JP6602165B2 - Dual-frequency circularly polarized flat antenna and its axial ratio adjustment method - Google Patents

Dual-frequency circularly polarized flat antenna and its axial ratio adjustment method Download PDF

Info

Publication number
JP6602165B2
JP6602165B2 JP2015217295A JP2015217295A JP6602165B2 JP 6602165 B2 JP6602165 B2 JP 6602165B2 JP 2015217295 A JP2015217295 A JP 2015217295A JP 2015217295 A JP2015217295 A JP 2015217295A JP 6602165 B2 JP6602165 B2 JP 6602165B2
Authority
JP
Japan
Prior art keywords
patch
layer patch
axial ratio
parasitic element
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015217295A
Other languages
Japanese (ja)
Other versions
JP2017092588A (en
Inventor
仁 伊藤
庸平 三浦
孝志 助川
孝彦 澤柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2015217295A priority Critical patent/JP6602165B2/en
Publication of JP2017092588A publication Critical patent/JP2017092588A/en
Application granted granted Critical
Publication of JP6602165B2 publication Critical patent/JP6602165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Description

この発明は、2つの周波数の円偏波電波の通信が可能なマイクロストリップアンテナである2周波共用円偏波平面アンテナに関し、特に、軸比の調整を容易にする2周波共用円偏波平面アンテナおよびその軸比調整方法に関する。   The present invention relates to a dual-frequency circularly polarized flat antenna that is a microstrip antenna capable of communicating circularly polarized radio waves of two frequencies, and more particularly to a dual-frequency circularly polarized flat antenna that facilitates adjustment of the axial ratio. And an axial ratio adjusting method thereof.

例えば、衛星通信装置や移動体通信装置に搭載されるアンテナは、小型・薄型かつ軽量であり、円偏波で動作して送信と受信とが同時に行えることが要求されることから、円偏波の送受信が可能な2周波共用円偏波平面アンテナが使用されている。この2周波共用円偏波平面アンテナは、例えば、地導体の上に、上面に下層パッチ(受信パッチ)が配置された下層誘電体基板が積層され、さらに、この下層誘電体基板の上に、上面に上層パッチ(送信パッチ)が配置された上層誘電体基板が積層されている。また、放射導体に直交したモードの縮退を解いて円偏波を励振するために、各パッチの周縁に、給電ポイントに対して斜め45°方向に切欠き状の縮退分離セグメント(縮退分離素子)が設けられている。   For example, antennas mounted on satellite communication devices and mobile communication devices are small, thin, and lightweight, and are required to be able to transmit and receive simultaneously by operating with circular polarization. A dual-polarized circularly polarized flat antenna that can transmit and receive is used. In this dual-frequency circularly polarized flat antenna, for example, a lower dielectric substrate in which a lower layer patch (receiving patch) is arranged on the upper surface is laminated on a ground conductor, and further, on this lower dielectric substrate, An upper dielectric substrate having an upper layer patch (transmission patch) disposed on the upper surface is laminated. In addition, in order to solve the mode degeneracy orthogonal to the radiating conductor and excite circularly polarized waves, a degenerate separation segment (degeneration separation element) notched in the direction of 45 ° obliquely to the feeding point at the periphery of each patch Is provided.

一方、2周波共用円偏波平面アンテナは、送信と受信とを同時に行うため、送信した電力が受信回路に混入するのを抑制する必要がある。すなわち、送受信間のアイソレーション特性(分離度)を高めることが求められる。このアイソレーション特性を劣化させる原因の一つに円偏波軸比特性があり、送信パッチの交差偏波特性(円偏波軸比)が悪い場合、受信パッチがそれを受信してしまい、アイソレーション特性が劣ってしまう。例えば、送信パッチの地導体側の電界分布が、受信パッチの縮退分離素子によって乱されることで、円偏波軸比・円偏波特性が悪化・劣化する。   On the other hand, since the dual-frequency circularly polarized flat antenna performs transmission and reception at the same time, it is necessary to prevent the transmitted power from being mixed into the receiving circuit. That is, it is required to improve isolation characteristics (separation) between transmission and reception. One of the causes of deterioration of this isolation characteristic is the circular polarization axis ratio characteristic. When the cross polarization characteristic (circular polarization axis ratio) of the transmission patch is bad, the reception patch receives it, Isolation characteristics are inferior. For example, the electric field distribution on the ground conductor side of the transmission patch is disturbed by the degeneracy separation element of the reception patch, so that the circular polarization axial ratio and the circular polarization characteristic are deteriorated and deteriorated.

このため、受信パッチを2点から給電し、送信パッチを1点から給電して、送信パッチに比べて受信パッチを十分に大きくすることで、受信パッチの縮退分離素子による影響を抑制して、送信パッチの円偏波軸比を良好にし、高いアイソレーション特性を確保する、という技術が知られている(例えば、特許文献1等参照。)。   For this reason, the reception patch is fed from two points, the transmission patch is fed from one point, and the reception patch is sufficiently larger than the transmission patch to suppress the influence of the degenerate separation element of the reception patch, A technique for improving the circular polarization axial ratio of the transmission patch and ensuring high isolation characteristics is known (see, for example, Patent Document 1).

