JP6598206B2 - Method for producing oxide-based ceramics-carbon composite and oxide-based ceramics-carbon composite - Google Patents

Method for producing oxide-based ceramics-carbon composite and oxide-based ceramics-carbon composite Download PDF

Info

Publication number
JP6598206B2
JP6598206B2 JP2015238138A JP2015238138A JP6598206B2 JP 6598206 B2 JP6598206 B2 JP 6598206B2 JP 2015238138 A JP2015238138 A JP 2015238138A JP 2015238138 A JP2015238138 A JP 2015238138A JP 6598206 B2 JP6598206 B2 JP 6598206B2
Authority
JP
Japan
Prior art keywords
oxide
carbon
carbon composite
ceramic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015238138A
Other languages
Japanese (ja)
Other versions
JP2017105644A (en
Inventor
大和 林
博胤 滝澤
広海 鈴木
ドヒョン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2015238138A priority Critical patent/JP6598206B2/en
Publication of JP2017105644A publication Critical patent/JP2017105644A/en
Application granted granted Critical
Publication of JP6598206B2 publication Critical patent/JP6598206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Description

本発明は、酸化物系セラミックス−カーボン複合体の製造方法および酸化物系セラミックス−カーボン複合体に関する。   The present invention relates to a method for producing an oxide ceramics-carbon composite and an oxide ceramics-carbon composite.

近年、セラミックス単体の材料とは異なる用途に使用する目的で、セラミックスとカーボンとを組み合わせて複合化することにより、電気伝導性や耐熱性、耐食性、熱伝導性、耐熱衝撃性などを高めた、高機能かつ多機能のセラミックス−カーボン複合体が開発されている。例えば、充放電時の構造安定性に優れたLiTi12(LTO)を利用した電極材料として、導電性が低いLiTi12に、導電助剤としてアセチレンブラックなどのカーボンを加えて複合化したものが開発されている。 In recent years, the electrical conductivity, heat resistance, corrosion resistance, thermal conductivity, thermal shock resistance, etc. have been improved by combining ceramics and carbon for the purpose of use in applications different from ceramic materials. High performance and multifunctional ceramic-carbon composites have been developed. For example, charge excellent structural stability during discharge Li 4 Ti 5 O 12 and (LTO) as an electrode material utilizing, in low conductivity Li 4 Ti 5 O 12, carbon such as acetylene black as a conductive additive In addition, a composite version has been developed.

このようなLiTi12を利用した電極材料は、例えば、LiOH・HOやLiCOをTiOと混合し、電気炉で700〜1000℃で加熱する電気炉合成(例えば、非特許文献1参照)や、Ti(OCといった溶媒に分散可能な原料を用いたソルボサーマル法(例えば、非特許文献2、3参照)などによりLiTi12を製造し、そのLiTi12とカーボンとを混練することにより製造されている。なお、ソルボサーマル法によりLiTi12ナノ粒子を合成することができるが、LiTi12ナノ粒子は比表面積が大きいため、Li伝達インピーダンスが低下し、高出力化が可能となることが知られている(例えば、非特許文献4、5参照)。 An electrode material using such Li 4 Ti 5 O 12 is, for example, electric furnace synthesis in which LiOH · H 2 O or Li 2 CO 3 is mixed with TiO 2 and heated at 700 to 1000 ° C. in an electric furnace (for example, , non-Patent Document 1) or, Ti (OC 4 H 9) solvothermal method using a dispersible material in a solvent such as 4 (e.g., a Li 4 Ti 5 O 12 and the like refer to non-Patent documents 2 and 3) It is manufactured by kneading the Li 4 Ti 5 O 12 and carbon. In addition, Li 4 Ti 5 O 12 nanoparticles can be synthesized by the solvothermal method, but Li 4 Ti 5 O 12 nanoparticles have a large specific surface area, so Li + transfer impedance is reduced and high output is possible. (For example, see Non-Patent Documents 4 and 5).

また、複合体を利用した電極材料の製造方法として、例えば、酸化チタンの材料源が溶解した水溶液にカーボン素材を混合し、その水溶液中から酸化チタンを析出させてカーボン素材の表面に担持させ、そのカーボン素材とリチウム源の混合物とを焼成してチタン酸リチウム(LiTi12)とカーボン素材との複合物を得る方法(例えば、特許文献1参照)や、Fe源とTi源とを含む溶液をアルカリ性溶液で中和し、水洗し、乾燥させてFe−Ti共沈物を得た後、その共沈物をLi源と混合し、その混合物を焼成して、その焼成物と炭素質材料とをメカノケミカル処理によって複合化させる方法(例えば、特許文献2参照)が提案されている。 In addition, as a method for producing an electrode material using a composite, for example, a carbon material is mixed in an aqueous solution in which a titanium oxide material source is dissolved, titanium oxide is precipitated from the aqueous solution and supported on the surface of the carbon material, A method of obtaining a composite of lithium titanate (Li 4 Ti 5 O 12 ) and a carbon material by firing the mixture of the carbon material and the lithium source (see, for example, Patent Document 1), Fe source and Ti source After neutralizing the solution containing Al with an alkaline solution, washing with water and drying to obtain a Fe-Ti coprecipitate, the coprecipitate is mixed with a Li source, the mixture is fired, and the fired product and A method of combining a carbonaceous material with a mechanochemical treatment (for example, see Patent Document 2) has been proposed.

Kiyoshi Nakahara, et al., “Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells”, Journal of Power Sources, 2003, vol.117, p.131-136Kiyoshi Nakahara, et al., “Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells”, Journal of Power Sources, 2003, vol.117, p.131-136 Jizhang Chen, et al., “Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries”, Electrochimica Acta, 2010, Vol.55, Issue 22, p.6596-6600Jizhang Chen, et al., “Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries”, Electrochimica Acta, 2010, Vol.55, Issue 22, p.6596-6600 Yue Li, et al., “Solvothermal synthesis and electrochemical characterization of amorphous lithium titanate materials”, Journal of Alloys and Compounds, 2008, vol.455, p.471-474Yue Li, et al., “Solvothermal synthesis and electrochemical characterization of amorphous lithium titanate materials”, Journal of Alloys and Compounds, 2008, vol.455, p.471-474 Philippe Poizot, et al., “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature, 2000, 407, p.496-499Philippe Poizot, et al., “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature, 2000, 407, p.496-499 Wei Wang, et al., “A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries”, Electrochimica Acta, 2013, vol.114, p.198-204Wei Wang, et al., “A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries”, Electrochimica Acta, 2013, vol.114, p.198-204

特開2015−76211号公報Japanese Patent Laying-Open No. 2015-76211 特許第5686459号公報Japanese Patent No. 5686459

しかしながら、非特許文献1に記載の電気炉合成では、高温または長時間の加熱を行う必要があるため、粒子同士が焼結してしまい、高出力化が可能なLiTi12ナノ粒子を得ることができないという課題があった。また、非特許文献2および3に記載のソルボサーマル法では、LiTi12ナノ粒子を合成することはできるが、合成方法が複雑であり、高価な原料を使用するため、製造コストが嵩んでしまうという課題があった。また、非特許文献1乃至3の方法では、LiTi12を製造後に、そのLiTi12と導電助剤のカーボンとを混練する工程が必要となり、その工程分の製造コストが嵩んでしまうという課題があった。 However, in the electric furnace synthesis described in Non-Patent Document 1, since it is necessary to perform heating at a high temperature or for a long time, the particles are sintered with each other, and Li 4 Ti 5 O 12 nanoparticles capable of increasing the output There was a problem of not being able to get. In addition, in the solvothermal method described in Non-Patent Documents 2 and 3, Li 4 Ti 5 O 12 nanoparticles can be synthesized, but the synthesis method is complicated and expensive materials are used. There was a problem of becoming bulky. In the methods of Non-Patent Documents 1 to 3, after Li 4 Ti 5 O 12 is produced, a step of kneading the Li 4 Ti 5 O 12 and the carbon of the conductive assistant is required, and the production cost for that step is required. There was a problem that would increase.

また、特許文献1に記載の製造方法では、酸化チタンが析出したカーボン素材とリチウム源の混合物とを焼成する際に、LiTi12の粒子同士が焼結してしまい、LiTi12ナノ粒子を得ることができないという課題があった。また、特許文献2に記載の製造方法では、製造工程が多く複雑であり、製造コストが嵩んでしまうという課題があった。 Moreover, in the manufacturing method described in Patent Document 1, when a mixture of a carbon material on which titanium oxide is deposited and a lithium source is fired, particles of Li 4 Ti 5 O 12 are sintered together, and Li 4 Ti There was a problem that 5 O 12 nanoparticles could not be obtained. In addition, the manufacturing method described in Patent Document 2 has a problem that the manufacturing process is complicated and the manufacturing cost increases.

本発明は、このような課題に着目してなされたもので、製造コストを低減可能で、酸化物系セラミックスのナノ粒子を含む複合体を製造することができる酸化物系セラミックス−カーボン複合体の製造方法および酸化物系セラミックス−カーボン複合体を提供することを目的とする。   The present invention has been made paying attention to such a problem, and is an oxide ceramic-carbon composite that can reduce the manufacturing cost and can produce a composite containing oxide ceramic nanoparticles. It is an object to provide a production method and an oxide-based ceramic-carbon composite.

上記目的を達成するために、本発明に係る酸化物系セラミックス−カーボン複合体の製造方法は、LiO とTiO とから成る酸化物系セラミックスの原料にカーボンを加えて混合した後、その混合物を、マイクロ波を用いて焼成することにより、Li Ti 12 −カーボン複合体を製造することを特徴とする。
In order to achieve the above object, the method for producing an oxide-based ceramic-carbon composite according to the present invention includes adding carbon to an oxide-based ceramic raw material composed of LiO 2 and TiO 2 and mixing the mixture, and then mixing the mixture. Is produced using a microwave to produce a Li 4 Ti 5 O 12 -carbon composite .

本発明に係る酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスの原料を焼成して固相反応させることにより、ソルボサーマル法などの液相合成を行う場合と比べて簡便に、酸化物系セラミックスのナノ粒子を合成することができ、製造コストを低減可能である。また、マイクロ波を用いて焼成することにより、急速昇温加熱で加熱時間を短縮することができ、合成された酸化物系セラミックスのナノ粒子同士が焼結するのを防ぐことができる。   The method for producing an oxide-based ceramic-carbon composite according to the present invention is simpler than the case where liquid-phase synthesis such as a solvothermal method is performed by firing a raw material of an oxide-based ceramic and causing a solid-phase reaction. In addition, nanoparticles of oxide ceramics can be synthesized, and the manufacturing cost can be reduced. Moreover, by baking using microwaves, the heating time can be shortened by rapid heating and heating, and the synthesized oxide ceramic nanoparticles can be prevented from sintering.

本発明に係る酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスの原料とカーボンとを混合することにより、酸化物系セラミックスの原料が拡散して凝集するのを防ぎ、マイクロ波による焼成時に、酸化物系セラミックスのナノ粒子同士が焼結するのを効果的に防止することができる。また、マイクロ波による急速昇温加熱により、酸化物系セラミックスのナノ粒子とカーボンとの間に接合界面を形成することができる。また、カーボンのマイクロ波吸収率が高いため、カーボンを均一に混合することにより、焼成時に混合物を均一に加熱することができ、酸化物系セラミックスのナノ粒子を均一に合成することができる。   The method for producing an oxide-based ceramic-carbon composite according to the present invention prevents the oxide-based ceramic material from diffusing and agglomerating by mixing the material of the oxide-based ceramic and carbon, and the microwave. It is possible to effectively prevent the oxide ceramic nanoparticles from being sintered together during firing. In addition, a bonding interface can be formed between the oxide ceramic nanoparticles and the carbon by rapid heating with microwaves. In addition, since the microwave absorption rate of carbon is high, by uniformly mixing carbon, the mixture can be heated uniformly during firing, and nanoparticles of oxide ceramics can be synthesized uniformly.

このように、本発明に係る酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスのナノ粒子とカーボンとの複合体を製造することができる。酸化物系セラミックス合成後にカーボンを混練する工程が不要であり、さらに製造コストを低減することができる。なお、酸化物系セラミックスの原料とカーボンとを均一に混合するために、ボールミル等を用いて混合することが好ましい。   As described above, the oxide ceramics-carbon composite manufacturing method according to the present invention can manufacture a composite of oxide ceramic nanoparticles and carbon. A step of kneading carbon after the synthesis of the oxide ceramic is unnecessary, and the manufacturing cost can be further reduced. In order to uniformly mix the oxide ceramic raw material and carbon, it is preferable to mix using a ball mill or the like.

