JP2011233340A - Method for manufacturing electrode active material for storage element - Google Patents

Method for manufacturing electrode active material for storage element Download PDF

Info

Publication number
JP2011233340A
JP2011233340A JP2010102090A JP2010102090A JP2011233340A JP 2011233340 A JP2011233340 A JP 2011233340A JP 2010102090 A JP2010102090 A JP 2010102090A JP 2010102090 A JP2010102090 A JP 2010102090A JP 2011233340 A JP2011233340 A JP 2011233340A
Authority
JP
Japan
Prior art keywords
active material
raw material
electrode active
microwave
component mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010102090A
Other languages
Japanese (ja)
Inventor
Ryoji Yamada
亮治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010102090A priority Critical patent/JP2011233340A/en
Publication of JP2011233340A publication Critical patent/JP2011233340A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode active material for a storage element in a short time.SOLUTION: In the method for manufacturing an electrode active material for a storage element, a microwave furnace is used. The microwave furnace includes at least two inverter-controlled microwave oscillators which are arranged so that microwave irradiation regions are overlapped with each other in one region and are operated in a mutually decoupled state. A mixture of raw material components is supplied to the irradiation regions to be heated by the microwave furnace.

Description

本発明は蓄電素子用電極活物質の製造方法に関する。   The present invention relates to a method for producing an electrode active material for a storage element.

近年、リチウムイオン二次電池は、高出力、高エネルギ密度であり、携帯機器用だけでなく、車載用充放電システム及び動力源、電力貯蔵及び供給システム用等、中・大型蓄電池としても注目されている。このようなリチウムイオン二次電池では、高出力特性、安全性、安定性の点で電極活物質(正極活物質、及び負極活物質)が重要な役割をはたしている。電極活物質としては、正極活物質として、コバルト酸リチウムに代表されるコバルト系、スピネルマンガン系、3元系と呼ばれるニッケルとマンガンとコバルトを含有するリチウム複合酸化物、リチウムリン酸鉄に代表されるオリビン系等が挙げられ、負極活物質として、黒鉛類、チタン系、スズ系、シリコン系、金属窒化物系、リチウムやリチウム合金が挙げられる。   In recent years, lithium ion secondary batteries have high output and high energy density, and are attracting attention not only as portable devices but also as medium- and large-sized storage batteries for in-vehicle charging / discharging systems and power sources, power storage and supply systems, etc. ing. In such a lithium ion secondary battery, electrode active materials (positive electrode active material and negative electrode active material) play an important role in terms of high output characteristics, safety, and stability. As the electrode active material, the positive electrode active material is typified by a cobalt-based material represented by lithium cobaltate, a spinel manganese-based material, a lithium composite oxide containing nickel, manganese, and cobalt, which is called a ternary system, and lithium iron phosphate. Examples of negative electrode active materials include graphite, titanium, tin, silicon, metal nitride, lithium, and lithium alloys.

正極活物質の製造方法は、一般的に原料であるリチウム化合物、金属化合物、及びその他の材料を混合して坩堝等の容器に充填し、数百〜千数百℃に加熱して、数時間保持することで製造される。主に酸化雰囲気で製造されるが、リチウムリン酸鉄を製造する場合は還元雰囲気又は不活性雰囲気で製造される。しかしながら、正極活物質の製造方法は、加熱雰囲気の違いにかかわらず、加熱のために昇温時間、保持時間、冷却時間が必要とされ、短くともほぼ1日を要していた。   A method for producing a positive electrode active material is generally mixed with a lithium compound, a metal compound, and other materials as raw materials, filled in a container such as a crucible, and heated to several hundred to several hundreds of degrees Celsius for several hours. Manufactured by holding. Although it is mainly produced in an oxidizing atmosphere, it is produced in a reducing atmosphere or an inert atmosphere when producing lithium iron phosphate. However, the method for producing a positive electrode active material requires a heating time, a holding time, and a cooling time for heating regardless of the heating atmosphere, and takes almost one day at the shortest.

特許文献1には、特定の非晶性コバルト化合物をコバルト源とすることで、加熱に必要な温度を下げ、所要時間を短縮できることが記載されている。しかしながら製造設備は従来とほとんど同様な焼成設備を使用しており、抜本的な製造時間の短縮には至らなかった。   Patent Document 1 describes that by using a specific amorphous cobalt compound as a cobalt source, the temperature required for heating can be lowered and the required time can be shortened. However, the production equipment uses almost the same firing equipment as before, and the production time has not been drastically shortened.

特許文献2には、所要時間がおおよそ1時間未満である3つの製造方法が記載されている。一つ目は噴霧熱分解と呼ばれる方法である。この方法では電池特性良好な蓄電素子用電極活物質を10分程度で製造できる。しかしながら1時間ほどの連続運転でも生成物による設備の閉塞を起こしてしまい、量産設備の高効率運転は困難であった。   Patent Document 2 describes three manufacturing methods in which the required time is approximately less than 1 hour. The first is a method called spray pyrolysis. According to this method, an electrode active material for a storage element having good battery characteristics can be produced in about 10 minutes. However, even in continuous operation for about 1 hour, the equipment was blocked by the product, and high-efficiency operation of mass production equipment was difficult.

二つ目はマイクロ波加熱と呼ばれる方法であり、この方法でも電池特性良好な蓄電素子用電極活物資を10分程度で製造できる。マイクロ波加熱は対象物を選択的に加熱できる点に特徴を有するが、実際は坩堝等の容器に充填して加熱される。したがって坩堝壁近傍や開放域近傍には大きな温度分布があり、工業的に均質特性の製品を生産する手法としてはまだ確立されていなかった。この欠点を解決するため炉全体を加熱する方法も提案されている(特許文献3)が、これではマイクロ波加熱の特徴が活かされない。   The second is a method called microwave heating, which can produce an electrode active material for a storage element with good battery characteristics in about 10 minutes. Microwave heating is characterized in that it can selectively heat an object, but in actuality, a container such as a crucible is filled and heated. Therefore, there is a large temperature distribution in the vicinity of the crucible wall and in the vicinity of the open area, and it has not yet been established as a method for industrially producing products with homogeneous characteristics. In order to solve this drawback, a method of heating the entire furnace has also been proposed (Patent Document 3), but this does not make use of the characteristics of microwave heating.

三つ目はロータリーキルンによる加熱で、この方法でも電池特性良好な蓄電素子用電極活物資を10分程度で製造できる。しかしながら加熱される円筒管はアルミナ等のセラミックスの場合、直径200mmの長さ2000mmの管が上限であるため、蓄電素子用電極活物質の生産性が充分でなかった。   The third is heating by a rotary kiln, and this method can produce an electrode active material for a storage element with good battery characteristics in about 10 minutes. However, when the heated cylindrical tube is made of ceramics such as alumina, the upper limit is a tube having a diameter of 200 mm and a length of 2000 mm, so that the productivity of the electrode active material for a storage element is not sufficient.

特開平10−279315号公報JP-A-10-279315 特開2007−230784号公報JP 2007-230784 A 特開2006−24448号公報JP 2006-24448 A

本発明は、短時間で効率良く、連続製造できる蓄電素子用電極活物質の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the electrode active material for electrical storage elements which can be manufactured continuously efficiently in a short time.

本発明は、少なくとも2台のマイクロ波発振器により重複して形成された照射域に原料成分混合物を供給して加熱することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち本発明は、以下の構成を有する蓄電素子用電極活物質の製造方法を提供する。
[1]少なくとも2台のインバータ制御されたマイクロ波発振器を有し、各々のマイクロ波照射域が一つの領域で重複するように配置され、相互にデカップリング状態で運転されるマイクロ波加熱炉を用い、原料成分混合物を前記照射域に供給し、原料成分混合物を加熱することを特徴とする蓄電素子用電極活物質の製造方法。
[2]前記原料成分混合物が粉体であり、この粉体を前記マイクロ波照射域の上部から落下させて前記照射域を通過させる[1]に記載の蓄電素子用電極活物質の製造方法。
The present invention has found that the above-mentioned problems can be solved by supplying a raw material component mixture to an irradiation region formed by at least two microwave oscillators and heating it, and has completed the present invention.
That is, this invention provides the manufacturing method of the electrode active material for electrical storage elements which has the following structures.
[1] A microwave heating furnace having at least two inverter-controlled microwave oscillators, wherein each microwave irradiation region is disposed so as to overlap in one region, and is operated in a decoupling state with each other. A method for producing an electrode active material for a storage element, comprising: using a raw material component mixture to supply the irradiation region, and heating the raw material component mixture.
[2] The method for producing an electrode active material for a storage element according to [1], wherein the raw material component mixture is a powder, and the powder is dropped from an upper part of the microwave irradiation region and passed through the irradiation region.

