JP6600730B2 - 多接点の温度センサーを用いた広帯域溶融金属液位測定装置および熱システム - Google Patents

多接点の温度センサーを用いた広帯域溶融金属液位測定装置および熱システム Download PDF

Info

Publication number
JP6600730B2
JP6600730B2 JP2018193069A JP2018193069A JP6600730B2 JP 6600730 B2 JP6600730 B2 JP 6600730B2 JP 2018193069 A JP2018193069 A JP 2018193069A JP 2018193069 A JP2018193069 A JP 2018193069A JP 6600730 B2 JP6600730 B2 JP 6600730B2
Authority
JP
Japan
Prior art keywords
liquid level
molten metal
level measuring
measuring device
metal liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193069A
Other languages
English (en)
Other versions
JP2019074524A (ja
Inventor
ヨー、ジェヒュク
リー、ヨンブン
キム、ビョンギョン
ジョン、ジヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Atomic Energy Research Institute KAERI
Original Assignee
Korea Atomic Energy Research Institute KAERI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Atomic Energy Research Institute KAERI filed Critical Korea Atomic Energy Research Institute KAERI
Publication of JP2019074524A publication Critical patent/JP2019074524A/ja
Application granted granted Critical
Publication of JP6600730B2 publication Critical patent/JP6600730B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/2845Electromagnetic waves for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/003Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the level of the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/201Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/261Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、多接点温度センサーを用いた広帯域溶融金属液位測定装置及びこれを含む熱システムに関するものである。
溶融金属液位の測定には、主に非連続式接点方式(Discontinuous、Electrode)の最も基礎的な方法と誘導電流を活用する連続式(Continuous、Inductive)方法、そしてレーダー(Radar)方式などを使用してきている。しかし、伝統的な液位の測定方式である非連続式接点方式の場合は、連続的な液位の測定が不可能であり、その数を無限に増やさない限り、微小液位変動を測定することができず、レーダー(Radar)方式の場合には、一部の溶融ナトリウムを冷却材として使用する高速増殖炉で使用された例があるが、まだ溶融金属液位測定に対する適用事例が不足している状態である。
誘導電流を活用する連続式の液位計もまた高温の作動流体に対して、その温度変動による物性値の変動が頻繁な場合には、隣接したポイントに存在する作動流体である溶融金属の温度を直接測定して測定した液位情報に対する温度補償を行なわなければならない煩わしさが伴う。特に、高温環境での液位計構造自体の熱膨張のような基準点変更環境が造成されている場合には、測定された溶融金属液位情報の信頼性確保および誤差分析過程で不確実性が増加する余地が多くある。
このような温度変動による運用特性および高温の動作環境は、広帯域(Long-range)液位計、すなわち計測器の長さが長くなる場合には、不確実性が計測値の信頼性にますます深刻な影響を与え得る。特に、従来技術での温度補償概念は、測定された溶融金属の温度の不確実性、すなわち軸方向に溶融金属の液位が変化する過程で温度を測定する位置が、実際に溶融金属の液位が測定される位置と一致していない場合が多く、また、溶融金属の直接接触および非接触の状態によってコイルを包んでいるチューブなどに対する電気伝導度などの物性に差が発生し得るため、可能な限り液位の変化に伴う詳細な温度情報が温度補償に反映されなければならないが、現実的にこれを満足できない場合が多かった。
一方、液体のレベルを測定する装置に関連する従来技術として、特許文献1(以下、「先行技術」と略称する)では、近位部、中央部および末端部を含むセンサーを介して液体のレベルを測定する装置及びこれを含むシステムが開示された。ただし、先行技術は、液位情報の正確性を向上させるために、温度情報の測定および測定されたデータの統合によって温度補償を実行する構成要素が確認されなかった。
韓国公開特許第10−2007−0092967号公報
本発明の目的は、多接点で温度測定が可能な液位測定装置を提供することにある。
また、本発明の目的は、広帯域で溶融金属の液位測定および自由液面の追跡が可能な液位測定装置を提供することにある。
また、本発明の前述した液位測定装置を含む熱システムを提供することにある。
本発明の実施例による溶融金属液位測定装置は、温度補償を用いた連続式溶融金属液位測定装置において、円筒形状のボビン(bobbin)、前記ボビンの外面を螺旋状に環繞する液位計測部、内部に前記ボビンと前記液位計測部が位置し、前記ボビンと前記液位計測部を外部から密閉させ、前記ボビンと同じ軸方向を有する円筒形状の内側シリンダー、内部に前記内側シリンダーが位置し、前記ボビンと同じ軸方向を有し、一端が開放された円筒形状の保護管、前記内側シリンダーの外側と前記保護管の内側によって形成される空間に前記軸方向に伸長して配置された複数の熱電対、および前記液位計測部を制御して前記溶融金属の液位を測定し、前記複数の熱電対によって測定されたそれぞれの温度に基づいて、前記液位計測部を介して測定された前記溶融金属の液位の補正値を出力する制御部を含む。