特開平06−140835号公報Japanese Patent Laid-Open No. 06-140835

ところで、下層パッチおよび上層パッチの大きさを変えることで、通信対象の周波数が変化するが、下層パッチと上層パッチが接近しているため、周波数つまり軸比を所望の値に調整することが困難であった。すなわち、一方のパッチの大きさを変えると、一方のパッチに対する周波数のみではなく、他方のパッチに対する周波数も変化していまい、2つの周波数を所望の値に調整することが困難であった。   By the way, by changing the size of the lower layer patch and the upper layer patch, the frequency of the communication target changes. However, since the lower layer patch and the upper layer patch are close to each other, it is difficult to adjust the frequency, that is, the axial ratio to a desired value. Met. That is, when the size of one patch is changed, not only the frequency for one patch but also the frequency for the other patch changes, making it difficult to adjust the two frequencies to desired values.

例えば、図6に示すように、下層パッチ101と上層パッチ102が略正四角形状で、下層パッチ101側のみに給電線103が設けられた2周波共用円偏波平面アンテナ100において、上層パッチ102の大きさを変えると、図7に示すように、各周波数帯域f1、f2で軸比が変化する。ここで、上層パッチ102の一辺の長さを順次長くし、特性C11は、最小の場合の軸比特性を示し、特性C12は、中位の場合の軸比特性を示し、特性C13は、最大の場合の軸比特性を示す。また、仕様SP1は、下層パッチ101に対する仕様上の周波数帯域f1における仕様上の軸比を示し、仕様SP2は、上層パッチ102に対する仕様上の周波数帯域f2における仕様上の軸比を示し、この仕様SP1、SP2に特性C11〜C13が重ならない必要がある。つまり、2つの周波数帯域f1、f2における軸比が仕様SP1、SP2の軸比よりも低い必要がある。   For example, as shown in FIG. 6, in the dual-frequency circularly polarized wave planar antenna 100 in which the lower layer patch 101 and the upper layer patch 102 have a substantially square shape and the feed line 103 is provided only on the lower layer patch 101 side, As shown in FIG. 7, the axial ratio changes in each of the frequency bands f1 and f2. Here, the length of one side of the upper layer patch 102 is sequentially increased, the characteristic C11 indicates the minimum axial ratio characteristic, the characteristic C12 indicates the intermediate axial ratio characteristic, and the characteristic C13 indicates the maximum. The axial ratio characteristics in the case of The specification SP1 indicates an axial ratio in the specification in the frequency band f1 in the specification for the lower layer patch 101, and the specification SP2 indicates an axial ratio in the specification in the frequency band f2 in the specification for the upper layer patch 102. It is necessary that the characteristics C11 to C13 do not overlap SP1 and SP2. That is, the axial ratio in the two frequency bands f1 and f2 needs to be lower than the axial ratio of the specifications SP1 and SP2.

この図からわかるように、上層パッチ102の大きさを変えると、周波数帯域f2側の軸比のみではなく、周波数帯域f1側の軸比も変化してしまう。同様に、下層パッチ101の大きさを変えると、周波数帯域f1側の軸比のみではなく、周波数帯域f2側の軸比も変化してしまい、2つの周波数帯域における軸比を所望の値に調整することが困難であった。   As can be seen from this figure, changing the size of the upper layer patch 102 changes not only the axial ratio on the frequency band f2 side but also the axial ratio on the frequency band f1 side. Similarly, if the size of the lower layer patch 101 is changed, not only the axial ratio on the frequency band f1 side but also the axial ratio on the frequency band f2 side changes, and the axial ratios in the two frequency bands are adjusted to desired values. It was difficult to do.

本発明は、2つの周波数帯域における軸比を容易かつ適正に調整可能な2周波共用円偏波平面アンテナおよびその軸比調整方法を提供することを目的とする。   An object of the present invention is to provide a dual-frequency circularly polarized flat antenna that can easily and appropriately adjust axial ratios in two frequency bands and an axial ratio adjusting method thereof.

上記目的を達成するために請求項1に記載の発明は、平面形状が略正四角形状の下層パッチが設けられた下層誘電体基板と、前記下層誘電体基板の上に位置し、平面形状が略正四角形状の上層パッチが設けられた上層誘電体基板と、前記下層パッチおよび前記上層パッチの少なくとも一方に、相対的に90°の位相角を有するように設けられた2つの給電線を有する給電部と、前記下層パッチおよび前記上層パッチの少なくとも一方の近傍に、該パッチの略正四角形状のいずれかの辺に対向し、かつ、前記給電線に重ならないように設けられた寄生素子と、を備え、前記寄生素子の大きさおよび位置の少なくとも一方を調整することで、該寄生素子が設けられた前記下層パッチおよび前記上層パッチに対応する周波数帯域における軸比が、所定値よりも低く設定されている、ことを特徴とする2周波共用円偏波平面アンテナである。 In order to achieve the above object, the invention according to claim 1 is characterized in that a planar dielectric is provided on a lower dielectric substrate provided with a lower layer patch having a substantially square shape, and the planar shape is located on the lower dielectric substrate. An upper dielectric substrate provided with an upper layer patch having a substantially square shape, and at least one of the lower layer patch and the upper layer patch has two feeder lines provided so as to have a relative phase angle of 90 °. A power supply unit, and a parasitic element provided in the vicinity of at least one of the lower layer patch and the upper layer patch so as to oppose any side of the substantially square shape of the patch and not to overlap the power supply line. By adjusting at least one of the size and position of the parasitic element, an axial ratio in a frequency band corresponding to the lower layer patch and the upper layer patch provided with the parasitic element is determined. Is set lower than the value, it is 2 frequency circularly polarized planar antenna according to claim.

