. As a result, it is possible to prevent malfunction or failure of other devices connected to the AC power supply 1 side. Further, in the first embodiment, since the carrier variable portion 7b is provided to change the carrier frequency, it is not necessary to mount a noise filter corresponding to a plurality of carrier frequencies for suppressing the influence of noise. As a result, it becomes possible to use the refrigerant heating in the compressor by high frequency switching at low cost. As described above, according to the first embodiment, it is possible to carry out the restraint energization by the electrolytic capacitorless inverter. Further, at that time, the outflow of high-frequency noise to the power supply side becomes an issue, but in the first embodiment, as a method of preventing it, a carrier variable portion 7b is provided and the carrier frequency is changed to a triangular wave shape or a sinusoidal shape. I'm changing. As a result, in the electrolytic capacitor-less inverter, it becomes possible to perform restraint energization while suppressing the outflow of high-frequency noise to the power supply side.
 実施の形態2.
 図6は、実施の形態2に係る電力変換装置8の構成を示す回路図である。図6に示すように、実施の形態2では、制御装置7に、Vdc同期部7dが追加されている。
Embodiment 2.
FIG. 6 is a circuit diagram showing the configuration of the power conversion device 8 according to the second embodiment. As shown in FIG. 6, in the second embodiment, the Vdc synchronization unit 7d is added to the control device 7.
 また、図6では、図1の交流電源1の代わりに、交流電源1Aが設けられている。交流電源1Aは、単相交流電源である。そのため、図6では、図1の整流部2の代わりに、整流部2Aが設けられている。整流部2Aは、図6に示すように、4個の6つの整流用ダイオードを備えている。4つの整流用ダイオードは、2つずつ直列に接続されて、合計2つの直列回路を形成している。2つの直列回路は並列に接続されている。整流部2Aは、交流電源1Aから入力される交流電圧を整流して直流電圧に変換する。直流電圧は、リアクタ3を通して、DCリンク部4に印加される。 Further, in FIG. 6, an AC power supply 1A is provided instead of the AC power supply 1 of FIG. The AC power supply 1A is a single-phase AC power supply. Therefore, in FIG. 6, a rectifying unit 2A is provided instead of the rectifying unit 2 of FIG. As shown in FIG. 6, the rectifying unit 2A includes four six rectifying diodes. The four rectifying diodes are connected in series two by two to form a total of two series circuits. The two series circuits are connected in parallel. The rectifying unit 2A rectifies the AC voltage input from the AC power supply 1A and converts it into a DC voltage. The DC voltage is applied to the DC link unit 4 through the reactor 3.
 実施の形態2の他の構成および動作は、実施の形態1と同様であるため、ここでは、その説明を省略する。 Since the other configurations and operations of the second embodiment are the same as those of the first embodiment, the description thereof will be omitted here.
 なお、図6の場合に限らず、実施の形態2においても、図7に示すように、実施の形態1と同様に、三相交流電源からなる交流電源1に電力変換装置8が接続されていてもよい。図7は、実施の形態2に係る電力変換装置8の変形例を示す回路図である。図7においては、図1と同様に、交流電源1が整流部2に接続されている。 Not only in the case of FIG. 6, but also in the second embodiment, as shown in FIG. 7, the power conversion device 8 is connected to the AC power supply 1 composed of the three-phase AC power supply as in the first embodiment. You may. FIG. 7 is a circuit diagram showing a modified example of the power conversion device 8 according to the second embodiment. In FIG. 7, the AC power supply 1 is connected to the rectifying unit 2 as in FIG. 1.
 図6および図7に示すように、Vdc同期部7dには、DC電圧検出部9で検出されたDCリンク部4の電圧を示す電圧信号が入力される。Vdc同期部7dは、当該電圧信号から脈動成分11aを検出し、脈動成分11aに同期して、Vdc同期指令を出力する。Vdc同期指令は、キャリア可変部7bに入力される。キャリア可変部7bは、Vdc同期指令に基づいて、脈動成分11aに同期させてキャリア周波数41を変化させる。このように、実施の形態2では、Vdc同期部7dが、Vdc同期指令を、キャリア可変部7bに入力することで、DCリンク部4の電圧Vdcの脈動成分11aに同期したキャリア可変を実現する。 As shown in FIGS. 6 and 7, a voltage signal indicating the voltage of the DC link unit 4 detected by the DC voltage detection unit 9 is input to the Vdc synchronization unit 7d. The Vdc synchronization unit 7d detects the pulsating component 11a from the voltage signal, synchronizes with the pulsating component 11a, and outputs a Vdc synchronization command. The Vdc synchronization command is input to the carrier variable unit 7b. The carrier variable unit 7b changes the carrier frequency 41 in synchronization with the pulsating component 11a based on the Vdc synchronization command. As described above, in the second embodiment, the Vdc synchronization unit 7d realizes the carrier variation synchronized with the pulsating component 11a of the voltage Vdc of the DC link unit 4 by inputting the Vdc synchronization command to the carrier variable unit 7b. ..
 上記(1)式に示したように、コモンモードノイズのノイズ電流Icommonは、インバータ回路基板またはモータ6とグラウンド間の浮遊容量Cと、そこに印加される電圧vの変化とに依存する。従って、スイッチングにより電圧が頻繁に変化するインバータ部5およびモータ6において、ノイズが発生しやすいことになる。実施の形態2では、キャリア可変を行うときに、キャリア周波数を可変させるキャリア周波数可変範囲40の中心値または平均値ftypを、DCリンク部4の電圧Vdcが低くなるタイミングに合わせることで、ノイズ成分のレベルを下げる。 As shown in the above equation (1), the noise current Icommon of the common mode noise depends on the stray capacitance C between the inverter circuit board or the motor 6 and the ground and the change of the voltage v applied thereto. Therefore, noise is likely to occur in the inverter section 5 and the motor 6 whose voltage frequently changes due to switching. In the second embodiment, when the carrier is variable, the center value or the average value ftyp of the carrier frequency variable range 40 that changes the carrier frequency is adjusted to the timing when the voltage Vdc of the DC link portion 4 becomes low, so that noise is generated. Lower the level of ingredients.
 以下、図8~図10を例に挙げて、Vdc同期部7dの動作について説明する。図8~図10は、実施の形態2に係る電力変換装置8の制御装置7に設けられたVdc同期部7dのVdc同期指令に基づくキャリア周波数の変化パターンの一例を示す。例えば、キャリア可変部7bが、16kHz±1kHzのキャリア周波数可変範囲40で、キャリア周波数41を変化させている場合について説明する。この場合、キャリア周波数可変範囲40は、15kHzから17kHzまでの範囲になる。また、キャリア周波数可変範囲40の中心値または平均値ftypは、16kHzになる。このとき、Vdc同期部7dは、キャリア周波数41が16kHzになるタイミングt1が、DCリンク部4の電圧Vdcの脈動成分11aの谷11bに一致するように、谷11bのタイミングを示すVdc同期指令を、キャリア可変部7bに入力する。タイミングt1は、キャリア周波数41の1/2周期ごとのタイミングである。キャリア可変部7bは、Vdc同期指令に従って、キャリア周波数が16kHzになるタイミングt1を、DCリンク部4の電圧Vdcの脈動成分11aの谷11bに一致させる。また、キャリア可変部7bは、キャリア周波数の他の周波数、すなわち、16kHz<fcarrier≦17kHzおよび15kHz≦fcarrier<16kHzの周波数を、脈動成分11aの谷11b以外のところに割り当てる。 Hereinafter, the operation of the Vdc synchronization unit 7d will be described with reference to FIGS. 8 to 10 as an example. 8 to 10 show an example of a carrier frequency change pattern based on the Vdc synchronization command of the Vdc synchronization unit 7d provided in the control device 7 of the power conversion device 8 according to the second embodiment. For example, a case where the carrier variable unit 7b changes the carrier frequency 41 in the carrier frequency variable range 40 of 16 kHz ± 1 kHz will be described. In this case, the carrier frequency variable range 40 is in the range from 15 kHz to 17 kHz. Further, the center value or the average value ftype of the carrier frequency variable range 40 is 16 kHz. At this time, the Vdc synchronization unit 7d issues a Vdc synchronization command indicating the timing of the valley 11b so that the timing t1 at which the carrier frequency 41 becomes 16 kHz coincides with the valley 11b of the pulsation component 11a of the voltage Vdc of the DC link unit 4. , Is input to the carrier variable unit 7b. The timing t1 is the timing for every 1/2 cycle of the carrier frequency 41. The carrier variable unit 7b matches the timing t1 at which the carrier frequency becomes 16 kHz with the valley 11b of the pulsating component 11a of the voltage Vdc of the DC link unit 4 according to the Vdc synchronization command. Further, the carrier variable unit 7b allocates another frequency of the carrier frequency, that is, a frequency of 16 kHz <f carrier ≤ 17 kHz and 15 kHz ≤ f carrier <16 kHz to a frequency other than the valley 11b of the pulsating component 11a.
 これにより、キャリア周波数41の中心値または平均値ftypは16kHzのまま、16kHzそのものの成分のリプルおよびその高調波成分から来るノイズが小さくなるため、キャリア起因のリプルおよびノイズは平均的に下がることとなる。 As a result, the center value or the average value ftype of the carrier frequency 41 remains at 16 kHz, and the noise coming from the ripple of the component of 16 kHz itself and its harmonic component becomes small, so that the ripple and noise caused by the carrier decrease on average. Will be.
 以上のように、実施の形態2においても、実施の形態1と同様に、キャリア可変部7bによるキャリア可変は、図8に示すように、線形になるように行ってもよいし、図9に示すように、正弦波状などの曲線的に行ってもよい。また、図10に示すように、キャリア可変は、階段状に行ってもよい。このように、実施の形態2においても、実施の形態1と同様に、キャリア可変の変化パターンはひとつに決まるものではなく、使用目的または使用環境などに応じて事前に選択され、選択された変化パターンがキャリア可変部7bに予め設定される。 As described above, also in the second embodiment, as in the first embodiment, the carrier variable by the carrier variable portion 7b may be performed so as to be linear as shown in FIG. 8, and FIG. 9 shows. As shown, it may be performed in a curved shape such as a sinusoidal shape. Further, as shown in FIG. 10, the carrier variable may be performed in a stepped manner. As described above, also in the second embodiment, as in the first embodiment, the change pattern of the carrier variable is not determined to be one, but is selected in advance according to the purpose of use or the environment of use, and the selected change. The pattern is preset in the carrier variable portion 7b.
 実施の形態2は、交流電源1および交流電源1Aの相数にかかわらず適用できるが、特に単相の電解コンデンサレスインバータの場合に適している。単相の場合、DCリンク部4の電圧の変動は、三相の場合よりも大きく、DCリンク部4の電圧Vdcの脈動成分11aの谷11b部分では、電圧値が0Vに近くなる。したがって、電圧Vdcの脈動成分11aに同期してキャリア周波数41を変化させると、脈動成分11aの谷11b部分に割り当てた周波数成分は、電圧変化がほぼ0であるため、コモンモードノイズが、さらに小さくなる。 The second embodiment can be applied regardless of the number of phases of the AC power supply 1 and the AC power supply 1A, but is particularly suitable for a single-phase electrolytic capacitorless inverter. In the case of a single phase, the fluctuation of the voltage of the DC link portion 4 is larger than that in the case of the three phase, and the voltage value becomes close to 0V in the valley 11b portion of the pulsating component 11a of the voltage Vdc of the DC link portion 4. Therefore, when the carrier frequency 41 is changed in synchronization with the pulsation component 11a of the voltage Vdc, the frequency component assigned to the valley 11b portion of the pulsation component 11a has a voltage change of almost 0, so that the common mode noise is further reduced. Become.
 実施の形態2では、1秒間に何回キャリアを変化させるかというキャリア可変頻度に関しては、電圧Vdcの脈動成分11aの周波数に依存するため、単相の場合は電源周期の2倍、3相の場合は電源周期の6倍となる。 In the second embodiment, the carrier variable frequency of how many times the carrier is changed per second depends on the frequency of the pulsating component 11a of the voltage Vdc. In that case, it is 6 times the power supply cycle.
 このように、実施の形態2においても、実施の形態1と同様に、制御装置7がキャリア可変部7bを有して、スイッチング素子5aおよび5bのスイッチングのキャリア周波数を可変にしている。そのため、実施の形態2においても、実施の形態1と同様の効果が得られる。 As described above, also in the second embodiment, the control device 7 has the carrier variable unit 7b to make the switching carrier frequencies of the switching elements 5a and 5b variable, as in the first embodiment. Therefore, the same effect as that of the first embodiment can be obtained in the second embodiment.
 さらに、実施の形態2においては、制御装置7がVdc同期部7dを有している。Vdc同期部7dが、DCリンク部4の電圧Vdcの脈動成分11aに同期して、Vdc同期指令を出力する。それにより、キャリア可変部7bが脈動成分11aに同期させてキャリア周波数41を可変にすることで、ノイズ自体の平均値を下げることができる。また、キャリア周波数41を、交流電源1の脈動に同期させて変化させることで、さらにノイズの平均値を落とすことができる。 Further, in the second embodiment, the control device 7 has a Vdc synchronization unit 7d. The Vdc synchronization unit 7d outputs a Vdc synchronization command in synchronization with the pulsation component 11a of the voltage Vdc of the DC link unit 4. As a result, the carrier variable portion 7b makes the carrier frequency 41 variable in synchronization with the pulsating component 11a, so that the average value of the noise itself can be lowered. Further, by changing the carrier frequency 41 in synchronization with the pulsation of the AC power supply 1, the average value of noise can be further reduced.
 なお、上記の実施の形態1および2に係る電力変換装置8において、整流部2およびインバータ部5で用いられる電力変換素子、スイッチング素子およびダイオードは、ワイドバンドギャップ半導体によって構成されていてもよい。ワイドバンドギャップ半導体は、珪素(Si)に比べてバンドギャップが大きい。ワイドバンドギャップ半導体としては、例えば、炭化珪素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、または、ダイヤモンドなどがある。 In the power conversion device 8 according to the above-described first and second embodiments, the power conversion element, the switching element, and the diode used in the rectifying unit 2 and the inverter unit 5 may be configured by a wideband gap semiconductor. Wide bandgap semiconductors have a larger bandgap than silicon (Si). Examples of the wide bandgap semiconductor include silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), and diamond.
 このようなワイドバンドギャップ半導体によって形成された電力変換素子、スイッチング素子およびダイオードは、耐電圧性が高く、許容電流密度も高い。このため、電力変換素子、スイッチング素子およびダイオードの小型化が可能である。また、これらの小型化された電力変換素子、スイッチング素子およびダイオードを用いることにより、これらの電力変換素子、スイッチング素子およびダイオードを組み込んだ半導体モジュールの小型化も可能になる。 The power conversion element, switching element and diode formed by such a wide bandgap semiconductor have high withstand voltage resistance and high allowable current density. Therefore, the power conversion element, the switching element, and the diode can be miniaturized. Further, by using these miniaturized power conversion elements, switching elements and diodes, it is possible to miniaturize the semiconductor module incorporating these power conversion elements, switching elements and diodes.
 また、ワイドバンドギャップ半導体は、耐熱性も高いため、ヒートシンクの放熱フィンの小型化が可能になり、また、水冷部の空冷化が可能になるので、半導体モジュールの一層の小型化が可能になる。 In addition, since the wide bandgap semiconductor has high heat resistance, the heat dissipation fins of the heat sink can be miniaturized, and the water-cooled portion can be air-cooled, so that the semiconductor module can be further miniaturized. ..
 更に、ワイドバンドギャップ半導体は、電力損失が低いため、電力変換素子、スイッチング素子およびダイオードの高効率化が可能であり、延いては、半導体モジュールの高効率化が可能になる。 Further, since the wide bandgap semiconductor has a low power loss, it is possible to improve the efficiency of power conversion elements, switching elements and diodes, and by extension, it is possible to improve the efficiency of semiconductor modules.
 なお、電力変換素子、スイッチング素子およびダイオードのすべてがワイドバンドギャップ半導体によって形成されていることが望ましい。しかしながら、いずれか一つがワイドバンドギャップ半導体によって形成されていてもよく、その場合においても、上記の効果を得ることができる。 It is desirable that all of the power conversion element, switching element and diode are formed of a wide bandgap semiconductor. However, any one of them may be formed of a wide bandgap semiconductor, and even in that case, the above effect can be obtained.
 本開示に係る電力変換装置は、空気調和装置などの冷凍サイクル装置だけでなく、圧縮機またはモータ等の負荷を駆動する機器に広く利用できる。 The power conversion device according to the present disclosure can be widely used not only for refrigeration cycle devices such as air conditioners, but also for devices that drive loads such as compressors or motors.
 1 交流電源、1A 交流電源、2 整流部、2A 整流部、3 リアクタ、4 DCリンク部、4a 小容量コンデンサ、5 インバータ部、5a 上アームスイッチング素子、5b 下アームスイッチング素子、5c 還流用ダイオード、6 モータ、7 制御装置、7a 制御部、7b キャリア可変部、7c 記憶部、7d Vdc同期部、8 電力変換装置、9 DC電圧検出部、10 矩形枠、11 電圧波形、11a 脈動成分、11b 谷、20 キャリアリプル、21 キャリアリプル、22 ノイズ成分、40 キャリア周波数可変範囲、41 キャリア周波数、50 冷凍サイクル装置、52 冷媒配管、60 室外機、61 圧縮機、62 四方弁、63 熱交換器、64 送風ファン、64a ファン用モータ、64b 翼部、65 膨張弁、70 室内機、71 熱交換器、72 送風ファン、72a ファン用モータ、72b 翼部。 1 AC power supply, 1A AC power supply, 2 rectifying unit, 2A rectifying unit, 3 reactor, 4 DC link unit, 4a small capacity capacitor, 5 inverter unit, 5a upper arm switching element, 5b lower arm switching element, 5c recirculation diode, 6 motor, 7 control device, 7a control unit, 7b carrier variable unit, 7c storage unit, 7d Vdc synchronization unit, 8 power conversion device, 9 DC voltage detector, 10 rectangular frame, 11 voltage waveform, 11a pulsation component, 11b valley , 20 carrier ripple, 21 carrier ripple, 22 noise component, 40 carrier frequency variable range, 41 carrier frequency, 50 refrigeration cycle device, 52 refrigerant piping, 60 outdoor unit, 61 compressor, 62 four-way valve, 63 heat exchanger, 64 Blower fan, 64a fan motor, 64b wing part, 65 expansion valve, 70 indoor unit, 71 heat exchanger, 72 blower fan, 72a fan motor, 72b wing part.

Claims (11)

  1.  電源から供給される電圧を整流する整流部と、
     電力変換素子を有し、前記整流部によって整流された前記電圧を前記電力変換素子のスイッチングにより変換して負荷に出力するインバータ部と、
     前記整流部と前記インバータ部との間に接続され、前記整流部によって整流された前記電圧を平滑しない容量を有するコンデンサが設けられたDCリンク部と、
     前記インバータ部の前記電力変換素子の前記スイッチングをスイッチングキャリア周波数に基づいて制御する制御部と、
     予め設定された変化パターンに基づいて前記スイッチングキャリア周波数を変化させる指令を前記制御部に出力するキャリア可変部と
     を備えた電力変換装置。
    A rectifier that rectifies the voltage supplied from the power supply,
    An inverter unit having a power conversion element and converting the voltage rectified by the rectifying unit by switching of the power conversion element and outputting it to a load.
    A DC link unit connected between the rectifying unit and the inverter unit and provided with a capacitor having a capacity that does not smooth the voltage rectified by the rectifying unit.
    A control unit that controls the switching of the power conversion element of the inverter unit based on the switching carrier frequency, and a control unit.
    A power conversion device including a carrier variable unit that outputs a command for changing the switching carrier frequency to the control unit based on a preset change pattern.
  2.  前記DCリンク部の電圧を検出するDC電圧検出部と、
     前記DC電圧検出部が検出した前記電圧の脈動成分を検出し、前記脈動成分に同期して前記キャリア可変部にVdc同期指令を出力する、Vdc同期部と
     を備え、
     前記キャリア可変部は、前記Vdc同期指令に基づいて、前記脈動成分に同期させて前記スイッチングキャリア周波数を変化させる指令を前記指令として前記制御部に出力する、
     請求項1に記載の電力変換装置。
    A DC voltage detection unit that detects the voltage of the DC link unit,
    It is provided with a Vdc synchronization unit that detects the pulsation component of the voltage detected by the DC voltage detection unit and outputs a Vdc synchronization command to the carrier variable unit in synchronization with the pulsation component.
    Based on the Vdc synchronization command, the carrier variable unit outputs a command for changing the switching carrier frequency in synchronization with the pulsating component to the control unit as the command.
    The power conversion device according to claim 1.
  3.  前記キャリア可変部は、予め設定されたキャリア周波数可変範囲内で前記スイッチングキャリア周波数を変化させる指令を前記指令として前記制御部に出力する、
     請求項1または2に記載の電力変換装置。
    The carrier variable unit outputs a command for changing the switching carrier frequency within a preset carrier frequency variable range to the control unit as the command.
    The power conversion device according to claim 1 or 2.
  4.  前記キャリア可変部は、前記電力変換装置が発生させるノイズが減少するように前記スイッチングキャリア周波数を変化させる指令を前記指令として前記制御部に出力する、
     請求項1~3のいずれか1項に記載の電力変換装置。
    The carrier variable unit outputs a command for changing the switching carrier frequency to the control unit as the command so as to reduce the noise generated by the power conversion device.
    The power conversion device according to any one of claims 1 to 3.
  5.  前記キャリア可変部は、前記電力変換装置が発生させる音のうち高周波成分が減少するように前記スイッチングキャリア周波数を変化させる指令を前記指令として前記制御部に出力する、
     請求項1~3のいずれか1項に記載の電力変換装置。
    The carrier variable unit outputs a command for changing the switching carrier frequency as the command to the control unit so that the high frequency component of the sound generated by the power conversion device is reduced.
    The power conversion device according to any one of claims 1 to 3.
  6.  前記インバータ部は、前記電力変換素子のスイッチングによる高周波電力を負荷に対し出力し、前記負荷を加熱する、
     請求項1~5のいずれか1項に記載の電力変換装置。
    The inverter unit outputs high-frequency power generated by switching of the power conversion element to the load to heat the load.
    The power conversion device according to any one of claims 1 to 5.
  7.  前記インバータ部は、モータを負荷とするインバータ装置に搭載される、
     請求項1~6のいずれか1項に記載の電力変換装置。
    The inverter unit is mounted on an inverter device whose load is a motor.
    The power conversion device according to any one of claims 1 to 6.
  8.  前記電力変換装置は、圧縮機を駆動するインバータ装置に搭載される、
     請求項1~7のいずれか1項に記載の電力変換装置。
    The power conversion device is mounted on an inverter device that drives a compressor.
    The power conversion device according to any one of claims 1 to 7.
  9.  前記電力変換装置は、
     圧縮機に搭載されたモータに通電することで前記圧縮機内の冷媒を加熱する機能を有するインバータ装置に搭載される、
     請求項1~8のいずれか1項に記載の電力変換装置。
    The power converter is
    It is mounted on an inverter device having a function of heating the refrigerant in the compressor by energizing a motor mounted on the compressor.
    The power conversion device according to any one of claims 1 to 8.
  10.  前記電力変換装置は、冷凍サイクル装置に搭載される、
     請求項1~9のいずれか1項に記載の電力変換装置。
    The power conversion device is mounted on the refrigeration cycle device.
    The power conversion device according to any one of claims 1 to 9.
  11.  前記インバータ部の前記電力変換素子は、ワイドバンドギャップ半導体によって形成され、
     前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム、または、ダイヤモンドである、
     請求項1~10のいずれか1項に記載の電力変換装置。
    The power conversion element of the inverter unit is formed of a wide bandgap semiconductor.
    The wide bandgap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
    The power conversion device according to any one of claims 1 to 10.
PCT/JP2020/024377 2020-06-22 2020-06-22 Power conversion device WO2021260768A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/024377 WO2021260768A1 (en) 2020-06-22 2020-06-22 Power conversion device
JP2022531260A JP7309070B2 (en) 2020-06-22 2020-06-22 power converter
DE112020007351.3T DE112020007351T5 (en) 2020-06-22 2020-06-22 POWER CONVERSION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024377 WO2021260768A1 (en) 2020-06-22 2020-06-22 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021260768A1 true WO2021260768A1 (en) 2021-12-30

Family

ID=79282189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024377 WO2021260768A1 (en) 2020-06-22 2020-06-22 Power conversion device

Country Status (3)

Country Link
JP (1) JP7309070B2 (en)
DE (1) DE112020007351T5 (en)
WO (1) WO2021260768A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191676A (en) * 1996-12-25 1998-07-21 Sharp Corp Inverter device
JP2004289985A (en) * 2003-03-25 2004-10-14 Matsushita Electric Ind Co Ltd Inverter controller for driving motor and air conditioner
JP2007259622A (en) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd Inverter controller and compressor
JP2010213377A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Power conversion equipment and power conversion method
JP2013187925A (en) * 2012-03-06 2013-09-19 Panasonic Corp Motor drive
JP2014180149A (en) * 2013-03-15 2014-09-25 Panasonic Corp Motor driver and electrical apparatus using the same
WO2014188566A1 (en) * 2013-05-23 2014-11-27 三菱電機株式会社 Heat pump device, and air conditioner, heat pump water heater, refrigerator, and freezer comprising same
JP2015208116A (en) * 2014-04-21 2015-11-19 ダイキン工業株式会社 Power conversion device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219267A (en) 2008-03-11 2009-09-24 Daikin Ind Ltd Power conversion apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191676A (en) * 1996-12-25 1998-07-21 Sharp Corp Inverter device
JP2004289985A (en) * 2003-03-25 2004-10-14 Matsushita Electric Ind Co Ltd Inverter controller for driving motor and air conditioner
JP2007259622A (en) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd Inverter controller and compressor
JP2010213377A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Power conversion equipment and power conversion method
JP2013187925A (en) * 2012-03-06 2013-09-19 Panasonic Corp Motor drive
JP2014180149A (en) * 2013-03-15 2014-09-25 Panasonic Corp Motor driver and electrical apparatus using the same
WO2014188566A1 (en) * 2013-05-23 2014-11-27 三菱電機株式会社 Heat pump device, and air conditioner, heat pump water heater, refrigerator, and freezer comprising same
JP2015208116A (en) * 2014-04-21 2015-11-19 ダイキン工業株式会社 Power conversion device

Also Published As

Publication number Publication date
JPWO2021260768A1 (en) 2021-12-30
JP7309070B2 (en) 2023-07-14
DE112020007351T5 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6072924B2 (en) DC power supply device and refrigeration cycle application equipment including the same
EP2597767A2 (en) Inverter device and air conditioner including the same
KR20160054011A (en) Dc power supply device and refrigeration cycle device
EP3664271B1 (en) Power conversion device, motor drive device, and air conditioner
EP3182574B1 (en) Converter unit, drive controller, motor, and compressor
US11509232B2 (en) Power converter and air-conditioning apparatus using the same
JP6312851B2 (en) Electric motor drive device and air conditioner
JP2022118033A (en) air conditioner
KR20140112297A (en) Power converter and air conditioner including the same
WO2020066033A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
WO2021260768A1 (en) Power conversion device
KR20140096627A (en) Power converting apparatus and air conditioner having the same
EP4024693A1 (en) Power conversion device, motor drive device, and air conditioner
KR20140112298A (en) Power converter and air conditioner including the same
JP6182462B2 (en) Power converter
JP6518506B2 (en) POWER SUPPLY DEVICE AND AIR CONDITIONER USING SAME
JP6584673B2 (en) AC / DC converter, power converter, and air conditioner
WO2022168222A1 (en) Power conversion device and air conditioner
JP7325673B2 (en) Power converter and air conditioner
WO2016125255A1 (en) Power conversion device and air conditioning device
WO2021171562A1 (en) Electric motor drive device and air conditioner
JP2021072667A (en) Dc power supply device and refrigeration cycle applying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531260

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20941651

Country of ref document: EP

Kind code of ref document: A1