本発明の実施例による溶融金属液位測定装置は、前記内側シリンダーと前記保護管を接続するための連結部をさらに含むことができる。
また、前記保護管は、複数の通孔を形成することができる。
また、前記複数の通孔は、直径を4mm以上とすることができる。
また、前記保護管は、前記保護管の一端から既設定された第1距離内の外周面に前記複数の通孔を形成することができる。
本発明の実施例による溶融金属液位測定装置は、前記保護管の一端から前記既設定された第1距離よりも大きい既設定された第2距離に、前記保護管内部の領域を第1領域及び第2領域に分離するように形成されたフランジ部をさらに含むことができる。
また、前記第1領域は、前記保護管の一端から前記既設定された第2距離内の前記保護管の内部であり、前記フランジ部は、前記第2領域を前記第1領域から密閉するように形成することができる。
また、前記既設定された第2距離は前記内側シリンダーの長さよりも長くすることができる。
また、前記ボビンはGrade 91系金属材料であり得る。
また、前記液位計測部は、前記制御部から交流電流が印加される第1コイル、および前記交流電流に基づいて誘導電流を発生する第2コイルを含むことができる。
また、前記第1及び第2コイルは、それぞれが単一のコイルで形成され、前記ボビンの軸方向に交互して並んで環繞することができる。
また、前記内側シリンダーは、電流および電磁場の透過が容易な材質で構成することができる。
また、前記熱電対は、異なる長さに伸長された複数の熱電対を配置することができる。
また、前記熱電対は、前記フランジ部と接続された固定端と、前記フランジ部から伸長される測定端を含むことができる。
前記測定端は、前記フランジ部から伸長される長さを調節することができる。
また、前記熱電対は、前記測定端が外部から遮断された密閉型の熱電対であり得る。
また、前記連結部は、前記複数の熱電対の間に形成することができる。
また、前記制御部は、前記複数の熱電対のうちの少なくとも一つで測定された前記溶融金属の温度情報に基づいて前記溶融金属の補正された液位を算出することができる。
また、前記制御部は、前記複数の熱電対で測定された前記溶融金属の温度情報を連続的に収集し、前記溶融金属の補正された液位を算出することができる。
また、前記フランジ部は、複数の貫通孔を形成することができる。
本発明の実施例による熱システムは、溶融金属液位測定装置を挿入して作動流体の液位を測定する。
本発明の実施例による溶融金属液位測定装置は、軸方向に伸長された円筒形状のボビンの周辺に異なる長さに配置された複数の熱電対を介して軸方向に多接点の温度測定が可能であるので、複雑な実験装置および多様な産業用タンク形態に応用可能な利点がある。
また、本発明の実施例による溶融金属液位測定装置は、作動流体の軸方向の温度を直接に測定したデータに基づいて、誘導型液位計測器で獲得した液位を温度補償を介して直接に適用することにより、信頼性が向上した液位データを取得することができる利点がある。
また、本発明の実施例による溶融金属液位測定装置は、貫通部が最小化したフランジ部を含みシリンダー内部の空間に対する隔離特性の確保が可能であり、計測装置の運用が容易であるという利点がある。
また、本発明の実施例による熱システムは、溶融金属液位測定装置を含む二重構造を有することにより、信頼性および性能に影響を与え得る熱システムの主作動流体の微細な漏れを早期に把握できる利点がある。
本発明の実施例に係る溶融金属液位測定装置の斜視図である。 本発明の実施例に係る溶融金属液位測定装置の断面図である。 本発明の実施例に係る溶融金属液位測定装置の高さ別の平面図を確認するための基準を示す。 図3のA−A’を基準にした平面図を示す。 図3のB−B’を基準にした平面図を示す。 図3のC−C’を基準にした平面図を示す。 図3のD−D’を基準にした平面図を示す。 本発明の実施例に係る測定端の長さ変化を示す。 本発明の実施例に係る熱システムである。 本発明の実施例に係る熱システム上部の平面図である。
以下、添付の図に記載された内容を参照して本発明を詳細に説明する。ただし、本発明は、例示的な実施例によって制限されたり限定されるものではない。各図に提示した同一の参照符号は、実質的に同じ機能を実行する部材を示す。
本発明の目的及び効果は、下記の説明によって自然に理解されるより明確になり得、下記の記載のみで、本発明の目的および効果が制限されるものではない。また、本発明を説明するにおいて、本発明に関連する公知技術に対する具体的な説明が、本発明の要旨を不必要に曖昧にし得ると判断される場合には、その詳細な説明を省略することにする。
本発明の実施例に係る溶融金属液位測定装置10は、ヘリカル形態で環繞する一対のコイルを介して連続的な液位の測定が可能であり、多接点で測定する温度情報に基づいて、溶融金属の液位の信頼性を向上させることができる。一方、本発明の実施例に係る溶融金属液位測定装置10は、リチウム、カリウム、ナトリウムカリウム溶融合金、鉛ビスマス合金、鉛等の溶融金属の液位を測定することができ、これに限定されない。
図1は、本発明の実施例に係る溶融金属液位測定装置10の斜視図である。図2は、本発明の実施例に係る溶融金属液位測定装置10の断面図である。図1及び2を参照すると、溶融金属液位測定装置10は、ボビン11、液位計測部12、内側シリンダー13、保護管14、熱電対15、制御部16、連結部17およびフランジ部18を含むことができる。
ボビン11は、円筒形状で提供することができる。
一般的に、ボビンは電気回路のコイル線を巻く中空の円筒で、陶磁器またはベークライト製で抵抗器やコイル製作などに使用される。このように、本実施例に係るボビン11は、円筒形状で提供して液位計測部12を容易に巻くことができる支持台の役割をすることができる。ボビン11の直径によって内側シリンダー13および保護管14の直径が決定し得る。
ボビン11は、Grade91系金属材料であり得る。
本実施例では、ボビン11は、高温の溶融金属に露出した環境で使用することができ、材質によって温度による体積の変化が発生し得る。これは、測定された液位の信頼度を低下させ得る。したがって、ボビン11の材質を限定することにより、体積変化を予防して信頼度を向上させることができる。ボビン11は、熱膨張率が少ない材質を用いることができる。ボビン11はGrade 91(Modified 9Cr-1Mo)系列の金属を使用して長さ方向の膨張および収縮を最小限に抑えることができる。ボビン11の体積変化が最小限に抑えられることによって溶融金属液位測定装置10の精度が向上し得る。一方、多数の熱電対15を備え、測定された温度情報に基づいてボビン11が変化した体積変化を補正することができる。
液位計測部12は、ボビン11の外面を螺旋状に環繞することができる。
本実施例では、液位計測部12は、ボビン11の外面をフランジ部18の下部から軸方向に沿って巻き下ることができる。液位計測部12は、連続的な液位の測定のためにボビンの側面を螺旋のような形態で連続的に取り囲むことができる。特に、液位計測部12は、すき間が形成されない螺旋形態に配置され、ボビン11の軸方向のすべての液位を測定できることが分かる。ただし、液位計測部12は、溶融金属との直接接触を防止するために内側シリンダー13と隔離することが好ましい。
一方、液位計測部12は、電流測定部と制御部16に接続するための回線で区分することができ、これはフランジ部18を基準に区分することができる。液位計測部12は、測定に適合するように酸化マグネシウム(MgO)のような鉱物絶縁材で被覆されたMIケーブルを用いて、高温環境での使用を容易にするように構成することができる。また、回線は、無機材料を用いて高温の環境に容易に使用できるように構成することができる。特に、フランジ部18を起点に、電流測定部と回線はケーブルバンチ(bunch)などを適切に配置することができ、フランジ部18は、連結部を除いて密封した状態で提供することができる。
液位計測部12は、第1コイル121及び第2コイル123を含むことができる。第1コイル121及び第2コイル123は、それぞれが単一のコイルで形成され、ボビン11の軸方向に交互に並んで環繞することができる。
本実施例では、第1コイル121及び第2コイル123は、それぞれ単一の閉回路を形成するコイルであり得る。第1コイル121と第2コイル123は、一対のコイルで液位計測部12を構成し、並んで螺旋形を形成することができる。第1コイル121が形成されるピッチの中の第1コイルが配置されない空間には、第2コイル123が螺旋を形成してボビン11が側面に露出することを防止することができる。また、第1コイル121及び第2コイル123が形成されるピッチは、最大限細かく設定して、液位測定の精度を向上させることができる。第1コイル121及び第2コイル123は、ボビン11の円周方向には、重畳するように形成されず、これにより、ボビン11の直径と、各コイルの直径によって内側シリンダー13の直径を決定することができる。ただし、本発明の実施例に係る溶融金属液位測定装置10は、小型化して提供することが好ましい形態であると予測されるので、各コイルの直径は1インチ以内の範囲で形成することができる。一方、第1コイル121及び第2コイル123は、フランジ部18から螺旋を形成し、フランジ部18を貫通するリード線と結線して制御部16と接続することができる。液位計測部12を構成する各コイルは、制御部16と接続して閉回路を形成することができる。各コイルは、誘導電流方式を活用する従来の計測装置の構成と同一またはこれを活用した他の形態で提供することができる。
第1コイル121は、制御部16から交流電流を印加することができる。
本実施例では、第1コイル121は、制御部16と接続して電流を印加することができる。第1コイル121に印加された電流は、溶融金属および第2コイル123に誘導電流を発生させることができる。このように、第1コイル121には交流電流を印加して溶融金属と第2コイル123に誘導電流を発生させなければならず、以後、溶融金属に流れる誘導電流の影響によって、第2コイル123の変換された出力を介して溶融金属の液位を決定することができる。
第2コイル123は、第1コイル121に印加された交流電流に基づいて誘導電流を発生することができる。
本実施例では、第2コイル123は、第1コイル121に印加された交流電流およびそれによって誘導された溶融金属の誘導電流によって異なる出力の誘導電流を発生することができる。第2コイル123に発生した誘導電流は制御部16に伝達され、液位を決定するデータとして用いることができる。
内側シリンダー13には、内部にボビン11と液位計測部12が位置し、ボビン11と液位計測部12を外部から密閉させ、ボビン11と同じ軸方向を有する円筒形状であり得る。
本実施例では、内側シリンダー13は、溶融金属からボビン11と液位計測部12を隔離するために備えることができる。内側シリンダー13は、ボビン11と液位計測部12の直径によって、直径が決定され得る。詳細には、内側シリンダー13の直径は、ボビン11の直径と液位計測部コイルの直径の2倍を加えた数値を収容できる大きさで決定することができる。内側シリンダー13は、ボビン11と同じ軸方向を有し、フランジ部18で一端が密閉され、他端は、それ自体密閉された円筒形状で提供することができる。また、内側シリンダー13は、完全な密閉状態を提供するために、高品質の継手類を用いて構成が仕上がった状態で提供することができる。
内側シリンダー13は、電流および電磁場の透過が容易な材質で構成することができる。
本実施例では、内側シリンダー13は、溶融金属と液位計測部12の直接的な接触を防止するために形成するが、溶融金属の液位を測定するために、第1コイル121に印加された交流電流を溶融金属に伝達することができる材質で備えなければならないことに注目する。また、内側シリンダー13は、高温の溶融金属と直接接触が発生することから、高温での体積変化が少なく、耐熱性に優れた材質で提供することができる。
保護管14は、内部に内側シリンダー13を配置し、ボビン11と同じ軸方向を有し、一端が開放された円筒形状であり得る。
本実施例では、保護管14は、内側シリンダー13を内側に配置することができ、内側シリンダー13の外面と一定の距離以上離隔して同じ軸方向を有する円筒形状で提供することができる。保護管14は、離隔した空間に複数個の熱電対15が配置され、これにより、溶融金属の温度を測定する空間を提供することができる。また、保護管14は、下端が開放された構造で提供されて溶融金属の流入および排出を容易に行うことができる。保護管14は、溶融金属と直接接触が発生することにより、溶融金属との両立性に優れた金属材料を提供することができ、耐熱性に優れた材質で提供することができる。
保護管14には、複数の通孔141を形成することができる。
本実施例では、通孔141は、保護管14の側面に複数個形成することができる。通孔141は、溶融金属が流通するように設けることができ、これを通じて、熱電対15と溶融金属が直接に接触することができる。つまり、通孔141は、熱電対15の温度測定効率を向上させ、保護管14の内側空間の健全性を向上させるために構成することができる。
通孔141は、直径が4mm以上であり得る。
本実施例では、通孔141は、保護管14内外で流通する作動流体の容易な移動のために形成することができる。通孔141は、溶融と固化が繰り返される作動流体が通孔141を遮断しないよう、複数形成して十分な大きさで提供して流通の健全性を維持することができる。通孔141は、直径が5mm以上である円形に形成することができる。また、通孔141は、短軸の長さが5mm以上である楕円形に形成することができる。通孔141は、連結部17の形成に制限されない範囲で、その大きさを決定することができる。また、通孔141は、保護管14の構造および機械的特性上、保護管14本来の機能を実行するのに支障のない範囲で、その大きさを決定することができる。
保護管14は、一端から既設定された第1距離内の外周面に複数の通孔141を形成することができる。
本実施例では、保護管14は、外周面の一部分に通孔141を形成することができる。保護管14の一端は、溶融金属の液位測定装置10の下端と理解することができ、一端から既設定された第1距離内の外周面に複数の通孔141を形成することができる。第1距離は、後述する第2距離と区別するために定義される。第1距離は保護管の一端から任意に設定した距離を意味し、第1距離は第2距離より短く形成することができる。
第2距離は、保護管14の一端から保護管14の他端までの長さで定義することができる。第2距離は、内側シリンダー13の長さよりも長いことがあり得る。つまり、保護管14は、内側シリンダー13およびボビン11よりも長く形成することができる。
熱電対15は、内側シリンダー13の外側と保護管14の内側に形成される空間にボビン11の軸方向に伸長して複数個配置することができる。
本実施例では、熱電対15は、溶融金属の温度を測定するために備えることができる。熱電対15は複数個設けて、溶融金属の温度を多接点で測定することができる。このように、多接点の熱電対15で測定した温度情報は、制御部16に伝達され、液位に対する温度補償を行なうことができる。熱電対15は、内側シリンダー13と保護管14の間の空間に内側シリンダー13の軸方向と同様に伸長して配置することができ、配置形態は限定されない。熱電対15は、材質、直径、長さなどが制限されず、相互に接触せずに離隔するように配置することができる。熱電対15は、溶融金属と直接接触を通じて温度測定が行われるので、溶融金属との両立性が良い金属材質で表面処理して提供することができる。
図3は、本発明の実施例による溶融金属液位測定装置10の高さ別の平面図を確認するための基準を示す。図4〜7は、図3の基準高さ別の各々の平面図を示す。
熱電対15は、異なる長さに伸長して複数個配置することができる。
本実施例では、熱電対15は様々な液位に応じて温度を測定することができるように異なる長さに伸長して提供することができる。特に、熱電対15の長さの調節は、熱電対15の位置によって、配置された温度センサーを基準に変更することができる。つまり、熱電対15は、フランジ部18を基準に軸方向に上下移動して、長さを調節することができる。また、熱電対15は、一端に温度センサーをさらに付着して伸長する結合型で提供することができる。これは、溶融金属の温度による温度補償の精度を向上させるためであり、備えた熱電対15の数が増加したり、伸長する長さが向上することによって液位の信頼性が向上し得る。
例えば、12個の熱電対が内側シリンダー13と保護管14の間の空間に円周方向に配置されている場合には、各熱電対間の離隔した角度は30°で提供することができる。このように、熱電対は、等間隔に配置することができるが、設計上の変形や使用者の必要性によって不規則に配置することができる。
図3を詳細に説明すると、溶融金属液位測定装置10の軸方向を基準にして、A−A’、B−B’、C−C’、D−D’の4つの基準面を設定した。図4は、A−A’を基準にした平面図を示す。A−A’断面は、フランジ部18の上部を示すため、ボビン11および内側シリンダー13が確認されないことを知ることができる。また、液位計測部12は、螺旋形に配置されずに、これに接続する各リード線が確認できることを知ることができる。同様に、熱電対15は、配置されなかったが、それぞれの熱電対と制御部16を接続するリード線が配置されたことを知ることができる。
図5は、B−B’を基準とした平面図を示す。B−B’断面はフランジ部18の下部を示すため、ボビン11および内側シリンダー13が形成され、ボビン11を囲む形態の液位計測部12を確認することができる。また、内側シリンダー13と保護管14の間を接続する連結部17および複数の熱電対15が配置されたことを知ることができる。ただし、B−B’面の保護管の外周面は、通孔141が形成されておらず、これは、その外周面が、前述した第1距離よりも下端から遠く離れているためであることが分かる。B−B’面で一部の熱電対15は確認され、一部の熱電対15は確認されないことがある。それぞれの連結部17は、熱電対15の間に配置されて熱電対15を空間的に分離することができる。連結部17が形成される空間の数は、配置された熱電対15の数よりも少ないか同じであり得る。
図6は、C−C’を基準とした平面図を示す。C−C’断面もB−B’断面と同様にフランジ部18の下部を示すため、ボビン11および内側シリンダー13が形成され、ボビン11を囲む形態の液位計測部12を確認することができる。また、内側シリンダー13と保護管14の間を接続する連結部17および複数の熱電対15が配置されたことを知ることができる。ただし、B−B’面とは異なりC−C’面は通孔141が形成されたことを確認できる。また、C−C’面はB−B’面に比べて熱電対15の数が減り、それは保護管14の下端に移動するにつれて、伸長した熱電対15の数が減少することを意味し得る。
図7は、D−D’を基準とした平面図を示す。D−D’断面も他のフランジ部18の下部の断面と同様にボビン11および内側シリンダー13が形成され、ボビン11を囲む形態の液位計測部12を確認することができる。また、内側シリンダー13と保護管14の間を接続する連結部17および熱電対15が配置されたことを知ることができる。ただし、D−D’面は保護管14の最下端面に該当する長さまで伸長した熱電対15は、極めて一部であり得、図7では、1つの熱電対15が配置されたことを確認できる。一方、図7には、通孔141が示されていないが、これは設計上の違いによって変更することができる。
図8は、本発明の実施例に係る測定端153の長さ変化を示す。図4を参照すると、熱電対15は、固定端151および測定端153を含むことができる。
固定端151は、フランジ部18と接続することができる。固定端151は、溶融金属との両立性が良い金属材質でフランジ部18に固定して多接点熱電対15と液位計測部12がフランジ部18を介して一体型に構成することができる。
測定端153は、フランジ部18から伸長し得る。測定端153は、フランジ部18から伸長する長さを調節することができる。
本実施例では、測定端153は固定端151を除いた部分と定義することができる。測定端153は、溶融金属の温度を測定することができる。測定端153の長さを異なるように伸長することによって、多数の熱電対15が、異なる液位に位置する溶融金属の温度を測定することができ、測定したデータは、制御部16で総合して温度補償の基礎データとして用いることができる。図8を参照すると、測定端153は、AからFの形態に変形することができる。一例として、6つの熱電対15を内側シリンダー13と保護管14の間に形成された空間に円周方向に配置する場合は、それぞれの離隔した角度は60°に同一にすることができ、A〜Fのいずれかの長さに伸長した異なる6つの熱電対を提供することができる。
熱電対15は、測定端153が外部から遮断された密閉型の熱電対であり得る。
一般的に、熱電対は、ゼーベック効果を用いて、広い範囲の温度を測定するために二種類の金属で作られた装置である。特に、耐久性が良く、極限条件で多く使用される。この中で、溶融金属に適用される熱電対は、マイナス200℃〜プラス1250℃で使用可能であり、多様な特性のために信頼性の高いK型熱電対が、主に多用される。熱電対は、接点の形態によって先端露出型、接地型、非接地型に分けることができる。本実施例に係る熱電対15は、高温の溶融金属と直接接触が予想されるので、測定のための先端が露出する先端露出型を除く密閉型熱電対15で提供することができる。
再び図1及び2を参照すると、制御部16は、液位計測部12を制御して溶融金属の液位を測定し、複数の熱電対15によって測定された各温度に基づいて液位計測部12を介して測定された溶融金属の液位の補正された値を出力することができる。
本実施例で、制御部16は、相違して伸長した複数の熱電対15からそれぞれの温度情報の伝達を受けることができる。特に、制御部16の温度補償モジュール163は、温度データを総合して、総合したデータを液位算出モジュール161に伝達することができる。
一例として、制御部16は、複数の熱電対15のうちの少なくとも一つで測定された溶融金属の温度情報に基づいて溶融金属の補正した液位を算出することができる。この例では、溶融金属の自由液面と最も近い熱電対15で測定された温度を総合して溶融金属の補正した液位を算出することができる。
他の例として、制御部16は、複数の熱電対15で測定された溶融金属の温度情報を連続的に収集し、溶融金属の補正した液位を算出することができる。この例では、溶融金属の自由表面の下端に位置するすべての熱電対15で測定された温度を総合することができ、これにより溶融金属の補正した液位を算出することができる。
再び図1及び図5を参照すると、連結部17は、内側シリンダー13と保護管14を接続することができる。また、連結部17は、複数の熱電対15の間に形成することができる。
本実施例では、連結部17は、内側シリンダー13と保護管14を接続するように板状に形成することができる。連結部17は、熱電対15が配置されない領域に形成され、複数の熱電対15を空間的に離隔させることができる。連結部17は、フランジ部18よりも下部にある領域に形成することができる。連結部17は、内側シリンダー13と保護管14の間に形成された空間の健全性のために、保護管14の下端を基準に軸方向に形成する高さを制限することができる。連結部17は、複数で形成することができる。
フランジ部18は、保護管14の一端から既設定された第1距離よりも大きい既設定された第2距離に位置して、保護管14の内部の領域を第1領域及び第2領域に分離することができる。
本実施例では、フランジ部18は、保護管14の一端から第1距離よりも大きく離隔することがあり、これを第2距離と定義する。第2距離に位置するフランジ部18を基準に下部領域を第1領域、上部領域を第2領域として定義することができる。第1領域は、液位計測部12および熱電対15を介して溶融金属の液位と温度を測定する領域を意味する。第2領域は、フランジ部18の上部を意味し、制御部16と液位計測部12および熱電対15を接続するリード線、回線などが配置される領域を意味する。第1領域と第2領域は、フランジ部18を介して空間的に分離することができる。第2領域は、リード線、回線などが接続した端子を配置することができ、空き空間は、酸化マグネシウムのような鉱物絶縁材などを用いて充たした後、密封することができる。
フランジ部18は、複数の貫通孔181を形成することができる。
本実施例では、貫通孔181は、第1領域の液位計測部12および熱電対15と第2領域のリード線および回路などを接続するために形成することができる。これは、制御部16を介して溶融金属液位測定装置10の作動のために不可欠に求められ、設計上の変更事項によって、単一な形態の貫通孔181または複数の貫通孔181を形成することができる。ただし、第1領域と第2領域の空間的隔離効率を高めるために、制御部16との接続のために形成される貫通孔181を除いた追加の貫通孔181の形成は、止揚することが好ましい。
図9は、本発明の実施例に係る熱システム1である。このように、溶融金属液位測定装置10は、溶融金属を作動流体として使用する溶融金属冷却原始炉、化学プラントおよび産業用取扱施設で作動流体の自由液面を含む密閉空間の溶融金属の液位および温度を精密に測定するための計測器に含まれ得る。また、溶融金属液位測定装置10は、密閉されたタンクおよび実験容器の内部に挿入して漏れ検知器の一種としても用いることができる。このように、本発明の溶融金属液位測定装置10を含む上位概念を本明細書では、熱システム1と定義し、前述した例に限定されず、溶融金属の液位を測定するためのすべてのシステムに適用することができる。これと関連した事項は、図10を用いて詳述する。
図10は、本発明の実施例による熱システム1の上部の平面図である。図10を参照すると、非常に複雑な熱システム1の構造に対しても本発明のフランジ部18の上部には、最小限の貫通孔181が形成され、制御部16と熱電対15および液位計測部12を接続することができる。これにより、熱システム1と溶融金属液位測定装置10は、隔離特性の確保が可能であり、温度計測および広帯域連続式液位の測定を容易に確認することができる。これは、溶融金属液位測定装置10から測定される情報の信頼性を向上させる要因として理解することができる。
また、溶融金属液位測定装置10は、熱システム1を構成するタンクおよび実験容器などの内部の圧力上昇などの要因により、内部の作動流体が外部に漏洩することをフランジ部18を介して遮断することができる。この場合、作動流体の自由液面の高さの変化を事前に検出して、二重配管(Double wall pipe)または二重壁容器(Double wall vessel)のような構造で漏れ検知器として適用することができる。
以上で、代表的な実施例を通じて本発明を詳細に説明したが、本発明が属する技術分野で通常の知識を有する者は、上述した実施例に対して本発明の範囲から逸脱しない範囲内で様々な変形が可能であることを理解するであろう。したがって、本発明の権利範囲は、説明した実施例に限定されてならず、後述する特許請求の範囲だけでなく、特許請求の範囲と均等概念から導出されるすべての変更または変形された形態によって定められなくてはならない。
1:熱システム
10:溶融金属液位測定装置
11:ボビン
12:液位計測部
121:第1コイル
123:第2コイル
13:内側シリンダー
14:保護管
141:通孔
15:熱電対
151:固定端
153:測定端
16:制御部
161:液位出力モジュール
163:温度補償モジュール
17:連結部17
18:フランジ部
181:貫通孔
9:カバー