本発明に係る酸化物系セラミックス−カーボン複合体の製造方法は、前記原料を液体の溶媒中に溶解または分散させた後、前記カーボンを加えて混合することが好ましい。この場合、酸化物系セラミックスの原料が凝集するのを防ぐことができ、酸化物系セラミックスのナノ粒子を得ることができる。溶媒は、水やエタノール等、使用する酸化物系セラミックスの原料やカーボンを均一に溶解または分散できるものであれば、いかなるものであってもよい。例えば、親水性の酸化物系セラミックスの原料を用いる場合、溶媒として水を用いることにより、水中に酸化物系セラミックスの原料を均一に分散させることができる。水は昇華しやすいため、ソルボサーマル法では必要となる廃液処理やか焼過程が不要となり、製造コストを低減することができる。   In the method for producing an oxide-based ceramic-carbon composite according to the present invention, it is preferable that the raw material is dissolved or dispersed in a liquid solvent, and then the carbon is added and mixed. In this case, it is possible to prevent the raw materials of the oxide-based ceramic from aggregating, and thus oxide-based ceramic nanoparticles can be obtained. The solvent may be any solvent as long as it can uniformly dissolve or disperse the raw material of the oxide ceramic used and carbon, such as water and ethanol. For example, in the case of using a raw material for hydrophilic oxide-based ceramics, the raw material for oxide-based ceramics can be uniformly dispersed in water by using water as a solvent. Since water is easily sublimated, the waste liquid treatment and calcination process required in the solvothermal method are not required, and the manufacturing cost can be reduced.

本発明に係る酸化物系セラミックス−カーボン複合体の製造方法は、前記混合物を乾燥した後、焼成してもよい。この場合、乾燥させることにより、酸化物系セラミックスの原料を分散した状態に保つことができる。このため、酸化物系セラミックスの原料が凝集するのを防ぎ、酸化物系セラミックスのナノ粒子を得ることができる。乾燥させる方法は、例えばフリーズドライである。   In the method for producing an oxide ceramics-carbon composite according to the present invention, the mixture may be dried and then fired. In this case, the oxide ceramic material can be kept dispersed by drying. For this reason, it can prevent that the raw material of oxide ceramics aggregates, and can obtain the nanoparticles of oxide ceramics. The drying method is, for example, freeze drying.

本発明に係る酸化物系セラミックス−カーボン複合体の製造方法は、前記混合物を不活性ガス雰囲気中で焼成することが好ましい。この場合、不純物が混入しない酸化物系セラミックスを合成することができ、高機能の複合体を製造することができる。   In the method for producing an oxide ceramics-carbon composite according to the present invention, the mixture is preferably fired in an inert gas atmosphere. In this case, oxide ceramics in which no impurities are mixed can be synthesized, and a high-functional composite can be manufactured.

本発明に係る酸化物系セラミックス−カーボン複合体の製造方法で、前記原料は、固相または液相の複数の物質から成ることが好ましい。また、本発明に係る酸化物系セラミックス−カーボン複合体の製造方法で、LiOおよびTiOは親水性であるため、溶媒としての水に溶解または分散させることにより、凝集するのを防ぐことができ、均一に分散されたLiTi12のナノ粒子を得ることができる。こうして得られたLiTi12−カーボン複合体を電極材料として使用することにより、高品質で高性能の優れた電極を得ることができる。
Oxide ceramic according to the present invention - in the production method of a carbon composite, the material is not preferably be comprised of a plurality of substances of solid or liquid phase. In the method for producing an oxide-based ceramic-carbon composite according to the present invention, since LiO 2 and TiO 2 are hydrophilic, they can be prevented from aggregating by being dissolved or dispersed in water as a solvent. And uniformly dispersed Li 4 Ti 5 O 12 nanoparticles can be obtained. By using the Li 4 Ti 5 O 12 -carbon composite thus obtained as an electrode material, a high-quality and high-performance electrode can be obtained.

また、この場合、前記マイクロ波により、500℃〜800℃で10分〜80分間焼成することが好ましく、500〜700℃で、50分〜70分間焼成することが特に好ましい。これらの場合、副生成物が少なく、LiTi12のナノ粒子を効率良く得ることができる。 In this case, it is preferable to perform baking at 500 ° C. to 800 ° C. for 10 minutes to 80 minutes, and it is particularly preferable to perform baking at 500 to 700 ° C. for 50 minutes to 70 minutes. In these cases, it is possible to by-products is small, efficiently obtaining nanoparticles of Li 4 Ti 5 O 12.

本発明に係る酸化物系セラミックス−カーボン複合体は、250nm以下の粒径を有する酸化物系セラミックスであるLiTi12の結晶粒子と、カーボンとの複合体から成り、前記酸化物系セラミックス結晶粒子の(111)および(200)結晶面に、前記カーボンが結合していることを特徴とする。
The oxide-based ceramic-carbon composite according to the present invention is composed of a composite of Li 4 Ti 5 O 12 crystal particles, which is an oxide-based ceramic having a particle size of 250 nm or less, and carbon, and the oxide-based composite. The carbon is bonded to the (111) and (200) crystal planes of the ceramic crystal particles.

本発明に係る酸化物系セラミックス−カーボン複合体は、本発明に係る酸化物系セラミックス−カーボン複合体の製造方法により好適に製造することができる。これにより、本発明に係る酸化物系セラミックス−カーボン複合体は、前記結晶粒子の結晶面に前記カーボンが結合した複合体となる。   The oxide ceramics-carbon composite according to the present invention can be suitably manufactured by the method for manufacturing an oxide ceramics-carbon composite according to the present invention. As a result, the oxide-based ceramic-carbon composite according to the present invention becomes a composite in which the carbon is bonded to the crystal plane of the crystal particle.

本発明に係る酸化物系セラミックス−カーボン複合体は、LTi12のナノ粒子が均一に分散された複合体となり、電極材料として使用することにより、高品質で高性能の優れた電極を得ることができる。

The oxide-based ceramic-carbon composite according to the present invention is a composite in which nanoparticles of Li 4 Ti 5 O 12 are uniformly dispersed, and is used as an electrode material, so that it has high quality and high performance. An electrode can be obtained.

本発明によれば、製造コストを低減可能で、酸化物系セラミックスのナノ粒子を含む複合体を製造することができる酸化物系セラミックス−カーボン複合体の製造方法および酸化物系セラミックス−カーボン複合体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing cost can be reduced and the manufacturing method of the oxide ceramics-carbon composite which can manufacture the composite containing the nanoparticle of oxide ceramics, and an oxide ceramics-carbon composite Can be provided.