本発明の製造方法は、短時間で効率良く、連続製造できる蓄電素子用電極活物質を得ることができる。   According to the production method of the present invention, an electrode active material for a storage element that can be continuously produced efficiently in a short time can be obtained.

本発明における蓄電素子用電極活物質(以下、必要に応じて活物質と省略する。)は、加熱処理を必要とするほぼ全ての蓄電素子用電極活物質に適用可能である。例えば、非水二次電池であるリチウムイオン二次電池の場合、正極活物質としては、コバルト系、ニッケル系、スピネルマンガン系、3元系、オリビン系等が挙げられる。負極活物質としては、黒鉛類、チタン系、スズ系、シリコン系、金属窒化物系、リチウムやリチウム合金等のリチウム系等が挙げられる。アルカリ二次電池の場合、正極活物質としては、ニッケル水酸化物やコバルト酸化物を複合化させたニッケル水酸化物、負極活物質としてはニッケルやチタンベースの水素吸蔵合金等が挙げられる。また、電気二重層キャパシタ用活物質の場合には、活性炭やホウ素処理活性炭等が挙げられる。   The electrode active material for a storage element in the present invention (hereinafter abbreviated as “active material” if necessary) can be applied to almost all electrode active materials for a storage element that require heat treatment. For example, in the case of a lithium ion secondary battery that is a non-aqueous secondary battery, examples of the positive electrode active material include cobalt, nickel, spinel manganese, ternary, and olivine. Examples of the negative electrode active material include graphites, titanium-based, tin-based, silicon-based, metal nitride-based materials, and lithium-based materials such as lithium and lithium alloys. In the case of an alkaline secondary battery, examples of the positive electrode active material include nickel hydroxide and nickel hydroxide combined with nickel hydroxide, and examples of the negative electrode active material include nickel and titanium-based hydrogen storage alloys. Moreover, in the case of the active material for electric double layer capacitors, activated carbon, boron-treated activated carbon, etc. are mentioned.

<原料成分混合物>
本発明における原料成分混合物は、特に限定されるものではなく、製造する種々の活物質に合わせた原料成分を含むことができる。例えば、オリビン系であるLiFePOの場合、リチウム源及びリン酸源としては、LiHPO又はLiHPO水溶液を使用することができる。なかでも、原料成分の全て或いは一部が共通溶媒からなる溶液であることが、原料成分を均質に混合でき、均質な製品を製造することができることから好ましい。さらに、前記共通溶媒が水であることがより好ましい。リチウムやリン酸の当量を精密に制御するため、その他のリチウム化合物やリン酸化合物を使用してもよい。その他のリチウム源やリン酸源としては、LiCO、LiO、(NHHPO、NHPOが、製品に不用な元素を残留させることが少ないことから好ましい。また、原料成分混合物は、リン酸水溶液に所定量のリチウム化合物を溶解させて調製することも可能である。
<Raw material component mixture>
The raw material component mixture in this invention is not specifically limited, The raw material component according to the various active material to manufacture can be included. For example, in the case of LiFePO 4 which is olivine, LiH 2 PO 4 or LiH 2 PO 4 aqueous solution can be used as the lithium source and the phosphate source. Especially, it is preferable that all or a part of the raw material components is a solution composed of a common solvent because the raw material components can be homogeneously mixed and a homogeneous product can be produced. Furthermore, it is more preferable that the common solvent is water. In order to precisely control the equivalent of lithium or phosphoric acid, other lithium compounds or phosphoric acid compounds may be used. As other lithium sources and phosphoric acid sources, Li 2 CO 3 , Li 2 O, (NH 4 ) 2 HPO 4 , and NH 4 H 2 PO 4 are preferable because they leave few unnecessary elements in the product. . The raw material component mixture can also be prepared by dissolving a predetermined amount of a lithium compound in an aqueous phosphoric acid solution.

LiFePOの鉄源としては、鉄2価又は3価の化合物であってもよく、一般なシュウ酸鉄等を原料とすることができる。なかでも、上記リチウム源とリン酸源の水溶液に可溶である点から、鉄の有機酸塩を鉄源に用いることが好ましく、容易に入手可能で極めて安価であることから、Fe、FeOOH、Fe等の酸化鉄類であるのがより好ましい。さらに、合成Feの中間原料であるFeOOHはリン酸水溶液中で微細化し易いことから特に好ましい。
負極活物質であるチタン酸リチウムの場合、原料成分混合物としては、炭酸リチウムと酸化チタンの混合物等が挙げられる。
The iron source of LiFePO 4 may be an iron divalent or trivalent compound, and general iron oxalate or the like can be used as a raw material. From the standpoint is soluble in an aqueous solution of the lithium source and the phosphate source, since it is possible to use an iron salt of an organic acid to the iron source is preferably a very inexpensive and readily available, Fe 2 O 3 Iron oxides such as FeOOH and Fe 3 O 4 are more preferable. Furthermore, FeOOH, which is an intermediate raw material of synthetic Fe 2 O 3 , is particularly preferable because it can be easily refined in a phosphoric acid aqueous solution.
In the case of lithium titanate, which is a negative electrode active material, examples of the raw material component mixture include a mixture of lithium carbonate and titanium oxide.

本発明における原料成分混合物は、原料成分の少なくとも一部がマイクロ波を吸収することで加熱される。コバルト及びコバルト酸化物はマイクロ波を良く吸収することが知られているが、ニッケル酸化物、マンガン酸化物、鉄酸化物、シリコン系等はマイクロ波を吸収しにくい。しかしながら、シリコン系のようなマイクロ波をほとんど吸収しない原料を用いる場合には、活物質の微細化と、マイクロ波を吸収しやすい電子伝導性カーボンとの複合化することで加熱することが可能となる。また、シリコン系活物質は電子伝導性が乏しいため、充放電によるLiの挿入と脱離に伴い大きな体積変化を起こす。シリコン系活物質の電子伝導性を高めるためには、活物質の微細化と微細化された活物質の表面へのカーボン被覆、さらには活物質内部へのカーボン導入が有効である。   The raw material component mixture in the present invention is heated by at least part of the raw material components absorbing microwaves. Although cobalt and cobalt oxide are known to absorb microwaves well, nickel oxides, manganese oxides, iron oxides, silicon-based materials, and the like are difficult to absorb microwaves. However, when using a raw material that hardly absorbs microwaves, such as silicon, it is possible to heat by making the active material finer and combining it with electron conductive carbon that easily absorbs microwaves. Become. In addition, since the silicon-based active material has poor electron conductivity, a large volume change is caused by insertion and extraction of Li due to charge and discharge. In order to increase the electronic conductivity of the silicon-based active material, it is effective to refine the active material, coat the carbon of the refined active material on the surface, and introduce carbon into the active material.

さらに、活物質の微細化と合わせて、金属ケイ素コアを二酸化ケイ素シェルで被覆したコアシェル型シリコン系活物質を採用することにより、充放電時の大きな体積変化に伴うシリコンの崩壊を防止することができる。具体的には、二酸化ケイ素と金属ケイ素の混合物から一酸化ケイ素を合成した後、不活性雰囲気下、本発明のマイクロ波加熱炉で熱処理して不均化することにより、電気化学的に活性な金属ケイ素が電気化学的に不活性な二酸化ケイ素中に分散された、コアシェル型シリコン系活物質を製造することができる。かかる構造によりシリコン系活物質の大きな体積変化が二酸化ケイ素マトリクスにより抑えられ、活物質の崩壊とサイクル劣化を防止できて長期のライフを実現できると考えられる。   Furthermore, by using a core-shell type silicon-based active material in which a metal silicon core is coated with a silicon dioxide shell in conjunction with the miniaturization of the active material, it is possible to prevent silicon from collapsing due to a large volume change during charge / discharge it can. Specifically, after synthesizing silicon monoxide from a mixture of silicon dioxide and metal silicon, it is electrochemically active by heat-treating in a microwave heating furnace of the present invention under an inert atmosphere and disproportionating. A core-shell type silicon-based active material in which metallic silicon is dispersed in electrochemically inert silicon dioxide can be produced. With such a structure, it is considered that a large volume change of the silicon-based active material can be suppressed by the silicon dioxide matrix, and the active material can be prevented from collapsing and cycle deterioration to achieve a long life.

