WO2016125540A1 - Arc welding control method - Google Patents

Arc welding control method Download PDF

Info

Publication number
WO2016125540A1
WO2016125540A1 PCT/JP2016/050683 JP2016050683W WO2016125540A1 WO 2016125540 A1 WO2016125540 A1 WO 2016125540A1 JP 2016050683 W JP2016050683 W JP 2016050683W WO 2016125540 A1 WO2016125540 A1 WO 2016125540A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
feed
circuit
welding
reverse
Prior art date
Application number
PCT/JP2016/050683
Other languages
French (fr)
Japanese (ja)
Inventor
章博 井手
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Priority to CN201680003498.4A priority Critical patent/CN107107241B/en
Priority to JP2016573250A priority patent/JPWO2016125540A1/en
Publication of WO2016125540A1 publication Critical patent/WO2016125540A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Definitions

  • the present invention relates to an arc welding control method for performing welding by generating a short circuit period and an arc period by performing forward / reverse feed control for alternately switching a feeding speed of a welding wire between a forward feed period and a reverse feed period. It is.
  • a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding.
  • the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
  • the average value of the feeding speed according to the welding current set value is used, and the frequency and amplitude of the forward and reverse feeding of the welding wire are values according to the welding current set value.
  • welding is performed by performing forward / reverse feed control in which the feed speed of the welding wire is switched alternately between a forward feed period and a reverse feed period at a predetermined frequency.
  • forward / reverse feed control when the droplet transfer mode is the short-circuit transfer mode, a short circuit occurs in synchronization with the normal feed period, and an arc is generated in synchronization with the reverse feed period. It becomes a state.
  • the droplet transfer form becomes a globule transfer form
  • a large lifting force acts on the droplet from the arc, so that the occurrence of a short circuit is inhibited and a short circuit occurs irregularly.
  • the number of short circuits per second is less than 40 times.
  • the frequency of the forward / reverse feed control is also set to less than 40 Hz.
  • an asynchronous state in which a short-circuit does not occur in synchronization with the normal feeding period is occasionally caused.
  • the conventional technique has a problem that an unstable welding state in which a large amount of spatter is generated may occur.
  • an object of the present invention is to provide an arc welding control method in which a good welding state is obtained in a globule transition mode in arc welding by forward / reverse feed control.
  • the arc welding control method of the present invention includes: In the arc welding control method of performing welding by generating a short circuit period and an arc period by performing forward / reverse feed control for alternately switching the feeding speed of the welding wire between the forward feed period and the reverse feed period,
  • the waveform parameter of the feed rate is set so that the frequency for switching the feed rate between the forward feed period and the reverse feed period is in the range of 70 to 120 Hz. To It is characterized by that.
  • the shielding gas is carbon dioxide
  • the welding wire is made of iron
  • the welding wire has a diameter of 1.2 mm
  • the globule transition form has an average welding current.
  • the arc welding control method of the present invention calculates a synchronous short-circuit ratio during the forward / reverse feed control, automatically adjusts the waveform parameter so that the synchronous short-circuit ratio becomes a maximum value, and the synchronous short-circuit ratio is It is a ratio of the number of short circuits that occurred during the normal feeding period to the number of times of the normal feeding period in a unit time. It is characterized by that.
  • the arc welding control method of the present invention starts transition to the reverse feed period when the short-circuit period occurs during the forward feed period, and starts the transition to the forward feed period when the arc period occurs during the reverse feed period. Start the migration, It is characterized by that.
  • a substantially complete synchronization state in which the short circuit period and the arc period are generated in synchronization with the frequency of the feeding speed is obtained. For this reason, it is possible to perform high-quality welding with a small bead appearance and a small amount of spatter generation.
  • the feed speed is set so that the frequency at which the feed speed is switched between the forward feed period and the reverse feed period is in the range of 70 to 120 Hz.
  • the waveform parameter is a frequency. Therefore, in the invention of Embodiment 1, the frequency setting signal Sfr is set to the above frequency range.
  • FIG. 1 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
  • the power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to a drive signal Dv described later, and outputs an output voltage E.
  • a commercial power supply such as a three-phase 200V
  • the power supply main circuit PM is driven by a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, and the drive signal Dv that converts the smoothed direct current to high-frequency alternating current.
  • An inverter circuit a high-frequency transformer that steps down the high-frequency alternating current to a voltage value suitable for welding, and a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current.
  • the reactor WL smoothes the output voltage E described above.
  • the inductance value of the reactor WL is, for example, 200 ⁇ H.
  • the feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed.
  • a motor with fast transient response is used as the feed motor WM.
  • the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
  • the welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the base metal 2 and the welding wire 1.
  • a welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
  • the average feed speed setting circuit FAR outputs a predetermined average feed speed setting signal Far.
  • the frequency setting circuit SFR outputs a predetermined frequency setting signal Sfr.
  • the amplitude setting circuit WFR outputs a predetermined amplitude setting signal Wfr.
  • the feed speed setting circuit FR receives the average feed speed setting signal Far, the frequency setting signal Sfr, and the amplitude setting signal Wfr, and receives the amplitude Wf determined by the amplitude setting signal Wfr and the inverse of the frequency setting signal Sfr.
  • a feed speed setting signal Fr having a waveform obtained by shifting a predetermined trapezoidal wave changing to a positive / negative symmetrical shape with a period Tf determined by the period set value to the forward feed side by the value of the average feed speed setting signal Far is output. To do.
  • the feed speed setting signal Fr will be described in detail with reference to FIG.
  • the feed control circuit FC receives the feed speed setting signal Fr and receives a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the value of the feed speed setting signal Fr. It outputs to said feed motor WM.
  • the output voltage setting circuit ER outputs a predetermined output voltage setting signal Er.
  • the output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.
  • the voltage error amplification circuit EV receives the output voltage setting signal Er and the output voltage detection signal Ed, and amplifies an error between the output voltage setting signal Er (+) and the output voltage detection signal Ed ( ⁇ ).
  • the voltage error amplification signal Ev is output.
  • the drive circuit DV receives the voltage error amplification signal Ev, performs PWM modulation control based on the voltage error amplification signal Ev, and outputs a drive signal Dv for driving the inverter circuit in the power supply main circuit PM. To do.
  • FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1, showing the arc welding control method according to the first embodiment of the present invention.
  • FIG. 4A shows the time change of the feeding speed Fw
  • FIG. 3B shows the time change of the welding current Iw
  • FIG. 4C shows the time change of the welding voltage Vw.
  • the feed speed Fw shown in FIG. 6A is controlled to the value of the feed speed setting signal Fr output from the feed speed setting circuit FR of FIG.
  • the waveform is shifted to the forward feed side by the value of the feed speed setting signal Far. For this reason, as shown in FIG.
  • the feed speed Fw has an amplitude Wf that is symmetrical in the vertical direction with the average feed speed Fa indicated by a broken line determined by the average feed speed setting signal Far as a reference line. It becomes a trapezoidal wave-shaped feeding speed pattern determined in advance with the period Tf. That is, the amplitude above the reference line and the amplitude below the reference line have the same value, and the period above and below the reference line have the same value.
  • the reverse feed period from time t1 to t5 is a predetermined reverse feed acceleration period and reverse feed peak, respectively.
  • Period, reverse feed peak value and reverse feed deceleration period, and the forward feed period from time t5 to t9 is formed from a predetermined forward feed acceleration period, forward feed peak period, forward feed peak value and forward feed deceleration period, respectively.
  • the feed speed Fw enters the reverse feed acceleration period from time t1 to t2, and accelerates from 0 to the reverse feed peak value. During this period, the short-circuit state continues.
  • the feed speed Fw enters the reverse peak period from time t2 to t4 and becomes the reverse peak value described above.
  • an arc is generated by the pinch force generated by reverse feeding and energization of the welding current Iw.
  • the welding voltage Vw suddenly increases to an arc voltage value of several tens of volts as shown in FIG. 5C, and the welding current Iw is set to the arc period thereafter, as shown in FIG. The inside gradually decreases.
  • the feed speed Fw enters the forward feed acceleration period from time t5 to t6, and accelerates from 0 to the forward feed peak value. During this period, the arc period remains.
  • a numerical example of the trapezoidal wave of the feeding speed Fw is shown below.
  • amplitude Wf 60 m / min
  • average feed speed Fa 5 m / min
  • each half period of slope 1.2 ms
  • peak period 2.6 ms
  • peak value 30 m
  • the average welding current is about 250A.
  • Each waveform parameter in this case is as follows.
  • FIG. 3 is a diagram showing an appropriate range of the frequency Sf of the feeding speed Fw when arc welding is performed in the globule transition mode.
  • the horizontal axis indicates the frequency Sf [Hz]
  • the vertical axis indicates the synchronous short circuit ratio Rd [%].
  • the synchronous short-circuit ratio Rd is a ratio of the number of short-circuits occurring during the normal feeding period to the number of normal feeding periods within a unit time.
  • Rd 100%, a short circuit has occurred during all the normal feeding periods.
  • Rd 90%, there is an asynchronous state where no short circuit occurs during the normal feed period.
  • the unit time is set to 5 seconds, for example.
  • the welding conditions in the figure are when carbon dioxide gas is used for the shielding gas and a mild steel wire with a diameter of 1.2 mm is used for the welding wire. Under this welding condition, an average welding current value is 200 A or more and a globule transition mode is obtained. If the material of the welding wire is not limited to mild steel but iron, the state in which the average welding current value is 200 A or more is the globule transition mode.
  • the synchronous short-circuit ratio Rd > 99%, and a substantially complete synchronous state in which a short-circuit period and an arc period occur for each cycle of the feeding speed Fw. For this reason, in globule transition welding, high-quality welding with a beautiful bead appearance with less spatter generation can be performed.
  • the frequency Sf is outside this range, many asynchronous short circuits are generated, and the welding state is likely to fall into an unstable state, so that the amount of spatter is increased and the bead appearance is also deteriorated.
  • the appropriate range of the frequency Sf of the feeding speed Fw is in the range of 70 to 120 Hz, and preferably in the range of 80 to 110 Hz.
  • the frequency Sf When the frequency Sf is lower than the above-mentioned appropriate range, the arc period becomes long, the droplets become excessive, and the lifting force acting on the droplets is strong, so that the occurrence of short circuits is hindered and many asynchronous short circuits occur. .
  • the frequency Sf is higher than the above appropriate range, the arc period becomes short, the droplets become excessive, and an asynchronous short circuit is likely to occur.
  • the frequency Sf is in an appropriate range, the droplet formed during the arc period has an appropriate size, and a synchronous short circuit occurs.
  • the appropriate range of the frequency Sf is about 2 to 3 times less than 40 Hz in the prior art.
  • the frequency of the feed rate is set in the range of 70 to 120 Hz.
  • a substantially complete synchronization state in which the short circuit period and the arc period occur in synchronization with the frequency is obtained. For this reason, it is possible to perform high-quality welding with a small bead appearance and a small amount of spatter generation.
  • Embodiment 2 calculates the synchronous short-circuit ratio Rd during forward / reverse feed control, and automatically adjusts the frequency of the feed speed so that the synchronous short-circuit ratio Rd becomes the maximum value.
  • FIG. 4 is a block diagram of a welding power source for carrying out the arc welding control method according to the second embodiment.
  • This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks, and description thereof will not be repeated.
  • This figure is obtained by adding a voltage detection circuit VD, a short circuit determination circuit SD, and a synchronous short circuit ratio calculation circuit RD to FIG. 1 and replacing the frequency setting circuit SFR of FIG. 1 with a second frequency setting circuit SFR2.
  • VD voltage detection circuit
  • SD short circuit
  • RD synchronous short circuit ratio calculation circuit
  • the voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd.
  • the short circuit determination circuit SD receives the voltage detection signal Vd as described above, and when this value is less than the short circuit determination value (about 10 V), it determines that it is a short circuit period and becomes a high level, and when it is above, it is an arc period. And a short circuit determination signal Sd that is at a low level is output.
  • the synchronous short-circuit ratio calculation circuit RD receives the feed speed setting signal Fr and the short-circuit determination signal Sd as input, and counts the number Ns of normal feed periods in a unit time from the feed speed setting signal Fr, and at the same time, The number Nd of times that the short circuit determination signal Sd changes from the Low level to the High level (short circuit) during the transmission period is counted, and (Nd / Ns) ⁇ 100 is calculated and output as the synchronous short circuit ratio signal Rd.
  • the second frequency setting circuit SFR2 outputs a frequency setting signal Sfr changed within a predetermined range, compares the synchronous short circuit ratio signal Rd for each changed frequency setting signal Sfr, and after the comparison, the synchronous short circuit ratio signal Rd is The frequency setting signal Sfr having the maximum value is output.
  • the predetermined range is the appropriate range of 70 to 120 Hz described above with reference to FIG.
  • the value of the frequency setting signal Sfr is changed from 70 Hz to 120 Hz in units of 5 Hz and output.
  • the stored value of the synchronous short-circuit ratio signal Rd is compared, and the frequency setting signal Sfr having the maximum value is fixed and output.
  • the timing chart of each signal in the welding power source in FIG. 4 showing the arc welding control method according to the second embodiment of the present invention is the same as that in FIG. 2 described above. However, the point that the frequency Sf of the feeding speed Fw is automatically adjusted is different.
  • the synchronous short-circuit ratio during the forward / reverse feed control is calculated, and the frequency is automatically adjusted so that the synchronous short-circuit ratio becomes the maximum value. It is the ratio of the number of short circuits that occurred during the normal feed period to the number of feed periods.
  • the shift to the reverse feed period is started when the short-circuit period is reached during the forward feed period, and the shift to the forward feed period is started when the arc period is reached during the reverse feed period.
  • the waveform parameter is at least one of a forward feed acceleration period, a forward feed deceleration period, a reverse feed acceleration period, a reverse feed deceleration period, a forward feed peak value, or a reverse feed peak value.
  • the above waveform parameters are adjusted so that the average value of the frequency of the feeding speed falls within the desired range. That is, in the invention of the third embodiment, since the frequency of the feeding speed is not constant, the waveform parameter is adjusted so that the average value falls within the desired range.
  • FIG. 5 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 3 of the present invention.
  • This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks, and the description thereof will not be repeated.
  • the average feed speed setting circuit FAR, frequency setting circuit SFR and amplitude setting circuit WFR of FIG. 1 are deleted.
  • forward feed acceleration period setting circuit TSUR, forward feed deceleration period setting circuit TSDR, reverse feed acceleration period setting circuit TRUR, reverse feed deceleration period setting circuit TRDR, forward feed amplitude setting circuit WSR, reverse feed amplitude setting circuit WRR, voltage detection A circuit VD and a short circuit determination circuit SD are added.
  • the feed speed setting circuit FR of FIG. 1 is replaced with a second feed speed setting circuit FR2.
  • the forward feed acceleration period setting circuit TSUR outputs a predetermined forward feed acceleration period setting signal Tsur.
  • the forward feed deceleration period setting circuit TSDR outputs a predetermined forward feed deceleration period setting signal Tsdr.
  • the reverse acceleration period setting circuit TRUR outputs a predetermined reverse acceleration period setting signal True.
  • the reverse feed deceleration period setting circuit TRDR outputs a predetermined reverse feed deceleration period setting signal Trdr.
  • the forward feed amplitude setting circuit WSR outputs a predetermined forward feed amplitude setting signal Wsr.
  • the reverse feed amplitude setting circuit WRR outputs a predetermined reverse feed amplitude setting signal Wrr.
  • the voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd.
  • the short circuit determination circuit SD determines that the short circuit is in the short circuit period and becomes High level, and when the voltage detection signal Vd is equal to or higher than the short circuit determination value.
  • a short circuit determination signal Sd which is determined to be in the arc period and becomes Low level is output.
  • the second feed speed setting circuit FR2 includes the forward feed acceleration period setting signal Tsur, the forward feed deceleration period setting signal Tsdr, the reverse feed acceleration period setting signal True, the reverse feed deceleration period setting signal Trdr, The forward feed amplitude setting signal Wsr, the reverse feed amplitude setting signal Wrr and the short circuit determination signal Sd are input, and a feed speed pattern generated by the following processing is output as the feed speed setting signal Fr.
  • the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
  • a feed speed setting signal Fr that linearly decelerates to 0 is output. 4) Subsequently, during the reverse feed acceleration period Tru determined by the reverse feed acceleration period setting signal Tru, the feed speed setting for linearly accelerating from 0 to the negative reverse feed peak value Wrp determined by the reverse feed amplitude setting signal Wrr. The signal Fr is output. 5) Subsequently, during the reverse feed peak period Trp, the feed speed setting signal Fr that maintains the reverse feed peak value Wrp is output.
  • FIG. 6 is a timing chart of each signal in the welding power source of FIG. 5 showing the arc welding control method according to the third embodiment of the present invention.
  • FIG. 4A shows the time change of the feeding speed Fw
  • FIG. 4B shows the time change of the welding current Iw
  • FIG. 4C shows the time change of the welding voltage Vw
  • FIG. ) Shows a time change of the short-circuit determination signal Sd.
  • the feed speed Fw shown in FIG. 5A is controlled to the value of the feed speed setting signal Fr output from the second feed speed setting circuit FR2 in FIG.
  • the feed speed setting signal Fr is determined by the forward feed acceleration period Tsu determined by the forward feed acceleration period setting signal Tsur in FIG. 5, the forward feed peak period Tsp that continues until a short circuit occurs, and the forward feed deceleration period setting signal Tsdr in FIG.
  • the forward feed deceleration period Tsd determined, the reverse feed acceleration period Tru determined by the reverse feed acceleration period setting signal Tru in FIG. 5, the reverse feed peak period Trp that continues until an arc is generated, and the reverse feed deceleration period setting signal Trdr in FIG. It is formed from the reverse feed deceleration period Trd.
  • the forward feed peak value Wsp is determined by the forward feed amplitude setting signal Wsr in FIG. 5, and the reverse feed peak value Wrp is determined by the reverse feed amplitude setting signal Wrr in FIG.
  • the feed speed setting signal Fr has a feed pattern that changes in a positive and negative trapezoidal wave shape.
  • the feed speed Fw enters a predetermined reverse feed acceleration period Tru at times t1 to t2, and accelerates from 0 to the reverse feed peak value Wrp. During this period, the short circuit period continues.
  • the short circuit determination signal Sd changes to the low level (arc period).
  • a transition is made to a predetermined reverse feed deceleration period Trd at times t3 to t4, and the feed speed Fw is reduced from the reverse feed peak value Wrp to 0 as shown in FIG. .
  • the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. 3C, and the welding current Iw gradually decreases during the arc period as shown in FIG.
  • the short circuit determination signal Sd changes to a high level (short circuit period) as shown in FIG.
  • a transition is made to a predetermined forward feed deceleration period Tsd between times t6 and t7, and the feed speed Fw is reduced from the forward feed peak value Wsp to 0 as shown in FIG. .
  • the welding voltage Vw rapidly decreases to a short-circuit voltage value of several V as shown in FIG. 5C, and the welding current Iw gradually increases during the short-circuit period as shown in FIG.
  • the forward peak period Tsp and the reverse peak period Trp are not constant values because the period ends in response to a short circuit or arc occurrence. For this reason, the cycle of the feeding speed Fw cannot be set directly to a predetermined value.
  • the average value of the forward feed peak period Tsp and the average value of the reverse feed peak period Trp per unit time are substantially constant values. Accordingly, at least one of the forward feed acceleration period Tsu, the forward feed deceleration period Tsd, the reverse feed acceleration period Tru, the reverse feed deceleration period Trd, the forward feed peak value Wsp, or the reverse feed peak value Wrp, which is a waveform parameter of the feed speed Fw.
  • the average value of the cycles of the feeding speed Fw per unit time can be set within a predetermined range. That is, in the third embodiment, when the droplet transfer mode is the globule transfer mode, the forward feed acceleration period Tsu, the forward feed deceleration period Tsd, the reverse feed acceleration period Tru, and the reverse feed are the waveform parameters of the feed speed. By changing at least one of the deceleration period Trd, the forward feed peak value Wsp, or the reverse feed peak value Wrp, the average value of the cycle of the feed speed Fw per unit time can be set within an appropriate range. In the third embodiment, the horizontal axis of FIG. 3 indicates the average value of the frequency per unit time.
  • the synchronous short-circuit ratio Rd on the vertical axis indicates the ratio at which a short-circuit has occurred before the forward feed peak period Tsp reaches a predetermined forward feed reference value. This is because the state in which the forward feed peak period Tsp exceeds the forward feed reference value and a short circuit occurs does not provide a good synchronization state between the feed speed and the arc state. Therefore, in the third embodiment, when the droplet transfer state is the globule transfer mode, the waveform parameter of the feeding speed is adjusted, and the average value of the frequency per unit time falls within the appropriate range shown in FIG. You can do that.
  • the above-mentioned normal feed reference value is 7 ms, for example.
  • the shift to the reverse feed period starts when the short-circuit period occurs during the forward feed period, and the shift to the forward feed period starts when the arc period occurs during the reverse feed period. Also in this case, the same effect as in the first embodiment can be obtained.
  • the feeding speed changes in a trapezoidal wave shape, but the same applies when the feeding speed changes in a sine wave shape, a triangular wave shape, or the like.