請求項2に記載の発明は、平面形状が略正四角形状の下層パッチが設けられた下層誘電体基板と、前記下層誘電体基板の上に位置し、平面形状が略正四角形状の上層パッチが設けられた上層誘電体基板と、前記下層パッチおよび前記上層パッチの少なくとも一方に、相対的に90°の位相角を有するように設けられた2つの給電線を有する給電部と、を備えた2周波共用円偏波平面アンテナにおいて、軸比を調整する軸比調整方法であって、前記下層パッチおよび前記上層パッチの少なくとも一方の近傍に、該パッチの略正四角形状のいずれかの辺に対向し、かつ、前記給電線に重ならないように寄生素子を設け、該寄生素子の大きさおよび位置の少なくとも一方を調整することで、該寄生素子が設けられた前記下層パッチおよび前記上層パッチに対応する周波数帯域における軸比を調整する、ことを特徴とする2周波共用円偏波平面アンテナの軸比調整方法である。

According to a second aspect of the invention, a lower layer dielectric substrate planar shape substantially provided square-shaped lower patch, the located on the lower dielectric substrate, the upper layer patch planar shape substantially square shape And at least one of the lower layer patch and the upper layer patch, and a power supply unit having two power supply lines provided so as to have a relative phase angle of 90 °. An axial ratio adjusting method for adjusting an axial ratio in a dual-frequency circularly polarized wave planar antenna, wherein at least one of the lower layer patch and the upper layer patch is disposed near any side of the substantially square shape of the patch. A parasitic element is provided so as not to overlap the power supply line, and at least one of the size and position of the parasitic element is adjusted, so that the lower layer patch and the upper layer patch provided with the parasitic element are provided. Adjusting the axial ratio in the frequency band corresponding to the switch is a 2 frequency circularly polarized wave planar axial ratio adjusting method of the antenna, characterized in that.

請求項1および請求項2に記載の発明によれば、寄生素子の大きさや位置を調整することで、この寄生素子が設けられたパッチに対応する周波数帯域における軸比が調整される。すなわち、寄生素子が設けられたパッチの大きさを調整する必要がないため、他のパッチに影響を与えることがない(他のパッチに対応する周波数帯域における軸比に影響を与えない。)。このため、例えば、一方のパッチの大きさを調整してこのパッチに対応する周波数帯域における軸比を調整し、他方のパッチに寄生素子を設けて大きさや位置を調整し、このパッチに対応する周波数帯域における軸比を調整すればよい。このように、2つの周波数帯域における軸比を容易かつ適正に調整することが可能となる。   According to the first and second aspects of the present invention, the axial ratio in the frequency band corresponding to the patch provided with the parasitic element is adjusted by adjusting the size and position of the parasitic element. That is, since it is not necessary to adjust the size of the patch provided with the parasitic element, other patches are not affected (the axial ratio in the frequency band corresponding to the other patches is not affected). For this reason, for example, the size of one patch is adjusted to adjust the axial ratio in the frequency band corresponding to this patch, and the size and position are adjusted by providing a parasitic element in the other patch to correspond to this patch. The axial ratio in the frequency band may be adjusted. As described above, the axial ratios in the two frequency bands can be easily and appropriately adjusted.

この発明の実施の形態に係る2周波共用円偏波平面アンテナを示す分解斜視図である。1 is an exploded perspective view showing a dual-frequency circularly polarized flat antenna according to an embodiment of the present invention. 図1の2周波共用円偏波平面アンテナの上層誘電体基板を示す平面図である。FIG. 2 is a plan view showing an upper dielectric substrate of the dual-frequency circularly polarized planar antenna of FIG. 1. 図1の2周波共用円偏波平面アンテナの周波数に対する軸比を示す図である。It is a figure which shows the axial ratio with respect to the frequency of the dual frequency shared circular polarization planar antenna of FIG. 図1の2周波共用円偏波平面アンテナの周波数に対する直線偏波振幅を示す図である。It is a figure which shows the linearly polarized wave amplitude with respect to the frequency of the dual-frequency circular polarization plane antenna of FIG. この発明の実施の形態において、寄生素子を設けない場合の周波数に対する直線偏波振幅を示す図である。In an embodiment of this invention, it is a figure showing a linear polarization amplitude with respect to a frequency when a parasitic element is not provided. 従来の2周波共用円偏波平面アンテナを示す分解斜視図である。It is a disassembled perspective view which shows the conventional dual frequency shared circular polarization planar antenna. 図6の2周波共用円偏波平面アンテナの周波数に対する軸比を示す図である。It is a figure which shows the axial ratio with respect to the frequency of the dual frequency shared circular polarization planar antenna of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1〜図5は、この発明の実施の形態を示し、図1は、この実施の形態に係る2周波共用円偏波平面アンテナ1を示す分解斜視図である。この2周波共用円偏波平面アンテナ1は、2つの周波数帯域f1、f2の円偏波電波の通信が可能(円偏波電波の送受信が同時に可能)なマイクロストリップアンテナであり、全体が平盤状で、地導体(図示せず)の上に、下層パッチ2が設けられた下層誘電体基板3と、下層誘電体基板3の上に位置して上層パッチ4が設けられた上層誘電体基板5とが積層され、さらに、給電回路(給電部)6と寄生素子7とを備えている。ここで、この発明の実施では、第1の周波数帯域f1と第2の周波数帯域f2は、次の関係を有するものとする。
f1<f2
1 to 5 show an embodiment of the present invention, and FIG. 1 is an exploded perspective view showing a dual-frequency circularly polarized flat antenna 1 according to this embodiment. This dual-frequency circularly polarized flat antenna 1 is a microstrip antenna that can communicate circularly polarized radio waves in two frequency bands f1 and f2 (can simultaneously transmit and receive circularly polarized radio waves), and is entirely flat. A lower dielectric substrate 3 provided with a lower layer patch 2 on a ground conductor (not shown), and an upper dielectric substrate provided on the lower dielectric substrate 3 and provided with an upper layer patch 4 5 and a feeding circuit (feeding unit) 6 and a parasitic element 7 are further provided. Here, in the implementation of the present invention, it is assumed that the first frequency band f1 and the second frequency band f2 have the following relationship.
f1 <f2

