JP6598910B2 - Tooth surface measurement method - Google Patents

Tooth surface measurement method Download PDF

Info

Publication number
JP6598910B2
JP6598910B2 JP2018052561A JP2018052561A JP6598910B2 JP 6598910 B2 JP6598910 B2 JP 6598910B2 JP 2018052561 A JP2018052561 A JP 2018052561A JP 2018052561 A JP2018052561 A JP 2018052561A JP 6598910 B2 JP6598910 B2 JP 6598910B2
Authority
JP
Japan
Prior art keywords
gear
dimensional
dimensional model
cutter
streak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018052561A
Other languages
Japanese (ja)
Other versions
JP2019164055A (en
Inventor
剛 堀
直人 宿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018052561A priority Critical patent/JP6598910B2/en
Publication of JP2019164055A publication Critical patent/JP2019164055A/en
Application granted granted Critical
Publication of JP6598910B2 publication Critical patent/JP6598910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、例えば、ハイポイドギヤなどの歯車の歯面性状の測定する歯面測定方法に関する。   The present invention relates to a tooth surface measuring method for measuring tooth surface properties of a gear such as a hypoid gear.

従来、車両の前方に横置きされる内燃機関の駆動力を、ハイポイドギヤなどを介して横方向の回転軸方向を前後方向に変換して後輪側へ伝達させる動力伝達装置などに用いられるハイポイドギヤなどの歯車が知られている(例えば、特許文献1参照)。   Conventionally, a hypoid gear or the like used for a power transmission device or the like that converts a driving force of an internal combustion engine horizontally placed in front of a vehicle to a rear wheel side by converting a horizontal rotation axis direction to a front-rear direction via a hypoid gear or the like. Is known (see, for example, Patent Document 1).

特開2006−70995号公報JP 2006-70995 A

歯車の切削加工時に1つの歯面に形成された周期性を有する複数の筋目が高周波音を発生させる原因となっていることが分かった。   It has been found that a plurality of lines having periodicity formed on one tooth surface at the time of cutting of a gear cause high-frequency sound.

しかしながら、実際の歯面には、周期性の筋目以外にも、切削機の刃の粗さなどの切削工具の転写による筋目や、切削時の切屑による筋目などの周期性の無い筋目も多数存在する。従って、2次元接触式形状測定器を用いて、噛合い接触軌跡線を直接トレースして測定したり、または、3次元非接触測定機を用いて歯面広範囲の形状データを取り込んでから、データ上で噛合い接触軌跡線上の断面を切り出したりしても、周期性のない筋目が混ざることによって、高周波音の発生源となる周期性の筋目だけの性状を測定することが困難であった。   However, in addition to periodic streaks, there are many streak lines with no periodicity, such as streaks due to cutting tool transfer such as the roughness of the cutting machine blades, and streaks due to chips during cutting. To do. Therefore, it is possible to measure by directly tracing the meshing contact trajectory line using a two-dimensional contact type shape measuring instrument, or by acquiring shape data of a wide range of tooth surfaces using a three-dimensional non-contact measuring instrument. Even if the section on the meshing contact locus line is cut out above, it is difficult to measure the properties of only the periodic streaks that are the source of the high-frequency sound due to mixing of the non-periodic streaks.

本発明は、以上の点に鑑み、歯面の周期性を有する筋目を測定可能な歯面測定方法を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a tooth surface measuring method capable of measuring a streak having periodicity of tooth surfaces.

[1]上記目的を達成するため、本発明の歯面測定方法は、
歯車製造に用いる歯切り盤の3次元モデルと、前記歯切り盤で切削加工される被加工物の3次元モデルとを用いて、前記歯切り盤の3次元モデルを所定の単位時間の間隔で現実の歯切り盤と同様に動かすことによって前記被加工物の3次元モデルの重なり合う部分を削除することにより、少なくとも1つの歯溝を有する歯車の3次元モデルを得る歯溝3次元モデル作成工程と、
前記歯車3次元モデル作成工程によって得られた前記歯車の3次元モデルから切削加工時の筋目の角度を設定する筋目角度設定工程と、
前記歯車の歯面形状の凹凸の差を3次元画像データとして測定する非接触3次元測定工程と、
前記非接触3次元測定工程で得られた2次元平面画像にフーリエ変換処理を施すフーリエ変換処理工程と、
前記フーリエ変換処理工程で得られたデータから前記筋目角度設定工程で得られた筋目角度で周期性のない筋目や前記筋目角度設定工程で得られた角度と異なる角度の筋目を取り除く周期性筋目設定工程と、
前記周期性筋目設定工程で選択された周期性筋目を逆フーリエ変換で2次元平面画像に戻す逆フーリエ変換工程と、
を含むことを特徴とする。
[1] In order to achieve the above object, the tooth surface measurement method of the present invention comprises:
Using the three-dimensional model of the gear cutting machine used for gear manufacture and the three-dimensional model of the workpiece to be machined by the gear cutting machine, the three-dimensional model of the gear cutting machine is obtained at predetermined unit time intervals. A tooth gap three-dimensional model creation step of obtaining a three-dimensional model of a gear having at least one tooth gap by deleting an overlapping portion of the three-dimensional model of the workpiece by moving in the same manner as an actual gear cutting machine; ,
A stitch angle setting step of setting a stitch angle at the time of cutting from the three-dimensional model of the gear obtained by the gear three-dimensional model creation step;
A non-contact three-dimensional measurement step of measuring a difference in the unevenness of the tooth surface shape of the gear as three-dimensional image data;
A Fourier transform processing step for performing a Fourier transform process on the two-dimensional planar image obtained in the non-contact three-dimensional measurement step;
Periodic streak setting which removes streak having no periodicity at the streak angle obtained in the streak angle setting step or streak having a different angle from the angle obtained in the streak angle setting step from the data obtained in the Fourier transform processing step Process,
An inverse Fourier transform step of returning the periodic muscles selected in the periodic stitch setting step to a two-dimensional plane image by inverse Fourier transform;
It is characterized by including.