Abstract

An arc welding control method that performs welding by carrying out forward-reverse feed control that alternately switches a feed rate Fw between forward feed periods and reverse feed periods and generating short periods and arc periods, wherein when a metal transfer mode is a globular transfer mode, the synchronized short ratio during the forward-reverse feed control is calculated, and the feed rate Fw frequency Sf is automatically adjusted within a range of 70 - 120 Hz such that this synchronized short ratio is a maximum value. The synchronized short ratio is the ratio of the number of shorts generated during forward feed periods with respect to the number of forward feed periods during a unit time.

Description

アーク溶接制御方法Arc welding control method
 本発明は、溶接ワイヤの送給速度を正送期間と逆送期間とに交互に切り換える正逆送給制御を行って、短絡期間とアーク期間とを発生させて溶接するアーク溶接制御方法に関するものである。 The present invention relates to an arc welding control method for performing welding by generating a short circuit period and an arc period by performing forward / reverse feed control for alternately switching a feeding speed of a welding wire between a forward feed period and a reverse feed period. It is.
 一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。 In general consumable electrode type arc welding, a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding. In the consumable electrode type arc welding, the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
 溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている(例えば、特許文献1等参照)。 In order to further improve the welding quality, a method has been proposed in which welding is performed by periodically repeating welding wire forward and backward feeding (for example, see Patent Document 1).
 特許文献1の発明では、溶接電流設定値に応じた送給速度の平均値とし、溶接ワイヤの正送と逆送との周波数及び振幅を溶接電流設定値に応じた値とする。 In the invention of Patent Document 1, the average value of the feeding speed according to the welding current set value is used, and the frequency and amplitude of the forward and reverse feeding of the welding wire are values according to the welding current set value.
日本国特許第5201266号公報Japanese Patent No. 52012266
 従来技術では、溶接ワイヤの送給速度を所定の周波数で正送期間と逆送期間とに交互に切り換える正逆送給制御を行って溶接する。この正逆送給制御においては、溶滴移行形態が短絡移行形態であるときは、正送期間に同期して短絡が発生し逆送期間に同期してアークが発生するために、良好な溶接状態となる。 In the prior art, welding is performed by performing forward / reverse feed control in which the feed speed of the welding wire is switched alternately between a forward feed period and a reverse feed period at a predetermined frequency. In this forward / reverse feed control, when the droplet transfer mode is the short-circuit transfer mode, a short circuit occurs in synchronization with the normal feed period, and an arc is generated in synchronization with the reverse feed period. It becomes a state.
 他方、溶滴移行形態がグロビュール移行形態になると、溶滴にアークから大きな持ち上げ力が作用するために、短絡の発生が阻害されて短絡が不規則に発生する状態となる。この状態では、1秒間当たりの短絡回数は40回未満となる。これを受けて、従来技術では、正逆送給制御の周波数も40Hz未満に設定していた。しかし、このようにしても、短絡が不規則に発生しやすい状態が維持されるために、正送期間に同期して短絡が発生しない非同期状態に時折陥ることになる。この結果、従来技術では、スパッタが多く発生する不安定な溶接状態となる場合が生じるという問題があった。 On the other hand, when the droplet transfer form becomes a globule transfer form, a large lifting force acts on the droplet from the arc, so that the occurrence of a short circuit is inhibited and a short circuit occurs irregularly. In this state, the number of short circuits per second is less than 40 times. In response to this, in the prior art, the frequency of the forward / reverse feed control is also set to less than 40 Hz. However, even in this case, since a state in which short-circuits are likely to occur irregularly is maintained, an asynchronous state in which a short-circuit does not occur in synchronization with the normal feeding period is occasionally caused. As a result, the conventional technique has a problem that an unstable welding state in which a large amount of spatter is generated may occur.
 そこで、本発明では、正逆送給制御によるアーク溶接において、グロビュール移行形態のときに良好な溶接状態となるアーク溶接制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an arc welding control method in which a good welding state is obtained in a globule transition mode in arc welding by forward / reverse feed control.
 上述した課題を解決するために、本発明のアーク溶接制御方法は、
溶接ワイヤの送給速度を正送期間と逆送期間とに交互に切り換える正逆送給制御を行って、短絡期間とアーク期間とを発生させて溶接するアーク溶接制御方法において、
 溶滴移行形態がグロビュール移行形態であるときは、前記送給速度を前記正送期間と前記逆送期間とに切り換える周波数が70~120Hzの範囲になるように前記送給速度の波形パラメータを設定する、
ことを特徴とする。
In order to solve the above-described problem, the arc welding control method of the present invention includes:
In the arc welding control method of performing welding by generating a short circuit period and an arc period by performing forward / reverse feed control for alternately switching the feeding speed of the welding wire between the forward feed period and the reverse feed period,
When the droplet transfer mode is a globule transfer mode, the waveform parameter of the feed rate is set so that the frequency for switching the feed rate between the forward feed period and the reverse feed period is in the range of 70 to 120 Hz. To
It is characterized by that.
 また、本発明のアーク溶接制御方法は、シールドガスが炭酸ガスであり、溶接ワイヤの材質が鉄であり、溶接ワイヤの直径が1.2mmであるときは、前記グロビュール移行形態は平均溶接電流が200A以上の範囲である、
ことを特徴とする。
In the arc welding control method of the present invention, when the shielding gas is carbon dioxide, the welding wire is made of iron, and the welding wire has a diameter of 1.2 mm, the globule transition form has an average welding current. A range of 200A or more,
It is characterized by that.
 また、本発明のアーク溶接制御方法は、前記正逆送給制御中の同期短絡比率を算出し、この同期短絡比率が最大値になるように前記波形パラメータを自動調整し、前記同期短絡比率は単位時間中の前記正送期間の回数に占める前記正送期間中に発生した短絡の回数の比率である、
ことを特徴とする。
Further, the arc welding control method of the present invention calculates a synchronous short-circuit ratio during the forward / reverse feed control, automatically adjusts the waveform parameter so that the synchronous short-circuit ratio becomes a maximum value, and the synchronous short-circuit ratio is It is a ratio of the number of short circuits that occurred during the normal feeding period to the number of times of the normal feeding period in a unit time.
It is characterized by that.
 また、本発明のアーク溶接制御方法は、前記正送期間中に前記短絡期間になると前記逆送期間への移行を開始し、前記逆送期間中に前記アーク期間になると前記正送期間への移行を開始する、
ことを特徴とする。
Further, the arc welding control method of the present invention starts transition to the reverse feed period when the short-circuit period occurs during the forward feed period, and starts the transition to the forward feed period when the arc period occurs during the reverse feed period. Start the migration,
It is characterized by that.
 本発明によれば、グロビュール移行溶接において、送給速度の周波数に同期して短絡期間及びアーク期間が発生する略完全な同期状態となる。このために、スパッタ発生量の少ない、ビード外観の美麗な高品質溶接を行うことができる。 According to the present invention, in the globule transition welding, a substantially complete synchronization state in which the short circuit period and the arc period are generated in synchronization with the frequency of the feeding speed is obtained. For this reason, it is possible to perform high-quality welding with a small bead appearance and a small amount of spatter generation.
本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the arc welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るアーク溶接制御方法を示す、図1の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power supply of FIG. 1 which shows the arc welding control method which concerns on Embodiment 1 of this invention. グロビュール移行形態でアーク溶接を行ったときの送給速度Fwの周波数Sfの適正範囲を示す図である。It is a figure which shows the appropriate range of the frequency Sf of the feeding speed Fw when arc welding is performed by the globule transfer form. 本発明の実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the arc welding control method which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the arc welding control method which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係るアーク溶接制御方法を示す、図5の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power supply of FIG. 5 which shows the arc welding control method which concerns on Embodiment 3 of this invention.
 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施の形態1]
 実施の形態1の発明は、溶滴移行形態がグロビュール移行形態であるときは、送給速度を正送期間と逆送期間とに切り換える周波数が70~120Hzの範囲になるように送給速度の波形パラメータを設定するものである。実施の形態1の発明においては、上記の波形パラメータが周波数である場合である。したがって、実施の形態1の発明では、周波数設定信号Sfrを上記の周波数範囲に設定することになる。
[Embodiment 1]
In the invention of the first embodiment, when the droplet transfer form is a globule transfer form, the feed speed is set so that the frequency at which the feed speed is switched between the forward feed period and the reverse feed period is in the range of 70 to 120 Hz. Sets waveform parameters. In the first embodiment, the waveform parameter is a frequency. Therefore, in the invention of Embodiment 1, the frequency setting signal Sfr is set to the above frequency range.
 図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。 FIG. 1 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.
 電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する駆動信号Dvに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換する上記の駆動信号Dvによって駆動されるインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器を備えている。 The power supply main circuit PM receives a commercial power supply (not shown) such as a three-phase 200V, performs output control by inverter control or the like according to a drive signal Dv described later, and outputs an output voltage E. Although not shown, the power supply main circuit PM is driven by a primary rectifier that rectifies commercial power, a smoothing capacitor that smoothes the rectified direct current, and the drive signal Dv that converts the smoothed direct current to high-frequency alternating current. An inverter circuit, a high-frequency transformer that steps down the high-frequency alternating current to a voltage value suitable for welding, and a secondary rectifier that rectifies the stepped-down high-frequency alternating current into direct current.
 リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば200μHである。 The reactor WL smoothes the output voltage E described above. The inductance value of the reactor WL is, for example, 200 μH.
 送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。 The feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed. A motor with fast transient response is used as the feed motor WM. In order to increase the rate of change of the feeding speed Fw of the welding wire 1 and the reversal of the feeding direction, the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
 溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。 The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 coupled to the feeding motor WM, and an arc 3 is generated between the base metal 2 and the welding wire 1. A welding voltage Vw is applied between the power feed tip (not shown) in the welding torch 4 and the base material 2, and a welding current Iw is conducted.
 平均送給速度設定回路FARは、予め定めた平均送給速度設定信号Farを出力する。周波数設定回路SFRは、予め定めた周波数設定信号Sfrを出力する。振幅設定回路WFRは、予め定めた振幅設定信号Wfrを出力する。 The average feed speed setting circuit FAR outputs a predetermined average feed speed setting signal Far. The frequency setting circuit SFR outputs a predetermined frequency setting signal Sfr. The amplitude setting circuit WFR outputs a predetermined amplitude setting signal Wfr.
 送給速度設定回路FRは、上記の平均送給速度設定信号Far、上記の周波数設定信号Sfr及び上記の振幅設定信号Wfrを入力として、振幅設定信号Wfrによって定まる振幅Wf及び周波数設定信号Sfrの逆数である周期設定値によって定まる周期Tfで正負対称形状に変化する予め定めた台形波を、平均送給速度設定信号Farの値だけ正送側にシフトした波形となる送給速度設定信号Frを出力する。この送給速度設定信号Frについては、図2で詳述する。 The feed speed setting circuit FR receives the average feed speed setting signal Far, the frequency setting signal Sfr, and the amplitude setting signal Wfr, and receives the amplitude Wf determined by the amplitude setting signal Wfr and the inverse of the frequency setting signal Sfr. A feed speed setting signal Fr having a waveform obtained by shifting a predetermined trapezoidal wave changing to a positive / negative symmetrical shape with a period Tf determined by the period set value to the forward feed side by the value of the average feed speed setting signal Far is output. To do. The feed speed setting signal Fr will be described in detail with reference to FIG.
 送給制御回路FCは、上記の送給速度設定信号Frを入力として、送給速度設定信号Frの値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力する。 The feed control circuit FC receives the feed speed setting signal Fr and receives a feed control signal Fc for feeding the welding wire 1 at a feed speed Fw corresponding to the value of the feed speed setting signal Fr. It outputs to said feed motor WM.
 出力電圧設定回路ERは、予め定めた出力電圧設定信号Erを出力する。出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して、出力電圧検出信号Edを出力する。 The output voltage setting circuit ER outputs a predetermined output voltage setting signal Er. The output voltage detection circuit ED detects and smoothes the output voltage E and outputs an output voltage detection signal Ed.
 電圧誤差増幅回路EVは、上記の出力電圧設定信号Er及び上記の出力電圧検出信号Edを入力として、出力電圧設定信号Er(+)と出力電圧検出信号Ed(-)との誤差を増幅して、電圧誤差増幅信号Evを出力する。この回路によって、溶接電源は定電圧制御される。 The voltage error amplification circuit EV receives the output voltage setting signal Er and the output voltage detection signal Ed, and amplifies an error between the output voltage setting signal Er (+) and the output voltage detection signal Ed (−). The voltage error amplification signal Ev is output. By this circuit, the welding power source is controlled at a constant voltage.
 駆動回路DVは、上記の電圧誤差増幅信号Evを入力として、電圧誤差増幅信号Evに基づいてPWM変調制御を行い、上記の電源主回路PM内のインバータ回路を駆動するための駆動信号Dvを出力する。 The drive circuit DV receives the voltage error amplification signal Ev, performs PWM modulation control based on the voltage error amplification signal Ev, and outputs a drive signal Dv for driving the inverter circuit in the power supply main circuit PM. To do.
 図2は、本発明の実施の形態1に係るアーク溶接制御方法を示す、図1の溶接電源における各信号のタイミングチャートである。同図(A)は送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示す。以下、同図を参照して各信号の動作について説明する。 FIG. 2 is a timing chart of each signal in the welding power source of FIG. 1, showing the arc welding control method according to the first embodiment of the present invention. FIG. 4A shows the time change of the feeding speed Fw, FIG. 3B shows the time change of the welding current Iw, and FIG. 4C shows the time change of the welding voltage Vw. Hereinafter, the operation of each signal will be described with reference to FIG.
 同図(A)に示す送給速度Fwは、図1の送給速度設定回路FRから出力される送給速度設定信号Frの値に制御される。送給速度設定信号Frは、振幅設定信号Wfrによって定まる振幅Wf及び周波数設定信号Sfrによって定まる周波数Sfの逆数となる周期Tf=1/Sfで正負対称形状に変化する予め定めた台形波を、平均送給速度設定信号Farの値だけ正送側にシフトした波形となる。このために、同図(A)に示すように、送給速度Fwは、平均送給速度設定信号Farによって定まる破線で示す平均送給速度Faを基準線として、上下に対称となる振幅Wf及び周期Tfで予め定めた台形波状の送給速度パターンとなる。すなわち、基準線から上側の振幅と下側の振幅とは同一値であり、基準線より上側の期間と下側の期間とは同一値となっている。 The feed speed Fw shown in FIG. 6A is controlled to the value of the feed speed setting signal Fr output from the feed speed setting circuit FR of FIG. The feed speed setting signal Fr is an average of a predetermined trapezoidal wave that changes into a positive / negative symmetrical shape with a period Tf = 1 / Sf that is the reciprocal of the frequency Sf determined by the amplitude Wf and the frequency setting signal Sfr determined by the amplitude setting signal Wfr. The waveform is shifted to the forward feed side by the value of the feed speed setting signal Far. For this reason, as shown in FIG. 5A, the feed speed Fw has an amplitude Wf that is symmetrical in the vertical direction with the average feed speed Fa indicated by a broken line determined by the average feed speed setting signal Far as a reference line. It becomes a trapezoidal wave-shaped feeding speed pattern determined in advance with the period Tf. That is, the amplitude above the reference line and the amplitude below the reference line have the same value, and the period above and below the reference line have the same value.
 ここで、0を基準線として送給速度Fwの台形波を見ると、同図(A)に示すように、時刻t1~t5の逆送期間は、それぞれ所定の逆送加速期間、逆送ピーク期間、逆送ピーク値及び逆送減速期間から形成され、時刻t5~t9の正送期間は、それぞれ所定の正送加速期間、正送ピーク期間、正送ピーク値及び正送減速期間から形成される。 Here, looking at the trapezoidal wave of the feed speed Fw with 0 as the reference line, as shown in FIG. 6A, the reverse feed period from time t1 to t5 is a predetermined reverse feed acceleration period and reverse feed peak, respectively. Period, reverse feed peak value and reverse feed deceleration period, and the forward feed period from time t5 to t9 is formed from a predetermined forward feed acceleration period, forward feed peak period, forward feed peak value and forward feed deceleration period, respectively. The
[時刻t1~t5の逆送期間の動作]
 同図(A)に示すように、送給速度Fwは時刻t1~t2の逆送加速期間に入り、0から上記の逆送ピーク値まで加速する。この期間中は短絡状態が継続している。
[Operation during the reverse feed period from time t1 to t5]
As shown in FIG. 5A, the feed speed Fw enters the reverse feed acceleration period from time t1 to t2, and accelerates from 0 to the reverse feed peak value. During this period, the short-circuit state continues.
 時刻t2において逆送加速期間が終了すると、同図(A)に示すように、送給速度Fwは時刻t2~t4の逆送ピーク期間に入り、上記の逆送ピーク値になる。この期間中の時刻t3において、逆送及び溶接電流Iwの通電によるピンチ力によってアークが発生する。これに応動して、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増し、同図(B)に示すように、溶接電流Iwはこれ以降のアーク期間中は次第に減少する。 When the reverse acceleration period ends at time t2, as shown in FIG. 4A, the feed speed Fw enters the reverse peak period from time t2 to t4 and becomes the reverse peak value described above. At time t3 during this period, an arc is generated by the pinch force generated by reverse feeding and energization of the welding current Iw. In response to this, the welding voltage Vw suddenly increases to an arc voltage value of several tens of volts as shown in FIG. 5C, and the welding current Iw is set to the arc period thereafter, as shown in FIG. The inside gradually decreases.
 時刻t4において逆送ピーク期間が終了すると、同図(A)に示すように、時刻t4~t5の逆送減速期間に入り、上記の逆送ピーク値から0へと減速する。この期間中は、アーク期間が継続している。 When the reverse feed peak period ends at time t4, as shown in FIG. 5A, the reverse feed deceleration period from time t4 to t5 starts, and the reverse feed peak value decelerates to zero. During this period, the arc period continues.
[時刻t5~t9の正送期間の動作]
 同図(A)に示すように、送給速度Fwは時刻t5~t6の正送加速期間に入り、0から上記の正送ピーク値まで加速する。この期間中は、アーク期間のままである。
[Operation in the forward feed period from time t5 to t9]
As shown in FIG. 5A, the feed speed Fw enters the forward feed acceleration period from time t5 to t6, and accelerates from 0 to the forward feed peak value. During this period, the arc period remains.
 時刻t6において正送加速期間が終了すると、同図(A)に示すように、送給速度Fwは時刻t6~t8の正送ピーク期間に入り、上記の正送ピーク値になる。この期間中の時刻t7において、正送によって短絡が発生する。これに応動して、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwはこれ以降の短絡期間中は次第に増加する。 When the forward feed acceleration period ends at time t6, the feed speed Fw enters the forward feed peak period from time t6 to t8, as shown in FIG. At time t7 during this period, a short circuit occurs due to normal feeding. In response to this, the welding voltage Vw rapidly decreases to a short-circuit voltage value of several V as shown in FIG. 5C, and the welding current Iw is maintained during the subsequent short-circuit period as shown in FIG. Gradually increases.
 時刻t8において正送ピーク期間が終了すると、同図(A)に示すように、時刻t8~t9の正送減速期間に入り、上記の正送ピーク値から0へと減速する。この期間中は、短絡期間が継続している。 When the forward feed peak period ends at time t8, as shown in FIG. 9A, the forward feed deceleration period from time t8 to t9 starts, and the forward feed peak value decelerates to zero. During this period, the short circuit period continues.
 これ以降は、上記の逆送期間及び上記の正送期間の動作を繰り返す。 After this, the above-mentioned reverse feed period and the above normal feed period are repeated.
 送給速度Fwの台形波の数値例を以下に示す。
周波数Sf=100Hz(周期Tf=10ms)、振幅Wf=60m/min、平均送給速度Fa=5m/min、半周期の各傾斜期間=1.2ms、ピーク期間=2.6ms、ピーク値=30m/minの台形波に設定すると、この台形波を平均送給速度Fa=5m/minだけ正送側にシフトした波形となる。平均溶接電流は約250Aとなる。この場合の各波形パラメータは、以下のようになる。
逆送期間=4.6ms、逆送加速期間=1.0ms、逆送ピーク期間=2.6ms、逆送ピーク値=-25m/min、逆送減速期間=1.0ms
正送期間=5.4ms、正送加速期間=1.4ms、正送ピーク期間=2.6ms、正送ピーク値=35m/min、正送減速期間=1.4ms
A numerical example of the trapezoidal wave of the feeding speed Fw is shown below.
Frequency Sf = 100 Hz (cycle Tf = 10 ms), amplitude Wf = 60 m / min, average feed speed Fa = 5 m / min, each half period of slope = 1.2 ms, peak period = 2.6 ms, peak value = 30 m When a trapezoidal wave of / min is set, the trapezoidal wave is shifted to the forward feed side by an average feed speed Fa = 5 m / min. The average welding current is about 250A. Each waveform parameter in this case is as follows.
Reverse feed period = 4.6 ms, reverse feed acceleration period = 1.0 ms, reverse feed peak period = 2.6 ms, reverse feed peak value = −25 m / min, reverse feed deceleration period = 1.0 ms
Forward feed period = 5.4 ms, forward feed acceleration period = 1.4 ms, forward feed peak period = 2.6 ms, forward feed peak value = 35 m / min, forward feed deceleration period = 1.4 ms