下層パッチ2は、平面形状が略正四角形状で、平面形状が略正四角形状の下層誘電体基板3の上面に載置され、第1の周波数帯域f1に基づいて一辺の長さが設定されている。つまり、下層パッチ2に対応する周波数帯域が第1の周波数帯域f1となっている。   The lower layer patch 2 is placed on the upper surface of the lower dielectric substrate 3 having a substantially square shape in plan and having a substantially square shape in plan view, and the length of one side is set based on the first frequency band f1. ing. That is, the frequency band corresponding to the lower layer patch 2 is the first frequency band f1.

同様に、上層パッチ4は、平面形状が略正四角形状で、平面形状が略正四角形状の上層誘電体基板5の上面に載置され、第2の周波数帯域f2に基づいて一辺の長さが設定されている。つまり、上層パッチ4に対応する周波数帯域が第2の周波数帯域f2となっている。   Similarly, the upper layer patch 4 is placed on the upper surface of the upper dielectric substrate 5 having a substantially square shape in plan view and a substantially square shape in plan view, and has a side length based on the second frequency band f2. Is set. That is, the frequency band corresponding to the upper layer patch 4 is the second frequency band f2.

ここで、下層誘電体基板3と上層誘電体基板5の形状・大きさは同等で、下層誘電体基板3の誘電率が上層誘電体基板5の誘電率よりも高く設定され、これにより、ビームが広くなって指向性が低減され、電波を補足しやすい。また、下層誘電体基板3の誘電率が上層誘電体基板5の誘電率よりも高いために、下層パッチ2に対応する第1の周波数帯域f1が上層パッチ4に対応する第2の周波数帯域f2よりも低いにもかかわらず、下層パッチ2が上層パッチ4よりも小さくなっている(誘電率が同じであれば、下層パッチ2が上層パッチ4よりも大きい。)。   Here, the shape and size of the lower dielectric substrate 3 and the upper dielectric substrate 5 are the same, and the dielectric constant of the lower dielectric substrate 3 is set higher than the dielectric constant of the upper dielectric substrate 5, whereby the beam Becomes wider, the directivity is reduced, and it is easy to supplement radio waves. Further, since the dielectric constant of the lower dielectric substrate 3 is higher than that of the upper dielectric substrate 5, the first frequency band f1 corresponding to the lower patch 2 is the second frequency band f2 corresponding to the upper patch 4. Despite being lower, the lower layer patch 2 is smaller than the upper layer patch 4 (if the dielectric constant is the same, the lower layer patch 2 is larger than the upper layer patch 4).

給電回路6は、下層パッチ2および上層パッチ4に、相対的に90°の位相角を有するように設けられた回路であり、この実施の形態では、下層パッチ2(下層誘電体基板3)に設けられている。すなわち、下層パッチ2の第1の辺21から、この第1の辺21に対向する下層誘電体基板3の第1の辺31まで延びて、線状の第1の給電線61が配設されている。同様に、下層パッチ2の第1の辺21と直交する第2の辺22から、この第2の辺22に対向する下層誘電体基板3の第2の辺32まで延びて、線状の第2の給電線62が配設されている。ここで、第1の給電線61と第2の給電線62の線路長に1/4波長の差を設けることで、位相角を相対的に90°ずらしている。   The power feeding circuit 6 is a circuit provided in the lower layer patch 2 and the upper layer patch 4 so as to have a relative phase angle of 90 °. In this embodiment, the lower layer patch 2 (lower dielectric substrate 3) Is provided. That is, a linear first power supply line 61 is disposed extending from the first side 21 of the lower layer patch 2 to the first side 31 of the lower layer dielectric substrate 3 facing the first side 21. ing. Similarly, it extends from the second side 22 orthogonal to the first side 21 of the lower layer patch 2 to the second side 32 of the lower layer dielectric substrate 3 facing the second side 22 to form a linear first Two feeder lines 62 are provided. Here, the phase angle is relatively shifted by 90 ° by providing a difference of ¼ wavelength in the line length of the first feeder 61 and the second feeder 62.

また、第1の給電線61と第2の給電線62が、電力分配器63を介して入力ポート64に接続されている。そして、入力ポート64から第1の周波数帯域f1または第2の周波数帯域f2の電力・信号を供給することで、2つの円偏波電波の通信が行えるものである。   The first power supply line 61 and the second power supply line 62 are connected to the input port 64 via the power distributor 63. Then, by supplying power / signal of the first frequency band f1 or the second frequency band f2 from the input port 64, communication of two circularly polarized radio waves can be performed.