活物質の微細化には、機械的衝撃を加えて粉砕したり、ジェットミル等で粉砕したりする方法を用いることも可能であるが、上記リチウム源とリン酸源の水溶液中に分散させた分散液に微細化処理を施して微細化する方法が混合と微細化を一つの工程で遂行できる点で好ましい。分散液の微細化処理は、せん断力を加える方法であれば特に限定されないが、効率良く微細化でき、かつ異物の混入を低く制御できる点で、分散液を回転速度の大きく異なる2つのローター間、2つのディスク間、又はローターとステーター間に通して微細化する方法、ノズルから高圧で噴射し、相互に衝突させるか又は遮蔽物に衝突させて微細化する方法、分散液にキャビテーションを起こして微細化する方法、ビーズミル、遊星ボールミル、又はボールミルを用いた方法が好ましい。   For the refinement of the active material, it is possible to use a method of pulverizing with mechanical impact or pulverizing with a jet mill or the like. However, the active material is dispersed in the aqueous solution of the lithium source and the phosphoric acid source. A method of subjecting the dispersion to refinement is preferable in that mixing and refinement can be performed in one step. There is no particular limitation on the dispersion refinement as long as it is a method of applying a shearing force, but the dispersion can be efficiently refined and the mixing of foreign matters can be controlled at a low level between two rotors with greatly different rotational speeds. A method of miniaturization by passing between two disks or between a rotor and a stator, a method of jetting at a high pressure from a nozzle and colliding with each other or colliding with a shielding object, causing cavitation in the dispersion liquid A method of using a finer method, a bead mill, a planetary ball mill, or a ball mill is preferable.

本発明において微細化された固体原料成分の分散液中における好ましい粒子径は活物質の種類や蓄電素子の種類にも依存される。例えば、LiFePOの場合、均質な合成反応を遂行できることから、メジアン径(D50)は、1μm以下が好ましい。またシリコン系活物質の場合、一酸化ケイ素のD50は、0.1〜30μmが好ましい。メジアン径(D50)は、全粒子の粒径累積%の中央値であり、レーザー回折散乱法によって測定することができる。 In the present invention, the preferable particle size in the dispersion of the solid raw material component refined depends on the type of active material and the type of power storage element. For example, in the case of LiFePO 4 , the median diameter (D50) is preferably 1 μm or less because a homogeneous synthesis reaction can be performed. In the case of a silicon-based active material, the D50 of silicon monoxide is preferably 0.1 to 30 μm. The median diameter (D50) is the median value of the cumulative particle size of all particles, and can be measured by a laser diffraction scattering method.

また、活物質と電子伝導性カーボンとを複合化する方法も種々提案されており、いずれの方法であってもよい。なかでも微細化された活物質であっても均質に複合化できることから、電子伝導性カーボン又は電子伝導性カーボンの前駆体化合物の溶液を用いることが好ましい。導電性カーボン又は前駆体化合物の溶液の溶媒は、取り扱いが容易であることから水であるのが好ましい。水媒体中で微細化処理された原料混合物分散液に電子伝導性カーボン前駆体の水溶液を混合することにより、両者の均質混合が可能となり、最終的に微細な活物質に電子伝導性カーボンを均質に複合化させた活物質を製造できる。
水に可溶な電子伝導性カーボンの前駆体としては、簡便な加熱処理により容易に電子伝導性カーボンに変換可能であることから糖類が好ましく、入手しやすく安価であることからショ糖やブドウ糖がより好ましい。
Various methods for combining an active material and electron conductive carbon have been proposed, and any method may be used. Among them, it is preferable to use a solution of electron conductive carbon or a precursor compound of electron conductive carbon because even a finely divided active material can be uniformly combined. The solvent of the conductive carbon or precursor compound solution is preferably water because it is easy to handle. By mixing the aqueous solution of the electron conductive carbon precursor into the raw material mixture dispersion liquid that has been refined in an aqueous medium, it becomes possible to mix the two together, and finally the electron conductive carbon is homogeneously formed into a fine active material. It is possible to produce an active material that is combined with the active material.
As a precursor of electron-conductive carbon soluble in water, saccharides are preferable because they can be easily converted to electron-conductive carbon by a simple heat treatment, and sucrose and glucose are easily available and inexpensive. More preferred.

しかしながらショ糖或いはブドウ糖等を含有した水性分散液から噴霧乾燥法により乾燥粉体を得ることは困難である。水性分散液から噴霧乾燥法により乾燥粉体を得るためには、電子伝導性カーボン前駆体に特定のカラメル、オリゴ糖、デキストリン、水溶性食物繊維、水溶性セルロース分解物等を用いるのが有効である。例えば、カラメルを用いる場合、カラメルは、糖類又は糖類の水溶液を加熱して部分分解し、一部が脱水、もう一部が重合した水溶性物質であることから、部分脱水により親水性の−OH基が減少する結果、噴霧乾燥が可能となったものと解釈できる。カラメルとしてはブドウ糖を原料としたものでも、ショ糖を原料としたものでも、マルトースを原料としたものでも、オリゴ糖やデキストリンを原料としたものでも、その他のものでも本発明に使用可能である。これら前駆体は噴霧乾燥法により乾燥可能であるうえショ糖やオリゴ糖と同様に簡便な熱処理で電子伝導性良好なカーボンに変換でき、本発明に好適に用いられる。   However, it is difficult to obtain a dry powder from an aqueous dispersion containing sucrose or glucose by spray drying. In order to obtain a dry powder from an aqueous dispersion by spray drying, it is effective to use a specific caramel, oligosaccharide, dextrin, water-soluble dietary fiber, water-soluble cellulose degradation product, etc. as the electron conductive carbon precursor. is there. For example, when caramel is used, the caramel is a water-soluble substance that is partially decomposed by heating a saccharide or an aqueous solution of saccharide, partly dehydrated and partly polymerized. It can be interpreted that spray drying is possible as a result of the reduction of the group. Caramel can be used in the present invention, whether it is made of glucose, sucrose, maltose, oligosaccharides or dextrin, or other materials. . These precursors can be dried by spray drying and can be converted to carbon with good electron conductivity by a simple heat treatment like sucrose and oligosaccharides, and are preferably used in the present invention.

噴霧乾燥可能なその他の糖類としては、水溶性食物繊維や水溶性のセルロース分解物も使用でき、少なくとも2個のヘキソース単位を有し。その結合のうちα−1,4結合を除いた結合の量が20%以上、好ましくは30%以上であるか、又は数平均分子量が350以上、好ましくは400〜数万のいずれか又は2つを満たす糖類が使用可能である。例えば、セルロースを2量体にまで分解されたセロビオースも、平均分子量は350未満であるがヘキソース単位の結合がβ−結合であることから噴霧乾燥可能であり、上記の要件を満たして本発明に使用可能である。これらの糖類は、加熱分解による炭化反応がショ糖とほぼ同様条件で進行するうえ、電子伝導性カーボンの収率がショ糖やブドウ糖より高い。α−1,4結合を除いた結合の量が20%未満であると噴霧乾燥できないので好ましくない。また平均分子量が350未満であると分子鎖末端の−OH基が増え、親水性を増して噴霧乾燥できなくなるので好ましくない。   As other saccharides that can be spray-dried, water-soluble dietary fibers and water-soluble cellulose degradation products can be used, and they have at least two hexose units. Among the bonds, the amount of bonds excluding α-1,4 bonds is 20% or more, preferably 30% or more, or the number average molecular weight is 350 or more, preferably 400 to tens of thousands or any two Saccharides that satisfy can be used. For example, cellobiose obtained by decomposing cellulose into a dimer has an average molecular weight of less than 350, but can be spray-dried because the bond of hexose units is a β-bond. It can be used. These saccharides undergo a carbonization reaction by thermal decomposition under substantially the same conditions as sucrose, and the yield of electron conductive carbon is higher than that of sucrose and glucose. If the amount of bonds excluding α-1,4 bonds is less than 20%, spray drying cannot be performed, which is not preferable. On the other hand, if the average molecular weight is less than 350, the —OH group at the end of the molecular chain is increased, the hydrophilicity is increased and spray drying becomes impossible, which is not preferable.