Claims (21)

  1. 温度補償を用いた連続式溶融金属液位測定装置において、
    円筒形状のボビンと、
    前記ボビンの外面を螺旋状に環繞する液位計測部と、
    内部に前記ボビンと前記液位計測部が位置し、前記ボビンと前記液位計測部を外部から密閉し、前記ボビンと同じ軸方向を有する円筒形状の内側シリンダーと、
    内部に前記内側シリンダーが位置し、前記ボビンと同じ軸方向を有して一端が開放された円筒形状の保護管と、
    前記内側シリンダーの外側と前記保護管の内側によって形成される空間に前記軸方向に伸長して配置された複数の熱電対、および
    前記液位計測部を制御して溶融金属の液位を測定し、前記複数の熱電対によって測定された各々の温度に基づいて、前記液位計測部を介して測定された前記溶融金属の液位の補正値を出力する制御部、とを含む溶融金属液位測定装置。
  2. 前記内側シリンダーと前記保護管を接続するための連結部をさらに含む、請求項1に記載の溶融金属液位測定装置。
  3. 前記保護管は、複数の通孔が形成された、請求項1に記載の溶融金属液位測定装置。
  4. 前記複数の通孔は、直径が4mm以上である、請求項3に記載の溶融金属液位測定装置。
  5. 前記保護管は、
    前記保護管の一端から既設定された第1距離内の外周面に前記複数の通孔が形成された、請求項3に記載の溶融金属液位測定装置。
  6. 前記保護管の一端から前記既設定された第1距離よりも大きい既設定された第2距離に、前記保護管の内部の領域を第1領域及び第2領域に分離するように形成されたフランジ部をさらに含む、請求項5に記載の溶融金属液位測定装置。
  7. 前記第1領域が、
    前記保護管の一端から前記既設定された第2距離内の前記保護管の内部であり、
    前記フランジ部は、
    前記第2領域を前記第1領域から密閉するように形成された、請求項6に記載の溶融金属液位測定装置。
  8. 前記既設定された第2距離が、
    前記内側シリンダーの長さよりも長い、請求項6に記載の溶融金属液位測定装置。
  9. 前記ボビンが、Grade91系金属材料である、請求項1に記載の溶融金属液位測定装置。
  10. 前記液位計測部が、
    前記制御部から交流電流が印加される第1コイル、および
    前記交流電流に基づいて誘導電流を発生する第2コイルを含む、請求項1に記載の溶融金属液位測定装置。
  11. 前記第1及び第2コイルが、
    それぞれが単一のコイルで形成され、前記ボビンの軸方向に交互に並んで環繞する、請求項10に記載の溶融金属液位測定装置。
  12. 前記内側シリンダーが、
    電流および電磁場の透過が容易な材質で構成される、請求項1に記載の溶融金属液位測定装置。
  13. 前記熱電対は、
    異なる長さに伸長した複数の熱電対が配置された、請求項1に記載の溶融金属液位測定装置。
  14. 前記熱電対が、
    前記フランジ部と接続した固定端、および
    前記フランジ部から伸長する測定端を含む、請求項6に記載の溶融金属液位測定装置。
  15. 前記測定端は、
    前記フランジ部から伸長する長さが調節される、請求項14に記載の溶融金属液位測定装置。
  16. 前記熱電対は、
    前記測定端が外部から遮断された密閉型の熱電対である、請求項14に記載の溶融金属液位測定装置。
  17. 前記連結部が、
    前記複数の熱電対の間に形成された、請求項2に記載の溶融金属液位測定装置。
  18. 前記制御部が、
    前記複数の熱電対のうちの少なくとも一つで測定された前記溶融金属の温度情報に基づいて前記溶融金属の補正された液位を算出する、請求項1に記載の溶融金属液位測定装置。
  19. 前記制御部が、
    前記複数の熱電対で測定された前記溶融金属の温度情報を連続的に収集し、前記溶融金属の補正された液位を算出する、請求項1に記載の溶融金属液位測定装置。
  20. 前記フランジ部は、
    複数の貫通孔が形成された、請求項6に記載の溶融金属液位測定装置。
  21. 請求項1〜請求項20のいずれか一項に記載の溶融金属液位測定装置を挿入して作動流体の液位を測定する熱システム。
JP2018193069A 2017-10-17 2018-10-12 多接点の温度センサーを用いた広帯域溶融金属液位測定装置および熱システム Active JP6600730B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170134743A KR101892732B1 (ko) 2017-10-17 2017-10-17 다접점 온도센서를 이용한 광대역 용융금속 액위 측정 장치 및 열 시스템
KR10-2017-0134743 2017-10-17

Publications (2)

Publication Number Publication Date
JP2019074524A JP2019074524A (ja) 2019-05-16
JP6600730B2 true JP6600730B2 (ja) 2019-10-30

Family

ID=63454111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193069A Active JP6600730B2 (ja) 2017-10-17 2018-10-12 多接点の温度センサーを用いた広帯域溶融金属液位測定装置および熱システム

Country Status (3)

Country Link
US (1) US10473510B2 (ja)
JP (1) JP6600730B2 (ja)
KR (1) KR101892732B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199410U1 (ru) * 2020-05-27 2020-08-31 Евгений Николаевич Коптяев Датчик уровня жидкости с наполнителем

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621091B2 (en) 2019-01-08 2023-04-04 Westinghouse Electric Company Llc Temperature measurement sensor using material with a temperature dependent neutron capture cross section
CN111347014A (zh) * 2020-03-27 2020-06-30 上海航天精密机械研究所 一种基于砂型反重力铸造阶梯构件的测温热电偶定位方法
KR102238262B1 (ko) 2020-05-25 2021-04-12 임알수 유체 저장 탱크 통합 관리 장치 및 방법
KR102261561B1 (ko) 2020-05-25 2021-06-07 임알수 유체 저장 탱크 통합 관리 장치 및 방법
KR102503801B1 (ko) 2021-03-09 2023-02-24 한국원자력연구원 주파수 제어를 통한 온도 보상 방법 및 이를 이용한 상호유도전류형 액위계

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3204460A (en) * 1962-08-13 1965-09-07 United States Steel Corp System for indicating the liquid level in a continuous-casting mold or the like
US3364745A (en) * 1966-02-16 1968-01-23 Gen Dynamics Corp Apparatus and method of measuring molten metal temperature
US3463005A (en) * 1966-07-12 1969-08-26 Leeds & Northrup Co Immersion molten metal sampler device
US3763921A (en) * 1971-03-24 1973-10-09 Dow Chemical Co Direct chill casting method
US3905243A (en) * 1973-09-11 1975-09-16 Us Energy Liquid-level sensing device
US4320656A (en) * 1980-07-28 1982-03-23 United States Steel Corporation Thermocouple apparatus for indicating liquid level in a container
US4919543A (en) * 1988-06-20 1990-04-24 Reynolds Metals Company Molten metal temperature probe
JP2694847B2 (ja) * 1988-12-27 1997-12-24 不二サッシ株式会社 アルミニウム溶解炉での溶湯温度測定方法
US5020585A (en) * 1989-03-20 1991-06-04 Inland Steel Company Break-out detection in continuous casting
US5196048A (en) * 1992-01-30 1993-03-23 Teledyne Industries, Inc. Process for preparing a vanadium-nickel-chromium master alloy
US5423522A (en) * 1992-06-12 1995-06-13 Ajf, Inc. Slag control shape release apparatus for molten metal vessels
JPH0810923A (ja) * 1994-06-24 1996-01-16 Sumitomo Metal Ind Ltd 溶湯レベル測定装置
FR2727985B1 (fr) * 1994-12-09 1997-01-24 Pechiney Aluminium Procede et dispositif de mesure de la temperature et du niveau du bain d'electrolyse fondu dans les cuves de production d'aluminium
JPH0989628A (ja) * 1995-09-27 1997-04-04 Nippon Steel Corp 高温流体用液面計
US5720553A (en) * 1995-11-02 1998-02-24 Midwest Instrument Co., Inc. Apparatus and process for rapid direct dip analysis of molten iron
JP3369926B2 (ja) * 1997-09-16 2003-01-20 新日本製鐵株式会社 連続鋳造のオートスタート方法
US7014707B2 (en) * 1999-01-20 2006-03-21 Canon Kabushiki Kaisha Apparatus and process for producing crystal article, and thermocouple used therein
EP1677083A1 (fr) 2004-12-22 2006-07-05 Roxer Industries S.A. Capteur de niveau d'un liquide.
DE102008060032A1 (de) * 2008-07-31 2010-02-04 Sms Siemag Aktiengesellschaft Gießspiegelmessung in einer Kokille durch ein faseroptisches Messverfahren
KR101172376B1 (ko) * 2010-06-11 2012-08-08 한국수력원자력 주식회사 외장 열전대를 이용한 용융금속 액위 측정 장치
JP5865614B2 (ja) * 2011-06-27 2016-02-17 株式会社東芝 原子力発電所の水位温度検出装置
US9828646B2 (en) * 2014-03-14 2017-11-28 Berry Metal Company Metal making lance with spring-loaded thermocouple or camera in lance tip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199410U1 (ru) * 2020-05-27 2020-08-31 Евгений Николаевич Коптяев Датчик уровня жидкости с наполнителем

Also Published As

Publication number Publication date
US10473510B2 (en) 2019-11-12
KR101892732B1 (ko) 2018-08-28
US20190113378A1 (en) 2019-04-18
JP2019074524A (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6600730B2 (ja) 多接点の温度センサーを用いた広帯域溶融金属液位測定装置および熱システム
JP5395897B2 (ja) 高振動対応抵抗温度センサ
US4075036A (en) Profiled multielectrode thermocouple
CA2449074C (en) Multipoint thermocouple
US10101215B2 (en) Sensing assembly and method for fabricating a sensing assembly
CN109443580A (zh) 一种多测点温度传感器
US8739621B2 (en) Electrical heating element and method of measuring a filling level
US10712205B2 (en) Flexible multipoint thermometer
GB1585496A (en) Coil arrangement for electro-magnetic measurements
CN108204863A (zh) 高温排气传感器
CN103292861A (zh) 用于全封闭压力环境液位测量计的制作方法
EP0113554A1 (en) Radially activated thermocouple assembly
CN219015483U (zh) 温度探头和用于温度探头的插入件
US20220307915A1 (en) Temperature-Measuring Device
WO2023055640A1 (en) Heat flux temperature sensor probe for non-invasive process fluid temperature applications
CN209102228U (zh) 一种多测点温度传感器
JP6813906B1 (ja) 温度・変位測定装置
CN209627733U (zh) 临界热流密度试验专用电加热管及其试验装置
JP2680509B2 (ja) 液面計の製造方法
SK7332001A3 (en) Device for detecting the heat carrier level in reactor (options)
JP6663799B2 (ja) 液位センサ
CN106482854B (zh) 一种细丝热电偶保护装置
RU2545521C2 (ru) Способ и устройство для непрерывного контроля изгиба трубы технологического канала
JP6335125B2 (ja) シース型熱電対とその製造方法
RU72757U1 (ru) Термоэлектрический преобразователь для измерения температуры поверхности твердых тел (варианты)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6600730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250