寄生素子7は、上層パッチ4の近傍に、給電回路6に対向して設けられた素子であり、この寄生素子7の大きさおよび位置の少なくとも一方を調整することで、上層パッチ4に対応する第2の周波数帯域f2における軸比が所定値よりも低く設定されている。   The parasitic element 7 is an element provided in the vicinity of the upper layer patch 4 so as to face the power feeding circuit 6. The parasitic element 7 corresponds to the upper layer patch 4 by adjusting at least one of the size and position of the parasitic element 7. The axial ratio in the second frequency band f2 is set lower than a predetermined value.

すなわち、図1、図2に示すように、下層誘電体基板3と上層誘電体基板5を重ねた状態で、第2の給電線62に対向して第2の給電線62と重ならない上層パッチ4の第4の辺44からやや離れて、寄生素子7が上層誘電体基板5上に配設されている。この寄生素子7は、細長い長方形状で、第4の辺44と平行に延びて上層誘電体基板5上にエッチングされている。また、寄生素子7の幅D1および寄生素子7の位置、つまり、上層パッチ4の第4の辺44からの距離D2は、第2の周波数帯域f2に基づいて予め設定、固定され、この実施の形態では、寄生素子7の長さ(大きさ)D3を調整することで、第2の周波数帯域f2における軸比が所定値よりも低く設定されている。   That is, as shown in FIGS. 1 and 2, the upper layer patch that does not overlap the second power supply line 62 while facing the second power supply line 62 in a state where the lower dielectric substrate 3 and the upper dielectric substrate 5 are overlapped. The parasitic element 7 is disposed on the upper dielectric substrate 5 at a distance from the fourth fourth side 44. The parasitic element 7 has an elongated rectangular shape, extends in parallel with the fourth side 44, and is etched on the upper dielectric substrate 5. In addition, the width D1 of the parasitic element 7 and the position of the parasitic element 7, that is, the distance D2 from the fourth side 44 of the upper layer patch 4 are set and fixed in advance based on the second frequency band f2, In the embodiment, the axial ratio in the second frequency band f2 is set lower than the predetermined value by adjusting the length (size) D3 of the parasitic element 7.

具体的に、軸比は、直線偏波の振幅に依存するが、寄生素子7を設けない場合、図5に示すように、水平方向(H)の直線偏波の振幅は、曲線L11に示す特性となり、垂直方向(V)の直線偏波の振幅は、曲線L12に示す特性となる。このとき、第2の周波数帯域f2(図5中のポイントP2)においては、曲線L11と曲線L12との差が大きく、適正な円偏波が得られずに軸比が大きくなる。   Specifically, the axial ratio depends on the amplitude of the linearly polarized wave, but when the parasitic element 7 is not provided, the amplitude of the linearly polarized wave in the horizontal direction (H) is shown by a curve L11 as shown in FIG. The amplitude of the linearly polarized wave in the vertical direction (V) is the characteristic indicated by the curve L12. At this time, in the second frequency band f2 (point P2 in FIG. 5), the difference between the curve L11 and the curve L12 is large, and an appropriate circularly polarized wave cannot be obtained and the axial ratio becomes large.

一方、寄生素子7を設けた場合、図4に示すように、水平方向(H)の直線偏波の振幅は、曲線L1に示す特性となり、垂直方向(V)の直線偏波の振幅は、曲線L2に示す特性となる。このとき、第2の周波数帯域f2(図4中のポイントP1)においては、曲線L1と曲線L2との差が小さく、適正な円偏波が得られて軸比が小さくなる。   On the other hand, when the parasitic element 7 is provided, as shown in FIG. 4, the amplitude of the linearly polarized wave in the horizontal direction (H) has the characteristic shown by the curve L1, and the amplitude of the linearly polarized wave in the vertical direction (V) is The characteristic is shown by the curve L2. At this time, in the second frequency band f2 (point P1 in FIG. 4), the difference between the curve L1 and the curve L2 is small, an appropriate circular polarization is obtained, and the axial ratio is small.

これは、第2の周波数帯域f2周辺において寄生素子7が反射器として機能し、正面方向の伝播が減って曲線L1がポイントP3で急激に下がる(NULLになる)ためである。そして、寄生素子7の長さD3を調整することで、曲線L1が急激に下がるポイントP3の位置(周波数)が変化するので、曲線L1、L2の差が小さくなるように寄生素子7の長さD3を調整して、第2の周波数帯域f2における軸比を所定値よりも低く設定するものである。ここで、所定値とは、後述する仕様SP2であり、第2の周波数帯域f2における仕様上の軸比(最大値)である。   This is because the parasitic element 7 functions as a reflector in the vicinity of the second frequency band f2, the propagation in the front direction is reduced, and the curve L1 drops sharply at the point P3 (becomes NULL). Then, by adjusting the length D3 of the parasitic element 7, the position (frequency) of the point P3 at which the curve L1 falls rapidly changes, so that the length of the parasitic element 7 is reduced so that the difference between the curves L1 and L2 becomes small. By adjusting D3, the axial ratio in the second frequency band f2 is set lower than a predetermined value. Here, the predetermined value is a specification SP2 to be described later, and is an axial ratio (maximum value) on the specification in the second frequency band f2.

このように、この実施の形態では、上層パッチ4の第4の辺44(第2の給電線62)に対向して寄生素子7を設け、水平方向の直線偏波の振幅曲線L1を調整しているが、寄生素子7を設けない状態での振幅特性(曲線L11、L12)などに応じて、他の位置に寄生素子7を設けてもよい。   As described above, in this embodiment, the parasitic element 7 is provided so as to face the fourth side 44 (second feeding line 62) of the upper layer patch 4, and the amplitude curve L1 of the linearly polarized wave in the horizontal direction is adjusted. However, the parasitic element 7 may be provided at another position depending on the amplitude characteristics (curves L11 and L12) in a state where the parasitic element 7 is not provided.