本発明における原料成分混合物は、微細化処理された水性の原料成分分散液や、或いはかかる分散液と電子伝導性カーボン前駆体の水溶液を混合した分散液から、分散媒である水を除去して乾燥することで調製される。乾燥粉体の調製には種々の乾燥プロセスを用いて行うことが可能であるが、粒径制御可能で均質組成の粉体調製が容易であることから、噴霧乾燥や多量の気流中に分散液を供給しながら乾燥させる方法であるのが好ましい。例えば噴霧乾燥の場合、ノズル式、スリット式、回転盤式等、或いは2流体式、3流体式、4流体式等、その他いずれの方法でも好適に使用可能である。乾燥条件は、使用する設備の能力や求める粒径、原料成分等により決定されるものであるが、通常は入り口温度250℃以下、出口温度110℃以下で行われる。かかる条件であれば原料成分間の好ましくない副反応も抑えられることから好ましい。これにより原料成分のほぼ全てを回収でき、得られる凝集粒子の粒子制御も容易である。乾燥された凝集粒子のメジアン径(D50)は、活物質の種類や電池系により異なるが、正極、負極共にD50が0.01〜100μmが好ましく、0.1〜30μmがより好ましい。   The raw material component mixture in the present invention is obtained by removing water as a dispersion medium from a finely divided aqueous raw material component dispersion or a dispersion obtained by mixing the dispersion and an aqueous solution of an electron conductive carbon precursor. Prepared by drying. The dry powder can be prepared using various drying processes, but the particle size can be controlled and the preparation of a homogeneous composition powder is easy. It is preferable that the method is dried while feeding. For example, in the case of spray drying, any other method such as a nozzle type, a slit type, a turntable type, or a two-fluid type, a three-fluid type, a four-fluid type, etc. can be used preferably. The drying conditions are determined by the capacity of the equipment to be used, the required particle size, raw material components, and the like. Such conditions are preferable because undesirable side reactions between the raw material components can be suppressed. Thereby, almost all of the raw material components can be recovered, and the particle control of the obtained aggregated particles is easy. The median diameter (D50) of the dried aggregated particles varies depending on the type of active material and the battery system, but D50 is preferably 0.01 to 100 μm, more preferably 0.1 to 30 μm for both the positive electrode and the negative electrode.

本発明の製造方法において、活物質と導電助剤となる電子伝導性カーボンなどを複合化することは、活物質と導電助剤を微細かつ強力に結び付けることができ、電池特性の向上の点からも有効である。したがって原料成分混合物中に電子伝導性カーボンを添加して活物質合成過程に電子伝導性カーボンを介在させることは、活物質表面や粒子間間隙に電子伝導性カーボンを強力に担持することができ、電池特性の向上するため好ましい。   In the production method of the present invention, the composite of the active material and the electron conductive carbon as the conductive auxiliary agent can finely and strongly combine the active material and the conductive auxiliary agent, from the viewpoint of improving the battery characteristics. Is also effective. Therefore, by adding electron conductive carbon to the raw material component mixture and interposing the electron conductive carbon in the active material synthesis process, the electron conductive carbon can be strongly supported on the active material surface or interparticle gaps, It is preferable because battery characteristics are improved.

さらに、車載用電池や大容量電池の場合、極めて信頼性高い安全性と長期の寿命が求められるうえ、限れた容積や質量の中で強力な出力も求められる。この強力な出力を実現するためには、活物質の微細化と活物質表面への電子伝導性カーボン被覆技術が有効である。   Furthermore, in the case of an in-vehicle battery or a large-capacity battery, extremely reliable safety and a long life are required, and a powerful output is also required in a limited volume and mass. In order to realize this powerful output, it is effective to make the active material finer and to apply the electron conductive carbon coating technology to the active material surface.

<蓄電素子用電極活物質の製造方法>
少なくとも2台のインバータ制御されたマイクロ波発振器を有し、各々のマイクロ波照射域が一つの領域で重複するように配置され、相互にデカップル状態で運転されるマイクロ波加熱炉を用い、原料成分混合物を前記照射域に供給し、原料成分混合物を加熱することを特徴とする
本発明の製造方法は、少なくとも2台のインバータ制御されたマイクロ波発振器が各々のマイクロ波照射域を一つの領域で重複させ、相互にデカップル状態で運転されるマイクロ波加熱炉であって、原料成分混合物を前記照射域に供給し、原料成分混合物を加熱することで、活物質を極めて短時間で合成することができる。
<Method for producing electrode active material for power storage element>
Using a microwave heating furnace having at least two inverter-controlled microwave oscillators, each microwave irradiation area being overlapped in one area and operating in a decoupled state with each other, The manufacturing method of the present invention is characterized in that the mixture is supplied to the irradiation region and the raw material component mixture is heated. In the manufacturing method according to the present invention, at least two inverter-controlled microwave oscillators have each microwave irradiation region in one region. It is a microwave heating furnace that is overlapped and operated in a decoupled state with each other, and the active material can be synthesized in a very short time by supplying the raw material component mixture to the irradiation zone and heating the raw material component mixture. it can.

本発明におけるマイクロ波加熱炉には、マイクロ波を発生できるいかなるマイクロ波発振器であっても使用可能である。マイクロ波発振器としては、なかでも、入手が容易な点からマグネトロン型発生装置、クライストロン型発生装置がより好ましい。マグネトロン型発生装置は、通常2.45GHz帯のマグネトロンが一般的に用いられており、本発明にも好適に用いることができる。   Any microwave oscillator capable of generating microwaves can be used for the microwave heating furnace in the present invention. Among these, a magnetron type generator and a klystron type generator are more preferable from the viewpoint of easy availability. As the magnetron type generator, a 2.45 GHz band magnetron is generally used and can be suitably used in the present invention.

本発明のマイクロ波加熱炉は、マイクロ波の高い指向性を活かして、シングルモードのインバータ制御された少なくとも2台のマグネトロン型発生装置を、それぞれが一つの照射域に重ね合わせてマイクロ波を照射できるように配置し、それぞれデカップリング状態で並列運転できる電源装置と組み合わせて運転することにより、形成された一つの照射域は用いた複数台それぞれの出力を総和した出力を生み出すことができる。   The microwave heating furnace of the present invention irradiates microwaves by superimposing at least two magnetron type generators controlled by a single mode inverter on a single irradiation area by utilizing the high directivity of microwaves. By arranging in such a way that it can be operated in combination with a power supply device that can be operated in parallel in a decoupled state, one formed irradiation area can produce an output that is the sum of the outputs of each of the multiple units used.

一般に複数のマグネトロンを同期させて並列運転するのは困難と見られている。しかし例えば四面体の三面対称軸を基準とする3つの面に、それぞれ対称に3つの発信機を配置して商用3相交流に結線すれば、それぞれ独立の電解分布を持つ3つのマイクロ波を1つの領域に集中させて、それぞれデカップリング状態で照射することができる。ここで、デカップリング状態とは、複数のマグネトロンが単純に連動して出力低下してしまうのを防止し、それぞれ位相角制御された任意の出力を発現させながら同時運転できる状態にあることを言う。こうして形成された照射域には個々の発信機の出力を和した総出力が供給される。   In general, it is considered difficult to operate a plurality of magnetrons in parallel. However, for example, if three transmitters are arranged symmetrically on three planes with respect to the trihedral symmetry axis of the tetrahedron and are connected to commercial three-phase alternating current, three microwaves having independent electrolytic distributions are each 1 It is possible to concentrate in one region and irradiate each in a decoupled state. Here, the decoupling state refers to a state in which a plurality of magnetrons are simply interlocked to prevent a decrease in output, and can be simultaneously operated while expressing any output controlled in phase angle. . The total output obtained by adding the outputs of the individual transmitters is supplied to the irradiation area thus formed.

さらに、2台1組とした3組6台の単相交流変圧器の基本構成回路に、各組一次側を並列接続して3相交流を入力し、各組二次側を直列接続すると、3相交流から6相交流の出力を得ることができる。この3相−6相変換方式にはスター−スター結線とデルタ−スター結線が可能であり、この2つの結線方法には30度の位相差がある。この位相差を利用することで、3相から12層へ直接変換することも可能である。したがって12台のマグネトロンを並列して運転することが可能であり、12個のマイクロ波をそれぞれデカップリング状態で1つの照射域に集中させることで、12台の出力を和した総出力をひとつの領域に集中させて照射することもできる。   Furthermore, when the primary side of each set is connected in parallel to the basic configuration circuit of three sets of six single-phase AC transformers, one set of two sets, and three-phase AC is input, and the secondary side of each set is connected in series, A 6-phase AC output can be obtained from a 3-phase AC. In this three-phase to six-phase conversion system, star-star connection and delta-star connection are possible, and the two connection methods have a phase difference of 30 degrees. By using this phase difference, it is also possible to directly convert from 3 phases to 12 layers. Therefore, it is possible to operate 12 magnetrons in parallel, and by concentrating 12 microwaves in one irradiation area in a decoupled state, the total output obtained by adding 12 outputs to one It is also possible to irradiate while concentrating on the area.

一方、電力を複数に分配できる電力分配部、分割された電力それぞれの出力位相を可変制御する位相可変部、位相制御された電力出力を増幅する増幅部を組み合わせて、複数のマグネトロンを並列運転することも可能である。本発明にはどのような手法であれ複数のマイクロ波発振器をそれぞれに位相制御して運転できる全ての方法を用いることができる。
マイクロ波発振器の数は、生産性、設備コストの点から、2〜24が好ましく、3〜12が特に好ましい。
On the other hand, a plurality of magnetrons are operated in parallel by combining a power distribution unit that can distribute power into a plurality of phases, a phase variable unit that variably controls the output phase of each divided power, and an amplification unit that amplifies the phase-controlled power output. It is also possible. In the present invention, any method capable of operating a plurality of microwave oscillators with their respective phases controlled by any method can be used.
The number of microwave oscillators is preferably 2 to 24 and particularly preferably 3 to 12 in terms of productivity and equipment cost.

本発明における原料成分混合物の供給方法は、特に限定されることはなく、種々の方法で行うことが可能である。なかでも、原料成分混合物を直接照射域に供給する方法が、効率良く均質に加熱できることから好ましい。なかでも、効率良い加熱と均質な反応が可能であるため、照射域の上部から原料成分混合物を落下させ、マイクロ波を照射して加熱し、反応させることがより好ましい。さらに、原料成分混合物の粉体を落下させて照射する方法である。原料成分混合物の粉体を落下させて照射する方法であれば、急速加熱と反応後の急速冷却が可能となって、極めて短時間で合成反応を遂行でき、特に好ましい。
原料成分混合物の供給速度は、マイクロ波加熱装置の出力や設備の大きさによっても異なるが、1g/分〜100kg/分が好ましく、10g/分〜10kg/分がより好ましく、0.5kg/分〜3kg/分が特に好ましい。
The supply method of the raw material component mixture in the present invention is not particularly limited, and can be performed by various methods. Especially, the method of supplying a raw material component mixture directly to an irradiation area is preferable since it can heat uniformly efficiently. Especially, since efficient heating and a homogeneous reaction are possible, it is more preferable to drop a raw material component mixture from the upper part of an irradiation area, to irradiate with microwaves, to heat and to react. Furthermore, it is a method of dropping and irradiating the powder of the raw material component mixture. The method of dropping and irradiating the powder of the raw material component mixture is particularly preferable because rapid heating and rapid cooling after the reaction are possible, and the synthesis reaction can be performed in an extremely short time.
The feed rate of the raw material component mixture varies depending on the output of the microwave heating apparatus and the size of the equipment, but is preferably 1 g / min to 100 kg / min, more preferably 10 g / min to 10 kg / min, and 0.5 kg / min. ˜3 kg / min is particularly preferred.

複数のマイクロ波発振器によって原料成分混合物の粉体を加熱する温度、及び照射時間は、原料成分混合物によって適宜調整することができる。例えば、電子伝導性カーボンや電子伝導性カーボンの前駆体を複合化した場合は、電子伝導性カーボンの前駆体水溶液に活物質を分散させた後、噴霧乾燥等により乾燥粉を得、電子伝導性カーボン前駆体を炭化させることによっても電子伝導性カーボンを複合化させた活物質が得られる。   The temperature at which the powder of the raw material component mixture is heated by a plurality of microwave oscillators and the irradiation time can be appropriately adjusted depending on the raw material component mixture. For example, when the electron conductive carbon or the electron conductive carbon precursor is compounded, the active material is dispersed in the electron conductive carbon precursor aqueous solution, and then a dry powder is obtained by spray drying or the like. An active material in which electron conductive carbon is combined can also be obtained by carbonizing the carbon precursor.

加熱温度は、炭化が150℃〜1500℃で進行するため、150〜350℃であれば空気雰囲気下で行うことができるため好ましい。また、加熱温度が300℃以上の場合は、酸素存在下では炭素が燃焼消失するため、好ましくは窒素、アルゴン等の不活性雰囲気中、大気中減圧下或いは還元雰囲気中で行われるのが好ましい。   The heating temperature is preferably 150 to 350 ° C. since carbonization proceeds at 150 to 1500 ° C., since it can be performed in an air atmosphere. In addition, when the heating temperature is 300 ° C. or higher, carbon burns and disappears in the presence of oxygen. Therefore, the heating is preferably performed in an inert atmosphere such as nitrogen or argon, under reduced pressure in the atmosphere, or in a reducing atmosphere.

LiFePO原料成分混合の粉体と電子伝導性カーボン前駆体の複合体の場合は、LiFePOの合成と前駆体の炭化が、本発明におけるマイクロ波加熱炉を用いた加熱工程1つで遂行することができる。LiFePOの合成は、不活性雰囲気下の300〜1250℃、好ましくは350〜1200℃にて熱処理され、オリビン型構造のLiFePOの合成と前駆体の電子伝導性カーボンへの変換が同時に進行する。特に前駆体化合物が糖類の場合、糖類はLiFePO合成時の還元剤としても機能することから、合成反応をスムースに行き渡らせるのに好適である。なお加熱温度が300℃より低いと合成反応は遂行し難く、また1250℃より高いと副反応物が生成してしまう。 In the case of a composite of LiFePO 4 raw material mixed powder and an electron conductive carbon precursor, synthesis of LiFePO 4 and carbonization of the precursor are performed in one heating step using the microwave heating furnace in the present invention. be able to. Synthesis of LiFePO 4 is, 300-1,250 ° C. under inert atmosphere, preferably heat-treated at 350 to 1200 ° C., conversion to the electron conductive carbon synthetic precursor of LiFePO 4 having an olivine type structure simultaneously proceed . In particular, when the precursor compound is a saccharide, the saccharide functions also as a reducing agent during the synthesis of LiFePO 4 , and thus is suitable for smoothly spreading the synthesis reaction. When the heating temperature is lower than 300 ° C., the synthesis reaction is difficult to perform, and when it is higher than 1250 ° C., a side reaction product is generated.

シリコン系である一酸化ケイ素と電子伝導性カーボン前駆体の複合体の場合も、不均化反応と前駆体の炭化を本発明におけるマイクロ波加熱炉を用いた加熱工程1つで遂行することができる。一酸化ケイ素の不均化は不活性雰囲気下の900〜1500℃、好ましくは1000〜1350℃で行われ、活物質となるシリコンと二酸化ケイ素からなるコアシェル型シリコン系活物質の合成及び前駆体の電子伝導性カーボンへの変換がなされる。このようにして粒子の表面及び小粒子の小粒子間界面や間隙にまで行き渡った電子伝導性カーボンを有する活物質が製造できる。   Also in the case of a silicon-based composite of silicon monoxide and an electron conductive carbon precursor, the disproportionation reaction and carbonization of the precursor can be performed in one heating step using the microwave heating furnace in the present invention. it can. The disproportionation of silicon monoxide is performed at 900 to 1500 ° C., preferably 1000 to 1350 ° C., under an inert atmosphere. Synthesis of the core-shell type silicon-based active material composed of silicon and silicon dioxide as the active material and the precursor Conversion to electron conductive carbon is made. In this way, an active material having electron conductive carbon that extends to the surface of the particles and the interface or gap between the small particles can be produced.