本発明によれば、歯車の周期性を有する筋目を測定することができる。   According to the present invention, it is possible to measure a line having periodicity of a gear.

[2]また、本発明において、前記所定の単位時間は、前記歯切り盤のカッターの1回転する時間とすることができる。   [2] In the present invention, the predetermined unit time may be a time for one rotation of the cutter of the gear cutter.

[3]また、本発明は、インボリュート歯車や、傘歯車のみならず、ハイポイドギヤにも適用することができる。   [3] The present invention can be applied not only to involute gears and bevel gears but also to hypoid gears.

実施形態の歯切り盤及び被加工物の3次元モデルを模式的に示す説明図。Explanatory drawing which shows typically the three-dimensional model of the gear cutter and workpiece of embodiment. 本実施形態の被加工物に形成された歯溝の一例を示す説明図。Explanatory drawing which shows an example of the tooth gap formed in the workpiece of this embodiment. 本実施形態の歯溝を拡大して示す説明図。Explanatory drawing which expands and shows the tooth gap of this embodiment. 図4Aは本実施形態の3次元画像データを示す説明図。図4Bは、図4Aの3次元画像データから歯面の傾斜を除去した3次元画像データを示す説明図。図4Cは、図4Bの3次元画像データから歯面の丸み(曲面)を除去した3次元画像データを示す説明図。図4Dは、図4Cの3次元画像データに2次元FFT処理を施した3次元画像データを示す説明図。FIG. 4A is an explanatory diagram showing three-dimensional image data according to the present embodiment. FIG. 4B is an explanatory view showing three-dimensional image data obtained by removing the inclination of the tooth surface from the three-dimensional image data of FIG. 4A. FIG. 4C is an explanatory diagram showing three-dimensional image data obtained by removing the roundness (curved surface) of the tooth surface from the three-dimensional image data of FIG. 4B. FIG. 4D is an explanatory diagram showing three-dimensional image data obtained by performing two-dimensional FFT processing on the three-dimensional image data in FIG. 4C. 2次元FFT処理後の3次元画像データの見方を模式的に示す説明図。Explanatory drawing which shows typically how to view the three-dimensional image data after a two-dimensional FFT process. 図6Aは、周期性筋目を選択した状態を示す説明図。図6Bは選択した周期性筋目以外を除去して逆FFT処理した状態を示す説明図。FIG. 6A is an explanatory diagram illustrating a state in which periodic lines are selected. FIG. 6B is an explanatory diagram illustrating a state in which a part other than the selected periodic streak is removed and the inverse FFT process is performed. 参考例として、歯切り盤及び被加工物の3次元モデルで求めた角度を使用することなく目視で角度を設定した場合の逆FFT処理後の3次元画像データを示す説明図。Explanatory drawing which shows the three-dimensional image data after an inverse FFT process at the time of setting an angle visually, without using the angle calculated | required with the three-dimensional model of a gear cutter and a workpiece as a reference example. 本実施形態の1つの歯面に対する周期性筋目と他の筋目及び噛合い軌跡線を模式的に示す説明図。Explanatory drawing which shows typically the periodic line | wire with respect to one tooth surface of this embodiment, another line | wire, and a meshing locus line. 図9Aは、図6Bで得られた3次元画像データを噛合い軌跡線で切断する切断箇所を示す説明図。図9Bは、図9Aの切断断面における歯面の曲線を示す説明図。図9Cは、図9Bの曲線からFFT処理で波長振幅を求めた状態を示す説明図。FIG. 9A is an explanatory diagram showing a cutting position where the three-dimensional image data obtained in FIG. 6B is cut along the meshing locus line. FIG. 9B is an explanatory view showing a tooth surface curve in the cut section of FIG. 9A. FIG. 9C is an explanatory diagram illustrating a state in which the wavelength amplitude is obtained by FFT processing from the curve of FIG. 9B.

図を参照して、本発明の実施形態の歯車としてのハイポイドギヤの歯面測定方法を説明する。   A method for measuring the tooth surface of a hypoid gear as a gear according to an embodiment of the present invention will be described with reference to the drawings.