本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法の、マイクロ波焼成炉を用いて焼成する状態を示す断面図である。It is sectional drawing which shows the state baked using the microwave baking furnace of the manufacturing method of the oxide type ceramics-carbon composite of embodiment of this invention. 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成時間が40分、焼成温度が500℃、600℃、700℃、800℃のときの(a)X線回折結果を示すXRDパターン、(b)そのXRDパターンの各成分の第1ピークの強度変化を示すグラフである。(A) XRD showing X-ray diffraction results when the firing time of the oxide-based ceramic-carbon composite of the embodiment of the present invention is 40 minutes and the firing temperatures are 500 ° C., 600 ° C., 700 ° C., and 800 ° C. (B) It is a graph which shows the intensity | strength change of the 1st peak of each component of the XRD pattern. 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成温度が600℃、焼成時間が20分、40分、60分、80分のときの(a)X線回折結果を示すXRDパターン、(b)そのXRDパターンの各成分の第1ピークの強度変化を示すグラフである。(A) XRD showing X-ray diffraction results when the firing temperature of the oxide ceramics-carbon composite of the embodiment of the present invention is 600 ° C. and the firing time is 20 minutes, 40 minutes, 60 minutes, and 80 minutes. (B) It is a graph which shows the intensity | strength change of the 1st peak of each component of the XRD pattern. 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成温度および焼成時間が(a)800℃、40分、(b)600℃、40分、(c)600℃、60分のときの電界放射形走査電子顕微鏡(FE-SEM)写真である。The firing temperature and firing time of the oxide-based ceramic-carbon composite according to the embodiment of the present invention (a) 800 ° C., 40 minutes, (b) 600 ° C., 40 minutes, (c) 600 ° C., 60 minutes It is a field emission type scanning electron microscope (FE-SEM) photograph of time. 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成温度が600℃、焼成時間40分のときの、(a)走査型電子顕微鏡(SEM)写真、(b)エネルギー分散型X線分析(EDX)によるチタン(Ti)、(c)酸素(O)、(d)炭素(C)のマッピングである。(A) Scanning electron microscope (SEM) photograph, (b) Energy dispersive X when the firing temperature of the oxide-based ceramic-carbon composite of the embodiment of the present invention is 600 ° C. and the firing time is 40 minutes. It is mapping of titanium (Ti), (c) oxygen (O), and (d) carbon (C) by line analysis (EDX). 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成温度が600℃、焼成時間60分のときの(a)走査型電子顕微鏡(SEM)写真、(b)エネルギー分散型X線分析(EDX)によるチタン(Ti)、(c)酸素(O)、(d)炭素(C)のマッピングである。(A) Scanning electron microscope (SEM) photograph, (b) Energy dispersive X-ray when the firing temperature of the oxide-based ceramic-carbon composite of the embodiment of the present invention is 600 ° C. and the firing time is 60 minutes. It is mapping of titanium (Ti), (c) oxygen (O), and (d) carbon (C) by analysis (EDX). 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成温度および焼成時間が(a)600℃、40分、(b)600℃、60分のときの粒度分布を示すグラフである。It is a graph which shows the particle size distribution at the time of (a) 600 degreeC and 40 minutes, (b) 600 degreeC, and 60 minutes of baking temperature and baking time of the oxide type ceramic-carbon composite of embodiment of this invention. . 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成温度が600℃、焼成時間60分のときの(a)透過型電子顕微鏡(TEM)写真、(b) (a)をさらに拡大したTEM写真、(c) (b)の矢印部分の電子回折像である。(A) Transmission electron microscope (TEM) photograph when the firing temperature of the oxide-based ceramics-carbon composite of the embodiment of the present invention is 600 ° C. and the firing time is 60 minutes; It is the expanded TEM photograph, and the electron diffraction image of the arrow part of (c) and (b). 本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成時間が60分、焼成温度が600℃のとき、および、電気炉を用いて焼成した比較例の複合体の、焼成時間が60分、焼成温度が600℃、800℃のときのX線回折結果を示すXRDパターンである。The firing time of the oxide-based ceramics-carbon composite according to the embodiment of the present invention is 60 minutes, the firing temperature is 600 ° C., and the composite of the comparative example fired using an electric furnace. It is a XRD pattern which shows a X-ray-diffraction result when baking temperature is 600 degreeC and 800 degreeC for 60 minutes. (a)本発明の実施の形態の酸化物系セラミックス−カーボン複合体の原料のSEM写真、(b)TEM写真、(c)本発明の実施の形態の酸化物系セラミックス−カーボン複合体の、焼成温度が600℃、焼成時間が60分のときのFE-SEM写真、(d)TEM写真、(e)電気炉を用いて焼成した比較例の複合体の、焼成温度が600℃、焼成時間が60分のときのFE-SEM写真である。(A) SEM photograph of the raw material of the oxide-based ceramics-carbon composite of the embodiment of the present invention, (b) TEM photograph, (c) of the oxide-based ceramics-carbon composite of the embodiment of the present invention, FE-SEM photograph when firing temperature is 600 ° C. and firing time is 60 minutes, (d) TEM photograph, (e) The firing temperature of the composite of the comparative example fired using an electric furnace is 600 ° C. and firing time It is a FE-SEM photograph when is 60 minutes. 電気炉を用いて焼成した比較例の複合体の、焼成温度が800℃、焼成時間が60分のときのSEM写真である。It is a SEM photograph when the firing temperature of the composite of the comparative example fired using an electric furnace is 800 ° C. and the firing time is 60 minutes.

以下、図面および実施例に基づいて、本発明の実施の形態について説明する。
図1乃至図11は、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法および酸化物系セラミックス−カーボン複合体を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings and examples.
1 to 11 show a method for producing an oxide-based ceramic-carbon composite and an oxide-based ceramic-carbon composite according to an embodiment of the present invention.

本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法では、酸化物系セラミックスの原料として、LiTi12(LTO)の原料であるLiOとTiOとを用いた。まず、これらを均一に分散させるため、LiとTiのモル比が4:5になるよう、0.04molのLiOと0.1molのTiOとを、150mLの超純水に溶解させた。このときの反応式は、
LiO+3HO→2LiOH・H
となる。
In the method for producing an oxide-based ceramic-carbon composite according to the embodiment of the present invention, LiO 2 and TiO 2 which are raw materials of Li 4 Ti 5 O 12 (LTO) are used as raw materials for the oxide-based ceramic. . First, in order to disperse them uniformly, 0.04 mol of LiO 2 and 0.1 mol of TiO 2 were dissolved in 150 mL of ultrapure water so that the molar ratio of Li to Ti was 4: 5. The reaction formula at this time is
LiO 2 + 3H 2 O → 2LiOH · H 2 O
It becomes.

次に、その液体の中に、カーボン材料として3.1gのケッチェンブラックを添加し、酸化物系セラミックスの原料とカーボン材料とを均一に混合するために、ジルコニアボールを用いて一軸ボールミルにより24時間混合した。混合後、酸化物系セラミックスの原料が凝集しないよう、その混合物を、液体窒素を用いて凍結させ、フリーズドライを行って乾燥させた。   Next, 3.1 g of ketjen black as a carbon material is added to the liquid, and a uniaxial ball mill is used for 24 hours using a zirconia ball in order to uniformly mix the oxide ceramic material and the carbon material. Mixed. After mixing, the mixture was frozen using liquid nitrogen and freeze-dried so that the oxide ceramic raw material would not aggregate.

フリーズドライで乾燥した後、電磁界集中型マイクロ波焼成炉(四国計測工業株式会社製「SMW-105」)を用いて、2.45GHzのマイクロ波で焼成を行った。図1に示すように、焼成は、乾燥後の試料0.25gをアルミるつぼの中に入れ、そのるつぼを断熱材で覆い、窒素雰囲気下で行った。また、焼成は、PID制御により999℃/minで所定温度まで昇温し、所定温度に所定時間保持した後、放冷した。このときの反応式は、
4LiOH・HO+5TiO→LiTi12+6H
となる。
After drying by freeze drying, firing was performed at 2.45 GHz microwave using an electromagnetic field concentration type microwave firing furnace (“SMW-105” manufactured by Shikoku Keiki Kogyo Co., Ltd.). As shown in FIG. 1, firing was performed in a nitrogen atmosphere by placing 0.25 g of the dried sample in an aluminum crucible, covering the crucible with a heat insulating material. In the baking, the temperature was raised to a predetermined temperature at 999 ° C./min by PID control, kept at the predetermined temperature for a predetermined time, and then allowed to cool. The reaction formula at this time is
4LiOH.H 2 O + 5TiO 2 → Li 4 Ti 5 O 12 + 6H 2 O
It becomes.

こうして、酸化物系セラミックスの結晶粒子がLiTi12の結晶粒子から成る酸化物系セラミックス−カーボン複合体を製造することができる。本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスの原料を焼成して固相反応させることにより、ソルボサーマル法などの液相合成を行う場合と比べて簡便に、酸化物系セラミックスのナノ粒子を合成することができ、製造コストを低減可能である。また、マイクロ波を用いて焼成することにより、急速昇温加熱で加熱時間を短縮することができ、合成された酸化物系セラミックスのナノ粒子同士が焼結するのを防ぐことができる。 Thus, an oxide ceramic-carbon composite in which the oxide ceramic crystal particles are made of Li 4 Ti 5 O 12 crystal particles can be produced. The method for producing an oxide-based ceramics-carbon composite according to an embodiment of the present invention is compared with a case where liquid-phase synthesis such as a solvothermal method is performed by firing a raw material of oxide-based ceramics to cause a solid-phase reaction. It is possible to synthesize oxide ceramic nanoparticles in a simple and easy manner, and the manufacturing cost can be reduced. In addition, by firing using microwaves, the heating time can be shortened by rapid heating and heating, and the synthesized oxide ceramic nanoparticles can be prevented from sintering.

本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスの原料とカーボンとを混合することにより、酸化物系セラミックスの原料が拡散して凝集するのを防ぎ、マイクロ波による焼成時に、酸化物系セラミックスのナノ粒子同士が焼結するのを効果的に防止することができる。また、マイクロ波による急速昇温加熱により、酸化物系セラミックスのナノ粒子とカーボンとの間に接合界面を形成することができる。また、カーボンのマイクロ波吸収率が高いため、カーボンを均一に混合することにより、焼成時に混合物を均一に加熱することができ、酸化物系セラミックスのナノ粒子を均一に合成することができる。   The method for producing an oxide ceramic-carbon composite according to an embodiment of the present invention prevents the oxide ceramic raw material from diffusing and agglomerating by mixing the oxide ceramic raw material and carbon. It is possible to effectively prevent the oxide ceramic nanoparticles from being sintered together during firing with microwaves. In addition, a bonding interface can be formed between the oxide ceramic nanoparticles and the carbon by rapid heating with microwaves. In addition, since the microwave absorption rate of carbon is high, by uniformly mixing carbon, the mixture can be heated uniformly during firing, and nanoparticles of oxide ceramics can be synthesized uniformly.

このように、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスのナノ粒子とカーボンとの複合体を製造することができる。酸化物系セラミックス合成後にカーボンを混練する工程が不要であり、さらに製造コストを低減することができる。   As described above, the oxide ceramics-carbon composite manufacturing method according to the embodiment of the present invention can manufacture a composite of oxide ceramic nanoparticles and carbon. A step of kneading carbon after the synthesis of the oxide ceramic is unnecessary, and the manufacturing cost can be further reduced.

また、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスの原料を、溶媒の超純水に溶解または分散させた後、カーボンを加えて混合するため、酸化物系セラミックスの原料が凝集するのを防ぐことができ、酸化物系セラミックスのナノ粒子を効率的に得ることができる。特に、酸化物系セラミックスの原料として、親水性のLiOおよびTiOを用いるため、超純水中にそれらの原料を均一に分散させることができる。また、超純水は昇華しやすいため、ソルボサーマル法では必要となる廃液処理やか焼過程が不要となり、製造コストを低減することができる。 In the method for producing an oxide-based ceramic-carbon composite according to an embodiment of the present invention, the raw material of the oxide-based ceramic is dissolved or dispersed in ultrapure water as a solvent, and then carbon is added and mixed. Further, it is possible to prevent the raw materials of the oxide-based ceramic from aggregating, and it is possible to efficiently obtain oxide-based ceramic nanoparticles. In particular, since hydrophilic LiO 2 and TiO 2 are used as raw materials for oxide ceramics, these raw materials can be uniformly dispersed in ultrapure water. Further, since ultrapure water is easily sublimated, the waste liquid treatment and calcination process required in the solvothermal method are not required, and the manufacturing cost can be reduced.

また、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法は、酸化物系セラミックスの原料とカーボンとを混合後、フリーズドライして乾燥させることにより、酸化物系セラミックスの原料が分散した状態で乾燥させることができる。このため、酸化物系セラミックスの原料が凝集するのを防ぎ、酸化物系セラミックスのナノ粒子をより効率的に得ることができる。   In addition, the method for producing an oxide ceramics-carbon composite according to an embodiment of the present invention includes mixing an oxide ceramic raw material and carbon, and then freeze drying and drying to obtain an oxide ceramic raw material. Can be dried in a dispersed state. For this reason, it can prevent that the raw material of oxide ceramics aggregates, and can obtain the oxide ceramic nanoparticles more efficiently.

また、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法は、不活性ガス雰囲気中で焼成するため、不純物が混入しない酸化物系セラミックスを合成することができ、高機能の複合体を製造することができる。
このように、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法によれば、LiTi12のナノ粒子が均一に分散された複合体を得ることができる。得られたLiTi12−カーボン複合体を電極材料として使用することにより、高品質で高性能の優れた電極を得ることができる。
以下、実施例として、焼成温度および焼成時間を変化させて、酸化物系セラミックス−カーボン複合体の製造を行った。また、電気炉を用いて焼成を行った複合体との比較を行った。
In addition, since the method for producing an oxide-based ceramic-carbon composite according to an embodiment of the present invention is fired in an inert gas atmosphere, it is possible to synthesize an oxide-based ceramic that does not contain impurities, and has a high function. A composite can be produced.
Thus, according to the method for producing an oxide-based ceramic-carbon composite according to the embodiment of the present invention, a composite in which nanoparticles of Li 4 Ti 5 O 12 are uniformly dispersed can be obtained. By using the obtained Li 4 Ti 5 O 12 -carbon composite as an electrode material, a high-quality and high-performance electrode can be obtained.
Hereinafter, as examples, oxide ceramics-carbon composites were manufactured by changing the firing temperature and firing time. Further, a comparison was made with a composite fired using an electric furnace.

焼成時間を40分、焼成温度をそれぞれ500℃、600℃、700℃、800℃として、酸化物系セラミックス−カーボン複合体の製造を行った。それぞれの条件で製造された複合体についてX線回折を行い、そのXRDパターンを図2(a)に示す。また、図2(a)のXRDパターンに現れた各成分の第1ピークの強度変化を、図2(b)に示す。図2(a)および(b)に示すように、焼成温度が500℃以上で、LiTi12が生成していることが確認された。また、焼成温度が上昇するに従って、生成するLiTi12の量が増加することも確認された。なお、このときのLiTi12の結晶子の大きさは、28〜35nmであった。 Oxide ceramics-carbon composites were manufactured with a firing time of 40 minutes and firing temperatures of 500 ° C., 600 ° C., 700 ° C., and 800 ° C., respectively. The composite manufactured under each condition is subjected to X-ray diffraction, and its XRD pattern is shown in FIG. Moreover, the intensity change of the 1st peak of each component which appeared in the XRD pattern of Fig.2 (a) is shown in FIG.2 (b). As shown in FIGS. 2 (a) and 2 (b), it was confirmed that the firing temperature was 500 ° C. or higher and Li 4 Ti 5 O 12 was produced. It was also confirmed that the amount of Li 4 Ti 5 O 12 produced increased as the firing temperature increased. The crystallite size of Li 4 Ti 5 O 12 at this time was 28 to 35 nm.

次に、焼成温度を600℃、焼成時間をそれぞれ20分、40分、60分、80分として、酸化物系セラミックス−カーボン複合体の製造を行った。それぞれの条件で製造された複合体についてX線回折を行い、そのXRDパターンを図3(a)に示す。また、図3(a)のXRDパターンに現れた各成分の第1ピークの強度変化を、図3(b)に示す。図3(a)および(b)に示すように、焼成時間が20分以上で、LiTi12が生成していることが確認された。また、焼成時間が60分のとき、生成するLiTi12の量が最大になることが確認された。なお、このときのLiTi12の結晶子の大きさは、27〜38nmであった。 Next, the oxide ceramic-carbon composite was manufactured at a firing temperature of 600 ° C. and firing times of 20 minutes, 40 minutes, 60 minutes, and 80 minutes, respectively. The composite manufactured under each condition is subjected to X-ray diffraction, and its XRD pattern is shown in FIG. Moreover, the intensity change of the 1st peak of each component which appeared in the XRD pattern of FIG. 3A is shown in FIG. As shown in FIGS. 3A and 3B, it was confirmed that Li 4 Ti 5 O 12 was produced with a firing time of 20 minutes or longer. It was also confirmed that the amount of Li 4 Ti 5 O 12 produced was maximized when the firing time was 60 minutes. The crystallite size of Li 4 Ti 5 O 12 at this time was 27 to 38 nm.

焼成温度および焼成時間がそれぞれ、[800℃、40分]、[600℃、40分]、[600℃、60分]のときの、酸化物系セラミックス−カーボン複合体の電界放射形走査電子顕微鏡(FE-SEM)写真を、図4に示す。図4に示すように、いずれの条件でもナノ粒子が生成されていることが確認された。また、[600℃、40分]の場合に比べて、[800℃、40分]および[600℃、60分]の場合の方が、粒子が大きくなっていることが確認された。このことから、焼成温度が高くなったり、焼成時間が長くなったりすると、粒子が成長して大きくなることがわかる。   Field emission scanning electron microscope of oxide ceramics-carbon composite when firing temperature and firing time are [800 ° C, 40 minutes], [600 ° C, 40 minutes], [600 ° C, 60 minutes], respectively A (FE-SEM) photograph is shown in FIG. As shown in FIG. 4, it was confirmed that nanoparticles were generated under any conditions. Further, it was confirmed that the particles were larger in the cases of [800 ° C., 40 minutes] and [600 ° C., 60 minutes] than in the case of [600 ° C., 40 minutes]. From this, it is understood that when the firing temperature is increased or the firing time is increased, the particles grow and become larger.

焼成温度および焼成時間が[600℃、40分]、[600℃、60分]のときの酸化物系セラミックス−カーボン複合体の、エネルギー分散型X線分析(EDX)による元素マッピングの結果を、それぞれ図5および図6に示す。また、粒度分布を、それぞれ図7(a)および(b)に示す。図5および図6に示すように、TiとOとCがそれぞれ一様に分布していることが確認された。特に、[600℃、60分]のときに、より均一に分布していることが確認された。また、図7(a)および(b)に示すように、半分以上の粒子が粒径100nm以下であり、ほとんどの粒子が粒径250nm以下であることが確認された。このことから、酸化物系セラミックス−カーボン複合体のナノ粒子が得られたことがわかる。なお、図7(a)では、粒径25nm以下のものが多くなっているが、これは原料が残っているためであると考えられる。   The results of elemental mapping by energy dispersive X-ray analysis (EDX) of the oxide-based ceramic-carbon composite when the firing temperature and firing time were [600 ° C., 40 minutes] and [600 ° C., 60 minutes] These are shown in FIGS. 5 and 6, respectively. The particle size distributions are shown in FIGS. 7 (a) and (b), respectively. As shown in FIGS. 5 and 6, it was confirmed that Ti, O, and C were uniformly distributed. In particular, it was confirmed that the distribution was more uniform at [600 ° C., 60 minutes]. Further, as shown in FIGS. 7A and 7B, it was confirmed that more than half of the particles had a particle size of 100 nm or less, and most of the particles had a particle size of 250 nm or less. This shows that the oxide ceramics-carbon composite nanoparticles were obtained. In FIG. 7A, the number of particles having a particle size of 25 nm or less is increased, which is considered to be because the raw material remains.

焼成温度および焼成時間が[600℃、60分]のときの酸化物系セラミックス−カーボン複合体の、透過型電子顕微鏡(TEM)写真を、図8に示す。図8に示すように、酸化物系セラミックス結晶粒子の(111)および(200)結晶面に、カーボン粒子(C)が結合しており、酸化物系セラミックス粒子とカーボン粒子との間に接合界面が形成されていることが確認された。このことから、LiTi12のナノ粒子が均一に分散しており、この複合体を電極材料として使用することにより、高品質で高性能の優れた電極が得られることがわかる。 FIG. 8 shows a transmission electron microscope (TEM) photograph of the oxide ceramic-carbon composite when the firing temperature and firing time are [600 ° C., 60 minutes]. As shown in FIG. 8, carbon particles (C) are bonded to the (111) and (200) crystal faces of the oxide-based ceramic crystal particles, and a bonding interface is formed between the oxide-based ceramic particles and the carbon particles. It was confirmed that was formed. From this, it can be seen that Li 4 Ti 5 O 12 nanoparticles are uniformly dispersed, and by using this composite as an electrode material, an electrode with high quality and high performance can be obtained.

[比較例]
比較のため、電気炉(丸祥電器株式会社製、マルチ雰囲気炉「SPM65-17V」)を用いて、窒素雰囲気下で焼成を行い、複合体の製造を行った。焼成以外の条件は、マイクロ波を用いた場合と同じである。マイクロ波を用いて、焼成時間を60分、焼成温度を600℃として製造された酸化物系セラミックス−カーボン複合体のXRDパターン、および、電気炉を用いて、焼成時間を60分、焼成温度をそれぞれ600℃、800℃として製造された複合体のXRDパターンを、図9に示す。また、それぞれの電界放射形走査電子顕微鏡(FE-SEM)写真および透過型電子顕微鏡(TEM)写真を、図10および図11に示す。
[Comparative example]
For comparison, an electric furnace (manufactured by Marusho Denki Co., Ltd., multi-atmosphere furnace “SPM65-17V”) was used for firing in a nitrogen atmosphere to produce a composite. Conditions other than the firing are the same as in the case of using microwaves. Using the microwave, the XRD pattern of the oxide-based ceramic-carbon composite produced at a firing temperature of 60 ° C. and the firing temperature of 600 ° C., and using an electric furnace, the firing time was 60 minutes, and the firing temperature was The XRD patterns of the composites produced at 600 ° C. and 800 ° C. are shown in FIG. Further, respective field emission scanning electron microscope (FE-SEM) photographs and transmission electron microscope (TEM) photographs are shown in FIG. 10 and FIG.

図9乃至図11に示すように、電気炉では、焼成温度が600℃のときには、LiTi12は生成しないことが確認された。また、図9に示すように、電気炉では、焼成温度を800℃まで上げれば、LiTi12は生成されるが、図11に示すように、その粒子が凝集し、10μm以上になり、ナノ粒子は得られないことが確認された。また、このときのLiTi12の結晶子の大きさも、約50nmと大きくなっていた。 As shown in FIGS. 9 to 11, it was confirmed that in the electric furnace, Li 4 Ti 5 O 12 was not generated when the firing temperature was 600 ° C. Further, as shown in FIG. 9, in the electric furnace, when the firing temperature is increased to 800 ° C., Li 4 Ti 5 O 12 is generated, but as shown in FIG. 11, the particles aggregate and become 10 μm or more. Thus, it was confirmed that nanoparticles could not be obtained. In addition, the crystallite size of Li 4 Ti 5 O 12 at this time was as large as about 50 nm.

このように、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法によれば、電気炉を使用する場合よりも低い温度で、酸化物系セラミックス−カーボン複合体を製造することができる。また、電気炉では、酸化物系セラミックスのナノ粒子を含む複合体を製造することはできないが、本発明の実施の形態の酸化物系セラミックス−カーボン複合体の製造方法によれば、酸化物系セラミックスのナノ粒子を含む複合体を製造することができる。
Thus, according to the method for producing an oxide-based ceramics-carbon composite of the embodiment of the present invention, the oxide-based ceramics-carbon composite is produced at a lower temperature than when an electric furnace is used. Can do. Further, in an electric furnace, a composite containing oxide ceramic nanoparticles cannot be manufactured. However, according to the method for manufacturing an oxide ceramic-carbon composite according to an embodiment of the present invention, an oxide A composite containing ceramic nanoparticles can be produced.