加熱時間は、処理温度や粒子径、粒子形態にも依存して一概には決められないが通常は1秒〜48時間が好ましい。
本発明の製造方法は、極めて短時間で活物質の合成が可能であることから、活物質の肥大化や焼結を起こすことなく合成反応を遂行できる。
The heating time is not generally determined depending on the processing temperature, particle diameter, and particle shape, but is usually preferably 1 second to 48 hours.
Since the production method of the present invention can synthesize an active material in an extremely short time, the synthesis reaction can be performed without causing enlargement or sintering of the active material.

本発明のマイクロ波加熱炉を真上から観察した模式図。The schematic diagram which observed the microwave heating furnace of this invention from right above. 本発明のマイクロ波加熱炉を真横から観察した模式図。The schematic diagram which observed the microwave heating furnace of this invention from the side. 実施例1で製造したLiFePO(A)のX線回折パターン図。X-ray diffraction pattern diagram of LiFePO 4 (A) prepared in Example 1. 実施例1で製造したLiFePO(A)の粒度分布図。2 is a particle size distribution diagram of LiFePO 4 (A) manufactured in Example 1. FIG. 実施例1で製造したLiFePO(A)のSEM図。FIG. 3 is an SEM diagram of LiFePO 4 (A) manufactured in Example 1. 比較例2で製造した黒色生成物(C)のX線回折パターン図。図中矢印はLiFePOに帰属されない主な回折ピークである。The X-ray-diffraction pattern figure of the black product (C) manufactured by the comparative example 2. FIG. The arrows in the figure are the main diffraction peaks not attributed to LiFePO 4 . 実施例2で製造したLiCoO(D)のX線回折パターン図。X-ray diffraction pattern diagram of LiCoO 2 (D) prepared in Example 2.

以下に実施例によって本発明をさらに具体的に説明するが、本発明の解釈はこれらによって制限されるものではない。なお、実施例において電池の容量維持率は以下の式で求めた。
容量維持率(%)=100サイクル目の放電容量/初期放電容量 X 100。
The present invention will be described more specifically with reference to the following examples. However, the interpretation of the present invention is not limited by these examples. In the examples, the capacity retention rate of the battery was determined by the following formula.
Capacity retention rate (%) = 100th cycle discharge capacity / initial discharge capacity X100.

[マイクロ波加熱炉]
実施例で使用のマイクロ波加熱炉の概略図を下記図1及び図2に示す。図1は直径3cmの照射域に、0.5kwのマグネトロン6台が均等に配置され、各マグネトロンから発振されたシングルモードマイクロ波が重なり合って照射域を形成していることを示している。図2は各マイクロ波が照射域上方30°の方向から照射されていることを示している。6台のマグネトロンはそれぞれ、商用3相交流から6相交流に変換された各相に1台ずつ接続されている。一方比較のため1.0kwのマグネトロン1台のみを接続した加熱炉も準備した。
[Microwave heating furnace]
The schematic diagram of the microwave heating furnace used in the examples is shown in FIGS. 1 and 2 below. FIG. 1 shows that six 0.5 kW magnetrons are evenly arranged in an irradiation region having a diameter of 3 cm, and single mode microwaves oscillated from the respective magnetrons overlap to form an irradiation region. FIG. 2 shows that each microwave is irradiated from the direction 30 ° above the irradiation region. Each of the six magnetrons is connected to each phase converted from a commercial three-phase alternating current to a six-phase alternating current. On the other hand, a heating furnace connected with only one 1.0 kW magnetron was also prepared for comparison.

[実施例1]
313.1gの85質量%H3PO4を純水1000gで希釈した。このリン酸水溶液を撹拌しながら100.3gのLi2CO3を加えて溶解させ、リン酸二水素リチウムの水溶液を得た。この水溶液を撹拌しながら、鉄1当量当たりの分子量が92.2であるFeOOHを250.5g加え、さらに純水400gを追加して水性分散液を調製した。この分散液を直径0.1mmのジルコニアビーズを用いたビーズミルにより1時間微細化処理し、D50が0.16μmである水性分散液を得た。この水性分散液にブドウ糖由来のカラメルを62質量%含有するカラメル水溶液82.9gを加え、リチウムリン酸鉄を合成するための原料成分と導電性カーボンの前駆体であるカラメル等を含有した水性の原料成分混合物分散液を得た。続いて原料成分混合物分散液を4流体ノズル型噴霧乾燥機を用いて乾燥し、D50が2.9μmの原料成分混合物粉体を得た。
[Example 1]
313.1 g of 85 mass% H3PO4 was diluted with 1000 g of pure water. While stirring this phosphoric acid aqueous solution, 100.3 g of Li2CO3 was added and dissolved to obtain an aqueous solution of lithium dihydrogen phosphate. While stirring this aqueous solution, 250.5 g of FeOOH having a molecular weight of 92.2 per equivalent of iron was added, and 400 g of pure water was further added to prepare an aqueous dispersion. This dispersion was refined by a bead mill using zirconia beads having a diameter of 0.1 mm for 1 hour to obtain an aqueous dispersion having a D50 of 0.16 μm. To this aqueous dispersion, 82.9 g of a caramel aqueous solution containing 62% by mass of glucose-derived caramel is added, and an aqueous solution containing a raw material component for synthesizing lithium iron phosphate and a caramel as a precursor of conductive carbon is used. A raw material component mixture dispersion was obtained. Subsequently, the raw material component mixture dispersion was dried using a four-fluid nozzle spray dryer to obtain a raw material component mixture powder having a D50 of 2.9 μm.

次に本発明のマイクロ波加熱炉を窒素ガス置換した後、水素5体積%含有する窒素ガスを0.8リットル/分の流速で供給しながら、照射域上部より原料成分混合物粉体を15g/分の速度で供給し、照射域の温度を610℃に制御しながら10分間加熱処理を続けたら、D50が2.5μmのオリビン型LiFePO(A)が117.3g得られた。図3、図4、図5はそれぞれ(A)のX線回折パターン図、粒径分布図、SEM観察写真(倍率は1000倍)である。図より(A)はオリビン型構造を有する、微細な一次粒子の結晶性良好なLiFePOであることが確認された。 Next, the microwave heating furnace of the present invention was replaced with nitrogen gas, and then a nitrogen gas containing 5% by volume of hydrogen was supplied at a flow rate of 0.8 liter / min, while the raw material component mixture powder was 15 g / When the heat treatment was continued for 10 minutes while the temperature of the irradiation region was controlled at 610 ° C., 117.3 g of olivine-type LiFePO 4 (A) having a D50 of 2.5 μm was obtained. 3, 4, and 5 are an X-ray diffraction pattern diagram, a particle size distribution diagram, and an SEM observation photograph (magnification is 1000 times) of (A), respectively. From the figure, it was confirmed that (A) is LiFePO 4 having an olivine structure and fine primary particles with good crystallinity.

LiFePO(A)の1.2gとカルボキシメチルセルロース(以下CMCと称する。)0.013g、アセチレンブラック0.067g、水1.27gをプラスティックチューブに秤量し、スピンドル型ホモジナイザーで2分間撹拌した後、プロピレンとテトラフルオロエチレンの共重合体(以下PrTFEと称する。)を34.5質量%含有する水性エマルション0.039gと、ポリテトラフルオロエチレン(以下PTFEと称する。)を60.4質量%含有する水性エマルション0.089gを加えて前記ホモジナイザーで2秒間撹拌して水性ペーストを得た。このペーストをアルミ箔に塗布して乾燥した後に、圧延して所定の大きさに打ち抜き、正極板とした。 After weighing 1.2 g of LiFePO 4 (A), 0.013 g of carboxymethyl cellulose (hereinafter referred to as CMC), 0.067 g of acetylene black, and 1.27 g of water in a plastic tube, the mixture was stirred for 2 minutes with a spindle type homogenizer. 0.039 g of an aqueous emulsion containing 34.5% by mass of a copolymer of propylene and tetrafluoroethylene (hereinafter referred to as PrTFE) and 60.4% by mass of polytetrafluoroethylene (hereinafter referred to as PTFE). 0.089 g of an aqueous emulsion was added and stirred for 2 seconds with the homogenizer to obtain an aqueous paste. The paste was applied to an aluminum foil and dried, then rolled and punched to a predetermined size to obtain a positive electrode plate.