[歯溝3次元モデル作成工程]
まず、歯溝3次元モデル作成工程ついて説明する。図1は、被加工物1を取り付けた歯切り盤2の3次元モデルを模式的に示したものである。歯切り盤2の3次元モデルを作成するには、まず、実際に用いられる歯切り盤のカッター諸元情報よりカッター3の刃が回転したときの切削面に相当する円錐モデルを作成する。
[Tooth gap 3D model creation process]
First, the tooth gap three-dimensional model creation process will be described. FIG. 1 schematically shows a three-dimensional model of the gear cutter 2 to which the workpiece 1 is attached. In order to create a three-dimensional model of the gear cutter 2, first, a cone model corresponding to the cutting surface when the blade of the cutter 3 rotates is created from the cutter specification information of the gear cutter actually used.

実際に用いられる歯切り盤2では、カッター3の中心軸と歯切り盤2の回転中心軸とを完全に一致させることは事実上不可能であり、カッター3は、偏心した状態で回転運動する。カッター3の偏心量はできるだけ小さくなるように設定されるが、カッター3の偏心量を完全に0にすることは困難である。そして、この偏心が周期性のある筋目10の発生原因と考えられる。従って、歯切り盤2の3次元モデルでもこの偏心を考慮して作成する必要がある。   In the gear cutter 2 that is actually used, it is virtually impossible to completely match the center axis of the cutter 3 with the rotation center axis of the gear cutter 2, and the cutter 3 rotates in an eccentric state. . Although the amount of eccentricity of the cutter 3 is set to be as small as possible, it is difficult to make the amount of eccentricity of the cutter 3 completely zero. And this eccentricity is considered to be the cause of generation of the periodic streak 10. Therefore, it is necessary to create the three-dimensional model of the gear cutter 2 in consideration of this eccentricity.

凸側歯面、凹側歯面に対応したブレード断面形状を諸元情報の半径に対し、許容できる最大偏心量だけ加算した位置で回転させて得られる円錐体を作成する。この円錐体がカッター3の3次元モデルとなる。カッター3の切削面モデルは、ブレードの先端頂点が描く回転平面と回転軸線の交点をカッター3の3次元モデルの位置決め基準点とする。   A cone obtained by rotating the blade cross-sectional shape corresponding to the convex tooth surface and the concave tooth surface at a position obtained by adding an allowable maximum eccentricity to the radius of the specification information is created. This cone is a three-dimensional model of the cutter 3. In the cutting surface model of the cutter 3, the intersection of the rotation plane drawn by the apex of the blade and the rotation axis is used as a positioning reference point for the three-dimensional model of the cutter 3.

次に、被加工物1の3次元モデルを作成する。被加工物1の3次元モデルは歯切り加工前の素材に相当し、実際の歯切り加工基準点と同じ場所に位置決め基準点を設定する。   Next, a three-dimensional model of the workpiece 1 is created. The three-dimensional model of the workpiece 1 corresponds to a material before gear cutting, and a positioning reference point is set at the same location as the actual gear cutting reference point.

次に、歯切り盤2の可動軸と位置決めモデルを作成する。本実施形態では、歯切り盤のモデルは、Gleason社の106型加工機の諸元と機構を再現した。まず、カッター3の切削運動の基準となるX−Y平面を原点上に設定する。カッター3は、X−Y平面内の原点を中心として切削回転をする。実際の加工機姿勢に合わせて水平方向と鉛直方向のそれぞれX軸、Y軸を設定する。また、X軸及びY軸に直交する方向にZ軸を設定し、Z=0とカッター3の3次元モデルの位置決め基準点とを一致させる。実際の切削加工では、カッター3の3次元モデルの位置決め基準点で高速回転するカッター3の刃の動きを、切削面の回転軌跡に置き換えてモデル化を行う。   Next, the movable shaft and positioning model of the gear cutter 2 are created. In this embodiment, the gear cutter model reproduces the specifications and mechanism of the Gleason 106-type processing machine. First, an XY plane serving as a reference for the cutting motion of the cutter 3 is set on the origin. The cutter 3 rotates by cutting around the origin in the XY plane. The X and Y axes in the horizontal and vertical directions are set according to the actual processing machine posture. Further, the Z axis is set in a direction orthogonal to the X axis and the Y axis, and Z = 0 is matched with the positioning reference point of the three-dimensional model of the cutter 3. In actual cutting, modeling is performed by replacing the movement of the blade of the cutter 3 that rotates at a high speed at the positioning reference point of the three-dimensional model of the cutter 3 with the rotation trajectory of the cutting surface.

