JP6601870B2 - Forward / reverse feed AC arc welding method - Google Patents

Forward / reverse feed AC arc welding method Download PDF

Info

Publication number
JP6601870B2
JP6601870B2 JP2015189551A JP2015189551A JP6601870B2 JP 6601870 B2 JP6601870 B2 JP 6601870B2 JP 2015189551 A JP2015189551 A JP 2015189551A JP 2015189551 A JP2015189551 A JP 2015189551A JP 6601870 B2 JP6601870 B2 JP 6601870B2
Authority
JP
Japan
Prior art keywords
period
feed
electrode
polarity
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015189551A
Other languages
Japanese (ja)
Other versions
JP2017064721A (en
Inventor
利幸 田中
利昭 中俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2015189551A priority Critical patent/JP6601870B2/en
Priority to CN201610561067.1A priority patent/CN106552984B/en
Priority to KR1020160096010A priority patent/KR102473580B1/en
Publication of JP2017064721A publication Critical patent/JP2017064721A/en
Application granted granted Critical
Publication of JP6601870B2 publication Critical patent/JP6601870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/067Starting the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

本発明は、溶接ワイヤの送給速度を正送期間と逆送期間とに交互に切り換え、電極極性を電極プラス極性と電極マイナス極性とに交互に切り換えて溶接する正逆送給交流アーク溶接方法に関するものである。   The present invention relates to a forward / reverse feed AC arc welding method in which a welding wire feeding speed is alternately switched between a forward feeding period and a backward feeding period, and an electrode polarity is alternately switched between an electrode positive polarity and an electrode minus polarity. It is about.

一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。   In general consumable electrode arc welding, a welding wire that is a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and a base material to perform welding. In the consumable electrode type arc welding, the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.

溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている(例えば、特許文献1等参照)。   In order to further improve the welding quality, a method has been proposed in which welding is performed by periodically repeating forward and backward feeding of the welding wire (see, for example, Patent Document 1).

特許文献1の発明では、溶接電流設定値に応じた送給速度の平均値とし、溶接ワイヤの正送と逆送との周波数及び振幅を溶接電流設定値に応じた値とする。   In invention of patent document 1, it is set as the average value of the feeding speed according to the welding current setting value, and the frequency and amplitude of the forward feed and reverse feeding of the welding wire are values according to the welding current setting value.

また、特許文献2の発明には、溶接ワイヤ(電極)を送給し、電極極性を電極プラス極性と電極マイナス極性とに交互に切り換えて溶接する交流アーク溶接方法が記載されている。   The invention of Patent Document 2 describes an AC arc welding method in which a welding wire (electrode) is fed and welding is performed by alternately switching the electrode polarity between an electrode plus polarity and an electrode minus polarity.

特許第5201266号公報Japanese Patent No. 52012266 特許第5090765号公報Japanese Patent No. 5090765

溶接ワイヤの送給速度を正送期間と逆送期間とに交互に切り換え、電極極性を電極プラス極性と電極マイナス極性とに交互に切り換えて溶接する正逆送給交流アーク溶接方法において、電極極性の切換時の送給速度の方向及び値が切換ごとに変動するために、溶接状態が不安定になるという問題があった。   In the forward / reverse feed AC arc welding method in which the welding wire feed speed is alternately switched between the forward feed period and the reverse feed period, and the electrode polarity is alternately switched between the electrode positive polarity and the electrode negative polarity. Since the direction and the value of the feeding speed at the time of switching fluctuate every switching, there is a problem that the welding state becomes unstable.

そこで、本発明では、電極極性の切換時の溶接状態を安定化することができる正逆送給交流アーク溶接方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a forward / reverse feed AC arc welding method capable of stabilizing the welding state when the electrode polarity is switched.

上述した課題を解決するために、請求項1の発明は、
溶接ワイヤの送給速度を正送期間と逆送期間とに交互に切り換え、電極極性を電極プラス極性と電極マイナス極性とに交互に切り換えて溶接する正逆送給交流アーク溶接方法において、
前記電極極性の切換を、前記送給速度が特定位相であるときに行い、
前記特定位相を、前記正送期間中の前記送給速度が減速している期間中、又は、前記正送期間中の前記送給速度が減速を終了する位相に設定する、
ことを特徴とする正逆送給交流アーク溶接方法である。
In order to solve the above-described problems, the invention of claim 1
In the forward / reverse feed AC arc welding method in which the welding wire feeding speed is alternately switched between the forward feeding period and the reverse feeding period, and the electrode polarity is alternately switched between the electrode positive polarity and the electrode negative polarity, and welding is performed.
The electrode polarity is switched when the feeding speed is a specific phase ,
The specific phase is set to a phase during which the feeding speed during the normal feeding period is decelerated, or a phase where the feeding speed during the normal feeding period ends deceleration.
This is a forward / reverse feed AC arc welding method.

本発明によれば、電極極性の切換タイミングが、送給速度の一定の位相で行われることになる。このために、本発明では、電極極性の切換時の溶接状態を安定化することができる。   According to the present invention, the electrode polarity switching timing is performed at a constant phase of the feeding speed. For this reason, in this invention, the welding state at the time of switching of electrode polarity can be stabilized.