Claims (8)

LiOとTiOとから成る酸化物系セラミックスの原料にカーボンを加えて混合した後、その混合物を、マイクロ波を用いて焼成することにより、LiTi12−カーボン複合体を製造することを特徴とする酸化物系セラミックス−カーボン複合体の製造方法。 After adding and mixing carbon to the raw material of oxide ceramics composed of LiO 2 and TiO 2 , the mixture is fired using microwaves to produce a Li 4 Ti 5 O 12 -carbon composite. A method for producing an oxide-based ceramics-carbon composite. 前記原料を液体の溶媒中に溶解または分散させた後、前記カーボンを加えて混合することを特徴とする請求項1記載の酸化物系セラミックス−カーボン複合体の製造方法。   The method for producing an oxide-based ceramic-carbon composite according to claim 1, wherein the raw material is dissolved or dispersed in a liquid solvent, and then the carbon is added and mixed. 前記溶媒は水であることを特徴とする請求項2記載の酸化物系セラミックス−カーボン複合体の製造方法。   The method for producing an oxide-based ceramics-carbon composite according to claim 2, wherein the solvent is water. 前記混合物を乾燥した後、焼成することを特徴とする請求項2または3記載の酸化物系セラミックス−カーボン複合体の製造方法。   4. The method for producing an oxide-based ceramic-carbon composite according to claim 2, wherein the mixture is dried and then fired. 前記混合物を不活性ガス雰囲気中で焼成することを特徴とする請求項1乃至4のいずれか1項に記載の酸化物系セラミックス−カーボン複合体の製造方法。   The method for producing an oxide-based ceramic-carbon composite according to any one of claims 1 to 4, wherein the mixture is fired in an inert gas atmosphere. 前記原料は、固相または液相の複数の物質から成ることを特徴とする請求項1乃至5のいずれか1項に記載の酸化物系セラミックス−カーボン複合体の製造方法。   The method for producing an oxide-based ceramic-carbon composite according to any one of claims 1 to 5, wherein the raw material includes a plurality of substances in a solid phase or a liquid phase. 前記マイクロ波により、500℃〜800℃で20分〜80分間焼成することを特徴とする請求項1乃至6のいずれか1項に記載の酸化物系セラミックス−カーボン複合体の製造方法。   The method for producing an oxide-based ceramic-carbon composite according to any one of claims 1 to 6, wherein the firing is performed at 500 to 800 ° C for 20 to 80 minutes by the microwave. 250nm以下の粒径を有する酸化物系セラミックスであるLiTi12の結晶粒子と、カーボンとの複合体から成り、前記酸化物系セラミックス結晶粒子の(111)および(200)結晶面に、前記カーボンが結合していることを特徴とする酸化物系セラミックス−カーボン複合体。
It is composed of a composite of Li 4 Ti 5 O 12 crystal particles, which are oxide ceramics having a particle size of 250 nm or less, and carbon, on the (111) and (200) crystal planes of the oxide ceramic crystal particles. An oxide-based ceramic-carbon composite in which the carbon is bonded.
JP2015238138A 2015-12-07 2015-12-07 Method for producing oxide-based ceramics-carbon composite and oxide-based ceramics-carbon composite Active JP6598206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015238138A JP6598206B2 (en) 2015-12-07 2015-12-07 Method for producing oxide-based ceramics-carbon composite and oxide-based ceramics-carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238138A JP6598206B2 (en) 2015-12-07 2015-12-07 Method for producing oxide-based ceramics-carbon composite and oxide-based ceramics-carbon composite

Publications (2)

Publication Number Publication Date
JP2017105644A JP2017105644A (en) 2017-06-15
JP6598206B2 true JP6598206B2 (en) 2019-10-30

Family

ID=59058858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238138A Active JP6598206B2 (en) 2015-12-07 2015-12-07 Method for producing oxide-based ceramics-carbon composite and oxide-based ceramics-carbon composite

Country Status (1)

Country Link
JP (1) JP6598206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118239460B (en) * 2024-05-28 2024-08-13 宜宾天原锂电新材有限公司 High-compaction-density lithium iron phosphate positive electrode material, preparation method thereof and battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642139B2 (en) * 2009-06-09 2014-02-04 Toyota Motor Engineering & Manufacturing North America, Inc. Process to make structured particles
JP2011233340A (en) * 2010-04-27 2011-11-17 Asahi Glass Co Ltd Method for manufacturing electrode active material for storage element
JP5836568B2 (en) * 2010-05-04 2015-12-24 日本ケミコン株式会社 Lithium titanate crystal structure and carbon composite, manufacturing method thereof, electrode using the composite, and electrochemical device
KR101153480B1 (en) * 2010-06-24 2012-06-11 연세대학교 산학협력단 A lithium manganese oxide-carbon nano composite and a fabricating method thereof

Also Published As

Publication number Publication date
JP2017105644A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5326567B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery equipped with the same, and method for producing the same
JP5369708B2 (en) Anode material for secondary battery and method for producing the same
Conte et al. A review on the application of iron (III) fluorides as positive electrodes for secondary cells
Zhao et al. Significantly enhanced electrochemical properties of LiMn2O4-based composite microspheres embedded with nano-carbon black particles
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
Rommel et al. Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO 4
CN106663793A (en) Positive electrode active material and method for manufacturing same
Wang et al. Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0. 5Co0. 2Mn0. 3O2 cathode materials
JP6128181B2 (en) Electrode material for lithium ion secondary battery, method for producing electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
JP5612392B2 (en) Method for producing lithium vanadium phosphate carbon composite
CN110023245B (en) Method for producing high-performance lithium titanate anode material for lithium ion battery application
JP2006347805A (en) Method for producing lithium iron multiple oxide
KR101991408B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
Muruganantham et al. Synthesis and electrochemical characterization of olivine-type lithium iron phosphate cathode materials via different techniques
JP5509598B2 (en) Electrode material and method for producing the same, and electrode and battery
JP5604216B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP5604217B2 (en) Method for producing lithium vanadium phosphate carbon composite
Subhan et al. Effects of activated carbon treatment on Li 4 Ti 5 O 12 anode material synthesis for lithium-ion batteries
Li et al. Synthesis and electrochemical properties of lithium zinc titanate as an anode material for lithium ion batteries via microwave method
Matsukevich et al. Lithium cobalt titanate with the spinel structure as an anode material for lithium ion batteries
Fan et al. Li 4 Ti 5 O 12/hollow graphitized nano-carbon composites as anode materials for lithium ion battery
Yuan et al. High‐Safety Anode Materials for Advanced Lithium‐Ion Batteries
JP6598206B2 (en) Method for producing oxide-based ceramics-carbon composite and oxide-based ceramics-carbon composite
JP6345227B2 (en) Method for producing lithium vanadium phosphate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190925

R150 Certificate of patent or registration of utility model

Ref document number: 6598206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250