カッター3は自転と同時に切削回転軸(Z軸)を中心に切削台4(Cradle)を回転させて必要な公転運動が与えられる。歯切り盤2では、切削回転半径を自在に調整できるようにカッター3を取り付ける回転軸は、偏心回転台(Eccentric)を介して切削台4に搭載される。切削半径は偏心台の回転角度により、調整後のカッター基準点位置の調整は切削台4の回転角度により調整できる。   At the same time as the cutter 3 rotates, the cutter 3 rotates the cutting table 4 (Cradle) about the cutting rotation axis (Z axis) and is given the necessary revolving motion. In the gear cutting machine 2, a rotating shaft to which the cutter 3 is attached so that the cutting rotation radius can be freely adjusted is mounted on the cutting table 4 via an eccentric rotating table (Eccentric). The cutting radius can be adjusted by the rotation angle of the eccentric table, and the adjustment of the cutter reference point position after adjustment can be adjusted by the rotation angle of the cutting table 4.

カッター3の刃の先端が描く回転平面を切削回転平面から傾けた段取りが可能なようにカッター3の回転軸には、1組の斜盤台5,6(swivel/cutter rotation)を組み合わせた機構が組み込まれている。一方の斜盤台6の回転により0deg〜30degの傾斜角を設定し、他方の斜盤台5の回転で傾斜の方向を調整する。   A mechanism that combines a pair of swash plates 5 and 6 (swivel / cutter rotation) on the rotation axis of the cutter 3 so that the rotation plane drawn by the tip of the blade of the cutter 3 is inclined from the cutting rotation plane. Is incorporated. An inclination angle of 0 deg to 30 deg is set by rotation of one swash plate base 6, and an inclination direction is adjusted by rotation of the other swash plate base 5.

カッター3の傾斜角度を調整する際はカッター3の回転円錐モデルの先端平面の中心点が、切削回転半径から変化しない位置となるように、一組の斜盤台5,6の回転軸はカッター基準点で交差する構造となっている。   When the inclination angle of the cutter 3 is adjusted, the rotation axis of the pair of swash plate bases 5 and 6 is the cutter so that the center point of the tip plane of the rotating cone model of the cutter 3 is not changed from the cutting rotation radius. The structure intersects at the reference point.

被加工物1の取付台7は、被加工物1の回転軸と歯切り盤2のカッター3の切削平面の成す角度を調整可能な回転機構8、切削回転中心から上下の垂直移動、被加工物の回転軸方向の平行移動が可能なスライド機構が設けられ、切削中心点に対する設置位置と姿勢を自在に調整することができる。また、取付台7が搭載されるテーブル(Sliding base)には、カッター3の切削回転平面に対し垂直方向に直線運動(Helical motion)が行えるように、切削回転に連動して送り移動を与える機構が設けられている。   The mounting base 7 of the workpiece 1 has a rotation mechanism 8 capable of adjusting the angle formed by the rotation axis of the workpiece 1 and the cutting plane of the cutter 3 of the gear cutting machine 2, vertical movement up and down from the center of cutting rotation, and processing. A slide mechanism capable of parallel movement in the rotation axis direction of the object is provided, and the installation position and posture with respect to the cutting center point can be freely adjusted. In addition, the table (Sliding base) on which the mounting base 7 is mounted is a mechanism that feeds in conjunction with the cutting rotation so that a linear motion (Helical motion) can be performed in a direction perpendicular to the cutting rotation plane of the cutter 3. Is provided.

カッター3の3次元モデルと被加工物1の3次元モデルを歯切り盤2の3次元モデル上の所定の段取り基準位置(Machine Center Position)に所定の姿勢で配置する。この配置位置と切削回転角度は、噛合いの基準位置として歯幅の中央に定義されたMean Pointにおいて仮想共役歯面を再現するカッター3の切削点と、被加工物1が噛合いピッチ点で一致する瞬間に相当する。そして、歯切り開始から終了までの間をカッター3の1回転の単位時間毎の送り運動を与えることにより理論上の歯面形状を3次元CADソフトウェア上で作成する。   The three-dimensional model of the cutter 3 and the three-dimensional model of the workpiece 1 are arranged in a predetermined posture at a predetermined setup reference position (Machine Center Position) on the three-dimensional model of the gear cutting machine 2. This arrangement position and cutting rotation angle are determined by the cutting point of the cutter 3 that reproduces the virtual conjugate tooth surface at the mean point defined at the center of the tooth width as the meshing reference position, and the workpiece 1 meshing pitch point. Corresponds to the moment of coincidence. Then, a theoretical tooth surface shape is created on the three-dimensional CAD software by giving a feed movement per unit time of one rotation of the cutter 3 from the start to the end of the gear cutting.

加工条件よりカッター回転速度をN(rpm)、切削送り速度S(deg/sec)とすると、単位時間はN/60(sec)、単位時間当たりのカッター創成回転角度はS×N/60(deg)となる。カッター3と被加工物1の切削回転速度の比率をR(Ratio of roll)とすると、被加工物1の単位時間当たりの回転角度は、R×S×N/60(deg)となる。カッター切削回転に対する取付台7の回転軸線方向の送りをH(mm/deg)とすると、単位時間当たりの直線移動量は、H×S×N/60(mm)となる。以上の関係にてカッター3の1回転の単位時間毎に3次元モデルを回転、移動させ、カッター3の3次元モデルと被加工物1の3次元モデルとが干渉する干渉部分を削除することにより得られた歯溝9(図2及び図3参照)の面を歯面性状の理論モデルとする。   Assuming that the cutter rotation speed is N (rpm) and the cutting feed speed S (deg / sec) based on the processing conditions, the unit time is N / 60 (sec), and the cutter creation rotation angle per unit time is S × N / 60 (deg). ) If the ratio of the cutting rotational speed between the cutter 3 and the workpiece 1 is R (Ratio of roll), the rotational angle per unit time of the workpiece 1 is R × S × N / 60 (deg). When the feed in the rotation axis direction of the mount 7 with respect to the cutter cutting rotation is H (mm / deg), the linear movement amount per unit time is H × S × N / 60 (mm). By rotating and moving the three-dimensional model every unit time of one rotation of the cutter 3 in the above relationship, the interference part where the three-dimensional model of the cutter 3 and the three-dimensional model of the workpiece 1 interfere is deleted. The surface of the obtained tooth gap 9 (see FIGS. 2 and 3) is used as a theoretical model of tooth surface properties.

[筋目角度設定工程]
次に、筋目角度設定工程について説明する。
[Line angle setting process]
Next, the stitch angle setting process will be described.

図2は、被加工物1の3次元モデルに設けられた歯溝9を示している。図3に歯溝9を拡大して示すように、歯溝9には所定の単位時間当たりに干渉部分を複数回だけ削除していく過程において、カッター3の偏心運動のピーク部位の切削面が描く軌跡により加工歯面12を生成する。1つの歯溝9が完成するまでの動作が完了した後に全ての加工歯面12の包絡面が得られる。包絡面同士が交差する稜線は、カッター3の偏心のピークとなる切削面の交点を繋ぎ合わせた点であり、すなわち歯面凹凸形状のピークとなる等高線を表す。以上により、理論モデルに描かれる稜線は歯切り加工時に発生する周期性筋目10の性状を表す。また、ハイポイドギヤの歯には、歯と歯が接触する接触点の軌跡で表すことができる噛合い軌跡線11が存在する。この噛合い軌跡線11上における筋目10の角度を歯溝9から求める。   FIG. 2 shows the tooth gap 9 provided in the three-dimensional model of the workpiece 1. As shown in an enlarged view of the tooth gap 9 in FIG. 3, the cutting surface of the peak portion of the eccentric motion of the cutter 3 is removed in the process of removing the interference portion a plurality of times per predetermined unit time. A processing tooth surface 12 is generated from the drawn locus. After the operation until one tooth groove 9 is completed, the envelope surfaces of all the processed tooth surfaces 12 are obtained. The ridge line where the envelope surfaces intersect each other is a point obtained by connecting the intersections of the cutting surfaces that are the peak of eccentricity of the cutter 3, that is, the contour line that is the peak of the tooth surface uneven shape. As described above, the ridge line drawn in the theoretical model represents the properties of the periodic streak 10 generated during gear cutting. Further, the teeth of the hypoid gear have a meshing locus line 11 that can be represented by a locus of contact points where the teeth contact each other. The angle of the streak 10 on the meshing locus line 11 is obtained from the tooth gap 9.

[非接触3次元測定工程]
次に非接触3次元測定工程について説明する。この工程では、まず、実際に評価したいハイポイドギヤの噛合い軌跡線11を含む歯面を非接触3次元測定機を用いて測定する。本実施形態においては、非接触式3次元測定機として、アリコナ製INFINITE FOCUSを使用して測定した。
[Non-contact 3D measurement process]
Next, the non-contact three-dimensional measurement process will be described. In this step, first, the tooth surface including the meshing locus line 11 of the hypoid gear to be actually evaluated is measured using a non-contact three-dimensional measuring machine. In the present embodiment, the measurement was performed using INFINITE FOCUS manufactured by Aricona as a non-contact type three-dimensional measuring machine.

[フーリエ変換処理工程]
次にフーリエ変換処理工程について説明する。
[Fourier transform process]
Next, the Fourier transform process will be described.

図4Aは非接触式3次元測定機で測定された3次元画像データを示している。図4Aの横軸は歯先線に垂直な基準線であり、図4Aでは色の違いで高低差(3つ目の次元)が表されている。また、図4A〜図4Cにおいては、縦横の比率が実際歯面の比率とは異なった状態で示されている。図4Aの3次元画像データにはハイポイドギヤの歯面の傾斜及び丸み(曲面)が含まれた状態であるため、まず、フィルタ処理を掛けて傾斜を取り除き、図4Bに示すように、傾斜が取り除かれた3次元画像データを得る。   FIG. 4A shows three-dimensional image data measured by a non-contact type three-dimensional measuring machine. The horizontal axis of FIG. 4A is a reference line perpendicular to the tooth tip line, and in FIG. 4A, the difference in height (the third dimension) is represented by the difference in color. 4A to 4C, the aspect ratio is different from the actual tooth surface ratio. Since the three-dimensional image data in FIG. 4A includes a state of inclination and roundness (curved surface) of the hypoid gear, first, the inclination is removed by filtering, and the inclination is removed as shown in FIG. 4B. Obtained three-dimensional image data is obtained.