本発明の実施の形態1に係る正逆送給交流アーク溶接方法を実施するための溶接装置のブロック図である。It is a block diagram of the welding apparatus for enforcing the forward / reverse feeding AC arc welding method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る正逆送給交流アーク溶接方法を示す、図1の溶接装置における各信号のタイミングチャートである。It is a timing chart of each signal in the welding apparatus of FIG. 1 which shows the forward / reverse feed AC arc welding method according to Embodiment 1 of the present invention.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る正逆送給交流アーク溶接方法を実施するための溶接装置のブロック図である。以下、同図を参照して各ブロックについて説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a welding apparatus for carrying out a forward / reverse feed AC arc welding method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.

インバータ回路INVは、3相200V等の交流商用電源(図氏は省略)を入力として、交流商用電源を整流し平滑して直流電圧を生成し、この直流電圧を後述する駆動信号Dvに従ってインバータ制御して高周波交流を出力する。   The inverter circuit INV receives an AC commercial power supply (not shown) such as a three-phase 200V as an input, rectifies and smoothes the AC commercial power supply, generates a DC voltage, and controls this DC voltage according to a drive signal Dv described later. And outputs high-frequency alternating current.

高周波変圧器INTは、高周波交流を溶接に適した電圧値に変換する。二次整流器群D2は、変換された高周波交流を整流して、正及び負の直流電圧を出力する。   The high frequency transformer INT converts the high frequency alternating current into a voltage value suitable for welding. The secondary rectifier group D2 rectifies the converted high-frequency AC and outputs positive and negative DC voltages.

電極プラス極性スイッチング素子PTR及び電極マイナス極性スイッチング素子NTRをオン/オフ制御することによって溶接装置の出力極性を切り換える。電極プラス極性スイッチング素子PTRがオン状態のときは電極プラス極性EPになり、電極マイナス極性スイッチング素子NTRがオン状態のときは電極マイナス極性ENになる。リアクトルWLは、出力を平滑する。   The output polarity of the welding apparatus is switched by controlling on / off of the electrode positive polarity switching element PTR and the electrode negative polarity switching element NTR. When the electrode positive polarity switching element PTR is in the on state, the electrode has a positive polarity EP, and when the electrode negative polarity switching element NTR is in the on state, the electrode has a negative polarity EN. The reactor WL smoothes the output.

送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。   The feed motor WM receives a feed control signal Fc described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed. A motor with fast transient response is used as the feed motor WM. In order to increase the rate of change of the feeding speed Fw of the welding wire 1 and the reversal of the feeding direction, the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.

溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。   The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the welding wire 1 and the base material 2. A welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.

極性切換信号生成回路SPNは、後述する極性切換信号Spn及び後述する送給速度設定信号Frを入力として、極性切換信号SpnがHighレベルに変化した時点から予め定めた第1期間が経過した以降に送給速度設定信号Frが特定位相になった時点でLowレベルに変化し、極性切換信号SpnがLowレベルに変化した時点から予め定めた第2期間が経過した以降に送給速度設定信号Frが特定位相になった時点でHighレベルに変化する極性切換信号Spnを出力する。送給速度設定信号Frの特定位相としては、以下の3つの中から一つを選択して設定する。極性切換信号SpnをLowレベルに変化させるときの特定位相とHighレベルに変化させるときの特定位相とを、それぞれ異なる位相に設定しても良い。
1)特定位相を正送期間中の送給速度設定信号Frが減速している期間中に設定する。すなわち、Fr≧0であり、かつ、送給速度設定信号Frの微分値dFr/dt<0である期間中に設定する。
2)特定位相を正送期間中の送給速度設定信号Frが減速を開始する位相に設定する。すなわち、Fr≧0であり、かつ、dFr/dtが最初に負の値となる位相に設定する。
3)特定位相を正送期間中の送給速度設定信号Frが減速を終了する位相に設定する。すなわち、Fr=0であり、かつ、dFr/dt<0である位相に設定する。
The polarity switching signal generation circuit SPN receives a polarity switching signal Spn, which will be described later, and a feed speed setting signal Fr, which will be described later, and inputs a predetermined first period after the polarity switching signal Spn has changed to a high level. The feed speed setting signal Fr changes to the Low level when the specific phase is reached, and the feed speed setting signal Fr is changed after a predetermined second period has elapsed since the polarity switching signal Spn changed to the Low level. A polarity switching signal Spn that changes to a high level when the specific phase is reached is output. As the specific phase of the feed speed setting signal Fr, one of the following three is selected and set. The specific phase when changing the polarity switching signal Spn to the Low level and the specific phase when changing to the High level may be set to different phases.
1) The specific phase is set while the feed speed setting signal Fr during the normal feed period is decelerating. That is, it is set during a period in which Fr ≧ 0 and the differential value dFr / dt <0 of the feed speed setting signal Fr.
2) The specific phase is set to a phase at which the feed speed setting signal Fr during the normal feed period starts to decelerate. That is, Fr ≧ 0 and dFr / dt is first set to a negative value.
3) The specific phase is set to a phase where the feeding speed setting signal Fr during the normal feeding period ends deceleration. That is, the phase is set such that Fr = 0 and dFr / dt <0.

電極プラス極性スイッチング素子駆動回路EPDは、上記の極性切換信号SpnがHighレベルのとき電極プラス極性スイッチング素子駆動信号Epdを出力する。電極マイナス極性スイッチング素子駆動回路ENDは、上記の極性切換信号SpnがLowレベルのとき電極マイナス極性スイッチング素子駆動信号Endを出力する。したがって、極性切換信号SpnがHighレベルのときは電極プラス極性EPになり、Lowレベルのときは電極マイナス極性ENになる。   The electrode positive polarity switching element drive circuit EPD outputs the electrode positive polarity switching element drive signal Epd when the polarity switching signal Spn is at a high level. The electrode negative polarity switching element drive circuit END outputs an electrode negative polarity switching element drive signal End when the polarity switching signal Spn is at a low level. Accordingly, when the polarity switching signal Spn is at a high level, the electrode has a positive polarity EP, and when it is at a low level, the electrode has a negative polarity EN.

出力電圧設定回路ERは、予め定めた出力電圧設定信号Erを出力する。出力電圧検出回路EDは、上記の高周波変圧器INTの2次出力の交流電圧(出力電圧E)を検出し絶対値に変換し平滑して、出力電圧検出信号Edを出力する。   The output voltage setting circuit ER outputs a predetermined output voltage setting signal Er. The output voltage detection circuit ED detects the secondary output AC voltage (output voltage E) of the high-frequency transformer INT, converts it to an absolute value, smoothes it, and outputs an output voltage detection signal Ed.

電圧誤差増幅回路EAは、上記の出力電圧設定信号Erと出力電圧検出信号Edとの誤差を増幅して、電圧誤差増幅信号Eaを出力する。この回路によって溶接装置は定電圧特性となる。駆動回路DVは、上記の電圧誤差増幅信号Eaを入力として、電圧誤差増幅信号Eaに基づいてPWM変調制御を行い、上記のインバータ回路INVを駆動するための駆動信号Dvを出力する。   The voltage error amplification circuit EA amplifies an error between the output voltage setting signal Er and the output voltage detection signal Ed, and outputs a voltage error amplification signal Ea. With this circuit, the welding apparatus has constant voltage characteristics. The drive circuit DV receives the voltage error amplification signal Ea, performs PWM modulation control based on the voltage error amplification signal Ea, and outputs a drive signal Dv for driving the inverter circuit INV.

平均送給速度設定回路FARは、予め定めた平均送給速度設定信号Farを出力する。   The average feed speed setting circuit FAR outputs a predetermined average feed speed setting signal Far.

振幅設定回路WFRは、予め定めた振幅設定信号Wfrを出力する。周波数設定回路SFRは、予め定めた周波数設定信号Sfrを出力する。   The amplitude setting circuit WFR outputs a predetermined amplitude setting signal Wfr. The frequency setting circuit SFR outputs a predetermined frequency setting signal Sfr.

送給速度設定回路FRは、上記の平均送給速度設定信号Far、上記の振幅設定信号Wfr及び上記の周波数設定信号Sfrを入力として、振幅設定信号Wfrによって定まる振幅及び周波数設定信号Sfrの逆数である周期設定値によって定まる周期で正負形状に変化する予め定めた台形波を、1周期ごとの平均送給速度Faが平均送給速度設定信号Farと等しくなる値だけ正送側にシフトした波形となる、送給速度設定信号Frを出力する。この送給速度設定信号Frについては、図2で詳述する。送給速度設定信号Frの波形は、台形波以外に正弦波、三角波であっても良い。   The feed speed setting circuit FR receives the average feed speed setting signal Far, the amplitude setting signal Wfr, and the frequency setting signal Sfr, and receives the amplitude determined by the amplitude setting signal Wfr and the reciprocal of the frequency setting signal Sfr. A predetermined trapezoidal wave that changes into a positive and negative shape with a period determined by a certain period setting value is a waveform in which the average feeding speed Fa for each period is shifted to the positive feeding side by a value equal to the average feeding speed setting signal Far The feed speed setting signal Fr is output. The feed speed setting signal Fr will be described in detail with reference to FIG. The waveform of the feed speed setting signal Fr may be a sine wave or a triangular wave in addition to the trapezoidal wave.

送給制御回路FCは、上記の送給速度設定信号Frを入力として、送給速度設定信号Frの値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力する。   The feed control circuit FC receives the feed speed setting signal Fr and receives a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the value of the feed speed setting signal Fr. It outputs to said feed motor WM.

図2は、本発明の実施の形態1に係る正逆送給交流アーク溶接方法を示す、図1の溶接装置における各信号のタイミングチャートである。同図(A)は送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は極性切換信号Spnの時間変化を示す。以下、同図を参照して各信号の動作について説明する。   FIG. 2 is a timing chart of each signal in the welding apparatus of FIG. 1 showing the forward / reverse feeding AC arc welding method according to the first embodiment of the present invention. (A) shows the time change of the feeding speed Fw, (B) shows the time change of the welding current Iw, (C) shows the time change of the welding voltage Vw, (D) ) Shows the time change of the polarity switching signal Spn. Hereinafter, the operation of each signal will be described with reference to FIG.

同図(D)に示すように、極性切換信号Spnは、時刻t17以前の期間中はLowレベル(電極マイナス極性EN)となり、時刻t17〜t37の期間中はHighレベル(電極プラス極性EP)となり、時刻t37〜t57の期間中はLowレベル(電極マイナス極性EN)となり、時刻t57以降の期間中はHighレベル(電極プラス極性EP)となる。極性切換信号Spnは、時刻t17〜t57を1周期として繰り返される。   As shown in FIG. 4D, the polarity switching signal Spn is at the low level (electrode negative polarity EN) during the period before time t17, and is at the high level (electrode positive polarity EP) during the period from time t17 to t37. During the period from time t37 to t57, the level is Low (electrode minus polarity EN), and during the period after time t57, the level is High (electrode plus polarity EP). The polarity switching signal Spn is repeated with time t17 to t57 as one cycle.

同図(A)に示す送給速度Fwは、図1の送給速度設定回路FRから出力される送給速度設定信号Frの値に制御される。送給速度設定信号Frは、振幅設定信号Wfrによって定まる振幅Wf及び周波数設定信号Sfrによって定まる周波数Sfの逆数となる周期で正負形状に変化する予め定めた台形波を、1周期ごとの平均送給速度Faが予め定めた平均送給速度設定信号Farと等しくなる値だけ正送側にシフトした波形となる。このために、同図(A)の破線で示すように、平均送給速度Faは、電極プラス極性期間中も電極マイナス極性期間中も等しくなる。   The feed speed Fw shown in FIG. 6A is controlled to the value of the feed speed setting signal Fr output from the feed speed setting circuit FR of FIG. The feed speed setting signal Fr is an average feed for each period of a predetermined trapezoidal wave that changes into a positive / negative shape with a period that is the reciprocal of the amplitude Wf determined by the amplitude setting signal Wfr and the frequency Sf determined by the frequency setting signal Sfr. The waveform is shifted to the forward feed side by a value at which the speed Fa is equal to a predetermined average feed speed setting signal Far. For this reason, as indicated by a broken line in FIG. 5A, the average feed speed Fa is equal during both the electrode positive polarity period and the electrode negative polarity period.

同図(A)に示すように、送給速度Fwは、時刻t1〜t2、時刻t2〜t3、時刻t3〜t4、時刻t4〜t5及び時刻t5〜t6がそれぞれ1周期となっている。   As shown in FIG. 5A, the feed speed Fw is one period from time t1 to t2, time t2 to t3, time t3 to t4, time t4 to t5, and time t5 to t6.

同図(A)に示すように、送給速度Fwは、時刻t1〜t14の逆送期間は、それぞれ所定の逆送加速期間、逆送ピーク期間、逆送ピーク値及び逆送減速期間から形成され、時刻t14〜t2の正送期間は、それぞれ所定の正送加速期間、正送ピーク期間、正送ピーク値及び正送減速期間から形成される。同図(D)に示すように、極性切換信号Spnは、時刻t17以前はLowレベルであるので、電極マイナス極性ENとなる。このために、同図(B)に示す溶接電流Iw及び同図(C)に示す溶接電圧Vwは負の値となる。時刻t17において、極性切換信号SpnがHighレベルに変化するので、電極プラス極性EPとなる。このために、溶接電流Iw及び溶接電圧Vwは正の値となる。すなわち、時刻t17において、電極極性が電極マイナス極性ENから電極プラス極性EPに切り換わる。   As shown in FIG. 4A, the feed speed Fw is formed from a predetermined reverse feed acceleration period, reverse feed peak period, reverse feed peak value, and reverse feed deceleration period in the reverse feed period from time t1 to t14. The normal feed period from time t14 to t2 is formed from a predetermined normal feed acceleration period, a normal feed peak period, a normal feed peak value, and a normal feed deceleration period, respectively. As shown in FIG. 4D, the polarity switching signal Spn is at the low level before time t17, and therefore has the electrode minus polarity EN. For this reason, the welding current Iw shown in the figure (B) and the welding voltage Vw shown in the figure (C) become negative values. At time t17, the polarity switching signal Spn changes to the high level, so that the electrode has a positive polarity EP. For this reason, the welding current Iw and the welding voltage Vw are positive values. That is, at time t17, the electrode polarity is switched from the electrode negative polarity EN to the electrode positive polarity EP.

[時刻t1〜t14の逆送期間の動作]
同図(A)に示すように、送給速度Fwは時刻t1〜t11の逆送加速期間に入り、0から上記の逆送ピーク値まで加速する。この期間中は短絡状態が継続している。この期間は電極マイナス極性ENであり、Iw≦0及びvw≦0である。
[Operation in the reverse feed period from time t1 to t14]
As shown in FIG. 5A, the feed speed Fw enters the reverse feed acceleration period from time t1 to t11, and accelerates from 0 to the reverse feed peak value. During this period, the short-circuit state continues. This period is electrode negative polarity EN, and Iw ≦ 0 and vw ≦ 0.

時刻t11において逆送加速期間が終了すると、同図(A)に示すように、送給速度Fwは時刻t11〜t13の逆送ピーク期間に入り、上記の逆送ピーク値になる。この期間中の時刻t12において、逆送及び溶接電流Iwの通電によるピンチ力によってアークが発生する。これに応動して、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増し、同図(B)に示すように、溶接電流Iwはこれ以降のアーク期間中は次第に減少する。この期間は電極マイナス極性ENであるので、Iw≦0及びVw≦0となる。   When the reverse acceleration period ends at time t11, as shown in FIG. 5A, the feeding speed Fw enters the reverse peak period at times t11 to t13, and becomes the reverse peak value described above. At time t12 during this period, an arc is generated by the pinch force generated by reverse feeding and energization of the welding current Iw. In response to this, the welding voltage Vw suddenly increases to an arc voltage value of several tens of volts as shown in FIG. 5C, and the welding current Iw is set to the arc period thereafter, as shown in FIG. The inside gradually decreases. Since this period is the electrode negative polarity EN, Iw ≦ 0 and Vw ≦ 0.

時刻t13において逆送ピーク期間が終了すると、同図(A)に示すように、時刻t13〜t14の逆送減速期間に入り、上記の逆送ピーク値から0へと減速する。この期間中は、アーク期間が継続している。この期間は電極マイナス極性ENであるので、Iw≦0及びVw≦0である。   When the reverse feed peak period ends at time t13, as shown in FIG. 5A, the reverse feed deceleration period starts at times t13 to t14 and decelerates from the reverse feed peak value to zero. During this period, the arc period continues. Since this period is the electrode negative polarity EN, Iw ≦ 0 and Vw ≦ 0.

[時刻t14〜t2の正送期間の動作]
同図(A)に示すように、送給速度Fwは時刻t14〜t15の正送加速期間に入り、0から上記の正送ピーク値まで加速する。この期間中は、アーク期間のままである。この期間は電極マイナス極性ENであるので、Iw≦0及びVw≦0である。
[Operation in the forward feed period from time t14 to t2]
As shown in FIG. 5A, the feed speed Fw enters the forward feed acceleration period from time t14 to t15, and accelerates from 0 to the forward feed peak value. During this period, the arc period remains. Since this period is the electrode negative polarity EN, Iw ≦ 0 and Vw ≦ 0.

時刻t15において正送加速期間が終了すると、同図(A)に示すように、送給速度Fwは時刻t15〜t17の正送ピーク期間に入り、上記の正送ピーク値になる。この期間中の時刻t16において、正送によって短絡が発生する。これに応動して、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwはこれ以降の短絡期間中は次第に増加する。この期間は電極マイナス極性ENであるので、Iw≦0及びVw≦0である。   When the forward feed acceleration period ends at time t15, the feed speed Fw enters the forward feed peak period from time t15 to t17, as shown in FIG. At time t16 during this period, a short circuit occurs due to normal feeding. In response to this, the welding voltage Vw rapidly decreases to a short-circuit voltage value of several V as shown in FIG. 5C, and the welding current Iw is maintained during the subsequent short-circuit period as shown in FIG. Gradually increases. Since this period is the electrode negative polarity EN, Iw ≦ 0 and Vw ≦ 0.

時刻t17において正送ピーク期間が終了すると、同図(A)に示すように、時刻t17〜t2の正送減速期間に入り、上記の正送ピーク値から0へと減速する。この期間中は、短絡期間が継続している。また、時刻t15において、極性切換信号SpnがLowレベルである期間が予め定めた第2期間と等しくなるが、送給速度Fwが特定位相になるまではLowレベルを維持する。ここで、送給速度Fwの特定位相は、時刻t17〜t2の正送減速期間中に設定される。同図では、特定位相が時刻t17の正送減速期間の開始時点に設定された場合である。時刻t17において、極性切換信号SpnがLowレベルである期間が第2期間以上となり、かつ、送給速度Fwが特定位相になったために、極性切換信号SpnはLowレベルからHighレベルへと切り換わる。これに伴い、電極極性は電極マイナス極性ENから電極プラス極性EPへと切り換わる。したがって、この期間中は、Iw≧0及びVw≧0となる。   When the forward feed peak period ends at time t17, as shown in FIG. 5A, the forward feed deceleration period of time t17 to t2 starts, and the forward feed peak value decelerates to zero. During this period, the short circuit period continues. At time t15, the period during which the polarity switching signal Spn is at the low level is equal to the predetermined second period, but the low level is maintained until the feeding speed Fw reaches the specific phase. Here, the specific phase of the feed speed Fw is set during the forward feed deceleration period from time t17 to t2. In this figure, the specific phase is set at the start time of the forward feed deceleration period at time t17. At time t17, the polarity switching signal Spn is switched from the Low level to the High level because the period during which the polarity switching signal Spn is at the Low level is equal to or longer than the second period and the feed speed Fw is in the specific phase. Accordingly, the electrode polarity is switched from the electrode negative polarity EN to the electrode positive polarity EP. Therefore, during this period, Iw ≧ 0 and Vw ≧ 0.

時刻t2〜t3の期間中は、上記の逆送期間及び上記の正送期間の動作を繰り返す。但し、極性切換信号SpnはHighレベルであるので、電極プラス極性EPとなる。このために、Iw≧0及びVw≧0となる。   During the period from the time t2 to the time t3, the operations of the reverse transmission period and the normal transmission period are repeated. However, since the polarity switching signal Spn is at a high level, the electrode has a positive polarity EP. For this reason, Iw ≧ 0 and Vw ≧ 0.

同図(A)に示すように、送給速度Fwの時刻t3〜t4の周期中の正送加速期間の開始時点t34において、極性切換信号SpnがHighレベルである期間(時刻t17〜t34)が予め定めた第1期間と等しくなる。しかし、送給速度Fwが特定位相になる正送減速期間の開始時点t37まではHighレベルを維持する。同図(D)に示すように、時刻t37において、極性切換信号SpnがHighレベルである期間が第1期間以上となり、かつ、送給速度Fwが特定位相になったために、極性切換信号SpnはHighレベルからLowレベルへと切り換わる。これに伴い、電極極性は電極プラス極性EPから電極マイナス極性ENへと切り換わる。したがって、時刻t37移行の期間中は、Iw≦0及びVw≦0となる。   As shown in FIG. 5A, at the start time t34 of the forward feed acceleration period during the period of the feed speed Fw from time t3 to t4, the period during which the polarity switching signal Spn is at the high level (time t17 to t34). It becomes equal to the predetermined first period. However, the high level is maintained until the start time t37 of the forward feed deceleration period in which the feed speed Fw becomes a specific phase. As shown in FIG. 4D, at time t37, the period when the polarity switching signal Spn is at the high level is equal to or longer than the first period, and the feeding speed Fw is in a specific phase, so the polarity switching signal Spn is Switch from High level to Low level. Accordingly, the electrode polarity is switched from the electrode positive polarity EP to the electrode negative polarity EN. Therefore, Iw ≦ 0 and Vw ≦ 0 during the transition to time t37.

同図(A)に示すように、送給速度Fwの時刻t5〜t6の周期中の正送ピーク期間の開始時点t55において、極性切換信号SpnがLowレベルである期間(時刻t37〜t55)が上記の第2期間と等しくなる。しかし、送給速度Fwが特定位相になる正送減速期間の開始時点t57まではLowレベルを維持する。同図(D)に示すように、時刻t57において、極性切換信号SpnがLowレベルである期間が第2期間以上となり、かつ、送給速度Fwが特定位相になったために、極性切換信号SpnはLowレベルからHighレベルへと切り換わる。これに伴い、電極極性は電極マイナス極性ENから電極プラス極性EPへと切り換わる。したがって、時刻t57移行の期間中は、Iw≧0及びVw≧0となる。   As shown in FIG. 5A, at the start time t55 of the forward feed peak period in the period from the time t5 to the time t6 of the feed speed Fw, the period during which the polarity switching signal Spn is at the low level (time t37 to t55) It becomes equal to said 2nd period. However, the Low level is maintained until the start time t57 of the forward feed deceleration period in which the feed speed Fw becomes a specific phase. As shown in FIG. 4D, at time t57, the polarity switching signal Spn is low because the period during which the polarity switching signal Spn is at the low level is equal to or longer than the second period and the feed speed Fw is in a specific phase. The level switches from Low level to High level. Accordingly, the electrode polarity is switched from the electrode negative polarity EN to the electrode positive polarity EP. Therefore, Iw ≧ 0 and Vw ≧ 0 during the transition to time t57.

これ以降の期間は、上記の動作を繰り返すことになる。   In the subsequent period, the above operation is repeated.

送給速度Fwの台形波の数値例を以下に示す。送給速度Fwの周波数Sf=100Hzであり、振幅Wf=60m/minである。また、極性切換信号Spnの切換周波数は25Hz(周期は40ms)である。   A numerical example of the trapezoidal wave of the feeding speed Fw is shown below. The frequency Sf = 100 Hz of the feeding speed Fw and the amplitude Wf = 60 m / min. The switching frequency of the polarity switching signal Spn is 25 Hz (period is 40 ms).

上記の極性切換信号Spnの切換周波数は送給速度Fwの周波数よりも小さな値に設定され、その設定範囲は約50Hz以下である。送給速度の周波数の設定範囲は、60〜150Hz程度である。   The switching frequency of the polarity switching signal Spn is set to a value smaller than the frequency of the feeding speed Fw, and the setting range is about 50 Hz or less. The setting range of the frequency of the feeding speed is about 60 to 150 Hz.

発明者らの実験によれば、電極プラス極性EPへの切換タイミング及び電極マイナス極性ENへの切換タイミングをそれぞれ送給速度fwの一定の位相で行うことによって、溶接状態が安定化することを確認した。この理由は、電極極性の切換タイミングにおける送給速度Fwの位相が一定でない場合には、電極極性の切換タイミングにおける様々な溶融状態が混在することになり、溶接状態が不安定になっていた。これに対して、送給速度Fwの一定の位相で電極極性が切り換わると、切り換わり時の溶融状態が一定となり、溶接状態が安定化することになる。さらに、発明者らは、電極極性の切換タイミングを、逆送加速期間、逆送ピーク期間、逆送減速期間、正送加速期間、正送ピーク期間又は正送減速期間のどの期間に行うと溶接状態がより安定化するかを実験した。この結果、電極極性の切換タイミングを正送減速期間中の特定位相で行うことによって、溶接状態がより安定化することを確認した。   According to the experiments by the inventors, it has been confirmed that the welding state is stabilized by performing the switching timing to the electrode positive polarity EP and the switching timing to the electrode negative polarity EN at a constant phase of the feed speed fw. did. This is because, when the phase of the feed speed Fw at the electrode polarity switching timing is not constant, various melting states at the electrode polarity switching timing are mixed, and the welding state is unstable. On the other hand, when the electrode polarity is switched at a constant phase of the feed speed Fw, the molten state at the time of switching becomes constant and the welding state is stabilized. Further, the inventors perform welding when the electrode polarity switching timing is performed in any of the reverse feed acceleration period, the reverse feed peak period, the reverse feed deceleration period, the forward feed acceleration period, the forward feed peak period, or the forward feed deceleration period. An experiment was conducted to see if the state became more stable. As a result, it was confirmed that the welding state was further stabilized by performing the electrode polarity switching timing at a specific phase during the forward feed deceleration period.

上述した実施の形態1によれば、電極極性の切換を、送給速度が特定位相であるときに行う。望ましくは、特定位相として、正送期間中の送給速度が減速している期間中に設定する。また、望ましくは、特定位相として、正送期間中の送給速度が減速を開始する位相に設定する。また、望ましくは、特定位相として、正送期間中の送給速度が減速を終了する位相に設定する。これにより、本実施の形態では、電極極性の切換タイミングが、送給速度の一定の位相で行われることになる。このために、本実施の形態では、電極極性の切換時の溶接状態を安定化することができる。   According to the first embodiment described above, the electrode polarity is switched when the feeding speed is the specific phase. Preferably, the specific phase is set during a period in which the feeding speed during the normal feeding period is decelerating. Preferably, the specific phase is set to a phase at which the feeding speed during the normal feeding period starts to decelerate. Desirably, the specific phase is set to a phase where the feeding speed during the normal feeding period ends deceleration. Thereby, in this Embodiment, the switch timing of electrode polarity is performed with the fixed phase of a feeding speed. For this reason, in this Embodiment, the welding state at the time of switching of electrode polarity can be stabilized.

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
D2 二次整流器群
DV 駆動回路
Dv 駆動信号
E 出力電圧
EA 電圧誤差増幅回路
Ea 電圧誤差増幅信号
ED 出力電圧検出回路
Ed 出力電圧検出信号
EN 電極マイナス極性
END 電極マイナス極性スイッチング素子駆動回路
End 電極マイナス極性スイッチング素子駆動信号
EP 電極プラス極性
EPD 電極プラス極性スイッチング素子駆動回路
Epd 電極プラス極性スイッチング素子駆動信号
ER 出力電圧設定回路
Er 出力電圧設定信号
Fa 平均送給速度
FAR 平均送給速度設定回路
Far 平均送給速度設定信号
FC 送給制御回路
Fc 送給制御信号
FR 送給速度設定回路
Fr 送給速度設定信号
Fw 送給速度
INT 高周波変圧器
INV インバータ回路
Iw 溶接電流
NTR 電極マイナス極性スイッチング素子
PTR 電極プラス極性スイッチング素子
Sf 送給速度の周波数
SFR 周波数設定回路
Sfr 周波数設定信号
SPN 極性切換信号生成回路
Spn 極性切換信号
Vw 溶接電圧
Wf 送給速度の振幅
WFR 振幅設定回路
Wfr 振幅設定信号
WL リアクトル
WM 送給モータ
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll D2 Secondary rectifier group DV Drive circuit Dv Drive signal E Output voltage EA Voltage error amplification circuit Ea Voltage error amplification signal ED Output voltage detection circuit Ed Output voltage detection signal EN Electrode minus polarity END Electrode minus polarity switching element drive circuit End Electrode minus polarity switching element drive signal EP Electrode plus polarity EPD Electrode plus polarity switching element drive circuit Epd Electrode plus polarity switching element drive signal ER Output voltage setting circuit Er Output voltage setting signal Fa Average feed rate FAR Average feed rate setting circuit Far Average feed rate setting signal FC Feed control circuit Fc Feed control signal FR Feed rate setting circuit Fr Feed rate setting signal Fw Feed rate INT High frequency transformer INV Inverter Circuit Iw Welding current NTR Electrode marker Eggplant polarity switching element PTR Electrode plus polarity switching element Sf Feeding speed frequency SFR Frequency setting circuit Sfr Frequency setting signal SPN Polarity switching signal generation circuit Spn Polarity switching signal Vw Welding voltage Wf Feeding speed amplitude WFR Amplitude setting circuit Wfr Amplitude setting Signal WL Reactor WM Feed motor

Claims (1)