例えば、上層パッチ4の第3の辺43(第1の給電線61)に対向して寄生素子7を設けてもよく、この場合、垂直方向の直線偏波の振幅曲線L2が調整可能となる。同様に、上層パッチ4の第2の辺42(第2の給電線62)に対向して寄生素子7を設けると、水平方向の直線偏波の振幅曲線L1が調整可能となり、上層パッチ4の第1の辺41(第1の給電線61)に対向して寄生素子7を設けると、垂直方向の直線偏波の振幅曲線L2が調整可能となる。ただし、上層パッチ4の辺41、42に対向して寄生素子7を設けると、給電線61、62に重なり影響を受けるため、上層パッチ4の辺43、44に対向して寄生素子7を設けるのが望ましい。   For example, the parasitic element 7 may be provided opposite to the third side 43 (first feeding line 61) of the upper layer patch 4, and in this case, the amplitude curve L2 of the linearly polarized wave in the vertical direction can be adjusted. . Similarly, when the parasitic element 7 is provided so as to face the second side 42 (second feeding line 62) of the upper layer patch 4, the amplitude curve L1 of the linearly polarized wave in the horizontal direction can be adjusted. When the parasitic element 7 is provided to face the first side 41 (first feeding line 61), the amplitude curve L2 of the linearly polarized wave in the vertical direction can be adjusted. However, if the parasitic element 7 is provided to face the sides 41 and 42 of the upper layer patch 4, the parasitic elements 7 are provided to face the sides 43 and 44 of the upper layer patch 4 because the feeding lines 61 and 62 are affected by overlap. Is desirable.

次に、このような構成の2周波共用円偏波平面アンテナ1の軸比調整方法について説明する。   Next, a method for adjusting the axial ratio of the dual-frequency circularly polarized flat antenna 1 having such a configuration will be described.

まず、下層パッチ2の大きさを調整して第1の周波数帯域f1における軸比を所定値よりも低く設定する。ここで、所定値とは、仕様SP1であり、第1の周波数帯域f1における仕様上の軸比(最大値)である。次に、寄生素子7の長さD3を調整して、第2の周波数帯域f2における軸比を仕様SP2よりも低く設定する。ここで、寄生素子7は、予め長めに設けられ、トリミングして長さD3を短縮・調整する。   First, the size of the lower layer patch 2 is adjusted to set the axial ratio in the first frequency band f1 lower than a predetermined value. Here, the predetermined value is the specification SP1 and is the axial ratio (maximum value) on the specification in the first frequency band f1. Next, the length D3 of the parasitic element 7 is adjusted to set the axial ratio in the second frequency band f2 lower than the specification SP2. Here, the parasitic element 7 is provided in advance and trimmed to shorten / adjust the length D3.

この調整によって、周波数に対する軸比が、図3に示すように変化する。ここで、特性C1は、長さD3が最短の場合の軸比特性を示し、特性C2は、長さD3が中位の場合の軸比特性を示し、特性C3は、長さD3が最長の場合の軸比特性を示す。この図からわかるように、寄生素子7の長さD3を調整しても、第1の周波数帯域f1における軸比はほとんど変わらず、第2の周波数帯域f2における軸比が大きく変わる。つまり、寄生素子7の長さD3を調整して第2の周波数帯域f2における軸比を調整しても、下層パッチ2に影響を与えることがない。   By this adjustment, the axial ratio with respect to the frequency changes as shown in FIG. Here, the characteristic C1 indicates the axial ratio characteristic when the length D3 is the shortest, the characteristic C2 indicates the axial ratio characteristic when the length D3 is medium, and the characteristic C3 indicates that the length D3 is the longest. The axial ratio characteristics are shown. As can be seen from this figure, even when the length D3 of the parasitic element 7 is adjusted, the axial ratio in the first frequency band f1 hardly changes, and the axial ratio in the second frequency band f2 changes greatly. That is, even if the length D3 of the parasitic element 7 is adjusted to adjust the axial ratio in the second frequency band f2, the lower layer patch 2 is not affected.

そして、第2の周波数帯域f2における軸比が仕様SP2の軸比よりも低くなるまで、例えば、特性C2が得られるまで、寄生素子7の長さD3を短縮・調整する。これにより、2つの周波数帯域f1、f2における軸比が、ともに仕様SP1、SP2の軸比よりも低くなるものである。   Then, the length D3 of the parasitic element 7 is shortened and adjusted until the axial ratio in the second frequency band f2 becomes lower than the axial ratio of the specification SP2, for example, until the characteristic C2 is obtained. Thereby, the axial ratios in the two frequency bands f1 and f2 are both lower than the axial ratios of the specifications SP1 and SP2.

このように、この2周波共用円偏波平面アンテナ1およびその軸比調整方法によれば、寄生素子7の長さD3を調整することで、上層パッチ4に対応する第2の周波数帯域f2における軸比が調整される。すなわち、寄生素子7が設けられた上層パッチ4の大きさを調整する必要がないため、下層パッチ2に影響を与えることがない(下層パッチ2に対応する第1の周波数帯域f1における軸比に影響を与えない。)。このため、上記のように、下層パッチ2の大きさを調整して第1の周波数帯域f1における軸比を調整し、寄生素子7の長さD3を調整して第2の周波数帯域f2における軸比を調整すればよい。このように、2つの周波数帯域f1、f2における軸比を容易かつ適正に調整することが可能となる。しかも、寄生素子7の長さ(大きさ)D3をトリミングして短縮・調整するだけでよいため、より容易かつ適正に調整することが可能となる。   As described above, according to the dual-frequency circularly polarized wave planar antenna 1 and the axial ratio adjusting method thereof, the length D3 of the parasitic element 7 is adjusted, so that the second frequency band f2 corresponding to the upper layer patch 4 is adjusted. The axial ratio is adjusted. That is, since it is not necessary to adjust the size of the upper layer patch 4 provided with the parasitic element 7, the lower layer patch 2 is not affected (in the axial ratio in the first frequency band f1 corresponding to the lower layer patch 2). It has no effect.) Therefore, as described above, the size of the lower layer patch 2 is adjusted to adjust the axial ratio in the first frequency band f1, and the length D3 of the parasitic element 7 is adjusted to adjust the axis in the second frequency band f2. The ratio may be adjusted. Thus, the axial ratios in the two frequency bands f1 and f2 can be easily and appropriately adjusted. In addition, since the length (size) D3 of the parasitic element 7 only needs to be trimmed and shortened / adjusted, the parasitic element 7 can be adjusted more easily and appropriately.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、上層パッチ4の近傍に寄生素子7を設けているが、下層パッチ2の近傍に寄生素子7を設けてもよく、また、上層パッチ4と下層パッチ2の近傍に寄生素子7を設けてもよい。この際、例えば、下層パッチ2の近傍に寄生素子7を設けた場合には、上層パッチ4の大きさを調整して第2の周波数帯域f2における軸比を調整し、寄生素子7の大きさや位置を調整して第1の周波数帯域f1における軸比を調整すればよい。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the parasitic element 7 is provided in the vicinity of the upper layer patch 4, but the parasitic element 7 may be provided in the vicinity of the lower layer patch 2, and the vicinity of the upper layer patch 4 and the lower layer patch 2. Parasitic element 7 may be provided in this. At this time, for example, when the parasitic element 7 is provided in the vicinity of the lower layer patch 2, the size of the upper layer patch 4 is adjusted to adjust the axial ratio in the second frequency band f 2, The axial ratio in the first frequency band f1 may be adjusted by adjusting the position.

また、寄生素子7の長さ(大きさ)D3のみを調整して軸比を調整しているが、寄生素子7の位置のみを調整して軸比を調整したり、寄生素子7の大きさと位置を調整して軸比を調整したりしてもよい。また、パッチ2、4の平面形状が略正四角形状であるが、円形であってもよい。さらに、給電回路6を下層誘電体基板3(下層パッチ2)に設けているが、上層誘電体基板5(上層パッチ4)に設けてもよく、下層誘電体基板3と上層誘電体基板5の双方に設けてもよい。また、複数の寄生素子7を設けてもよい。   Further, only the length (size) D3 of the parasitic element 7 is adjusted to adjust the axial ratio, but only the position of the parasitic element 7 is adjusted to adjust the axial ratio, or the size of the parasitic element 7 can be adjusted. The axial ratio may be adjusted by adjusting the position. Moreover, although the planar shape of the patches 2 and 4 is a substantially square shape, it may be circular. Furthermore, although the feeding circuit 6 is provided on the lower dielectric substrate 3 (lower patch 2), it may be provided on the upper dielectric substrate 5 (upper patch 4). You may provide in both. A plurality of parasitic elements 7 may be provided.

1 2周波共用円偏波平面アンテナ
2 下層パッチ
3 下層誘電体基板
4 上層パッチ
5 上層誘電体基板
6 給電回路(給電部)
7 寄生素子
f1 第1の周波数帯域
f2 第2の周波数帯域
DESCRIPTION OF SYMBOLS 1 2 frequency shared circular polarization plane antenna 2 Lower layer patch 3 Lower layer dielectric substrate 4 Upper layer patch 5 Upper layer dielectric substrate 6 Feed circuit (feed part)
7 Parasitic element f1 1st frequency band f2 2nd frequency band

Claims (2)

平面形状が略正四角形状の下層パッチが設けられた下層誘電体基板と、
前記下層誘電体基板の上に位置し、平面形状が略正四角形状の上層パッチが設けられた上層誘電体基板と、
前記下層パッチおよび前記上層パッチの少なくとも一方に、相対的に90°の位相角を有するように設けられた2つの給電線を有する給電部と、
前記下層パッチおよび前記上層パッチの少なくとも一方の近傍に、該パッチの略正四角形状のいずれかの辺に対向し、かつ、前記給電線に重ならないように設けられた寄生素子と、
を備え、前記寄生素子の大きさおよび位置の少なくとも一方を調整することで、該寄生素子が設けられた前記下層パッチおよび前記上層パッチに対応する周波数帯域における軸比が、所定値よりも低く設定されている、
ことを特徴とする2周波共用円偏波平面アンテナ。
A lower dielectric substrate provided with a lower layer patch having a substantially square shape in plan view ;
An upper dielectric substrate that is located on the lower dielectric substrate and provided with an upper layer patch having a substantially square shape in plan view ; and
A power feeding unit having two power feeding lines provided on at least one of the lower layer patch and the upper layer patch so as to have a relative phase angle of 90 °;
A parasitic element provided in the vicinity of at least one of the lower layer patch and the upper layer patch, facing either side of the substantially square shape of the patch and not overlapping the feeder line;
The axial ratio in the frequency band corresponding to the lower layer patch and the upper layer patch provided with the parasitic element is set to be lower than a predetermined value by adjusting at least one of the size and position of the parasitic element. Being
A dual-polarized circularly polarized planar antenna characterized by that.
平面形状が略正四角形状の下層パッチが設けられた下層誘電体基板と、前記下層誘電体基板の上に位置し、平面形状が略正四角形状の上層パッチが設けられた上層誘電体基板と、前記下層パッチおよび前記上層パッチの少なくとも一方に、相対的に90°の位相角を有するように設けられた2つの給電線を有する給電部と、を備えた2周波共用円偏波平面アンテナにおいて、軸比を調整する軸比調整方法であって、
前記下層パッチおよび前記上層パッチの少なくとも一方の近傍に、該パッチの略正四角形状のいずれかの辺に対向し、かつ、前記給電線に重ならないように寄生素子を設け、該寄生素子の大きさおよび位置の少なくとも一方を調整することで、該寄生素子が設けられた前記下層パッチおよび前記上層パッチに対応する周波数帯域における軸比を調整する、
ことを特徴とする2周波共用円偏波平面アンテナの軸比調整方法。
And lower dielectric substrate planar shape substantially provided square-shaped lower patch, positioned on the lower dielectric substrate, and the upper dielectric substrate planar shape substantially the square-shaped upper patch provided A dual-frequency circularly polarized wave planar antenna comprising: a feeding section having two feeding lines provided on at least one of the lower layer patch and the upper layer patch so as to have a relative phase angle of 90 °; An axial ratio adjustment method for adjusting the axial ratio,
A parasitic element is provided in the vicinity of at least one of the lower layer patch and the upper layer patch so as to be opposed to any side of the substantially square shape of the patch and not to overlap the feeder line. Adjusting the axial ratio in the frequency band corresponding to the lower layer patch and the upper layer patch provided with the parasitic element by adjusting at least one of the height and the position;
A method for adjusting the axial ratio of a dual-polarized circularly polarized wave planar antenna, characterized in that:
JP2015217295A 2015-11-05 2015-11-05 Dual-frequency circularly polarized flat antenna and its axial ratio adjustment method Active JP6602165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217295A JP6602165B2 (en) 2015-11-05 2015-11-05 Dual-frequency circularly polarized flat antenna and its axial ratio adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217295A JP6602165B2 (en) 2015-11-05 2015-11-05 Dual-frequency circularly polarized flat antenna and its axial ratio adjustment method

Publications (2)

Publication Number Publication Date
JP2017092588A JP2017092588A (en) 2017-05-25
JP6602165B2 true JP6602165B2 (en) 2019-11-06

Family

ID=58768750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217295A Active JP6602165B2 (en) 2015-11-05 2015-11-05 Dual-frequency circularly polarized flat antenna and its axial ratio adjustment method

Country Status (1)

Country Link
JP (1) JP6602165B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225537A1 (en) * 2017-06-06 2018-12-13 株式会社村田製作所 Antenna
CN107994325B (en) * 2017-12-06 2023-10-27 北京华镁钛科技有限公司 Three-mode broadband dual circularly polarized microstrip antenna for U-band and S-band
CN112103627B (en) * 2020-08-26 2021-11-23 华南理工大学 Miniaturized antenna based on coupling radiation double-inverted F/L printed antenna unit
KR102390288B1 (en) 2021-07-05 2022-04-22 동우 화인켐 주식회사 Antenna structure and image display device including the same
CN114243297A (en) * 2021-11-11 2022-03-25 华南理工大学 Compact dual-frequency dual-polarized antenna array applied to millimeter wave beam scanning

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167342B2 (en) * 1991-03-14 2001-05-21 株式会社東芝 Transmitting and receiving circularly polarized antenna

Also Published As

Publication number Publication date
JP2017092588A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US10511101B2 (en) Wireless communication module
KR101959658B1 (en) Dual radiating elements for wireless electronic devices and antennas including an array of power dividers
JP6602165B2 (en) Dual-frequency circularly polarized flat antenna and its axial ratio adjustment method
US9991594B2 (en) Wideband antenna array
US9391375B1 (en) Wideband planar reconfigurable polarization antenna array
US8742990B2 (en) Circular polarization antenna
US10186778B2 (en) Wideband dual-polarized patch antenna array and methods useful in conjunction therewith
US10033111B2 (en) Wideband twin beam antenna array
TWI628861B (en) Complex antenna
JP2019092130A (en) Dual band patch antenna
EP2590262B1 (en) Reconfigurable polarization antenna
US20150214629A1 (en) Antenna
JP7168752B2 (en) slotted patch antenna
US9472845B2 (en) Multiband 40 degree split beam antenna for wireless network
CN104981939A (en) An antenna arrangement and a base station
WO2014115427A1 (en) Array antenna
CN105009361A (en) An antenna arrangement and a base station
CN105990693A (en) Multi-band dual-polarized antenna
JP2016140046A (en) Dual-polarized antenna
JP2009038824A (en) Dipole horizontal array antenna apparatus
CN105990658A (en) Communication antenna, antenna system and communication device
CN105990660B (en) Antenna, antenna system and communication device
CN105990641B (en) Communication antenna, antenna system and communication device
CN105990662A (en) Communication antenna, antenna system and communication device
JP6108697B2 (en) Circularly polarized antenna for both transmission and reception

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6602165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150