 図3は、グロビュール移行形態でアーク溶接を行ったときの送給速度Fwの周波数Sfの適正範囲を示す図である。横軸は周波数Sf[Hz]を示し、縦軸は同期短絡比率Rd[%]を示す。以下、同図を参照して説明する。 FIG. 3 is a diagram showing an appropriate range of the frequency Sf of the feeding speed Fw when arc welding is performed in the globule transition mode. The horizontal axis indicates the frequency Sf [Hz], and the vertical axis indicates the synchronous short circuit ratio Rd [%]. Hereinafter, a description will be given with reference to FIG.
 同期短絡比率Rdは、単位時間中の正送期間の回数に占める正送期間中に発生した短絡の回数の比率である。Rd=100%のときは、全ての正送期間中に短絡が発生した状態である。Rd=90%のときは、正送期間中に短絡が発生しない非同期状態が10%あったことを示している。単位時間は、例えば5秒に設定される。 The synchronous short-circuit ratio Rd is a ratio of the number of short-circuits occurring during the normal feeding period to the number of normal feeding periods within a unit time. When Rd = 100%, a short circuit has occurred during all the normal feeding periods. When Rd = 90%, there is an asynchronous state where no short circuit occurs during the normal feed period. The unit time is set to 5 seconds, for example.
 同図の溶接条件は、シールドガスに炭酸ガスを使用し、溶接ワイヤに直径1.2mmの軟鋼ワイヤを使用した場合である。この溶接条件では、平均溶接電流値が200A以上でグロビュール移行形態となる。溶接ワイヤの材質は軟鋼に限らず鉄であれば、平均溶接電流値が200A以上になる状態がグロビュール移行形態となる。 The welding conditions in the figure are when carbon dioxide gas is used for the shielding gas and a mild steel wire with a diameter of 1.2 mm is used for the welding wire. Under this welding condition, an average welding current value is 200 A or more and a globule transition mode is obtained. If the material of the welding wire is not limited to mild steel but iron, the state in which the average welding current value is 200 A or more is the globule transition mode.
 同図に示すように、50Hzのときは82%となり、60Hzのときは89%となり、65Hzのときは91%となり、70Hzのときは99.5%となり、75Hzのときは99.5%となり、80Hzのときは99.9%となり、90Hzのときは99.9%となり、100Hzのときは99.9%となり、110Hzのときは99.9%となり、115Hzのときは99.5%となり、120Hzのときは99.5%となり、125Hzのときは89%となり、130Hzのときは82%となり、140Hzのときは82%となる。 As shown in the figure, it is 82% at 50 Hz, 89% at 60 Hz, 91% at 65 Hz, 99.5% at 70 Hz, and 99.5% at 75 Hz. , 80 Hz is 99.9%, 90 Hz is 99.9%, 100 Hz is 99.9%, 110 Hz is 99.9%, and 115 Hz is 99.5%. , 120 Hz is 99.5%, 125 Hz is 89%, 130 Hz is 82%, and 140 Hz is 82%.
 周波数Sfが70~120Hzの範囲では同期短絡比率Rd>99%となり、送給速度Fwの1周期ごとに短絡期間及びアーク期間が発生する略完全な同期状態になる。このために、グロビュール移行溶接において、スパッタ発生量の少ないビード外観が美麗な高品質な溶接を行うことができる。周波数Sfがこの範囲外になると、非同期短絡が多く発生するようになり、溶接状態が不安定状態に陥りやすくなるので、スパッタ発生量が多くなりビード外観も悪くなる。 When the frequency Sf is in the range of 70 to 120 Hz, the synchronous short-circuit ratio Rd> 99%, and a substantially complete synchronous state in which a short-circuit period and an arc period occur for each cycle of the feeding speed Fw. For this reason, in globule transition welding, high-quality welding with a beautiful bead appearance with less spatter generation can be performed. When the frequency Sf is outside this range, many asynchronous short circuits are generated, and the welding state is likely to fall into an unstable state, so that the amount of spatter is increased and the bead appearance is also deteriorated.
 さらに、周波数Sfが80~110Hzの範囲では、同期短絡比率が一段と高くなり、溶接状態の安定性がさらに良好となる。したがって、グロビュール移行溶接において、送給速度Fwの周波数Sfの適正範囲は70~120Hzの範囲となり、望ましくは80~110Hzの範囲となる。 Furthermore, when the frequency Sf is in the range of 80 to 110 Hz, the synchronous short circuit ratio is further increased, and the stability of the welded state is further improved. Therefore, in the globule transition welding, the appropriate range of the frequency Sf of the feeding speed Fw is in the range of 70 to 120 Hz, and preferably in the range of 80 to 110 Hz.
 周波数Sfが上記の適正範囲よりも低い場合には、アーク期間が長くなり、溶滴が過大となり、溶滴に作用する持ち上げ力が強いために短絡の発生が阻害されて非同期短絡が多く発生する。周波数Sfが上記の適正範囲よりも高い場合には、アーク期間が短くなり溶滴が過小となり、非同期短絡が発生しやすくなる。周波数Sfが適正範囲にある場合には、アーク期間中に形成される溶滴が適正サイズとなるので、同期短絡が発生することになる。周波数Sfの適正範囲は、従来技術での40Hz未満の約2~3倍の範囲となる。 When the frequency Sf is lower than the above-mentioned appropriate range, the arc period becomes long, the droplets become excessive, and the lifting force acting on the droplets is strong, so that the occurrence of short circuits is hindered and many asynchronous short circuits occur. . When the frequency Sf is higher than the above appropriate range, the arc period becomes short, the droplets become excessive, and an asynchronous short circuit is likely to occur. When the frequency Sf is in an appropriate range, the droplet formed during the arc period has an appropriate size, and a synchronous short circuit occurs. The appropriate range of the frequency Sf is about 2 to 3 times less than 40 Hz in the prior art.
 上述した実施の形態1によれば、正逆送給制御によるアーク溶接において、溶滴移行形態がグロビュール移行形態であるときは、送給速度の周波数を70~120Hzの範囲に設定する。これにより、周波数に同期して短絡期間及びアーク期間が発生する略完全な同期状態となる。このために、スパッタ発生量の少ない、ビード外観の美麗な高品質溶接を行うことができる。 According to the first embodiment described above, in arc welding by forward / reverse feed control, when the droplet transfer mode is the globule transfer mode, the frequency of the feed rate is set in the range of 70 to 120 Hz. As a result, a substantially complete synchronization state in which the short circuit period and the arc period occur in synchronization with the frequency is obtained. For this reason, it is possible to perform high-quality welding with a small bead appearance and a small amount of spatter generation.
[実施の形態2]
 実施の形態2の発明は、正逆送給制御中の同期短絡比率Rdを算出し、この同期短絡比率Rdが最大値になるように送給速度の周波数を自動調整するものである。
[Embodiment 2]
The invention of Embodiment 2 calculates the synchronous short-circuit ratio Rd during forward / reverse feed control, and automatically adjusts the frequency of the feed speed so that the synchronous short-circuit ratio Rd becomes the maximum value.
 図4は、実施の形態2に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。同図は、上述した図1と対応しており、同一のブロックには同一符号を付してそれらの説明は繰り返さない。同図は、図1に電圧検出回路VD、短絡判別回路SD及び同期短絡比率演算回路RDを追加し、図1の周波数設定回路SFRを第2周波数設定回路SFR2に置換したものである。以下、同図を参照してこれらのブロックについて説明する。 FIG. 4 is a block diagram of a welding power source for carrying out the arc welding control method according to the second embodiment. This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks, and description thereof will not be repeated. This figure is obtained by adding a voltage detection circuit VD, a short circuit determination circuit SD, and a synchronous short circuit ratio calculation circuit RD to FIG. 1 and replacing the frequency setting circuit SFR of FIG. 1 with a second frequency setting circuit SFR2. Hereinafter, these blocks will be described with reference to FIG.
 電圧検出回路VDは、上記の溶接電圧Vwを検出して、電圧検出信号Vdを出力する。短絡判別回路SDは、上記の電圧検出信号Vdを入力として、この値が短絡判別値(10V程度)未満のときは短絡期間であると判別してHighレベルとなり、以上のときはアーク期間であると判別してLowレベルとなる短絡判別信号Sdを出力する。 The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The short circuit determination circuit SD receives the voltage detection signal Vd as described above, and when this value is less than the short circuit determination value (about 10 V), it determines that it is a short circuit period and becomes a high level, and when it is above, it is an arc period. And a short circuit determination signal Sd that is at a low level is output.
 同期短絡比率演算回路RDは、上記の送給速度設定信号Fr及び上記の短絡判別信号Sdを入力として、単位時間中の正送期間の回数Nsを送給速度設定信号Frから計数し、同時に正送期間中に短絡判別信号SdがLowレベルからHighレベル(短絡)に変化した回数Ndを計数し、(Nd/Ns)・100を演算して同期短絡比率信号Rdとして出力する。 The synchronous short-circuit ratio calculation circuit RD receives the feed speed setting signal Fr and the short-circuit determination signal Sd as input, and counts the number Ns of normal feed periods in a unit time from the feed speed setting signal Fr, and at the same time, The number Nd of times that the short circuit determination signal Sd changes from the Low level to the High level (short circuit) during the transmission period is counted, and (Nd / Ns) · 100 is calculated and output as the synchronous short circuit ratio signal Rd.
 第2周波数設定回路SFR2は、所定範囲内で変化させた周波数設定信号Sfrを出力し、変化させた周波数設定信号Sfrごとの同期短絡比率信号Rdを比較し、比較後は同期短絡比率信号Rdが最大値となる値の周波数設定信号Sfrを出力する。以下に詳細な処理手順を説明する。
1)所定範囲は、図3で上述した適正範囲の70~120Hzの範囲である。周波数設定信号Sfrの値を、70Hzから5Hz刻みで120Hzまで変化させて出力する。
2)周波数設定信号Sfrの値が変化するごとに同期短絡比率信号Rdの値を記憶する。
3)記憶された同期短絡比率信号Rdの値を比較し、最大値となる周波数設定信号Sfrの値に固定して出力する。
The second frequency setting circuit SFR2 outputs a frequency setting signal Sfr changed within a predetermined range, compares the synchronous short circuit ratio signal Rd for each changed frequency setting signal Sfr, and after the comparison, the synchronous short circuit ratio signal Rd is The frequency setting signal Sfr having the maximum value is output. A detailed processing procedure will be described below.
1) The predetermined range is the appropriate range of 70 to 120 Hz described above with reference to FIG. The value of the frequency setting signal Sfr is changed from 70 Hz to 120 Hz in units of 5 Hz and output.
2) Every time the value of the frequency setting signal Sfr changes, the value of the synchronous short circuit ratio signal Rd is stored.
3) The stored value of the synchronous short-circuit ratio signal Rd is compared, and the frequency setting signal Sfr having the maximum value is fixed and output.
 本発明の実施の形態2に係るアーク溶接制御方法を示す、図4の溶接電源における各信号のタイミングチャートは、上述した図2と同様である。但し、送給速度Fwの周波数Sfが自動調整される点は異なっている。 The timing chart of each signal in the welding power source in FIG. 4 showing the arc welding control method according to the second embodiment of the present invention is the same as that in FIG. 2 described above. However, the point that the frequency Sf of the feeding speed Fw is automatically adjusted is different.
 上述した実施の形態2によれば、正逆送給制御中の同期短絡比率を算出し、この同期短絡比率が最大値になるように周波数を自動調整し、同期短絡比率は単位時間中の正送期間の回数に占める正送期間中に発生した短絡の回数の比率である。これにより、本実施の形態では、グロビュール移行溶接が良好な溶接状態となる周波数の適正範囲内において、溶接状態が最も安定している周波数に自動調整することができる。溶接状態が最も安定していることを、同期短絡比率が最大値となることによって判別している。同期短絡比率が最大値のときは、送給速度の周波数に略完全に同期して短絡及びアークが発生している状態のときであり、スパッタ発生量が最も少なくなる。 According to the second embodiment described above, the synchronous short-circuit ratio during the forward / reverse feed control is calculated, and the frequency is automatically adjusted so that the synchronous short-circuit ratio becomes the maximum value. It is the ratio of the number of short circuits that occurred during the normal feed period to the number of feed periods. Thereby, in this Embodiment, in the appropriate range of the frequency from which a globule transition welding will be a favorable welding state, it can adjust automatically to the frequency where a welding state is the most stable. It is determined that the welding state is most stable by the maximum value of the synchronous short-circuit ratio. When the synchronous short-circuit ratio is the maximum value, it is a state in which a short-circuit and an arc are generated almost completely in synchronization with the frequency of the feeding speed, and the amount of spatter generation is minimized.
[実施の形態3]
 実施の形態3の発明では、正送期間中に短絡期間になると逆送期間への移行を開始し、逆送期間中にアーク期間になると正送期間への移行を開始する。実施の形態3の発明においては、波形パラメータが正送加速期間、正送減速期間、逆送加速期間、逆送減速期間、正送ピーク値又は逆送ピーク値の少なくとも1つである場合である。実施の形態3の発明では、グロビュール移行形態のときは、上記の波形パラメータを調整して、送給速度の周波数の平均値が所望範囲になるようにしている。すなわち、実施の形態3の発明においては、送給速度の周波数は、一定ではないので、その平均値が所望範囲になるように波形パラメータが調整される。
[Embodiment 3]
In the third embodiment, the shift to the reverse feed period is started when the short-circuit period is reached during the forward feed period, and the shift to the forward feed period is started when the arc period is reached during the reverse feed period. In the invention of the third embodiment, the waveform parameter is at least one of a forward feed acceleration period, a forward feed deceleration period, a reverse feed acceleration period, a reverse feed deceleration period, a forward feed peak value, or a reverse feed peak value. . In the invention of the third embodiment, in the case of the globule transition mode, the above waveform parameters are adjusted so that the average value of the frequency of the feeding speed falls within the desired range. That is, in the invention of the third embodiment, since the frequency of the feeding speed is not constant, the waveform parameter is adjusted so that the average value falls within the desired range.
 図5は、本発明の実施の形態3に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。同図は上述した図1と対応しており、同一ブロックには同一符号を付して、それらの説明は繰り返さない。同図は、図1の平均送給速度設定回路FAR、周波数設定回路SFR及び振幅設定回路WFRを削除している。そして、正送加速期間設定回路TSUR、正送減速期間設定回路TSDR、逆送加速期間設定回路TRUR、逆送減速期間設定回路TRDR、正送振幅設定回路WSR、逆送振幅設定回路WRR、電圧検出回路VD及び短絡判別回路SDを追加している。さらに、図1の送給速度設定回路FRを第2送給速度設定回路FR2に置換している。以下、同図を参照して、これらのブロックについて説明する。 FIG. 5 is a block diagram of a welding power source for carrying out the arc welding control method according to Embodiment 3 of the present invention. This figure corresponds to FIG. 1 described above, and the same reference numerals are given to the same blocks, and the description thereof will not be repeated. In the figure, the average feed speed setting circuit FAR, frequency setting circuit SFR and amplitude setting circuit WFR of FIG. 1 are deleted. Then, forward feed acceleration period setting circuit TSUR, forward feed deceleration period setting circuit TSDR, reverse feed acceleration period setting circuit TRUR, reverse feed deceleration period setting circuit TRDR, forward feed amplitude setting circuit WSR, reverse feed amplitude setting circuit WRR, voltage detection A circuit VD and a short circuit determination circuit SD are added. Further, the feed speed setting circuit FR of FIG. 1 is replaced with a second feed speed setting circuit FR2. Hereinafter, these blocks will be described with reference to FIG.
 正送加速期間設定回路TSURは、予め定めた正送加速期間設定信号Tsurを出力する。正送減速期間設定回路TSDRは、予め定めた正送減速期間設定信号Tsdrを出力する。逆送加速期間設定回路TRURは、予め定めた逆送加速期間設定信号Trurを出力する。逆送減速期間設定回路TRDRは、予め定めた逆送減速期間設定信号Trdrを出力する。 The forward feed acceleration period setting circuit TSUR outputs a predetermined forward feed acceleration period setting signal Tsur. The forward feed deceleration period setting circuit TSDR outputs a predetermined forward feed deceleration period setting signal Tsdr. The reverse acceleration period setting circuit TRUR outputs a predetermined reverse acceleration period setting signal True. The reverse feed deceleration period setting circuit TRDR outputs a predetermined reverse feed deceleration period setting signal Trdr.
 正送振幅設定回路WSRは、予め定めた正送振幅設定信号Wsrを出力する。逆送振幅設定回路WRRは、予め定めた逆送振幅設定信号Wrrを出力する。 The forward feed amplitude setting circuit WSR outputs a predetermined forward feed amplitude setting signal Wsr. The reverse feed amplitude setting circuit WRR outputs a predetermined reverse feed amplitude setting signal Wrr.
 電圧検出回路VDは、溶接電圧Vwを検出して、電圧検出信号Vdを出力する。短絡判別回路SDは、この電圧検出信号Vdを入力として、電圧検出信号Vdが短絡判別値(10V程度)未満のときは短絡期間にあると判別してHighレベルとなり、短絡判別値以上のときはアーク期間にあると判別してLowレベルになる短絡判別信号Sdを出力する。 The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. When the voltage detection signal Vd is less than the short circuit determination value (about 10V), the short circuit determination circuit SD determines that the short circuit is in the short circuit period and becomes High level, and when the voltage detection signal Vd is equal to or higher than the short circuit determination value. A short circuit determination signal Sd which is determined to be in the arc period and becomes Low level is output.
 第2送給速度設定回路FR2は、上記の正送加速期間設定信号Tsur、上記の正送減速期間設定信号Tsdr、上記の逆送加速期間設定信号Trur、上記の逆送減速期間設定信号Trdr、上記の正送振幅設定信号Wsr、上記の逆送振幅設定信号Wrr及び上記の短絡判別信号Sdを入力として、以下の処理によって生成された送給速度パターンを送給速度設定信号Frとして出力する。この送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。
1)正送加速期間設定信号Tsurによって定まる正送加速期間Tsu中は0から正送振幅設定信号Wsrによって定まる正の値の正送ピーク値Wspまで直線状に加速する送給速度設定信号Frを出力する。
2)続いて、正送ピーク期間Tsp中は、上記の正送ピーク値Wspを維持する送給速度設定信号Frを出力する。
3)短絡判別信号SdがLowレベル(アーク期間)からHighレベル(短絡期間)に変化すると、正送減速期間設定信号Tsdrによって定まる正送減速期間Tsdに移行し、上記の正送ピーク値Wspから0まで直線状に減速する送給速度設定信号Frを出力する。
4)続いて、逆送加速期間設定信号Trurによって定まる逆送加速期間Tru中は0から逆送振幅設定信号Wrrによって定まる負の値の逆送ピーク値Wrpまで直線状に加速する送給速度設定信号Frを出力する。
5)続いて、逆送ピーク期間Trp中は、上記の逆送ピーク値Wrpを維持する送給速度設定信号Frを出力する。
6)短絡判別信号SdがHighレベル(短絡期間)からLowレベル(アーク期間)に変化すると、逆送減速期間設定信号Trdrによって定まる逆送減速期間Trdに移行し、上記の逆送ピーク値Wrpから0まで直線状に減速する送給速度設定信号Frを出力する。
7)上記の1)~6)を繰り返すことによって正負の台形波状に変化する送給パターンの送給速度設定信号Frが生成される。
The second feed speed setting circuit FR2 includes the forward feed acceleration period setting signal Tsur, the forward feed deceleration period setting signal Tsdr, the reverse feed acceleration period setting signal True, the reverse feed deceleration period setting signal Trdr, The forward feed amplitude setting signal Wsr, the reverse feed amplitude setting signal Wrr and the short circuit determination signal Sd are input, and a feed speed pattern generated by the following processing is output as the feed speed setting signal Fr. When the feed speed setting signal Fr is 0 or more, it is a forward feed period, and when it is less than 0, it is a reverse feed period.
1) During the forward feed acceleration period Tsu determined by the forward feed acceleration period setting signal Tsur, the feed speed setting signal Fr that linearly accelerates from 0 to a positive feed peak value Wsp determined by the forward feed amplitude setting signal Wsr. Output.
2) Subsequently, during the forward feed peak period Tsp, the feed speed setting signal Fr that maintains the forward feed peak value Wsp is output.
3) When the short circuit determination signal Sd changes from the Low level (arc period) to the High level (short circuit period), it shifts to the normal feed deceleration period Tsd determined by the normal feed deceleration period setting signal Tsdr, and from the above-mentioned normal feed peak value Wsp. A feed speed setting signal Fr that linearly decelerates to 0 is output.
4) Subsequently, during the reverse feed acceleration period Tru determined by the reverse feed acceleration period setting signal Tru, the feed speed setting for linearly accelerating from 0 to the negative reverse feed peak value Wrp determined by the reverse feed amplitude setting signal Wrr. The signal Fr is output.
5) Subsequently, during the reverse feed peak period Trp, the feed speed setting signal Fr that maintains the reverse feed peak value Wrp is output.
6) When the short circuit determination signal Sd changes from the High level (short circuit period) to the Low level (arc period), it shifts to the reverse feed deceleration period Trd determined by the reverse feed deceleration period setting signal Trdr, and from the reverse feed peak value Wrp. A feed speed setting signal Fr that linearly decelerates to 0 is output.
7) By repeating the above 1) to 6), a feed rate setting signal Fr of a feed pattern that changes into a positive and negative trapezoidal waveform is generated.
 図6は、本発明の実施の形態3に係るアーク溶接制御方法を示す図5の溶接電源における各信号のタイミングチャートである。同図(A)は送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は短絡判別信号Sdの時間変化を示す。以下、同図を参照して各信号の動作について説明する。 FIG. 6 is a timing chart of each signal in the welding power source of FIG. 5 showing the arc welding control method according to the third embodiment of the present invention. FIG. 4A shows the time change of the feeding speed Fw, FIG. 4B shows the time change of the welding current Iw, FIG. 4C shows the time change of the welding voltage Vw, and FIG. ) Shows a time change of the short-circuit determination signal Sd. Hereinafter, the operation of each signal will be described with reference to FIG.
 同図(A)に示す送給速度Fwは、図5の第2送給速度設定回路FR2から出力される送給速度設定信号Frの値に制御される。送給速度設定信号Frは、図5の正送加速期間設定信号Tsurによって定まる正送加速期間Tsu、短絡が発生するまで継続する正送ピーク期間Tsp、図5の正送減速期間設定信号Tsdrによって定まる正送減速期間Tsd、図5の逆送加速期間設定信号Trurによって定まる逆送加速期間Tru、アークが発生するまで継続する逆送ピーク期間Trp及び図5の逆送減速期間設定信号Trdrによって定まる逆送減速期間Trdから形成される。さらに、正送ピーク値Wspは図5の正送振幅設定信号Wsrによって定まり、逆送ピーク値Wrpは図5の逆送振幅設定信号Wrrによって定まる。この結果、送給速度設定信号Frは、正負の台形波波状に変化する送給パターンとなる。 The feed speed Fw shown in FIG. 5A is controlled to the value of the feed speed setting signal Fr output from the second feed speed setting circuit FR2 in FIG. The feed speed setting signal Fr is determined by the forward feed acceleration period Tsu determined by the forward feed acceleration period setting signal Tsur in FIG. 5, the forward feed peak period Tsp that continues until a short circuit occurs, and the forward feed deceleration period setting signal Tsdr in FIG. The forward feed deceleration period Tsd determined, the reverse feed acceleration period Tru determined by the reverse feed acceleration period setting signal Tru in FIG. 5, the reverse feed peak period Trp that continues until an arc is generated, and the reverse feed deceleration period setting signal Trdr in FIG. It is formed from the reverse feed deceleration period Trd. Further, the forward feed peak value Wsp is determined by the forward feed amplitude setting signal Wsr in FIG. 5, and the reverse feed peak value Wrp is determined by the reverse feed amplitude setting signal Wrr in FIG. As a result, the feed speed setting signal Fr has a feed pattern that changes in a positive and negative trapezoidal wave shape.
[時刻t1~t4の逆送期間の動作]
 同図(A)に示すように、送給速度Fwは時刻t1~t2の予め定めた逆送加速期間Truに入り、0から上記の逆送ピーク値Wrpまで加速する。この期間中は短絡期間が継続している。
[Operation in the reverse feed period from time t1 to t4]
As shown in FIG. 5A, the feed speed Fw enters a predetermined reverse feed acceleration period Tru at times t1 to t2, and accelerates from 0 to the reverse feed peak value Wrp. During this period, the short circuit period continues.
 時刻t2において逆送加速期間Truが終了すると、同図(A)に示すように、送給速度Fwは逆送ピーク期間Trpに入り、上記の逆送ピーク値Wrpになる。この期間中も短絡期間が継続している。 When the reverse acceleration period Tru ends at time t2, the feed speed Fw enters the reverse peak period Trp and becomes the reverse peak value Wrp as shown in FIG. Even during this period, the short-circuit period continues.
 時刻t3においてアークが発生すると、同図(D)に示すように、短絡判別信号SdがLowレベル(アーク期間)に変化する。これに応動して、時刻t3~t4の予め定めた逆送減速期間Trdに移行し、同図(A)に示すように、送給速度Fwは上記の逆送ピーク値Wrpから0まで減速する。同時に、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増し、同図(B)に示すように、溶接電流Iwはアーク期間中次第に減少する。 When an arc occurs at time t3, as shown in FIG. 4D, the short circuit determination signal Sd changes to the low level (arc period). In response to this, a transition is made to a predetermined reverse feed deceleration period Trd at times t3 to t4, and the feed speed Fw is reduced from the reverse feed peak value Wrp to 0 as shown in FIG. . At the same time, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. 3C, and the welding current Iw gradually decreases during the arc period as shown in FIG.
[時刻t4~t7の正送期間の動作]
 時刻t4において逆送減速期間Trdが終了すると、時刻t4~t5の予め定めた正送加速期間Tsuに移行する。この正送加速期間Tsu中は、同図(A)に示すように、送給速度Fwは0から上記の正送ピーク値Wspまで加速する。この期間中はアーク期間が継続している。
[Operation in the forward feed period from time t4 to t7]
When the reverse feed deceleration period Trd ends at time t4, the routine proceeds to a predetermined forward feed acceleration period Tsu from time t4 to t5. During the normal feed acceleration period Tsu, as shown in FIG. 6A, the feed speed Fw is accelerated from 0 to the above-mentioned normal feed peak value Wsp. During this period, the arc period continues.
 時刻t5において正送加速期間Tsuが終了すると、同図(A)に示すように、送給速度Fwは正送ピーク期間Tspに入り、上記の正送ピーク値Wspになる。この期間中もアーク期間が継続している。 When the normal feed acceleration period Tsu ends at time t5, the feed speed Fw enters the normal feed peak period Tsp as shown in FIG. The arc period continues during this period.
 時刻t6において短絡が発生すると、同図(D)に示すように、短絡判別信号SdがHighレベル(短絡期間)に変化する。これに応動して、時刻t6~t7の予め定めた正送減速期間Tsdに移行し、同図(A)に示すように、送給速度Fwは上記の正送ピーク値Wspから0まで減速する。同時に、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwは短絡期間中次第に増加する。 When a short circuit occurs at time t6, the short circuit determination signal Sd changes to a high level (short circuit period) as shown in FIG. In response to this, a transition is made to a predetermined forward feed deceleration period Tsd between times t6 and t7, and the feed speed Fw is reduced from the forward feed peak value Wsp to 0 as shown in FIG. . At the same time, the welding voltage Vw rapidly decreases to a short-circuit voltage value of several V as shown in FIG. 5C, and the welding current Iw gradually increases during the short-circuit period as shown in FIG.
 実施の形態3では、正送ピーク期間Tsp及び逆送ピーク期間Trpは短絡又はアーク発生に応動して期間を終了するので、一定値ではない。このために、送給速度Fwの周期を直に所定値に設定することはできない。しかし、単位時間(0.1~1秒)ごとの正送ピーク期間Tspの平均値及び逆送ピーク期間Trpの平均値は略一定値となる。したがって、送給速度Fwの波形パラメータである正送加速期間Tsu、正送減速期間Tsd、逆送加速期間Tru、逆送減速期間Trd、正送ピーク値Wsp又は逆送ピーク値Wrpの少なくとも1つの値を調整することによって、単位時間ごとの送給速度Fwの周期の平均値を所定範囲に設定することができる。すなわち、実施の形態3においては、溶滴移行形態がグロビュール移行形態であるときは、送給速度の波形パラメータである正送加速期間Tsu、正送減速期間Tsd、逆送加速期間Tru、逆送減速期間Trd、正送ピーク値Wsp又は逆送ピーク値Wrpの少なくとも1つの値を変化させることによって、単位時間ごとの送給速度Fwの周期の平均値を適正範囲に設定することができる。実施の形態3においては、図3の横軸は単位時間当たりの周波数の平均値を示している。縦軸の同期短絡比率Rdは、正送ピーク期間Tspが予め定めた正送基準値に達する前に短絡が発生した比率を示している。これは、正送ピーク期間Tspが正送基準値を超えて短絡が発生する状態は、送給速度とアーク状態との同期状態が良好ではないからである。したがって、実施の形態3においては、溶滴移行状態がグロビュール移行形態であるときは、送給速度の波形パラメータを調整して、単位時間当たりの周波数の平均値が図3で示す適正範囲に入るようにすれば良い。上記の正送基準値は、例えば7msである。 In the third embodiment, the forward peak period Tsp and the reverse peak period Trp are not constant values because the period ends in response to a short circuit or arc occurrence. For this reason, the cycle of the feeding speed Fw cannot be set directly to a predetermined value. However, the average value of the forward feed peak period Tsp and the average value of the reverse feed peak period Trp per unit time (0.1 to 1 second) are substantially constant values. Accordingly, at least one of the forward feed acceleration period Tsu, the forward feed deceleration period Tsd, the reverse feed acceleration period Tru, the reverse feed deceleration period Trd, the forward feed peak value Wsp, or the reverse feed peak value Wrp, which is a waveform parameter of the feed speed Fw. By adjusting the value, the average value of the cycles of the feeding speed Fw per unit time can be set within a predetermined range. That is, in the third embodiment, when the droplet transfer mode is the globule transfer mode, the forward feed acceleration period Tsu, the forward feed deceleration period Tsd, the reverse feed acceleration period Tru, and the reverse feed are the waveform parameters of the feed speed. By changing at least one of the deceleration period Trd, the forward feed peak value Wsp, or the reverse feed peak value Wrp, the average value of the cycle of the feed speed Fw per unit time can be set within an appropriate range. In the third embodiment, the horizontal axis of FIG. 3 indicates the average value of the frequency per unit time. The synchronous short-circuit ratio Rd on the vertical axis indicates the ratio at which a short-circuit has occurred before the forward feed peak period Tsp reaches a predetermined forward feed reference value. This is because the state in which the forward feed peak period Tsp exceeds the forward feed reference value and a short circuit occurs does not provide a good synchronization state between the feed speed and the arc state. Therefore, in the third embodiment, when the droplet transfer state is the globule transfer mode, the waveform parameter of the feeding speed is adjusted, and the average value of the frequency per unit time falls within the appropriate range shown in FIG. You can do that. The above-mentioned normal feed reference value is 7 ms, for example.
 上述した実施の形態3によれば、正送期間中に短絡期間になると逆送期間への移行を開始し、逆送期間中にアーク期間になると正送期間への移行を開始する。この場合にも、実施の形態1と同様の効果を奏することができる。 According to the above-described third embodiment, the shift to the reverse feed period starts when the short-circuit period occurs during the forward feed period, and the shift to the forward feed period starts when the arc period occurs during the reverse feed period. Also in this case, the same effect as in the first embodiment can be obtained.
 上述した実施の形態1~3では、送給速度が台形波状に変化する場合であるが、正弦波状、三角波状等に変化する場合も同様である。 In Embodiments 1 to 3 described above, the feeding speed changes in a trapezoidal wave shape, but the same applies when the feeding speed changes in a sine wave shape, a triangular wave shape, or the like.
 本発明によれば、正逆送給制御によるアーク溶接において、グロビュール移行形態のときに良好な溶接状態となるアーク溶接制御方法を提供することができる。 According to the present invention, it is possible to provide an arc welding control method in which a good welding state is obtained in a globule transition mode in arc welding by forward / reverse feed control.
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。本出願は、2015年2月2日出願の日本特許出願(特願2015-018359)に基づくものであり、その内容はここに取り込まれる。 Although the present invention has been described above with reference to a specific embodiment, the present invention is not limited to this embodiment, and various modifications can be made without departing from the technical idea of the disclosed invention. This application is based on a Japanese patent application filed on February 2, 2015 (Japanese Patent Application No. 2015-018359), the contents of which are incorporated herein.
1     溶接ワイヤ
2     母材
3     アーク
4     溶接トーチ
5     送給ロール
DV   駆動回路
Dv   駆動信号
E     出力電圧
ED   出力電圧検出回路
Ed   出力電圧検出信号
ER   出力電圧設定回路
Er   出力電圧設定信号
EV   電圧誤差増幅回路
Ev   電圧誤差増幅信号
Fa   平均送給速度
FAR 平均送給速度設定回路
Far 平均送給速度設定信号
FC   送給制御回路
Fc   送給制御信号
FR   送給速度設定回路
Fr   送給速度設定信号
FR2 第2送給速度設定回路
Fw   送給速度
Iw   溶接電流
Nd   正送期間中に発生した短絡の回数
Ns   正送期間の回数
PM   電源主回路
RD   同期短絡比率演算回路
Rd   同期短絡比率(信号)
SD   短絡判別回路
Sd   短絡判別信号
Sf   周波数
SFR 周波数設定回路
Sfr 周波数設定信号
Tf   周期
Tfr 周期設定信号
Trd 逆送減速期間
TRDR      逆送減速期間設定回路
Trdr      逆送減速期間設定信号
Trp 逆送ピーク期間
Tru 逆送加速期間
TRUR      逆送加速期間設定回路
Trur      逆送加速期間設定信号
Tsd 正送減速期間
TSDR      正送減速期間設定回路
Tsdr      正送減速期間設定信号
Tsp 正送ピーク期間
Tsu 正送加速期間
TSUR      正送加速期間設定回路
Tsur      正送加速期間設定信号
VD   電圧検出回路
Vd   電圧検出信号
Vw   溶接電圧
Wf   振幅
WFR 振幅設定回路
Wfr 振幅設定信号
WL   リアクトル
WM   送給モータ
Wrp 逆送ピーク値
WRR 逆送振幅設定回路
Wrr 逆送振幅設定信号
Wsp 正送ピーク値
WSR 正送振幅設定回路
Wsr 正送振幅設定信号
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll DV Drive circuit Dv Drive signal E Output voltage ED Output voltage detection circuit Ed Output voltage detection signal ER Output voltage setting circuit Er Output voltage setting signal EV Voltage error amplification circuit Ev Voltage error amplification signal Fa Average feed speed FAR Average feed speed setting circuit Far Average feed speed setting signal FC Feed control circuit Fc Feed control signal FR Feed speed setting circuit Fr Feed speed setting signal FR2 Second feed Speed setting circuit Fw Feeding speed Iw Welding current Nd Number of short circuits that occurred during normal feeding period Ns Number of normal feeding periods PM Power supply main circuit RD Synchronous short circuit ratio calculation circuit Rd Synchronous short circuit ratio (signal)
SD Short-circuit determination circuit Sd Short-circuit determination signal Sf Frequency SFR Frequency setting circuit Sfr Frequency setting signal Tf Period Tfr Period setting signal Trd Reverse feed deceleration period TRDR Reverse feed deceleration period setting circuit Trdr Reverse feed deceleration period setting signal Trp Reverse feed peak period Tru Feed acceleration period TRUR Reverse feed acceleration period setting circuit Tru Reverse feed acceleration period setting signal Tsd Forward feed deceleration period TSDR Forward feed deceleration period setting circuit Tsdr Forward feed deceleration period setting signal Tsp Forward feed peak period Tsu Forward feed acceleration period TSUR Forward feed acceleration Period setting circuit Tsur Forward feed acceleration period setting signal VD Voltage detection circuit Vd Voltage detection signal Vw Welding voltage Wf Amplitude WFR Amplitude setting circuit Wfr Amplitude setting signal WL Reactor WM Feed motor Wrp Reverse feed peak value WRR Reverse feed amplitude setting circuit Wrr Reverse feed amplitude setting signal Wsp Forward feed peak value WSR Forward feed amplitude setting circuit Wsr Forward feed amplitude setting signal

Claims (4)

  1.  溶接ワイヤの送給速度を正送期間と逆送期間とに交互に切り換える正逆送給制御を行って、短絡期間とアーク期間とを発生させて溶接するアーク溶接制御方法において、
     溶滴移行形態がグロビュール移行形態であるときは、前記送給速度を前記正送期間と前記逆送期間とに切り換える周波数が70~120Hzの範囲になるように前記送給速度の波形パラメータを設定する、
    ことを特徴とするアーク溶接制御方法。
    In the arc welding control method of performing welding by generating a short circuit period and an arc period by performing forward / reverse feed control for alternately switching the feeding speed of the welding wire between the forward feed period and the reverse feed period,
    When the droplet transfer mode is a globule transfer mode, the waveform parameter of the feed rate is set so that the frequency for switching the feed rate between the forward feed period and the reverse feed period is in the range of 70 to 120 Hz. To
    An arc welding control method characterized by the above.
  2.  シールドガスが炭酸ガスであり、溶接ワイヤの材質が鉄であり、溶接ワイヤの直径が1.2mmであるときは、前記グロビュール移行形態は平均溶接電流が200A以上の範囲である、
    ことを特徴とする請求項1記載のアーク溶接制御方法。
    When the shielding gas is carbon dioxide, the welding wire material is iron, and the welding wire diameter is 1.2 mm, the globule transition form has an average welding current in the range of 200 A or more.
    The arc welding control method according to claim 1.
  3.  前記正逆送給制御中の同期短絡比率を算出し、この同期短絡比率が最大値になるように前記波形パラメータを自動調整し、前記同期短絡比率は単位時間中の前記正送期間の回数に占める前記正送期間中に発生した短絡の回数の比率である、
    ことを特徴とする請求項1又は2記載のアーク溶接制御方法。
    The synchronous short-circuit ratio during the forward / reverse feed control is calculated, and the waveform parameter is automatically adjusted so that the synchronous short-circuit ratio becomes the maximum value, and the synchronous short-circuit ratio is set to the number of times of the normal feed period in a unit time. It is a ratio of the number of short circuits that occurred during the normal feeding period,
    The arc welding control method according to claim 1 or 2, wherein
  4.  前記正送期間中に前記短絡期間になると前記逆送期間への移行を開始し、前記逆送期間中に前記アーク期間になると前記正送期間への移行を開始する、
    ことを特徴とする請求項1又は2記載のアーク溶接制御方法。
     
     
    When it becomes the short-circuit period during the normal feed period, it starts to shift to the reverse feed period, and when it becomes the arc period during the reverse feed period, it starts to shift to the normal feed period,
    The arc welding control method according to claim 1 or 2, wherein

PCT/JP2016/050683 2015-02-02 2016-01-12 Arc welding control method WO2016125540A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680003498.4A CN107107241B (en) 2015-02-02 2016-01-12 Arc welding control method
JP2016573250A JPWO2016125540A1 (en) 2015-02-02 2016-01-12 Arc welding control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018359 2015-02-02
JP2015-018359 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016125540A1 true WO2016125540A1 (en) 2016-08-11

Family

ID=56563891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050683 WO2016125540A1 (en) 2015-02-02 2016-01-12 Arc welding control method

Country Status (3)

Country Link
JP (1) JPWO2016125540A1 (en)
CN (1) CN107107241B (en)
WO (1) WO2016125540A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170086490A (en) * 2014-11-18 2017-07-26 가부시키가이샤 다이헨 Arc welding control method
CN111558761A (en) * 2019-02-13 2020-08-21 株式会社达谊恒 Arc welding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039413B2 (en) * 2018-07-26 2022-03-22 株式会社ダイヘン Arc welding control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006020A (en) * 2010-06-22 2012-01-12 Daihen Corp Arc welding control method
JP5141826B2 (en) * 2009-08-28 2013-02-13 パナソニック株式会社 Arc welding method and arc welding apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264500B (en) * 2009-07-10 2013-07-10 松下电器产业株式会社 Arc welding control method and arc welding device
EP2402104B1 (en) * 2009-07-29 2018-04-11 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus
CN101870032A (en) * 2010-06-18 2010-10-27 杭州凯尔达电焊机有限公司 Molten drop timed and forced short-circuiting transfer control method in large-current CO2 welding process
CN103223545B (en) * 2013-05-06 2015-06-17 天津大学 Control method for automatic flat welding device for welding rods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141826B2 (en) * 2009-08-28 2013-02-13 パナソニック株式会社 Arc welding method and arc welding apparatus
JP2012006020A (en) * 2010-06-22 2012-01-12 Daihen Corp Arc welding control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170086490A (en) * 2014-11-18 2017-07-26 가부시키가이샤 다이헨 Arc welding control method
KR102245586B1 (en) 2014-11-18 2021-04-27 가부시키가이샤 다이헨 Arc welding control method
CN111558761A (en) * 2019-02-13 2020-08-21 株式会社达谊恒 Arc welding method
CN111558761B (en) * 2019-02-13 2023-11-28 株式会社达谊恒 arc welding method

Also Published As

Publication number Publication date
JPWO2016125540A1 (en) 2017-11-09
CN107107241A (en) 2017-08-29
CN107107241B (en) 2019-12-10

Similar Documents

Publication Publication Date Title
JP2018001270A (en) Arc-welding control method
JP2012006020A (en) Arc welding control method
WO2015107974A1 (en) Arc welding control method
US11033979B2 (en) Arc welding control method
US11446753B2 (en) Arc welding control method
US10493553B2 (en) Arc welding control method
WO2015125643A1 (en) Arc-welding power supply
JP2017013088A (en) Forward and reverse feeding arc-welding method
US11724329B2 (en) Arc welding control method
WO2016125540A1 (en) Arc welding control method
WO2016027638A1 (en) Arc welding control method
WO2015141664A1 (en) Arc welding control method
KR102473580B1 (en) Direct and inverse feeding ac arc welding method
US11305370B2 (en) Arc welding control method
KR102233253B1 (en) Arc welding control method
JP6347721B2 (en) Arc welding control method
JP6261614B2 (en) Arc welding control method
JP7272740B2 (en) Arc welding control method
JP2018149593A (en) Arc-welding control method
US20230249274A1 (en) Arc welding control method
JP6593919B2 (en) Forward / reverse feed AC arc welding method
JP6516291B2 (en) Reverse feed arc welding method
JP2024037473A (en) Arc welding control method
JP2023136337A (en) Arc-welding control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746371

Country of ref document: EP

Kind code of ref document: A1