溶接ワイヤの送給速度を正送期間と逆送期間とに交互に切り換え、電極極性を電極プラス極性と電極マイナス極性とに交互に切り換えて溶接する正逆送給交流アーク溶接方法において、
前記電極極性の切換を、前記送給速度が特定位相であるときに行い、
前記特定位相を、前記正送期間中の前記送給速度が減速している期間中、又は、前記正送期間中の前記送給速度が減速を終了する位相に設定する、
ことを特徴とする正逆送給交流アーク溶接方法。
In the forward / reverse feed AC arc welding method in which the welding wire feeding speed is alternately switched between the forward feeding period and the reverse feeding period, and the electrode polarity is alternately switched between the electrode positive polarity and the electrode negative polarity, and welding is performed.
The electrode polarity is switched when the feeding speed is a specific phase ,
The specific phase is set to a phase during which the feeding speed during the normal feeding period is decelerated, or a phase where the feeding speed during the normal feeding period ends deceleration.
A forward / reverse feed AC arc welding method characterized by the above.
JP2015189551A 2015-09-28 2015-09-28 Forward / reverse feed AC arc welding method Active JP6601870B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015189551A JP6601870B2 (en) 2015-09-28 2015-09-28 Forward / reverse feed AC arc welding method
CN201610561067.1A CN106552984B (en) 2015-09-28 2016-07-15 Positive and negative feed alternating current arc welding method
KR1020160096010A KR102473580B1 (en) 2015-09-28 2016-07-28 Direct and inverse feeding ac arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189551A JP6601870B2 (en) 2015-09-28 2015-09-28 Forward / reverse feed AC arc welding method

Publications (2)

Publication Number Publication Date
JP2017064721A JP2017064721A (en) 2017-04-06
JP6601870B2 true JP6601870B2 (en) 2019-11-06

Family

ID=58418359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189551A Active JP6601870B2 (en) 2015-09-28 2015-09-28 Forward / reverse feed AC arc welding method

Country Status (3)

Country Link
JP (1) JP6601870B2 (en)
KR (1) KR102473580B1 (en)
CN (1) CN106552984B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004257B2 (en) * 2017-11-09 2022-01-21 株式会社ダイヘン Welding power supply
CN113825582B (en) * 2019-05-22 2023-02-28 松下知识产权经营株式会社 Arc welding method and arc welding device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521266B1 (en) 1967-07-18 1977-01-13
US7102099B2 (en) * 2002-07-23 2006-09-05 Illinois Tool Works Inc. Method and apparatus for feeding wire to a welding arc
US7165707B2 (en) * 2002-07-23 2007-01-23 Illinois Tool Works Inc. Method and apparatus for feeding wire to a welding arc
JP2006142317A (en) * 2004-11-17 2006-06-08 Daihen Corp Polarity switching short circuiting arc welding method
JP5090765B2 (en) * 2007-03-29 2012-12-05 株式会社ダイヘン Feed control method for consumable electrode AC arc welding
JP5191508B2 (en) * 2010-06-16 2013-05-08 独立行政法人物質・材料研究機構 Arc welding method
JP5408364B2 (en) * 2011-06-03 2014-02-05 パナソニック株式会社 Arc welding control method and arc welding apparatus
CN103260807B (en) * 2011-07-12 2015-01-21 松下电器产业株式会社 Arc welding control method and arc welding device
JP6125932B2 (en) * 2013-07-10 2017-05-10 株式会社ダイヘン Power supply apparatus for arc welding and control method for power supply apparatus for arc welding
JP6007879B2 (en) * 2013-09-19 2016-10-12 株式会社安川電機 Arc welding apparatus, arc welding method, and arc welding system
KR102193084B1 (en) * 2014-01-15 2020-12-18 가부시키가이샤 다이헨 Arc welding control method
KR102178235B1 (en) * 2014-02-18 2020-11-12 가부시키가이샤 다이헨 Arc-welding power supply

Also Published As

Publication number Publication date
KR102473580B1 (en) 2022-12-05
CN106552984A (en) 2017-04-05
JP2017064721A (en) 2017-04-06
CN106552984B (en) 2020-07-07
KR20170037814A (en) 2017-04-05

Similar Documents

Publication Publication Date Title
EP3192607B1 (en) Arc welding control method
EP3108989B1 (en) Arc-welding power supply
JP6537137B2 (en) Reverse feed arc welding method
EP3222382B1 (en) Arc welding control method
JP6601870B2 (en) Forward / reverse feed AC arc welding method
JPWO2015163101A1 (en) Arc welding control method
WO2018131345A1 (en) Arc start control method for forward and reverse feeding arc welding
JPWO2016027638A1 (en) Arc welding control method
WO2016125540A1 (en) Arc welding control method
JP6593919B2 (en) Forward / reverse feed AC arc welding method
JP6593924B2 (en) Arc welding control method
JP6460821B2 (en) Arc welding control method
JP6663617B2 (en) Arc welding control method
JP6377427B2 (en) Arc welding control method
WO2016117228A1 (en) Control method for arc welding
JP2016150350A (en) Arc welding control method
JP6516291B2 (en) Reverse feed arc welding method
JP6593923B2 (en) Arc welding control method
WO2016075891A1 (en) Arc welding control method and arc welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191003

R150 Certificate of patent or registration of utility model

Ref document number: 6601870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250