次に、近似多項式を用いて丸み(曲面)を取り除き、図4Cに示すように丸み(曲面)が取り除かれた3次元画像データを得る。   Next, the round (curved surface) is removed using an approximate polynomial, and three-dimensional image data from which the round (curved surface) is removed as shown in FIG. 4C is obtained.

次に、傾斜及び丸みが除去された3次元画像データに対して2次元高速フーリエ変換処理(2次元FFT処理)を施す。2次元高速フーリエ変換処理は、図4Cの2次元画像データに対して、水平方向及び垂直方向の1次元高速フーリエ変換処理を夫々1回ずつ繰り返して成分分析を行う。本実施形態では、Talor Hobson製のTalymap Platinum ソフトウェアを使用してこの2次元高速フーリエ変換処理を行った。この結果、図4Dに示す3次元画像データが得られる。図5は、図4Dの3次元画像データとこの3次元画像データを模式化して表した模式図とを並べて示している。図4D及び図5の3次元画像データの中心は波長が0であることを示し、また、輝度が高いところにその波長成分が多く含まれている(換言すれば、依存度が高い)ことを示している。また、中心から高輝度位置までのベクトル成分が、筋目が延びる方向の垂直成分であることを示している。   Next, two-dimensional fast Fourier transform processing (two-dimensional FFT processing) is performed on the three-dimensional image data from which the inclination and roundness are removed. In the two-dimensional fast Fourier transform processing, component analysis is performed on the two-dimensional image data in FIG. 4C by repeating the one-dimensional fast Fourier transform processing in the horizontal direction and the vertical direction once each. In the present embodiment, this two-dimensional fast Fourier transform process is performed using Talymap Platinum software manufactured by Talor Hobson. As a result, the three-dimensional image data shown in FIG. 4D is obtained. FIG. 5 shows the three-dimensional image data of FIG. 4D and a schematic diagram schematically representing the three-dimensional image data. The center of the three-dimensional image data in FIGS. 4D and 5 indicates that the wavelength is 0, and that the wavelength component is included in a place where the luminance is high (in other words, the dependency is high). Show. Further, the vector component from the center to the high luminance position is a vertical component in the direction in which the lines extend.

[周期性筋目設定工程、及び逆フーリエ変換工程]
次に周期性筋目設定工程、及び逆フーリエ変換工程について説明する。
[Periodic line setting process and inverse Fourier transform process]
Next, the periodic streak setting step and the inverse Fourier transform step will be described.

図4Dの3次元画像データから周期性筋目以外の他の筋目を取り除けば周期性筋目のみの3次元画像データを得ることができる。ここで、中心から外周まで延びる筋状の高輝度部分Wは、様々な周期の波長が満遍なく分布している状態を示している。従って、この中心から外周まで延びる筋状の高輝度部分Wを除き、周期性筋目の高輝度部分を抽出することにより、周期性筋目を取り出すことができる。   If other streaks other than the periodic streaks are removed from the three-dimensional image data of FIG. 4D, three-dimensional image data of only periodic streaks can be obtained. Here, the streaky high-intensity portion W extending from the center to the outer periphery shows a state where the wavelengths of various periods are evenly distributed. Therefore, the periodic streak can be extracted by extracting the high brightness part of the periodic streak, excluding the streak-like high brightness part W extending from the center to the outer periphery.

このとき、参考例として図7に示すように、目視で周期性筋目の高輝度部分を抽出することもできる。しかしながら、このソフトウェアでは、扇状の領域を指定して高輝度部分を抽出する。そして、扇状の領域の中心線が周期性筋目の延在方向となる。ここで、目視により注出する場合には、扇状の領域の中心線が精度よく設定できないため、抽出した高輝度部分を逆高速フーリエ変換で3次元データに戻して周期性筋目を抽出しようとしても周期性筋目の抽出精度が低下してしまうという問題がある。   At this time, as shown in FIG. 7 as a reference example, it is possible to visually extract a high-intensity portion of periodic stripes. However, in this software, a fan-shaped area is specified and a high-luminance part is extracted. The center line of the fan-shaped region is the extending direction of the periodic lines. In this case, since the center line of the fan-shaped region cannot be set with high precision when visually pouring out, the extracted high-intensity portion is returned to three-dimensional data by inverse fast Fourier transform to extract periodic streaks. There is a problem that the extraction accuracy of the periodic streak is lowered.

そこで、本実施形態では、図6Aに示すように、3次元モデルで求めた筋目の角度を用いて扇状の領域の中心線を設定する。これにより抽出した高輝度部分を逆高速フーリエ変換で3次元画像データに戻すことにより、図6Bの右側に示すように精度よく、周期性筋目を抽出することができるようになった。   Therefore, in the present embodiment, as shown in FIG. 6A, the center line of the fan-shaped region is set using the line angle obtained by the three-dimensional model. As a result, the extracted high-intensity portion is returned to the three-dimensional image data by inverse fast Fourier transform, so that periodic stripes can be extracted with high accuracy as shown on the right side of FIG. 6B.

図8は、筋目の模式図である。図8に示すように切削加工時にカッター3の偏心によって発生する周期性の筋目の他に、工具の表面形状や粗さの転写による筋目や切り屑の滑りなどによって生じる周期性のない筋目などが存在する。   FIG. 8 is a schematic diagram of the lines. As shown in FIG. 8, in addition to periodic streaks generated due to the eccentricity of the cutter 3 during cutting, there are streaks due to the transfer of the surface shape and roughness of the tool, non-periodic streaks caused by chip slipping, and the like. Exists.

[歯面性状評価工程]
図9Aに示すように、図6Bの右側の逆高速フーリエ変換で得られた3次元画像データは、図9Bに示すように、噛合い軌跡線11上の断面曲線を抽出し、図9Cに示すように、抽出された断面曲線を高速フーリエ変換処理を施すことにより、周期性筋目の波長・振幅の評価を行うことができる。これにより、ハイポイドギヤの高周波騒音の性状を正確に把握することが可能となる。
[Tooth surface property evaluation process]
As shown in FIG. 9A, the cross-sectional curve on the meshing locus line 11 is extracted from the three-dimensional image data obtained by the inverse fast Fourier transform on the right side of FIG. 6B, as shown in FIG. 9C. As described above, the wavelength and amplitude of the periodic streak can be evaluated by subjecting the extracted cross-sectional curve to a fast Fourier transform process. As a result, it is possible to accurately grasp the nature of the high frequency noise of the hypoid gear.

また、図6の逆高速フーリエ変換で得られた3次元画像データを1度作成しておけば、噛合い軌跡線を変更する場合であっても、図6の3次元画像データを用いて容易に再評価することができる。   Further, if the three-dimensional image data obtained by the inverse fast Fourier transform shown in FIG. 6 is created once, it is easy to use the three-dimensional image data shown in FIG. 6 even when the meshing locus line is changed. Can be re-evaluated.

[他の実施形態]
なお、本実施形態においては、ハイポイドギヤの歯面測定方法について説明した。しかしながら、本発明の歯面測定方法は、ハイポイドギヤに限らず、他の歯車、例えば、インボリュート歯車、傘歯車にも用いることができる。
[Other Embodiments]
In the present embodiment, the tooth surface measurement method of the hypoid gear has been described. However, the tooth surface measurement method of the present invention can be used not only for hypoid gears but also for other gears such as involute gears and bevel gears.

また、本実施形態においては、所定の単位時間を歯切り盤2のカッター3の1回転する時間として説明したが、本発明の所定時間はこれに限らず、例えば、カッター3を複数回回転させた時間に設定してもよい。   In the present embodiment, the predetermined unit time has been described as the time for one rotation of the cutter 3 of the gear wheel 2. However, the predetermined time of the present invention is not limited to this, for example, the cutter 3 is rotated a plurality of times. You may set the time.

1 被加工物
2 歯切り盤
3 カッター
4 切削台
5,6 斜盤台
7 取付台
8 回転機構
9 歯溝
10 筋目
11 噛合い軌跡線
12 加工歯面
13 測定領域
DESCRIPTION OF SYMBOLS 1 Workpiece 2 Gear cutting machine 3 Cutter 4 Cutting bases 5 and 6 Swash plate base 7 Mounting base 8 Rotating mechanism 9 Tooth groove 10 Stitch 11 Meshing locus line 12 Machining tooth surface 13 Measurement area

Claims (3)

歯車製造に用いる歯切り盤の3次元モデルと、前記歯切り盤で切削加工される被加工物の3次元モデルとを用いて、前記歯切り盤の3次元モデルを所定の単位時間の間隔で現実の歯切り盤と同様に動かすことによって前記被加工物の3次元モデルの重なり合う部分を削除することにより、少なくとも1つの歯溝を有する歯車の3次元モデルを得る歯溝3次元モデル作成工程と、
前記歯車3次元モデル作成工程によって得られた前記歯車の3次元モデルから切削加工時の筋目の角度を設定する筋目角度設定工程と、
前記歯車の歯面形状の凹凸の差を3次元画像データとして測定する非接触3次元測定工程と、
前記非接触3次元測定工程で得られた2次元平面画像にフーリエ変換処理を施すフーリエ変換処理工程と、
前記フーリエ変換処理工程で得られたデータから前記筋目角度設定工程で得られた筋目角度で周期性のない筋目や前記筋目角度設定工程で得られた角度と異なる角度の筋目を取り除く周期性筋目設定工程と、
前記周期性筋目設定工程で選択された周期性筋目を逆フーリエ変換で2次元平面画像に戻す逆フーリエ変換工程と、
を含むことを特徴とする歯面測定方法。
Using the three-dimensional model of the gear cutting machine used for gear manufacture and the three-dimensional model of the workpiece to be machined by the gear cutting machine, the three-dimensional model of the gear cutting machine is obtained at predetermined unit time intervals. A tooth gap three-dimensional model creation step of obtaining a three-dimensional model of a gear having at least one tooth gap by deleting an overlapping portion of the three-dimensional model of the workpiece by moving in the same manner as an actual gear cutting machine; ,
A stitch angle setting step of setting a stitch angle at the time of cutting from the three-dimensional model of the gear obtained by the gear three-dimensional model creation step;
A non-contact three-dimensional measurement step of measuring a difference in the unevenness of the tooth surface shape of the gear as three-dimensional image data;
A Fourier transform processing step for performing a Fourier transform process on the two-dimensional planar image obtained in the non-contact three-dimensional measurement step;
Periodic streak setting which removes streak having no periodicity at the streak angle obtained in the streak angle setting step or streak having a different angle from the angle obtained in the streak angle setting step from the data obtained in the Fourier transform processing step Process,
An inverse Fourier transform step of returning the periodic muscles selected in the periodic stitch setting step to a two-dimensional plane image by inverse Fourier transform;
The tooth surface measuring method characterized by including.
請求項1に記載の歯面測定方法であって、
前記所定の単位時間は、前記歯切り盤のカッターの1回転する時間であることを特徴とする歯面測定方法。
The tooth surface measurement method according to claim 1,
The predetermined unit time is a time required for one rotation of the cutter of the gear cutter.
請求項1または請求項2に記載の歯面測定方法であって、
前記歯車は、ハイポイドギヤであることを特徴とする歯面測定方法。
The tooth surface measurement method according to claim 1 or 2,
The tooth surface measuring method, wherein the gear is a hypoid gear.
JP2018052561A 2018-03-20 2018-03-20 Tooth surface measurement method Expired - Fee Related JP6598910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052561A JP6598910B2 (en) 2018-03-20 2018-03-20 Tooth surface measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052561A JP6598910B2 (en) 2018-03-20 2018-03-20 Tooth surface measurement method

Publications (2)

Publication Number Publication Date
JP2019164055A JP2019164055A (en) 2019-09-26
JP6598910B2 true JP6598910B2 (en) 2019-10-30

Family

ID=68066130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052561A Expired - Fee Related JP6598910B2 (en) 2018-03-20 2018-03-20 Tooth surface measurement method

Country Status (1)

Country Link
JP (1) JP6598910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112082757B (en) * 2020-08-25 2022-04-29 麦格纳动力总成(江西)有限公司 Gear surface evaluation method and device for gearbox

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332423A (en) * 2005-08-05 2005-12-02 Sumitomo Heavy Ind Ltd Gear wheel processing simulation method, gear wheel processing simulation program, and gear wheel processing simulation device
JP2007286017A (en) * 2006-04-20 2007-11-01 Toyota Motor Corp Method and device for evaluating meshed state of gear
JP5290322B2 (en) * 2007-12-14 2013-09-18 ザイゴ コーポレーション Analysis of surface structure using scanning interferometry
US8467978B2 (en) * 2010-08-31 2013-06-18 The Boeing Company Identifying features on a surface of an object using wavelet analysis
JP6007552B2 (en) * 2012-04-05 2016-10-12 横浜ゴム株式会社 Tire X-ray inspection determination method

Also Published As

Publication number Publication date
JP2019164055A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
TWI680027B (en) Method and device for the machining of a tool
US5257203A (en) Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US5121333A (en) Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US5128870A (en) Automated high-precision fabrication of objects of complex and unique geometry
US5121334A (en) Method and apparatus for automated machining of objects of complex and unique geometry
CN109063326B (en) Gear accurate modeling method considering microscopic shape correction and actual machining errors
CN111721230B (en) Optical measuring method
JP6910307B2 (en) Structural shift of bevel gear flank surface
Krawiec et al. The application of the optical system ATOS II for rapid prototyping methods of non-classical models of cogbelt pulleys
TW201341756A (en) Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, program for measuring profile and non-transitory computer readable medium
JP6150806B2 (en) Method for chamfering a bevel gear
JP6780969B2 (en) How to manufacture a toothed workpiece with a modified surface shape
JP6598910B2 (en) Tooth surface measurement method
JPH0854050A (en) Gear and manufacture of gear
JP2021506598A (en) Methods and equipment for measuring creative machining tools
JP2018537693A (en) Equipment for non-contact 3D inspection of mechanical parts with teeth
JP2007185760A (en) Setting device for hypoid gear machining machine
CN112207368A (en) Method for processing and controlling tooth surface texture of spiral bevel gear by rotary ultrasonic hobbing
CN110291475B (en) Method and device for evaluating surface of object, and method and machine tool for machining workpiece using the evaluation method
Wasif et al. An accurate approach to determine the cutting system for the face milling of hypoid gears
CN110021066A (en) A kind of prolate involute worm gear hobbing three-dimensional modeling method, device and equipment
CN108648265A (en) Helical gears gear hobbing process flank of tooth three-dimensional modeling method
CN108663542A (en) A kind of high-precision PIV reference speed field devices
CN110045685B (en) Method for checking working precision of gear machine tool
JP5374048B2 (en) Worm simulation grinding method and worm grinding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R150 Certificate of patent or registration of utility model

Ref document number: 6598910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees