JP6604922B2 - 顕微授精訓練装置 - Google Patents

顕微授精訓練装置 Download PDF

Info

Publication number
JP6604922B2
JP6604922B2 JP2016162612A JP2016162612A JP6604922B2 JP 6604922 B2 JP6604922 B2 JP 6604922B2 JP 2016162612 A JP2016162612 A JP 2016162612A JP 2016162612 A JP2016162612 A JP 2016162612A JP 6604922 B2 JP6604922 B2 JP 6604922B2
Authority
JP
Japan
Prior art keywords
pipette
egg
image
ovum
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016162612A
Other languages
English (en)
Other versions
JP2018029500A (ja
Inventor
憲隆 福永
Original Assignee
憲隆 福永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 憲隆 福永 filed Critical 憲隆 福永
Priority to JP2016162612A priority Critical patent/JP6604922B2/ja
Publication of JP2018029500A publication Critical patent/JP2018029500A/ja
Application granted granted Critical
Publication of JP6604922B2 publication Critical patent/JP6604922B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、顕微授精の訓練を行なう装置に関する。
妊娠を望む人が避妊なしで1〜2年以内に妊娠にいたることができない場合、不妊症と診断される。不妊症に対する治療(以下、不妊治療と称する)の1つに、体外受精(コンベンショナル体外受精、顕微授精)がある。
体外受精では、受精卵を数日間(通常、1〜7日程度)培養した胚を凍結保存し、適時解凍して子宮に移植する場合がある。また、患者等の要望により、採卵された卵子(受精前)を凍結保存する場合もある。人の卵(卵子と胚を含む)を凍結保存する場合には、超急速ガラス化保存法により凍結すると、緩慢凍結法と比較して卵へのダメージが低い(ほとんどない)ことが知られている。超急速ガラス化保存法は、凍結専用シートに卵と微少量の凍結保護液を載せ、1つの卵が微少量の凍結保護液に内包された状態で、液体窒素で瞬時に凍結させる方法である。人の卵は、約150〜200μmと非常に小さいため、卵子や胚を凍結専用シートに載せる作業は、顕微鏡下で行なわれる。
また、顕微授精(ICSI:intracytoplasmic sperm injection)では、顕微鏡を使用して卵子を見ながら細胞操作用マイクロマニピュレータを用いて卵子内へ精子を注入して受精させる。
このように、体外受精に伴う上記の作業は、顕微鏡やマニピュレータを用いて行なわれる精密な作業であるため、熟練を要する。従来、これらの技術の習得には、患者から採卵した未成熟卵子、未受精卵子等の胚移植に適さない卵子を用いている。マニピュレータは顕微授精用に、極めて微少な動きを精度良く実現するマイクロマニピュレータが知られている(例えば、特許文献1参照)。
特開2001−330781号公報
しかしながら、患者から採取された卵子を用いると、患者数が少ない病院では、習練の機会が少なく、技術の向上が困難である。そのため、体外受精に成否に関わる重要な上記技術の習熟度に、患者数の多少によって病院間で差が生じるおそれがある。また、患者から採取された卵子を用いて習練を行なうことに、倫理的な問題を感じる者もいる。超急速ガラス化保存法による卵凍結や顕微授精の技術の習熟度は、体外受精の成否に及ぼす影響が大きいため、それらの技術を習熟した人材の育成が望まれている。また、インジェクションピペットなどを精密に動作させるマイクロマニピュレータは極めて高額であり、練習の目的で取りそろえることも困難であった。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
(1)本発明の第1の態様として、卵子を使用する顕微鏡下の作業をシミュレーションする顕微授精訓練装置が提供される。この顕微授精訓練装置は、少なくとも2次元の表示装置と、溶液に漬けられた卵子の仮想的な3次元の位置を演算する卵子位置演算部と、ピペットを装着可能なマニピュレータの先端の位置を操作する操作処理を受け付ける操作処理受付部と、前記操作処理受付部が受け付けた前記操作処理に基づいて、前記ピペットの少なくとも先端の3次元の位置を演算し、該先端の位置が、前記演算された仮想的な卵子に対して、予め定めた位置関係以上に近接した関係にあると判断したとき、前記溶液に漬けられた卵子と前記ピペットの少なくとも先端とを含む映像を生成し、前記表示装置に表示する演算表示部とを備える。
この顕微授精訓練装置は、溶液に漬けられた卵子の仮想的な3次元の位置を演算し、これに対するピペットの位置関係から、算された仮想的な卵子に対して、予め定めた位置関係以上に近接した関係にあると判断したとき、前記溶液に漬けられた卵子と前記ピペットの少なくとも先端とを含む映像を生成し、表示装置に表示する。このため、実際の卵子を用いることなく顕微授精を訓練することができる。ここでピペットとしては、インジェクションピペットのような卵子を穿刺して精子を含む溶液を送り込むピペットや、卵子を保持するためのホールド用マイクロピペット等、種々のものを利用することができる。なお、こうしたピペットは実際にマニピュレータに装着したものを用いてもよいし、ピペットも仮想的なものとして、その映像を作り出してもよい。後者の場合、ピペットの位置は仮想的なピペットの先端の位置として演算すればよい。
(2)こうした顕微授精訓練装置において、前記操作処理受付部によって受け付けた操作処理により、前記ピペットを移動するピペット駆動部と、該移動されるピペットの少なくとも先端が存在し得るとして予め定めた3次元の位置の映像をピペット映像として撮像するピペット映像部とを備えるものとしてよい。加えて、演算表示部は、前記溶液に漬けられた卵子の映像である卵子映像を生成する卵子映像生成部を備え、前記ピペット映像と前記卵子映像とを合成して、前記表示装置に表示するものとしてよい。かかる顕微授精訓練装置では、実際のピペットを用い、そのピペットを撮像した映像と、仮想的な卵子の卵子映像とを合成して表示するので、訓練者は、実際の顕微授精の際に必要な現実のピペットの取扱いに習熟することができる。なお、ピペット映像部や卵子映像生成部は、ピペットや卵子の映像を静止画として生成してもよいし、動画として生成するものとしてもよい。本明細書では、静止画と動画を併せて映像と呼ぶ。動画も詳しく見れば、静止画の連続であり、時間軸上においてどのような細かさで提示するかは、顕微授精訓練装置の能力や訓練者のスキルによって定めればよい。可能な限り現実の卵子やピペットの動きに近い映像の方が、訓練には適していることは言うまでもないが、装置の能力を上げるにはコストがかかるため、例えば初歩的な訓練には、紙芝居的な静止画の提示でもそれなりの効果を期待することができる。従って、訓練の目的や訓練者のスキル、費用対効果等を勘案して、映像表示の能力を決定すればよい。
(3)こうした顕微授精訓練装置において、前記ピペットは仮想的なピペットであり、前記操作処理受付部によって受け付けた操作処理により、前記仮想的なピペットの移動位置を演算するピペット移動位置演算部と、前記演算されたピペットの少なくとも先端が、前記卵子の仮想的な3次元の配置として定めた領域に存在するとき、前記演算された移動位置における前記ピペットの映像であるピペット映像を生成するピペット映像部と、を備え、前記演算表示部は、前記溶液に漬けられた卵子の映像である卵子映像を生成する卵子映像生成部を備え、前記ピペット映像と前記卵子映像とを合成して、前記表示装置に表示するものとしてよい。この顕微授精訓練装置によれば、ピペットも仮想的なものなので、訓練者の操作処理を受け付ける操作処理受付部と表示に必要なハードウェアさえあれば良く、装置構成を簡略することができる。
(4)かかる顕微授精訓練装置において、前記卵子映像生成部は、(A)前記ピペット先端が卵子に近接した場合の卵子の挙動を、前記溶液を介した動きとして演算し、映像を作り出す第1映像出力部と、(B)前記ピペット先端が卵子に接触した場合の卵子の挙動を、ピペット先端の形状、卵子表面の膜の性状、卵子に対するピペット先端の接触位置から演算し、卵子の映像を作り出す第2映像出力部と、(C)前記ピペット先端が卵子表面の膜を破って内部に侵入した後の卵子の挙動を、ピペット先端を含むピペットの形状、卵子内部の細胞質の性状、卵子に対するピペット先端の接触位置から演算し、映像を作り出す第3映像出力部と、(D)前記操作処理受付部が受け付けた操作処理により、前記ピペット先端と前記卵子の位置関係を演算し、対応する前記第1ないし第3映像出力部からの映像を、前記卵子映像として出力する卵子映像出力部とを備えるものとてよい。こうすれば、顕微授精訓練装置は、ピペット先端と卵子との位置関係に応じて、適切な映像を出力することができ、顕微授精の訓練を適切に行なうことができる。
(5)上記の顕微授精訓練装置において、前記操作処理受付部は、重力方向に直交する2方向への前記ピペットの移動を指示する操作処理を、方向毎に受け付けるX方向受付部およびY方向受付部と、前記ピペットの軸方向への進退を指示する進退指示受付部とを備えるものとしてよい。こうすれば、重力方向に直交する2方向とピペットの進退方向に、ピペットを自由に移動することができる。移動されるピペットは実際のピペットであってもよいし、仮想的なものであってもよい。
(6)上記の顕微授精訓練装置において、前記ピペットは、前記卵子が存在するとされる位置に対して対称の位置のそれぞれに設けられ、前記操作処理受付部は、各ピペット毎に、前記操作処理を受け付けるよう設けてもよい。こうすば、卵子に対して対称の位置に設けられた2つのピペットのそれぞれを操作することができ、実際の顕微授精に必要なスキルを訓練することができる。もとより、訓練の初期においては、扱えるピペットを1つとして、順次スキルアップを図っていくということも可能である。
(7)前記ピペットは、内部に通路を有するものとしてもよい。こうすれば、内部の通路を用いて精子を含む溶液を送り込む訓練や、内部の通路を負圧にして、卵子をホールドするといった訓練を行なうことができる。
(8)上記の顕微授精訓練装置において、前記操作処理受付部は、前記ピペットの通路に存在する液体への加圧量を増減する操作処理を受け付ける加圧量操作受付部を備え、前記演算表示部は、少なくとも前記ピペット先端が前記卵子の内部に位置する状態である場合に、前記加圧量、前記卵子内部の細胞質の性状、前記液体の性状からピペット内部の液体の挙動を演算し、前記液体通路の液体の映像を生成するものとしてもよい。この顕微授精訓練装置では、ピペット内部の液体の挙動を表示することができ、精子を含む溶液の送り込みの訓練等を行なうことができる。
(9)こうした顕微授精訓練装置では、前記表示装置は、顕微鏡視野として映像を表示するよう設けてもよい。表示装置は必ずしも顕微鏡視野として合成映像等を表示する必要はないが、顕微鏡視野として表示し、これを接眼レンズを介して視認するようにすれば、実際の顕微授精に近い状況を作り出すことができ、訓練の実効性を高めることができる。
(10)こうした顕微授精訓練装置において、前記演算表示部が前記表示装置に表示する前記映像、前記表示装置とは別に表示する2次元表示装置を備えるものとしてもよい。こうすれば、一人の訓練者が訓練している様子を他の人が容易に視認することができ、指導者によるアドバイスや講評が可能となる。あるいは、訓練者の訓練中の映像を他の訓練者の参考に供することができる。
本発明は、こうした顕微授精訓練装置に限定されるものではなく、顕微授精訓練方法や、顕微授精訓練装置の制御方法、訓練映像の生成方法、シミュレーション装置等としても実現可能である。また3次元的な位置の演算や映像の生成については、少なくとも一部をソフトウェアによって実現してもよいし、少なくとも一部をハードウェアによって実現してもよい。ソフトウェアによって実現する場合、演算等を行なう構成は、訓練者が操作する装置に内蔵してもよいし、ネットワークを介して接続される特定のサーバやいわゆるクラウドにおいて、演算された座標位置や生成された映像を、ネットワーク経由で受け取って表示等を行なうものとしてもよい。
顕微授精に用いられる装置と顕微授精の様子を示す説明図である。 顕微授精の要部を示す説明図である。 実施形態としての顕微授精訓練装置の概要を示す説明図である。 操作部の構成を示す正面図である。 マニピュレータの構成例を示す説明図である。 操作部の操作によりピペットが動作する様子を示す説明図である。 第1実施形態におけるシミュレーション制御部の概略構成図である。 第1実施形態におけるシミュレーション処理ルーチンを示すフローチャートである。 卵子の構造を模式的に示す説明図である。 卵子と、インジェクションピペットおよびホールド用マイクロピペットとの位置関係を例示する説明図である。 第2実施形態におけるシミュレーション制御部の構成を示す概略構成図である。 第2実施形態におけるシミュレーション処理ルーチンを示すフローチャートである。
A.顕微授精の概要:
本発明の第1実施形態としての顕微授精訓練装置について以下説明するが、顕微授精訓練装置の説明に先だって、顕微授精を行なう装置およびその装置を用いて行なわれる作業について説明する。図1は、顕微授精の操作に用いられる装置および顕微授精の処理について示す説明図である。図2は、顕微授精の要部を示す説明図である。図2は、模式図であり、後述する卵子10の大きさと膜厚等は、実際の卵子の各サイズとの相関関係はない。顕微授精では、作業者E(例えば胚培養士)は、顕微授精装置20を用いて、卵子に、インジェクションピペットを用いて、精子を注入する作業を行なう。
図1、図2に示すように、顕微授精装置20は、倒立顕微鏡25と、1対の細胞操作用のマニピュレータ31,32と、1対のインジェクター79(作業者Eの右手側のインジェクターは不図示)と、インジェクションピペット34と、ホールド用マイクロピペット36と、を備える。倒立顕微鏡25は、接眼レンズ21と、ステージ22と、対物レンズと、を備える。ステージ22の上方の左右両側には、左右一対のマニピュレータ31,32が配置されている。マニピュレータ31には、ホルダー33(図2)を介してインジェクションピペット34が支持されている。マニピュレータ32には、ホルダー35を介してホールド用マイクロピペット36が支持されている。マニピュレータ31,32(図1)は、作業者Eの操作に応じて、それぞれ、インジェクションピペット34,ホールド用マイクロピペット36を、前後、左右および上下に、精密に動かすことができる。作業者Eは、顕微授精装置20の右左に配置された操作部37,38を操作することにより、マニピュレータ31,32を自由に操作することができる。ホルダー33の他端には、可撓性のチューブ41を介してインジェクター(不図示)が接続されており、ホルダー35の他端には、可撓性のチューブ42を介してインジェクター79が接続されている。1対のインジェクターは、作業者Eの操作に応じて、チューブ41,42およびホルダー33,35内の圧力を調整する。
顕微授精を行なう際、作業者Eは、倒立顕微鏡25のステージ22上にシャーレ50を載置する(図2)。このとき、シャーレ50は、マニピュレータ31とマニピュレータ32との間に配置される。図2に示すように、シャーレ50内に形成された培養液のドロップ52はミネラルオイル54に被覆され、培養液のドロップ52内に顕微授精を行なうための卵子10が配置されている。卵子10の密度は、培養液の密度より大きいため、卵子10は培養液のドロップ52内で沈んでいる。作業者Eは、倒立顕微鏡25(図1)の接眼レンズ21を覗き、対物レンズを介してシャーレ50内を観察しながら、マニピュレータ31,32を操作すると共に、インジェクター79および図示せざる他方のインジェクターを操作して、ホールド用マイクロピペット36(図5)の先端に卵子10を吸い付けて固定し、インジェクションピペット34の先端を卵子10に穿刺する。卵子10にインジェクションピペット34を穿刺するとき、インジェクションピペット34が卵子10に侵入する前に、約10μm〜15μm弾性変形する。本実施形態では、培養液として生理食塩水(塩化ナトリウムを0.9w/v%含有する食塩水)を用いているが、これに限定されない。卵子10を倒立顕微鏡25の視野に配置する皿として、シャーレ50に代えて、パレットを用いてもよい。
B.第1実施形態:
図3は、第1実施形態としての顕微授精訓練装置100の概要を示す概略構成図である。この顕微授精訓練装置100は、装置の外観は、図1を用いて説明した顕微授精装置20とほぼ同じである。この顕微授精訓練装置100には、接眼レンズ121、ピペット駆動部としてのマニピュレータ131,132、ホルダー133,135、操作部137,138、インジェクションピペット134、ホールド用マイクロピペット136、チューブ141,142、圧力設定部169,179、等が備えられている。
顕微授精訓練装置100では、顕微授精装置20に変えて、ビデオカメラ110と高精細ディスプレイ120が設けられている。この高精細ディスプレイ120は、接眼レンズ121の直下に設けられており、顕微授精訓練装置100を用いて顕微授精の訓練を行なう訓練者は、接眼レンズ121を介して、この高精細ディスプレイ120の画面を見る。この接眼レンズ121は、高精細ディスプレイ120の表示を、あたかも顕微授精装置20の視野のように見るために設けられている。高精細ディスプレイ120には、後述する様に、卵子等を拡大して表示しているので、接眼レンズ121の倍率は、実際の顕微授精装置20の接眼レンズより倍率は低い。
ビデオカメラ110には、比較的焦点深度の浅いレンズ系を採用しており、オートアイリス(自動絞り)とオートフォーカス(自動焦点)の機能が設けられている。このため、ビデオカメラ110は、常時、適正な明るさで対象に焦点を合わせて撮像する。ビデオカメラ110は、顕微授精装置20における対物レンズの位置に設けられており、顕微授精装置20であれば、シャーレ50が配置されている領域を撮像する。図3では、仮想線でシャーレと卵子が漬けられた溶液であるオイル等を描いたが、顕微授精訓練装置100では、実際のシャーレは設けられていないから、ビデオカメラ110は、インジェクションピペット134の先端およびホールド用マイクロピペット136の先端が通常位置する領域を撮像する。ビデオカメラ110のオートフォーカス機能は、両ピペット134,136の先端付近を検出してここに焦点を合わせている。両ピペット134,136は、操作部137,138を操作することにより、マニピュレータ131,132によって移動される。移動機構については、後述する。
次に、操作部137,138について説明する。図4は、訓練者の右手側に設けられた操作部137の概要を示す説明図である。左手側の操作部138は、各部が左右対称に設けられている点を除いて、そのハードウェア構成は同一である。以下、操作部137を用いて説明するが、操作部から得られる信号等は、操作部138でも同様である。
操作部137は、本体150の上端手前側から第1アーム151が突き出ており、更に第1アーム151の先端下方に、第2アーム152が垂下している。第1アーム151の側方には、X軸用ハンドル161が設けられている。また、第1アーム151の先端手前側には、Y軸用ハンドル163が設けられている。第2アーム152の先端には、Z軸用ハンドル165が設けられている。更に本体150の右側方には、T軸移動用ハンドル167が設けられている。圧力設定部169は、操作部137の外側に設けられている。圧力設定部169は、インジェクションピペット134の内部に充填された液体に加える圧力を設定するたの操作量を出力する。なお、ホールド用マイクロピペット136用の圧力設定部179も含めて、圧力設定部169,179では、圧力は正圧のみならず、負圧も設定可能である。
各軸用のハンドル161,163,165,167は、図示しないエンコーダに結合されている。従って、各ハンドルを回転させると、回転量に応じた信号が出力される。実際の操作部137,138には、両ピペット134,136を大きく移動する粗動用ハンドルが別に設けられているが、両ピペット134,136を移動させるという意味では本質的な差はないので、粗動用ハンドルについては図示および説明を省略する。また、上記の様に、実際の信号を出力するのは、各ハンドル毎に設けられたエンコーダであるが、説明が煩雑になるのを避けるために、以下の説明では、右手用の操作部137の各ハンドル161,163,165,167および左手用の操作部138の各ハンドル171,173,175,177の操作により、各操作量に応じた信号が出力されるものとする。詳しくは後述するが、右手用の操作部137の各ハンドル161,163,165,167から出力される信号を、それぞれX1操作量、Y1操作量、Z1操作量、T1操作量と呼び、左手用の操作部138の各ハンドル171,173,175,177から出力される信号を、それぞれX2操作量、Y2操作量、Z2操作量、T2操作量と呼ぶ。サフィクスの「1」は、右手側、つまりインジェクションピペット134を操作するための信号であることを示し、サフィクスの「2」は、左手側、つまりホールド用マイクロピペット136を操作するための信号であることを示す。
次に、図5を用いて、マニピュレータ131,132におけるインジェクションピペット134およびホールド用マイクロピペット136の移動機構について説明する。図5は、インジェクションピペット134用の移動機構を示す、ホールド用マイクロピペット136の移動機構も同様である。
図示するように、マニピュレータ131のホルダー133には、インジェクションピペット134が取り付けられており、このホルダー133は、ホルダー133を、X方向,Y方向,Z方向に移動するためのX軸アクチュエータ181、Y軸アクチュエータ183、Z軸アクチュエータ185が設けられている。また、インジェクションピペット134には、インジェクションピペット134をその軸線方向であるT方向に移動するT軸アクチュエータ187が設けられている。
ここで、X軸,Y軸,Z軸,T軸について説明する。図1に示した作業者(ここでは訓練者)Eと卵子が収容されたシャーレ50との関係を想定して、図3および図5に示したように、作業者Eから見て左右方向、つまりインジェクションピペット134からホールド用マイクロピペット136に向かう方向がX方向であり、この方向の軸をX軸と呼ぶことがある。X軸アクチュエータ181が動作すると、ホルダー133は、図示左右方向、つまりX方向に移動する。他方、X方向に直交し、インジェクションピペット134から訓練者に向かう方向をY方向と呼ぶ。この方向の軸をY軸と呼ぶことがある。Y軸アクチュエータ183が動作すると、ホルダー133は、図5の紙面前後方向、つまりY方向に移動する。また、X方向,Y方向に直交する方向であって、図示上向きの方向をZ方向と呼ぶ。この方向の軸をZ軸と呼ぶことがある。Z軸アクチュエータ185が動作すると、ホルダー133は、図5の上下方向、つまりZ方向に移動する。Z方向は、重力方向と平行な方向である。
以上説明したX,Y,Z軸アクチュエータ181,183,185はいずれもホルダー133を移動するものであるのに対して、T軸アクチュエータ187は、インジェクションピペット134をホルダー133上において、その軸線方向に移動するアクチュエータである。ピペットの軸線方向をT方向と呼ぶ。なお、インジェクションピペット134における軸線方向と、ホールド用マイクロピペット136の軸線方向とは、交差またはねじれの位置にあるが、両ピペット軸線方向はいずれもT方向と呼ぶ。
図5では、各軸アクチュエータ181,183,185,187は、回転するモータを模擬して描いたが、通常、モータにより回転するギヤとピニオンとのかみ合わせにはバックラッシュと呼ばれる遊びが存在する。このため、ギヤの回転方向を反転すると、僅かではあるが、ピニオンが停止したままとなる領域が存在し、これが作動上の誤差となる。インジェクションピペット134は、ミクロンオーダーの卵子に対する操作を行なうものであるため、こうしたバックラッシュは通常許容できない。従って、実際の各軸アクチュエータは、油圧を用いた油圧アクチュエータとして実現されている。もとより、シザースギヤ等を用いて、バックラッシュを完全に取り除いた機構を用いれば、モータ等の電動系により各アクチュエータを実現することも可能である。
以上説明した操作部137,138の各軸ハンドルやマニピュレータ131,132の各軸アクチュエータは、駆動装置144に接続され、操作部137,138の各軸ハンドルを操作することにより、各軸アクチュエータが作動し、インジェクションピペット134やホールド用マイクロピペット136を移動する。駆動装置144を中心とした接続を図6に示した。図示するように、駆動装置144には、右操作部入力部145,左操作部入力部146,駆動信号演算生成部147,インジェクションピペット駆動信号出力部148,ホールドピペット駆動信号出力部149が備えられている。
駆動装置144の右操作部入力部145には、操作部137の各ハンドル161〜167の各エンコーダが接続されている。各エンコーダから入力される信号を、それぞれ、X1操作量、Y1操作量、Z1操作量、T1操作量として示した。駆動装置144の左操作部入力部146には、操作部138の各ハンドル171〜177の各エンコーダが接続されている。各エンコーダから入力される信号を、それぞれ、X2操作量、Y2操作量、Z2操作量、T2操作量として示した。
駆動信号演算生成部147は、右操作部入力部145および左操作部入力部146を介して入力された各操作量に基づき、マニピュレータ131の各軸アクチュエータ181〜187の駆動量およびマニピュレータ132の各アクチュエータ191〜197の駆動量を演算する。駆動信号演算生成部147が演算して出力する信号は、インジェクションピペット駆動信号出力部148およびホールドピペット駆動信号出力部149により、各アクチュエータ用の信号に変換されて、各アクチュエータに出力される。この結果、操作部137,138の各ハンドルを操作すると、その操作量に応じて、インジェクションピペット134およびホールド用マイクロピペット136が移動する。
次に、図7に依拠して、シミュレーション制御部200の構成について説明する。図7は、シミュレーション制御部200の概略構成図である。図示するように、シミュレーション制御部200は、周知のCPU201、ROM202、RAM203、記憶装置としてのハードディスク(HD)205の他、圧力設定部169,179から圧力の設定操作量P1,P2を入力する圧力操作入力部210、卵子の情報を記憶している卵子情報記憶部220、溶液に漬けられた卵子の映像を生成する卵子映像生成部230、ビデオカメラ110からの動画像を入力する映像入力部240、ビデオカメラ110からの映像を解析するデジタルシグナルプロセッサ(DSP)250、映像の合成を行ない合成映像を高精細ディスプレイ120に出力する映像合成出力部260等を備える。
卵子情報記憶部220は、卵子に関する種々の情報を記憶している。卵子の関する種々の情報とは、卵子の大きさ、膜厚、細胞質の比重、粘度、極体の大きさと位置等に関する情報である。顕微授精訓練装置100は、シミュレーション制御部200が作り出した卵子の映像を訓練に供するが、現実の卵子は、ある程度の幅で大きさ、形状、性状が異なる。そこで、毎回同じ大きさ、形状、性状の卵子がシミュレーションされないように、現実の卵子から測定して得られた種々の情報を、卵子情報記憶部220に記憶しておき、シミュレーションに用いるのである。もとより、こうした情報は、ハードディスク205に記憶しておいてもよい。あるいは、標準的な卵子の大きさ、形状、性状の情報とその統計的な偏差量とを記憶しておき、統計処理により、異なる大きさ、形状、性状の卵子の情報を毎回生成するものとしてもよい。
卵子映像生成部230は、卵子情報記憶部220に記憶された上記情報を用いて、溶液(培養液のドロップ)に漬けられた状態を想定し、仮想的な卵子の映像を生成する。卵子の映像は、例えば図9に例示するように、本体部12と膜部14と極体部16とからなる卵子10の形状を決定し、例えば外径DB1、膜部14を除く本体部12の直径DB2、極体部16の直径DB3等を決定し、これらの情報や卵子に想定される他の性状、例えば比重や粘性等の情報に基づいて生成する。正確には、培養液のドロップに漬けられた場合の卵子10の映像を生成する。卵子映像生成部230は、卵子の上記外形形状の映像を生成するだけでなく、卵子の存在位置や回転位置(極体部16の回転位置)等も乱数を用いてランダムに決定し、その位置に対応した映像を生成する。このため、生成された卵子10の映像は、生成された映像全体の中で、常に中央に存在する訳ではなく、また極体部16が常に頂点位置に位置する訳でもない。但し、卵子10の位置については、完全なランダム配置ではなく、映像全体の中心位置を中心に、X,Y平面において、標準正規分布に従う確率で卵子10が配置されるようにしている。従って、卵子10の全体映像が、画面(訓練者にとっての視野)に入るようにしている。従って、卵子映像生成部230は、卵子配置演算部と演算表示部とを兼ねている。
他方、DSP250は、映像入力部240が入力したビデオカメラ110の映像に基づき、インジェクションピペット134やホールド用マイクロピペット136が必要な情報を抽出する処理を行なう。ビデオカメラ110の映像から抽出される情報としては、両ピペット134,136の外形、特に先端の外形形状であり、その先端位置の座標等がある。先端位置の座標のうち、X方向の座標およびY方向の座標は、映像から、容易に求めることができる。Z方向の座標は、記述したように、ビデオカメラ110の自動焦点により両ピペット134,136の先端に焦点を合わせているので、その焦点位置(焦点距離)に基づいて決定する。なお、ビデオカメラ110を複数台設けて、いわゆる両眼視により両ピペット134,136の先端までの距離(Z座標)を求めるようにしてもよい。
ビデオカメラ110が撮像した映像から、DSP250が、両ピペット134,136の先端の座標(X,Y,Z)を求めることにより、仮想的な卵子10に対して、インジェクションピペット134等が接近、接触、穿刺等の作用を及ぼす位置関係にあることを知ることができる。そこで、卵子映像生成部230は、DSP250から受け取った両ピペット134,136の先端の座標(X,Y,Z)に基づいて、両ピペット134,136による作用を卵子が受けるものとして、作用を受けた卵子の映像を、卵子情報記憶部220に記憶された卵子の情報も参照して演算し生成する。生成の手法の具体例については後述する。
映像合成出力部260は、上記のように卵子映像生成部230が生成した卵子の映像と、ビデオカメラ110により撮像され、映像入力部240に入力された映像とを合成し、これを高精細ディスプレイ120に出力する。訓練者は接眼レンズ121を介して、この合成映像を注視し、操作部137,138を操作して、マニピュレータ131,132、より具体的には、インジェクションピペット134およびホールド用マイクロピペット136の先端位置を調整し、顕微授精作業の訓練を行なう。
顕微授精作業の訓練時に、顕微授精訓練装置100が実行する処理について、図8を用いて説明する。図8は、顕微授精訓練装置100のシミュレーション制御部200が実行するシミュレーション処理ルーチンを示すフローチャートである。顕微授精訓練装置100を起動すると、まずセットアップ処理を行なう(ステップS300)。この処理は、まず訓練者が、顕微授精訓練装置100の電源を入れ、次にインジェクションピペット134をホルダー133に固定し、ホールド用マイクロピペット136を、ホルダー135に固定し、その上で、顕微授精訓練装置100に設けられた特定のスイッチ(図示せず)を操作することにより、実行される。なお、訓練者は、両ピペット134,136をホルダー133,135に固定する際、既述したT軸に両ピペット134,136の軸線が一致することに留意する。
セットアップ用のスイッチを押すと、シミュレーション制御部200は、両ピペット134,136の映像を、高精細ディスプレイ120に表示する処理を行なう。訓練者は、この映像を接眼レンズ121を介して確認する。この状態で、訓練者は、右左の操作部137,138の各ハンドルを動かして、両ピペット134,136の位置を動かせることを確認する。特に重要なのは、T軸移動用のハンドル167,177を移動したときに、ピペットがT軸に一致して移動している否かの判断である。両ピペット134,136の軸中心とT軸とが一致していないと、卵子10にインジェクションピペット134を穿刺することは難しい。高精細ディスプレイ120に表示されたビデオカメラ110の映像を見ながら、訓練者は、両ピペット134,136の軸線とT軸方向とが一致するよう、ホルダー133,135への固定の状態等を調整する。
こうしたセットアップ処理を終了すると、次に訓練者は、図示しない「開始」のスイッチを操作して、シミュレーション制御部200に卵子情報生成処理(ステップS310)を実行させる。卵子情報生成処理は、卵子情報記憶部220に記憶された卵子の情報を基にして、今からシミュレーションを行なう卵子の情報を生成する処理である。この処理は、毎回違う形状、性状、配置の卵子を生成するために行なう。シミュレーション制御部200は、卵子情報記憶部220に記憶された卵子の情報をランダムに抽出することにより、毎回、卵子の大きさや膜圧等の形状に関する情報、比重や粘性等の性状に関する情報、極体部16の3次元的な配置に関する情報を生成する。また、仮想的な卵子10の仮想的なシャーレ50内での位置も生成する。仮想的な卵子の位置は、ビデオカメラ110の視野の中心から所定の範囲内にランダムに措定される。その上で、生成したこの情報を用いて、卵子10の映像を、この後、両ピペット134,136の映像と共に表示するための基本映像を生成する。なお、仮想的な卵子10の位置や大きさ等の情報は、後での演算に備えて、CPU201に出力され、CPU201は、これらの情報を後の演算に備えて、演算用のパラメータに変換した上で、RAM203や演算用のレジスタに記憶する。
他方、ビデオカメラ110により撮像し、映像入力部240を介して入力した映像から両ピペット134,136の先端位置を演算する処理を行なう(ステップS320)。この処理は、上述したように、DSP250により行なわれる。DSP250は、ビデオカメラ110からの映像を解析し、両ピペット134,136の先端の映像が合焦の位置になく、ぼけた状態であれば、先端位置の演算は行なわず、「位置特定不能」の信号をCPU201に出力する。この信号を受け取ったCPU201は、卵子映像生成部230に対して、先に卵子10の情報に基づいて生成した卵子映像をそのまま映像合成出力部260に出力するように支持する。
他方、操作部137,138の操作により、各軸アクチュエータ181〜187,191〜197が作動し、両ピペット134,136の先端が、ビデオカメラ110の焦点位置に近づいてくると、DSP250はその映像から、両ピペット134,136の先端位置を演算する。先端位置は、時系列的に得られる映像をX,Y方向に微分することにより、エッジを検出することにより特定することができる。X方向に一つのエッジが存在し、Y方向に2つのエッジが存在する微小区間を探索し、X方向のエッジ向きから、その微小領域がインジェクションピペット134の先端か、ホールド用マイクロピペット136かを判別することは容易である。
このように、DSP250がビデオカメラ110により撮像された映像に基づいて、両ピペット134,136の先端位置を演算している間も、訓練者は、操作部137,138の各ハンドル161〜167、171〜177を操作して両ピペット134,136を移動している(ステップS325)。従って、この移動に伴って、DSP250が演算する両ピペット134,136の先端位置の座標も変化していく。
そこで、次にこの両ピペット134,136の先端位置の座標と卵子映像生成部230により生成された仮想的な卵子10との位置関係を演算する処理を行なう(ステップS330)。両ピペット134,136の先端位置と仮想的な卵子との位置関係は大きく分ければ次のようになる。
[1]両ピペット134,136の先端位置が、仮想的な卵子10の外形位置の外側に存在する配置(以下、位置関係A1という)、
[2]両ピペット134,136のいずれかの先端が、仮想的な卵子10の外形位置に接して存在する配置(以下、位置関係A2という)、
[3]インジェクションピペット134の先端が、仮想的な卵子10の外形位置から内側に所定距離だけ進入して存在する配置(以下、位置関係A3という)、
[4]インジェクションピペット134の先端が、仮想的な卵子10の外形位置から内側の所定距離を超えて存在する配置(以下、位置関係A4という)。
ホールド用マイクロピペット136は、卵子の内側に入ることはないので、上記位置関係A3、A4は、インジェクションピペット134のみの位置関係となる。
DSP250から位置情報を受け取って、両者の位置関係が上記の位置関係A1ないしA4のいずれであるかをCPU201が求めると(ステップS330)、次に、CPU201は仮想的な卵子10の状態を演算し、その状態に対応した映像を生成する処理を卵子映像生成部230に対して行なわせる(ステップS340)。この処理が、顕微授精訓練装置100の中核的な処理なので、以下やや詳しく説明する。
[1]位置関係A1:この場合、基本的に両ピペット134,136は仮想的な卵子10に影響を与えないので、卵子映像生成部230は、生成した仮想的な卵子10の映像を映像合成出力部260に出力し、映像合成出力部260は、この仮想的な卵子10の映像とビデオカメラ110の映像とを合成する。なお、両ピペット134,136の先端が卵子10の外表面に極めて接近した状態では、両ピペット134,136の先端がある程度の速度以上で移動すると、ドロップ52を介して、卵子10が僅かに動くことが実際にはあり得る。従って、位置関係A1を、両ピペット134,136の先端位置が、卵子10の外表面に近接した場合とそれ以上隔たった場合とに分けて、両ピペット134,136の先端が卵子10の外表面に極めて近接(例えば数百ミクロン以下)した場合には、両ピペット134,136の先端の動きが所定のスピード以上の場合に、卵子が揺らぐように映像を生成させるようにすることも可能である。
[2]位置関係A2:両ピペット134,136の先端が仮想的な卵子10の外表面に接している場合には、更に訓練者の操作により、卵子映像生成部230は、次のように卵子の映像を生成する。インジェクションピペット134については、その先端が卵子10の先端に接した状態となると、CPU201は、更にインジェクションピペット134の先端の動きを解析する。インジェクションピペット134の先端が卵子10の外表面に接した状態で、その先端が移動すると、卵子10は、インジェクションピペット134の先端の移動距離や速さ、方向に応じて回転運動を起こす。訓練者は、接眼レンズ121を介して高精細ディスプレイ120に表示された映像を見ながら、操作部137のハンドルを操作することにより、卵子を顕微授精に適正な位置に回転させるのである。卵子10の回転方向の位置は図9に示したように、卵子に存在する極体部16の位置から視認することができる。CPU201は、インジェクションピペット134先端の動きを解析して、卵子映像生成部230に卵子10がどれだけ、どの方向に回転するかの情報を伝え、卵子映像生成部230は、CPU201からの指示に従い、仮想的な卵子10が回転する映像を、映像合成出力部260に出力する。
他方、ホールド用マイクロピペット136が卵子10の外表面に接していると判断すると、更に圧力設定部179の操作量を検出し、圧力設定部179を操作して得られた信号P2を圧力操作入力部210を介して入力する。この信号P2が、負圧を指示していれば、ホールド用マイクロピペット136の先端は負圧になり、卵子10が吸い寄せられて吸着されるとして、卵子映像生成部230は、卵子10の外表面を吸着状態の場合の形状として演算する。この様子を、図10に示した。図示左側のホールド用マイクロピペット136は、内部が負圧になっていると想定され、仮想的な卵子10の表面は凹み、ホールド用マイクロピペット136の先端に吸着された形状となる。なお、ホールド用マイクロピペット136により仮想的な卵子10が吸着された状態になっていれば、インジェクションピペット134の先端が仮想的な卵子10の外表面に接して移動しても、卵子10の回転運動は生じないと判断し、卵子は吸着状態のままとして映像を出力する。
[3]位置関係A3:インジェクションピペット134の先端が、仮想的な卵子10の外形位置から内側に進入する場合、卵子10には一定の強度を持った膜部14が存在するため、インジェクションピペット134の卵子への挿入に伴い、この膜部14の変形が生じる。この様子を図10に示した。膜部14の強度は、卵子情報記憶部220に記憶した情報を用いて、仮想的な卵子10毎に設定されているので、その強度に応じた距離Lまでは、膜部14は、変形する。従って、CPU201は、インジェクションピペット134の先端の位置を演算し、その位置が仮想的な卵子10の外表面から内側に向かって距離Lまでは、膜部14が変形した映像を卵子映像生成部230に生成させる。
[4]位置関係A4:インジェクションピペット134の先端が、仮想的な卵子10の外形位置から内側の距離Lを超えた状態となった場合には、膜部14は破れたと判断し、CPU201は、膜部14の変形がない状態の卵子形状を卵子映像生成部230に生成させる。この状態においては、訓練者は、圧力設定部169を操作する。圧力設定部169からの信号P1は、インジェクションピペット134の通路に存在する液体への加圧量を増減するものなので、シミュレーション制御部200は、この信号P1を圧力操作入力部210を介して受け付け、卵子映像生成部230に出力する。卵子映像生成部230は、この信号P1の大きさ(正負の符号を含む)、卵子情報記憶部220に記憶した卵子内部の細胞質の性状、インジェクションピペット134内部の液体の性状等に基づいて、液体の挙動を演算し、液体通路の液体の映像およびその液体が卵子内部に注入された際の映像を生成する。
なお、位置関係A3、A4の間は、仮想的な卵子10は、ホールド用マイクロピペット136により吸着された状態となっているが、仮に訓練者が圧力設定部179に触れて、信号P2が変化すると、吸着圧力が下がったと判断すれば、ホールド用マイクロピペット136による吸着は解除されたとして、仮想的な卵子10のホールド用マイクロピペット136の側の映像は変形のないものに戻される。なお、インジェクションピペット134による卵子10への穿刺が行なわれている場合に、ホールド用マイクロピペット136による吸着が解除されると、訓練に重大なエラーが生じたとして、警告を発し、そこで訓練を終了するようにしてもよい。
こうした卵子映像の生成(ステップS340)を行なった後、CPU201は、卵子映像生成部230により生成した映像を映像合成出力部260に出力させる(ステップS350)。映像合成出力部260が出力した合成後の映像は、高精細ディスプレイ120に表示され、接眼レンズ121を介して高精細ディスプレイ120に表示している訓練者によって視認される。
かかる構成および機能を備えた顕微授精訓練装置100を用いることにより、訓練者は、実際の顕微授精の作業をシミュレートして、実際の卵子を用いた実習までに、マニピュレータを用いたインジェクションピペット134やホールド用マイクロピペット136の扱いに習熟することができる。この顕微授精訓練装置100では、操作部137,138を実際に操作することにより、インジェクションピペット134やホールド用マイクロピペット136が動くので、機器の動作原理を現物を見ることにより直感的に学ぶことができる。他方、卵子10ついては、完全に仮想的な卵子として扱っているので、未成熟卵子や未受精卵子等の胚移植に用いられなかった卵子を利用する必要がない。従って、こうした未成熟卵子や未受精卵子等が入手しにくい環境でも、顕微授精の基礎的な訓練を行なうことができる。マニピュレータ等の操作は、顕微鏡下でピペット134等を移動するので、ある程度の技量を身に付けないと、卵子を用いた訓練は意味をなさないか非効率的である。そうした非効率的な訓練に貴重な未成熟卵子等を用いる必要がない。
C.第2実施形態
次に本発明の第2の実施形態について説明する。第2の実施形態における顕微授精訓練装置100は、第1実施形態と概略構成は類似しているが、第2実施形態の顕微授精訓練装置100では、第1実施形態におけるインジェクションピペット134やホールド用マイクロピペット136に相当するものは存在せず、このため各軸アクチュエータ181〜187、191〜197も存在しない。操作部137,138は存在し、各軸用のハンドルも存在する。なお、第2実施形態では、ビデオカメラ110はなく、ピペットの映像も用いない。即ち、第2実施形態の顕微授精訓練装置100は、卵子10だけが仮想的なものなのではなく、インジェクションピペットおよびホールド用マイクロピペットが共に仮想的なものとして扱われる。以下、仮想的な両ピペットを符号付きで呼ぶ必要がある場合は、図示されていないが、理解の便を図って、それぞれ、インジェクションピペット134、ホールド用マイクロピペット136と呼ぶことがある。
また、第2実施形態の顕微授精訓練装置100は、シミュレーション制御部200に代えて、図11に示すシミュレーション制御部200Aを備える。このシミュレーション制御部200Aは、図示するように、CPU201〜卵子情報記憶部220までは第1実施形態と同様の構成を備えるが、他は異なる。具体的には、シミュレーション制御部200Aは、入力インタフェース270、DSP280、映像生成部290、映像出力部295を備える。まず、第2実施形態に特徴的な各部について説明する。
シミュレーション制御部200Aの入力インタフェース270は、第1実施形態の駆動装置144におる操作処理受付部としての右操作部入力部145,左操作部入力部146に相当し、操作部137,138の各ハンドルの操作に従って、各エンコーダからの信号を入力する。このシミュレーション制御部200Aでは、操作部137,138のハンドルの操作量(エンコーダからの信号)は、仮想的なインジェクションピペット134についての各軸の移動量の信号X1,Y1,Z1,T1、仮想的なホールド用マイクロピペット136についての各軸の移動量の信号X2,Y2,Z2,T2として、入力インタフェース270を介して入力される。入力されたこれらの信号は、リアルタイムで、DSP280に入力される。第1実施形態のDSP250は、映像信号から取り出されたデジタル信号を処理して、両ピペット134,136の先端の位置情報を取り出したが、第2実施形態では、このDSP280を用い、リアルタイムに入力される各軸の信号から、両ピペット134,136の先端の位置情報を取り出すのである。その詳細については後述する。
DSP280による演算結果、即ち、両ピペット134,136の先端の仮想的な位置情報は、映像生成部290に出力される。映像生成部290は、卵子情報記憶部220に記憶された卵子情報およびDSP280から受け取った両ピペット134,136の先端の位置情報から、卵子10および両ピペット134,136の仮想的な映像を生成する。生成された映像は、映像出力部295を介して高精細ディスプレイ120に出力される。訓練者は、第1実施形態と同様に、この高精細ディスプレイ120の映像を低倍率の接眼レンズ121を介して視認しつつ、作業(具体的には、操作部137および138の操作)を行なう。
上記のハードウェア構成を備えた顕微授精訓練装置100において、顕微授精作業の訓練時に、シミュレーション制御部200Aが実行する処理を中心に、顕微授精訓練装置100の動作について、図12を参照しつつ説明する。図12は、顕微授精訓練装置100のシミュレーション制御部200Aが実行するシミュレーション処理ルーチンを示すフローチャートである。顕微授精訓練装置100を起動すると、まずセットアップ処理を行なう(ステップS300)。この処理は、第1実施形態と同様に、訓練者が、顕微授精訓練装置100の電源を入れることで開始されるが、この実施形態では、インジェクションピペット134をホルダー133に固定し、ホールド用マイクロピペット136を、ホルダー135に固定する処理は必要ない。第2実施形態の顕微授精訓練装置100は、こうしたピペットの取付け作業を既に学習した訓練者を対象としている。
第1実施形態のピペットの取付け作業に代えて、第2実施形態のセットアップ処理300では、仮想的な両ピペット134,136の原点合わせの処理を行なう。具体的な演算処理は、以下の通りである。両ピペット134,136の先端位置は、操作部137,138の各ハンドルを調整することにより、仮想的に移動されることになる。従って、一旦両ピペット134,136の先端位置の仮想的な空間座標(X,Y,Z)を原点として確定すれば、その後は、ハンドルを調整することで得られるエンコードからの信号に基づいて、その位置を演算することができる。そこで最初に両ピペット134,136の先端の空間座標(X,Y,Z)を確定する処理を行なう。シミュレーション制御部200Aは、まず、両ピペット134,136の先端の空間位置(X,Y,Z)を乱数により決定する。但し、このとき、ステージ22より下に先端が位置するような座標は採用されない。この位置を、両ピペット134,136の先端の原点位置とする。原点位置は、必ずしも特定の位置である必要はないが、概ね仮想的なビデオカメラ110により撮像されるとされる範囲として確定される。
こうして原点位置を確定すると、映像生成部290は、この原点位置を用いて、初期映像を生成し、これを映像出力部295に出力して、初期映像を高精細ディスプレイ120に表示させる。初期映像とは、両ピペット134,136の先端がその原点位置に存在したとすれば、仮想的なビデオカメラ110が撮像したであろう映像である。映像生成部290は、両ピペット134,136の先端位置から、映像を生成する。両ピペット134,136の先端の原点位置は、必ずしも仮想的なビデオカメラ110にとっての合焦の位置ではないので、通常は、ピントがポケている。映像生成部290は、従って、両ピペット134,136の先端位置に応じたぼけた映像を生成する。以上が第2実施形態におけるセットアップ処理に相当する。
以上説明したセットアップ処理を終了すると、次に訓練者は、図示しない「開始」のスイッチを操作して、シミュレーション制御部200に卵子情報生成処理(ステップS310)を実行させる。卵子情報生成処理は、卵子情報記憶部220に記憶された卵子の情報を基にして、今からシミュレーションを行なう卵子の情報を生成する処理である。この処理は、第1実施形態と同様なので、詳しい説明は省略する。第2実施形態では、卵子情報生成処理を実行すると(ステップS310)、生成した情報に従って、映像生成部290が卵子の映像を、セットアップ処理(ステップS300)で生成した両ピペット134,136の映像と共に生成し、これを映像出力部295を介して高精細ディスプレイ120に表示させる。
続いて、訓練者は、この映像を見ながら、操作部137および138を操作する(ステップS410)。訓練者は、両ピペット134,136の先端位置を、顕微授精を行なう上で必要な位置まで、移動するのである。操作部137および138を操作すると、その操作量(X1,Y1,Z1,T1)および(X2,Y2,Z2,T2)から、DSP280は、両ピペット134,136の先端位置を演算する(ステップS420)。もとより、両ピペット134,136の先端位置の演算は、インジェクションピペット134とホールド用マイクロピペット136とで個別に行なう。
操作部137および138を操作することにより、両ピペット134,136の先端位置は移動するので、両ピペット134,136の先端位置の座標と卵子映像生成部230により生成された仮想的な卵子10との位置関係を演算する処理を行なう(ステップS430)。両ピペット134,136の先端位置と仮想的な卵子との位置関係は大きく分ければ次のようになる。
〈1〉仮想的な両ピペット134,136の先端位置が、仮想的な卵子10の外形位置の外側に存在する配置(以下、位置関係B1という)、
〈2〉仮想的な両ピペット134,136のいずれかの先端が、仮想的な卵子10の外形位置に接して存在する配置(以下、位置関係B2という)、
〈3〉仮想的なインジェクションピペット134の先端が、仮想的な卵子10の外形位置から内側に所定距離だけ進入して存在する配置(以下、位置関係B3という)、
〈4〉仮想的なインジェクションピペット134の先端が、仮想的な卵子10の外形位置から内側の所定距離を超えて存在する配置(以下、位置関係B4という)。
仮想的なホールド用マイクロピペット136は、卵子の内側に入ることはないので、上記位置関係B3、B4は、インジェクションピペット134のみの位置関係となる。
DSP250かの位置情報を受け取って、両者の位置関係が上記の位置関係B1ないしB4のいずれであるかをCPU201が求めると(ステップS430)、次に、CPU201は仮想的な卵子10の状態を演算し、その状態に対応した映像を生成する処理を映像生成部290に対して行なわせる(ステップS440)。生成された映像を、映像出力部295を介して高精細ディスプレイ120に出力し、表示させる(ステップS450)。この卵子との位置関係の演算(ステップS430)から映像の出力処理(ステップS450)までは、両ピペット134,136の位置と映像が仮想的なものであることを除いて、第1実施形態と同様なので、その詳細な説明は省略する。
シミュレーション制御部200Aは、電源がオフされるまで、上記の処理を繰り返す(ステップS460)。映像生成部290が出力した映像は、高精細ディスプレイ120に表示されるので、訓練者は、この映像を、接眼レンズ121を介して視認しつつ、顕微授精の作業を行なう。
かかる構成および機能を備えた顕微授精訓練装置100を用いることにより、訓練者は、実際の顕微授精の作業をシミュレートして、実際の卵子を用いた実習までに、マニピュレータを用いたインジェクションピペット134やホールド用マイクロピペット136の扱いに習熟することができる。この顕微授精訓練装置100では、操作部137,138を実際に操作することにより、実際のインジェクションピペット134やホールド用マイクロピペット136が動く訳ではないので、いわゆるマニピュレータの機能を顕微授精訓練装置100が備える必要がない。油圧を用いたマニピュレータは、極めて高額であり、かつメンテナンスも難しいが、操作部137,138以外は仮想的なものなので、顕微授精訓練装置100の装置構成を簡略化でき、装置のコストを低廉なものにすることができる。また、卵子10ついても、仮想的な卵子として扱っているので、未成熟卵子や未受精卵子等の胚移植に用いられなかった卵子を利用する必要がない。従って、こうした未成熟卵子や未受精卵子等が入手しにくい環境でも、顕微授精の基礎的な訓練を行なうことができる。マニピュレータ等の操作は、顕微鏡下での操作となるため、ある程度の技量を身に付けないと、卵子を用いた訓練は意味をなさないか非効率的である。そうした非効率的な訓練に貴重な未成熟卵子等を用いる必要がない。
また、第2実施形態の顕微授精訓練装置100では、実際のピペットを用いないので、操作を誤って、ピペットの先端をシャーレ50やステージ22に押し付けて先端を破損するといったことがない。更に、両ピペット134,136や卵子10等が仮想的なものなので、訓練を中断しても、いつでも再開することができる。場合によって、訓練に必要な情報、例えばステップS310で生成した卵子情報や操作部137,138等の操作量等を記憶しておき、作業の開始から途中までを高精細ディスプレイ120上に再現することも可能である。この場合、単に作業の映像を保存しているのではなく、情報から映像を再現しているので、訓練者が、操作を誤ったところで映像を一旦止め、その際の操作をやり直してみる、といったことも容易である。このため、訓練者は、自分が不得手な操作を繰り返し試みることができ、訓練の効率を高めることができる。また、このとき、指導者がやってみせることも容易である。
第1実施形態の構成も含めて、高精細ディスプレイ120への表示は、訓練者が接眼レンズ121を用いなくても、高精細ディスプレイの映像を視認できるようにすることも差し支えない。高精細ディスプレイ120を大型にするか、あるいは表示倍率を高めておけば、接眼レンズ121を用いることなく、顕微授精の映像を視認することができる。顕微鏡視野に慣れていない訓練者は、訓練の初期において、通常のディスプレイで訓練することも効率的な訓練となる場合があり得るからである。また、高精細ディスプレイ120を増設し、訓練者以外の者が、訓練者と同じ映像を視認できるようにすることも望ましい。一人の訓練者が訓練している様子を増設された高精細ディスプレイにより他の人が容易に視認することができ、指導者によるアドバイスや講評が可能となる。あるいは、訓練者の訓練中の映像を他の訓練者の参考に供することができる。
<その他の訓練>
位置関係A4,B4において、訓練者が、圧力設定部169を操作した場合、その操作量に応じた信号P1に基づいて、インジェクションピペット134の内の流路に、精子を含んだ液体が流れる映像を合成してもよい。更に、インジェクションピペット134を卵子に穿刺した後で、インジェクションピペット134内の液体が、卵子内に流入する映像を生成して表示してもよい。この場合には、卵子内部の細胞質の性状や液体の性状からピペット内部の液体の挙動および卵子内部での挙動を演算し、液体の映像を生成すればよい。ホールド用マイクロピペット136については、圧力設定部179を操作した場合、その操作量に応じた信号P2に基づいて、卵子10の吸着量(吸着に伴う変形量)を変更して卵子の映像を生成するものとしてもよい。
また、顕微授精に先だって行なう精子の尾の挫滅の訓練を、上述した顕微授精訓練装置100を用いて行なうものとしてもよい。このときも、実際の精子に代えて仮想的な精子の映像を生成して用いることができる。
あるいは、超急速ガラス化保存法の訓練を行なってもよい。この場合、凍結専用シートに卵と微少量の凍結保護液を載せ、1つの卵が微少量の凍結保護液に内包された状態で、液体窒素で瞬時に凍結させる作業をシミュレーションし、その様子を高精細ディスプレイ120に表示させればよい。
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行なうことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…卵子
12…本体部
14…膜部
16…極体部
20…顕微授精装置
21…接眼レンズ
22…ステージ
25…倒立顕微鏡
31、32…マニピュレータ
33…ホルダー
34…インジェクションピペット
35…ホルダー
36…ホールド用マイクロピペット
37…操作部
41、42…チューブ
50…シャーレ
52…ドロップ
54…ミネラルオイル
79…インジェクター
100…顕微授精訓練装置
110…ビデオカメラ
120…高精細ディスプレイ
121…接眼レンズ
131、132…マニピュレータ
133、135…ホルダー
134…インジェクションピペット
136…ホールド用マイクロピペット
137、138…操作部
141…チューブ
144…駆動装置
145…右操作部入力部
146…左操作部入力部
147…駆動信号演算生成部
148…インジェクションピペット駆動信号出力部
149…ホールドピペット駆動信号出力部
150…本体
151…第1アーム
152…第2アーム
161、171…X軸用ハンドル
163、173…Y軸用ハンドル
165、175…Z軸用ハンドル
167、177…T軸移動用ハンドル
169、179…圧力設定部
181、191…X軸アクチュエータ
183、193…Y軸アクチュエータ
185、195…Z軸アクチュエータ
187、197…T軸アクチュエータ
200、200A…シミュレーション制御部
201…CPU
202…ROM
203…RAM
205…ハードディスク
210…圧力操作入力部
220…卵子情報記憶部
230…卵子映像生成部
240…映像入力部
250、280…DSP
260…映像合成出力部
270…入力インタフェース
290…映像生成部
295…映像出力部

Claims (8)

  1. 卵子を使用する顕微鏡下の作業をシミュレーションする顕微授精訓練装置であって、
    少なくとも2次元の表示装置と、
    溶液に漬けられた卵子の仮想的な3次元の配置を演算する卵子配置演算部と、
    ピペットを装着可能なマニピュレータの先端の位置を操作する操作処理を受け付ける操作処理受付部と、
    前記操作処理受付部によって受け付けた操作処理により、前記ピペットを移動するピペット駆動部と、
    該移動されるピペットの少なくとも先端が存在し得るとして予め定めた3次元の位置の映像をピペット映像として撮像するピペット映像部と、
    前記撮像したピペット映像に基づいて、前記ピペットの少なくとも先端の3次元の位置を演算し、該先端の位置が、前記演算された仮想的な卵子に対して、予め定めた位置関係以上に近接した関係にあると判断したとき、前記溶液に漬けられた卵子と前記ピペットの少なくとも先端とを含む映像を、前記表示装置に表示する演算表示部と、
    を備え、
    前記演算表示部は、
    前記ピペットの前記先端の位置が前記仮想的な卵子に対して予め定めた位置関係以上に近接した場合の前記溶液に漬けられた卵子の映像である卵子映像を生成する卵子映像生成部を備え、
    前記撮像されたピペット映像と前記卵子映像とを合成して、前記表示装置に表示する
    顕微授精訓練装置。
  2. 請求項1に記載の顕微授精訓練装置であって、
    前記卵子映像生成部は、
    前記ピペット先端が卵子に近接した場合の卵子の挙動を、前記溶液を介した動きとして演算し、映像を作り出す第1映像出力部と、
    前記ピペット先端が卵子に接触した場合の卵子の挙動を、ピペット先端の形状、卵子表面の膜の性状、卵子に対するピペット先端の接触位置から演算し、卵子の映像を作り出す第2映像出力部と、
    前記ピペット先端が卵子表面の膜を破って内部に侵入した後の卵子の挙動を、ピペット先端を含むピペットの形状、卵子内部の細胞質の性状、卵子に対するピペット先端の接触位置から演算し、映像を作り出す第3映像出力部と、
    前記操作処理受付部が受け付けた操作処理により移動される前記ピペット先端と前記卵子の位置関係を演算し、対応する前記第1ないし第3映像出力部からの映像を、前記卵子映像として出力する卵子映像出力部と
    を備えた顕微授精訓練装置。
  3. 請求項1または請求項2に記載の顕微授精訓練装置であって、
    前記操作処理受付部は、
    重力方向に直交する2方向への前記ピペットの移動を指示する操作処理を、方向毎に受け付けるX方向受付部およびY方向受付部と、
    前記ピペットの軸方向への進退を指示する進退指示受付部と
    を備える顕微授精訓練装置。
  4. 請求項1から請求項3のいずれか一項に記載の顕微授精訓練装置であって、
    前記ピペットは、前記卵子が存在するとされる位置に対して対称の位置のそれぞれに設けられ、
    前記操作処理受付部は、各ピペット毎に、前記操作処理を受け付けるよう設けられた
    顕微授精訓練装置。
  5. 前記ピペットは、内部に通路を有するものとされている請求項1から請求項4のいずれか一項に記載の顕微授精訓練装置。
  6. 請求項5記載の顕微授精訓練装置であって、
    前記操作処理受付部は、前記ピペットの通路に存在する液体への加圧量を増減する操作処理を受け付ける加圧量操作受付部を備え、
    前記演算表示部は、少なくとも前記ピペット先端が前記卵子の内部に位置する状態である場合に、前記加圧量、前記卵子内部の細胞質の性状、前記液体の性状からピペット内部の液体の挙動を演算し、前記通路の液体の映像を生成する
    顕微授精訓練装置。
  7. 前記表示装置は、顕微鏡視野として映像を表示するよう設けられた請求項1から請求項6のいずれか一項に記載の顕微授精訓練装置。
  8. 前記演算表示部が前記表示装置に表示する前記映像を、前記表示装置とは別に表示する2次元表示装置を備える請求項7記載の顕微授精訓練装置。
JP2016162612A 2016-08-23 2016-08-23 顕微授精訓練装置 Active JP6604922B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162612A JP6604922B2 (ja) 2016-08-23 2016-08-23 顕微授精訓練装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162612A JP6604922B2 (ja) 2016-08-23 2016-08-23 顕微授精訓練装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019148725A Division JP6744464B2 (ja) 2019-08-14 2019-08-14 顕微授精訓練装置

Publications (2)

Publication Number Publication Date
JP2018029500A JP2018029500A (ja) 2018-03-01
JP6604922B2 true JP6604922B2 (ja) 2019-11-13

Family

ID=61302673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162612A Active JP6604922B2 (ja) 2016-08-23 2016-08-23 顕微授精訓練装置

Country Status (1)

Country Link
JP (1) JP6604922B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125750A (ja) * 2001-07-10 2003-05-07 Narishige:Kk マイクロピペット、インジェクション装置およびマイクロインジェクションの方法
JP4129527B2 (ja) * 2003-05-23 2008-08-06 国立大学法人 名古屋工業大学 仮想手術シミュレーションシステム
JP4831972B2 (ja) * 2004-02-10 2011-12-07 オリンパス株式会社 マイクロマニピュレーションシステム
JP4607656B2 (ja) * 2005-05-06 2011-01-05 株式会社神戸製鋼所 細胞操作シミュレータ、シミュレーション方法及びプログラム
JP5710135B2 (ja) * 2010-03-18 2015-04-30 章博 挾間 顕微授精装置、顕微授精用のプローブおよび顕微授精方法

Also Published As

Publication number Publication date
JP2018029500A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2017044965A9 (en) Systems and methods for arbitrary viewpoint robotic manipulation and robotic surgical assistance
CN110390851A (zh) 增强现实训练系统
JP6690245B2 (ja) マニピュレーションシステム及びマニピュレーションシステムの駆動方法
Maggiulli et al. Human blastocyst biopsy and vitrification
US20110091856A1 (en) Opthalmoscope simulator
CN105825752A (zh) 基于力反馈设备的虚拟眼角膜手术培训系统
US20200371338A1 (en) Microscope assembly for capturing and displaying three-dimensional images of a sample
JP6744464B2 (ja) 顕微授精訓練装置
Zhao et al. Robotic label-free precise oocyte enucleation for improving developmental competence of cloned embryos
JP6604922B2 (ja) 顕微授精訓練装置
US20220309705A1 (en) Multi-perspective microscopic imaging guided microinjection of microscopic objects across large field of views
JP6956236B2 (ja) 顕微授精訓練装置
US20220156922A1 (en) System for real-time automatic quantitative evaluation, assessment and/or ranking of individual sperm, aimed for intracytoplasmic sperm injection (icsi), and other fertilization procedures, allowing the selection of a single sperm
Su et al. Autonomous aspirating robot for removing saliva blood mixed liquid in oral surgery
Jiang et al. Enhancing a laparoscopy training system with augmented reality visualization
Corroenne et al. Benefits of an oocyte pickup simulation training program using a high-fidelity simulator (PickUpSimTM) for obstetrics and gynaecology residents: an observational survey study
Franklin Embryo watching: how IVF has remade biology
Yoshimitsu et al. Development and evaluation of the second version of scrub nurse robot (SNR) for endoscopic and laparoscopic surgery
Kobayashi New trends in translational microsurgery
JP2015071208A (ja) マニピュレータシステム及び微小操作対象物の操作方法
CN205449782U (zh) 电子显微卫生检验台
JP6725735B1 (ja) 顕微授精用装置および顕微授精用術具の位置制御方法
WO2021014461A1 (en) Intracytoplasmic sperm injection
Faroque Virtual reality training for micro-robotic cell injection
Zhang et al. Mechanical force estimation based on visual cell deformation and improved point-load model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180829

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190814

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191015

R150 Certificate of patent or registration of utility model

Ref document number: 6604922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250