この正極板とリチウム箔の負極板にそれぞれリード線を取り付け、ポリオレフィン系セパレータを介してステンレス製セルケースに収納した。続いて、エチレンカーボネートとジエチレンカーボネートの混合液に六フッ化リン酸リチウムを1モル/リットル溶かした電解質溶液を注入し、モデルセルとした。
このモデルセルの電池特性を以下のようにして評価した。すなわち、充放電測定装置を用い、25℃において充電電流0.6mA/cmで電池電圧4.3Vになるまで受電した後、放電電流2.0mA/cmで(1.25Cレートの相当する。)で2.0Vになるまで放電する充放電の繰り返しを行い、初期放電容量と100サイクル後の放電容量を求めて評価した。その結果を表1に示した。
Lead wires were attached to the positive electrode plate and the lithium foil negative electrode plate, respectively, and stored in a stainless steel cell case via a polyolefin-based separator. Subsequently, an electrolyte solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved in a mixed solution of ethylene carbonate and diethylene carbonate was injected to form a model cell.
The battery characteristics of this model cell were evaluated as follows. That is, a charge-discharge measuring instrument was used after receiving until the battery voltage 4.3V at a charging current 0.6 mA / cm 2 at 25 ° C., corresponding to the (1.25C rate discharge current 2.0 mA / cm 2 )), Charging and discharging were repeated until 2.0 V, and the initial discharge capacity and the discharge capacity after 100 cycles were determined and evaluated. The results are shown in Table 1.

[比較例1]
マイクロ波加熱炉に替えて比較のために準備した1.0kwのマグネトロン1台のみを接続したマイクロ波加熱炉を使用し、15g/分の原料成分混合物粉体供給速度に替えて5g/分の速度で供給したことを除き、実施例1と同様にして10分間加熱処理を続けたところ、35.3gの黒色生成物(B)が得られた。しかしながら、黒色生成物(B)のX線回折パターン図には酸化鉄その他の副生成物或いは未反応原料のものと判断される回折ピークが残るもので、良好なLiFePOは合成できなかった。
[Comparative Example 1]
A microwave heating furnace connected to only one 1.0 kW magnetron prepared for comparison in place of the microwave heating furnace was used, and the raw material component mixture powder supply rate was changed to 15 g / min and 5 g / min. When the heat treatment was continued for 10 minutes in the same manner as in Example 1 except that it was supplied at a rate, 35.3 g of a black product (B) was obtained. However, an X-ray diffraction pattern diagram of the black product (B) has a diffraction peak that is judged to be an iron oxide or other by-product or an unreacted raw material, and good LiFePO 4 could not be synthesized.

[比較例2]
原料成分混合物粉体供給速度を2.5g/分に替えたことを除き比較例1度同様にして10分間加熱処理を続けたら、11.5gの黒色生成物(C)が得られた。黒色生成物(C)のX線回折パターン図を図6に示したが、副反応性生物或いは未反応原料のものと判断される回折ピークが残っており、良好なLiFePOは合成できなかった。
[Comparative Example 2]
When the heat treatment was continued for 10 minutes in the same manner as in Comparative Example 1 except that the raw material component mixture powder supply rate was changed to 2.5 g / min, 11.5 g of a black product (C) was obtained. The X-ray diffraction pattern diagram of the black product (C) is shown in FIG. 6, but a diffraction peak that is judged to be a by-reactive product or an unreacted raw material remains, and good LiFePO 4 could not be synthesized. .

[実施例2]
市販のCoOOHを入手して分析した結果、コバルト含有量が64.4質量%で、H1.09CoO1.97の組成式で示され、CuKαを線源とするX線回折における2θ=36〜37.5度付近の回折ピークの半値幅が2.1であった。このコバルト含有量と半値幅の関係は特許第4224143号公報から、リチウムコバルト複合酸化物用のコバルト源として好ましいことを確認した。
[Example 2]
As a result of obtaining and analyzing commercially available CoOOH, it has a cobalt content of 64.4% by mass, is represented by a composition formula of H1.09CoO1.97, and 2θ = 36 to 37 in X-ray diffraction using CuKα as a radiation source. The half width of the diffraction peak around 5 degrees was 2.1. From the patent No. 4224143, it was confirmed that the relationship between the cobalt content and the half width was preferable as a cobalt source for lithium cobalt composite oxide.

CoOOHの273.6gとLiCOの111.1gを900gの純水中に分散させた原料成分混合物分散液を高圧下で相互に衝突させて微細化処理し、固体原料成分のD50を0.97μmとなるまで解砕した。続いてこの原料成分混合物分散液を実施例1と同様にして噴霧乾燥し、D50が3.1μmの原料成分混合物粉体を得た。 A raw material mixture dispersion liquid in which 273.6 g of CoOOH and 111.1 g of Li 2 CO 3 are dispersed in 900 g of pure water is caused to collide with each other under high pressure to be refined to reduce the D50 of the solid raw material component to 0 It was crushed until it became 97 μm. Subsequently, this raw material component mixture dispersion was spray-dried in the same manner as in Example 1 to obtain a raw material component mixture powder having a D50 of 3.1 μm.

原料成分混合物粉体を、マイクロ波加熱炉照射域の上部から15g/分の速度で供給し、照射域の温度を820℃に制御しながら10分間加熱処理を続けたところ、D50が2.9μmのLiCoO(D)が112.5g得られた。図7は(D)のX線回折パターン図である。
LiCoO(D)から実施例1と同様にして正極板を作製して電池特性を評価した結果を表1に示した。
When the raw material component mixture powder was supplied from the upper part of the microwave heating furnace irradiation area at a rate of 15 g / min and the heat treatment was continued for 10 minutes while controlling the temperature of the irradiation area at 820 ° C., D50 was 2.9 μm. 112.5 g of LiCoO 2 (D) was obtained. FIG. 7 is an X-ray diffraction pattern diagram of (D).
Table 1 shows the result of producing a positive electrode plate from LiCoO 2 (D) in the same manner as in Example 1 and evaluating the battery characteristics.

[実施例3]
炭酸ニッケルを大気中700℃にて15時間焼成して調製した酸化ニッケルの0.9モル、炭酸マンガンを大気中700℃にて15時間焼成して調製した二酸化マンガンの0.9モル、実施例2で使用したのと同様のCoOOHの0.9モル、LiCOの0.375モルを1.5kgの純水に分散させ、実施例1と同様にビーズミルで微細化処理後、カラメル水溶液50gを添加してから噴霧乾燥し、D50が3.0μmの原料成分混合物粉体を得た。
[Example 3]
0.9 mol of nickel oxide prepared by baking nickel carbonate at 700 ° C. for 15 hours in the atmosphere, 0.9 mol of manganese dioxide prepared by baking manganese carbonate at 700 ° C. for 15 hours in the atmosphere, Examples 0.9 mol of CoOOH similar to that used in No. 2 and 0.375 mol of Li 2 CO 3 were dispersed in 1.5 kg of pure water and refined with a bead mill in the same manner as in Example 1, followed by a caramel aqueous solution. After adding 50 g, spray drying was performed to obtain a raw material component mixture powder having a D50 of 3.0 μm.

マイクロ波加熱炉に合成空気(酸素対窒素の体積比は22対78とした)を0.8リットル/分の流速で供給しながら、照射域上部より原料成分混合物粉体を15g/分の速度で供給し、照射域の温度を890℃に制御しながら10分間加熱処理を続けたら、D50が2.9μmのリチウム(ニッケル・マンガン・コバルト)複合酸化物(E)が112.5g得られた。
リチウム(ニッケル・マンガン・コバルト)複合酸化物(E)から実施例1と同様にして正極板を作製して電池特性を評価した結果を表1に示した。
While supplying synthetic air (oxygen to nitrogen volume ratio of 22 to 78) to the microwave heating furnace at a flow rate of 0.8 liter / min, the raw material component mixture powder is supplied at a rate of 15 g / min from the upper part of the irradiation zone. When the heat treatment was continued for 10 minutes while controlling the temperature of the irradiation region at 890 ° C., 112.5 g of lithium (nickel / manganese / cobalt) composite oxide (E) having a D50 of 2.9 μm was obtained. .
Table 1 shows the results of producing a positive electrode plate from lithium (nickel / manganese / cobalt) composite oxide (E) in the same manner as in Example 1 and evaluating the battery characteristics.

[実施例4]
実施例1と同様のカラメル水溶液98gを1200gの純水で希釈した。この水溶液を撹拌しながらD50が0.36μmの一酸化ケイ素480gを加えて、水性分散液とした。この水性分散液を実施例1と同様にして噴霧乾燥し、D50が3.6μmの原料成分混合物粉体を得た。
次にマイクロ波加熱炉をアルゴンガス置換した後、アルゴンガスを0.8リットル/分の流速で供給しながら、照射域上部より原料成分混合物粉体を15g/分の速度で供給し、照射域の温度を1300℃に制御しながら10分間加熱処理を続けた。その結果D50が3.4μmである不均化されたシリコン系負極活物質(F)が得られた。
[Example 4]
The same caramel aqueous solution 98 g as in Example 1 was diluted with 1200 g of pure water. While stirring this aqueous solution, 480 g of silicon monoxide having a D50 of 0.36 μm was added to obtain an aqueous dispersion. This aqueous dispersion was spray-dried in the same manner as in Example 1 to obtain a raw material component mixture powder having a D50 of 3.6 μm.
Next, after replacing the microwave heating furnace with argon gas, supplying the raw material component mixture powder at a rate of 15 g / min from the upper part of the irradiation area while supplying argon gas at a flow rate of 0.8 liter / min. The heat treatment was continued for 10 minutes while controlling the temperature of 1300 ° C. As a result, a disproportionated silicon-based negative electrode active material (F) having a D50 of 3.4 μm was obtained.

LiFePO(A)の1.2gに替えて、シリコン系負極活物質(F)の0.63gと黒鉛の0.63gを用い、0.067gのアセチレンブラックを用いなかったことを除き、実施例1と同様にして電極塗工用の水性ペーストを調製した。このペーストを銅箔に塗布して乾燥した後に、圧延して所定の大きさに打ち抜き、電極板とした。このシリコン系電極板はリチウムイオン電池等の負極板として利用できるが、電池特性の評価は対極にリチウム箔を用いてこれを負極とし、本シリコン系電極板は正極として取扱い、実施例1と同様にして評価した。その結果を表1に示した。 Example except that 0.63 g of silicon-based negative electrode active material (F) and 0.63 g of graphite were used instead of 1.2 g of LiFePO 4 (A), and 0.067 g of acetylene black was not used. In the same manner as in Example 1, an aqueous paste for electrode coating was prepared. This paste was applied to a copper foil and dried, then rolled and punched to a predetermined size to obtain an electrode plate. Although this silicon-based electrode plate can be used as a negative electrode plate for lithium ion batteries or the like, the evaluation of battery characteristics is performed using a lithium foil as a counter electrode as a negative electrode, and this silicon-based electrode plate is handled as a positive electrode. And evaluated. The results are shown in Table 1.

Figure 2011233340
Figure 2011233340

本発明は蓄電デバイス等用電極活物質の製造に利用でき、特性良好な電極活物質を極めて短時間に製造できる。   INDUSTRIAL APPLICATION This invention can be utilized for manufacture of an electrode active material for electrical storage devices etc., and can produce an electrode active material with a favorable characteristic in a very short time.

1:マイクロ波が重複して照射されている照射域
2、3、4、5、6、7:マグネトロン
1: Irradiation area where microwaves are irradiated in duplicate 2, 3, 4, 5, 6, 7: Magnetron

Claims (2)

少なくとも2台のインバータ制御されたマイクロ波発振器を有し、各々のマイクロ波照射域が一つの領域で重複するように配置され、相互にデカップリング状態で運転されるマイクロ波加熱炉を用い、原料成分混合物を前記照射域に供給し、原料成分混合物を加熱することを特徴とする蓄電素子用電極活物質の製造方法。   Using a microwave heating furnace having at least two inverter-controlled microwave oscillators, each microwave irradiation region being arranged so as to overlap in one region and operating in a decoupled state with each other, A method for producing an electrode active material for a storage element, comprising supplying a component mixture to the irradiation region and heating the raw material component mixture. 前記原料成分混合物が粉体であり、該粉体を前記マイクロ波照射域の上部から落下させて前記照射域を通過させる請求項1に記載の蓄電素子用電極活物質の製造方法。   The method for producing an electrode active material for a storage element according to claim 1, wherein the raw material component mixture is a powder, and the powder is dropped from an upper part of the microwave irradiation region to pass through the irradiation region.
JP2010102090A 2010-04-27 2010-04-27 Method for manufacturing electrode active material for storage element Pending JP2011233340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102090A JP2011233340A (en) 2010-04-27 2010-04-27 Method for manufacturing electrode active material for storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102090A JP2011233340A (en) 2010-04-27 2010-04-27 Method for manufacturing electrode active material for storage element

Publications (1)

Publication Number Publication Date
JP2011233340A true JP2011233340A (en) 2011-11-17

Family

ID=45322477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102090A Pending JP2011233340A (en) 2010-04-27 2010-04-27 Method for manufacturing electrode active material for storage element

Country Status (1)

Country Link
JP (1) JP2011233340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
JP2015037074A (en) * 2013-08-09 2015-02-23 オーシーアイ カンパニー リミテッドOCI Company Ltd. Silicon slurry for negative electrode active material and carbon-silicon complex
JP2016115524A (en) * 2014-12-15 2016-06-23 三井造船株式会社 Method for producing electrode material for lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
JP2015037074A (en) * 2013-08-09 2015-02-23 オーシーアイ カンパニー リミテッドOCI Company Ltd. Silicon slurry for negative electrode active material and carbon-silicon complex
US9673449B2 (en) 2013-08-09 2017-06-06 Oci Company Ltd. Silicon slurry for anode active materials and carbon-silicon complex
JP2016115524A (en) * 2014-12-15 2016-06-23 三井造船株式会社 Method for producing electrode material for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5544934B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5552709B2 (en) Cathode active material for Li-ion battery and method for producing the same
Pham-Cong et al. Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes
JP6210143B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
WO2005095273A1 (en) Method for producing lithium-iron composite oxide
JP2009129587A (en) Electrode active material for battery and its manufacturing method
Wang et al. Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0. 5Co0. 2Mn0. 3O2 cathode materials
JP4264513B2 (en) Composite powder for electrode and method for producing the same
JP2009146773A (en) Olivine type lithium iron phosphorus composite oxide and its manufacturing method
JP7125302B2 (en) Manufacturing method of NASICON type negative electrode active material particles for sodium ion secondary battery
von Bülow et al. Hydrothermal Realization of High‐Power Nanocomposite Cathodes for Lithium Ion Batteries
CN102664259A (en) Method for preparing cathode material of lithium ion battery
JP6231966B2 (en) Electrode material and manufacturing method thereof, electrode, and lithium ion battery
Ma et al. Homogeneous MnO nanoparticles fabricated by electrostatic spray precipitation and lithium-storage performances
Sasaki et al. Destruction behavior of carbon hybridized Li2MnSiO4 and Li2FeSiO4 nanoparticles for cathode materials
JP5381115B2 (en) Lithium phosphate powder and lithium phosphate-containing slurry, method for producing electrode active material, and lithium ion battery
JP6097198B2 (en) Electrode material, electrode and lithium ion battery
WO2013146207A1 (en) Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
Zhu et al. Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process
JP5604217B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP2011233340A (en) Method for manufacturing electrode active material for storage element
JP6345227B2 (en) Method for producing lithium vanadium phosphate
Karthikeyan et al. Microwave synthesis of high rate nanostructured LiMnBO 3 with excellent cyclic behavior for lithium ion batteries
JP5969554B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery