JP6585485B2 - Gas circuit breaker - Google Patents

Gas circuit breaker Download PDF

Info

Publication number
JP6585485B2
JP6585485B2 JP2015236538A JP2015236538A JP6585485B2 JP 6585485 B2 JP6585485 B2 JP 6585485B2 JP 2015236538 A JP2015236538 A JP 2015236538A JP 2015236538 A JP2015236538 A JP 2015236538A JP 6585485 B2 JP6585485 B2 JP 6585485B2
Authority
JP
Japan
Prior art keywords
circuit breaker
gas circuit
driven
connecting rod
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015236538A
Other languages
Japanese (ja)
Other versions
JP2017103147A (en
Inventor
理一 永尾
理一 永尾
裕明 橋本
裕明 橋本
将直 寺田
将直 寺田
雄輝 中井
雄輝 中井
敬 飯田
敬 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015236538A priority Critical patent/JP6585485B2/en
Publication of JP2017103147A publication Critical patent/JP2017103147A/en
Application granted granted Critical
Publication of JP6585485B2 publication Critical patent/JP6585485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

本発明は、ガス遮断器に係る。本発明は、例えば、電力系統の変電所または開閉所において短絡電流の遮断に用いるガス遮断器に関し、特に、電極を互いに反対方向に駆動する双方向駆動機構を有するガス遮断器に関する。   The present invention relates to a gas circuit breaker. The present invention relates to a gas circuit breaker used for interrupting a short-circuit current in, for example, a substation or switching station of a power system, and more particularly to a gas circuit breaker having a bidirectional drive mechanism for driving electrodes in opposite directions.

ガス遮断器をはじめとする開閉装置は、電力系統に生じる事故電流や進み小電流を遮断し、電力送電網を保護するために利用され、特にガス遮断器は普及率が高い。ガス遮断器は、開極動作途中の消弧ガス圧力上昇を利用し、圧縮ガスを電極間に生じるアークに吹き付けることで電流を遮断するパッファ形と呼ばれるものが一般に用いられている。   Switchgears such as gas circuit breakers are used to cut off accidental currents and small currents generated in the power system and protect the power transmission network, and gas breakers are particularly popular. As the gas circuit breaker, a so-called puffer type that cuts off a current by blowing a compressed gas to an arc generated between electrodes by using an arc extinguishing gas pressure increase during the opening operation is generally used.

圧縮ガスは機械的圧縮と熱的圧縮により得られる。前者は、油圧やばね等を駆動源とする操作器のエネルギーにより電極と連結されたパッファシリンダーを駆動し、パッファピストンとの間の圧縮室の容積を小さくすることで消弧ガスを圧縮してアークに吹き付けるものである。後者はアークによる熱で消弧ガスの圧力を上昇させ、操作力の付与やアークへの消弧ガスの直接吹き付けを行うものである。   The compressed gas is obtained by mechanical compression and thermal compression. The former drives the puffer cylinder connected to the electrode by the energy of the operating device that uses hydraulic pressure or springs as the drive source, and compresses the arc-extinguishing gas by reducing the volume of the compression chamber between the puffer piston. It is sprayed on the arc. The latter increases the pressure of the arc-extinguishing gas by the heat from the arc, and applies an operating force or blows the arc-extinguishing gas directly onto the arc.

吹き付け圧力の形成にアーク熱を利用するものとして、容積固定の熱膨張室を設け、開極時に容積を縮小する機械的圧縮室と併用するパッファ形遮断器が知られている。   A puffer type circuit breaker is known as one that uses arc heat to form the blowing pressure, and is provided with a fixed volume thermal expansion chamber and used in combination with a mechanical compression chamber that reduces the volume when the electrode is opened.

パッファ形ガス遮断器の遮断性能を向上させるためには開極速度を大きくすることが必要であるが、操作器の操作エネルギーを大きいものにする必要があり、装置が大型化してコスト増加の要因となる。   In order to improve the breaking performance of the puffer-type gas circuit breaker, it is necessary to increase the opening speed, but it is necessary to increase the operating energy of the operating device, which increases the size of the device and increases costs. It becomes.

そこで、従来固定されていた被駆動側のアーク電極を開極方向と反対方向に駆動させることにより、相対的に駆動側電極の駆動距離を低減させて操作エネルギーを低減可能な双方向駆動方式が提案されている。例えば、フォーク型レバーによる駆動方式も提案されている(特許文献1)。この方式は被駆動側の主接触子を固定してアーク接触子を駆動するもので、フォークの窪み部に駆動側電極の動きに連動したピンが接触することでフォーク型レバーが回動し、これを開閉方向の往復に変換することで、被駆動側のアーク電極を駆動側電極の駆動方向と反対方向に駆動するものである。   Therefore, there is a bidirectional driving method that can reduce the operation energy by relatively reducing the driving distance of the driving side electrode by driving the arc electrode on the driven side, which has been fixed conventionally, in the direction opposite to the opening direction. Proposed. For example, a drive system using a fork-type lever has been proposed (Patent Document 1). This method is to drive the arc contact by fixing the driven main contact, and the fork-type lever rotates by contacting the pin in conjunction with the movement of the drive side electrode in the fork recess, By converting this to reciprocation in the opening and closing direction, the driven-side arc electrode is driven in a direction opposite to the driving direction of the driving-side electrode.

別の駆動方式として、駆動側電極と被駆動側電極を回転レバーに設けた溝カムとリンク及びピンを介して接続し、駆動側電極の開閉遮断動作時のリンク動作をレバーの回動で方向変換し、被駆動側電極を駆動側電極と反対方向に動作させる方式も提案されている(特許文献2)。なお、本方式では開閉動作終了時のレバー回動の停止は緩衝構造にレバーを当てて行われる。   As another drive method, the drive side electrode and the driven side electrode are connected to the groove cam provided on the rotary lever via a link and a pin, and the link operation when the drive side electrode is opened / closed is controlled by rotating the lever. A method of converting and operating the driven side electrode in a direction opposite to the driving side electrode has also been proposed (Patent Document 2). In this method, the stop of the lever rotation at the end of the opening / closing operation is performed by applying the lever to the buffer structure.

米国特許第6271494号US Pat. No. 6,271,494 特開2015−72817号公報Japanese Patent Laying-Open No. 2015-72817

特許文献1では、フォーク型レバーにピンが当たる際や被駆動側電極の動作停止時にピンに作用する慣性力に対して強度信頼性が課題となる。解決のためには、同様にピン径増加が必要であり、フォークレバーの大型化や双方向機構部全体の大型化が課題となる。   In Patent Literature 1, strength reliability is an issue with respect to inertial force acting on a pin when the pin hits a fork-type lever or when the operation of the driven electrode is stopped. In order to solve the problem, it is necessary to increase the pin diameter in the same way, and the enlargement of the fork lever and the enlargement of the entire bidirectional mechanism are problems.

特許文献2では、開閉動作停止時にレバーを緩衝構造に当てて停めているため、遮断動作時の慣性力に起因した衝撃荷重の一部が緩衝構造により吸収され、ピンに発生する応力の低減が可能となる。しかし、本方式の緩衝構造は開閉方向に対して直交方向の断面形状が円形である。そのため、レバーと緩衝構造の接触面積が小さくなり、接触時の面圧が大きくなり、早期のレバーや緩衝構造のヘタリを招く可能性が考えられる。また、緩衝構造を密封容器に取り付けている。密封容器への緩衝構造取り付けには、例えば、ボルトを用いた場合、開閉方向の直交方向、すなわち、緩衝構造の軸方向に対して締結することとなる。従って、ボルトはレバーを受け止めた際に伝達される衝撃荷重を強度が低いせん断方向で負担するため、ボルトの強度信頼性が課題となる。また。遮断器や双方向駆動機構のメンテナンス時には緩衝構造を取り外す必要があるため、メンテナンス性の低下も課題となる。

本発明は、以上の点に鑑み、動作時の高構造信頼性化と小型化を両立できる双方向駆動機構を搭載するガス遮断器を提供することを目的とする。
In Patent Document 2, since the lever is stopped against the buffer structure when the opening / closing operation is stopped, a part of the impact load due to the inertial force during the blocking operation is absorbed by the buffer structure, and the stress generated on the pin is reduced. It becomes possible. However, the buffer structure of the present system has a circular cross-sectional shape in a direction orthogonal to the opening / closing direction. For this reason, the contact area between the lever and the buffer structure is reduced, the surface pressure at the time of contact is increased, and there is a possibility that the lever and the buffer structure are brought to an early stage. The buffer structure is attached to the sealed container. For example, when a bolt is used for attaching the shock absorbing structure to the sealed container, it is fastened in a direction orthogonal to the opening / closing direction, that is, the axial direction of the shock absorbing structure. Therefore, since the bolt bears the impact load transmitted when the lever is received in the shear direction with low strength, the strength reliability of the bolt becomes a problem. Also. Since it is necessary to remove the buffer structure at the time of maintenance of the circuit breaker and the bidirectional drive mechanism, a decrease in maintainability is also an issue.

In view of the above points, an object of the present invention is to provide a gas circuit breaker equipped with a bidirectional drive mechanism that can achieve both high structural reliability and miniaturization during operation.

本発明の解決手段によると、
ガス遮断器であって、
駆動側主電極(2)と駆動側アーク電極(4)を有し、操作器(1)に接続され、密封タンク(100)内に設けられた駆動側電極と、
被駆動側主電極(3)と被駆動側アーク電極(5)を有し、密封タンク(100)内に前記駆動側電極と対向して設けられた被駆動側電極と、
双方向駆動機構部(10)と、
を備え、
前記双方向駆動機構(10)は、
前記駆動側電極からの駆動力を受ける駆動側連結ロッド(11)と、
前記被駆動側アーク電極(5)に接続された被駆動側連結ロッド(13)と、
前記駆動側連結ロッド(11)と前記被駆動側連結ロッド(13)が内部を並進自在に移動するよう保持するガイド(14)と、
前記ガイド(14)の両外側に配置され、互いにレバー固定ピン(15)により回動自在に固定され、前記被駆動側連結ロッド(13)と前記駆動側連結ロッド(11)を連結し、前記駆動側連結ロッド(11)の動作に対して前記被駆動側連結ロッド(13)を反対方向に動作させるための2つのレバー(12)と、
遮断動作の終了時に前記被駆動側連結ロッド(13)と当たるように前記ガイド(14)に固定された緩衝構造(40)と
を有する、ガス遮断器が提供される。
According to the solution of the present invention,
A gas circuit breaker,
A drive side electrode having a drive side main electrode (2) and a drive side arc electrode (4), connected to the operating device (1) and provided in the sealed tank (100);
A driven side electrode having a driven side main electrode (3) and a driven side arc electrode (5) and provided in the sealed tank (100) facing the driving side electrode;
A bidirectional drive mechanism (10);
With
The bidirectional drive mechanism (10)
A drive side connecting rod (11) for receiving a drive force from the drive side electrode;
A driven side connecting rod (13) connected to the driven side arc electrode (5) ;
A guide (14) for holding the driving side connecting rod (11) and the driven side connecting rod (13) so as to move in a translational manner;
Arranged on both outer sides of the guide (14), rotatably fixed to each other by lever fixing pins (15), connecting the driven side connecting rod (13) and the driving side connecting rod (11), Two levers (12) for operating the driven side connecting rod (13) in opposite directions with respect to the operation of the driving side connecting rod (11);
There is provided a gas circuit breaker having a buffer structure (40) fixed to the guide (14) so as to come into contact with the driven side connecting rod (13) at the end of the blocking operation.

本発明によると、動作時の高構造信頼性化と小型化を両立できる双方向駆動機構を搭載するガス遮断器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the gas circuit breaker which mounts the bidirectional | two-way drive mechanism which can make high structure reliability and size reduction at the time of operation | movement can be provided.

本発明の実施形態に係るガス遮断器の双方向駆動機構部断面の詳細図Detailed view of the cross section of the bidirectional drive mechanism of the gas circuit breaker according to the embodiment of the present invention 本発明の実施形態に係るガス遮断器の双方向駆動機構部の緩衝構造断面図と被駆動側連結ロッド断面図の衝突前の状態を示す図The figure which shows the state before the collision of buffer structure sectional drawing of the bidirectional | two-way drive mechanism part of the gas circuit breaker which concerns on embodiment of this invention, and driven side connecting rod sectional drawing 本発明の実施形態に係わるガス遮断器の双方向駆動機構部の干渉構造断面図と被駆動側連結ロッドの衝突後の状態を示す図The cross-sectional view of the interference structure of the bidirectional drive mechanism of the gas circuit breaker according to the embodiment of the present invention and the state after the collision of the driven side connecting rod 本発明の実施形態に係るガス遮断器の投入状態を示す図The figure which shows the injection state of the gas circuit breaker which concerns on embodiment of this invention 本発明の実施形態に係るガス遮断器の双方向駆動機構部の分解斜視図The disassembled perspective view of the bidirectional | two-way drive mechanism part of the gas circuit breaker which concerns on embodiment of this invention 本発明の実施形態に係るガス遮断器のストローク特性図Stroke characteristic diagram of gas circuit breaker according to an embodiment of the present invention 本発明の実施形態に係るガス遮断器の遮断途中で、被駆動側アーク電極の動作直前の状態を示す図The figure which shows the state just before operation | movement of the driven side arc electrode in the middle of interruption | blocking of the gas circuit breaker which concerns on embodiment of this invention. 本発明の実施形態に係るガス遮断器の開極途中で、駆動側可動ピンが第一溝カムの連結部に差し掛かり、被駆動側アーク電極の動作開始直後の状態を示す図The figure which shows the state immediately after the drive side movable pin reaches the connection part of a 1st groove | channel cam in the middle of opening of the gas circuit breaker which concerns on embodiment of this invention, and the operation | movement of a to-be-driven side arc electrode starts. 本発明の実施形態に係るガス遮断器の開極途中で、駆動側可動ピンが第一溝カムの連結部を抜ける手前で、被駆動側アーク電極の動作終盤であり、被駆動側ロッドの接触面と緩衝構造の当て板の当て面が接触する直前の状態を示す図In the middle of the opening of the gas circuit breaker according to the embodiment of the present invention, before the drive side movable pin passes through the connecting portion of the first groove cam, it is the final stage of the operation of the driven side arc electrode, and the contact of the driven side rod The figure which shows the state just before the surface and the contact surface of the contact plate of a buffer structure contact 本発明の実施形態に係るガス遮断器の開極途中で、駆動側可動ピンが第一溝カムの連結部を抜けた直後で、被駆動側ロッドの接触面と緩衝構造の当て板の当て面は接触しており、被駆動側アーク電極の動作が終了した状態を示す図In the middle of opening of the gas circuit breaker according to the embodiment of the present invention, immediately after the drive side movable pin passes through the connecting portion of the first groove cam, the contact surface of the driven side rod and the contact surface of the buffer structure pad Is in contact with the driven-side arc electrode, and shows a state where the operation has been completed. 本発明の実施形態に係るガス遮断器の開極状態を示す図The figure which shows the opening state of the gas circuit breaker which concerns on embodiment of this invention 本発明の実施形態に係るガス遮断器の被駆動側電極の駆動停止時に駆動側可動ピン、被駆動側可動ピン、及びレバーに作用する衝撃荷重の模式図The schematic diagram of the impact load which acts on a drive side movable pin, a driven side movable pin, and a lever at the time of driving stop of a driven side electrode of a gas circuit breaker concerning an embodiment of the present invention 本発明の実施形態に係るガス遮断器の被駆動側電極の駆動停止時に駆動側可動ピンに作用する曲げ変位と衝撃荷重の模式図The schematic diagram of the bending displacement and impact load which act on a drive side movable pin at the time of the drive stop of the driven side electrode of the gas circuit breaker which concerns on embodiment of this invention 本発明の実施形態に係るガス遮断器の被駆動側電極の駆動停止時に被駆動 側可動ピンに作用する曲げ変位と衝撃荷重の模式図The schematic diagram of the bending displacement and impact load which act on a driven side movable pin at the time of the drive stop of the driven side electrode of the gas circuit breaker which concerns on embodiment of this invention 本発明の実施形態に係るガス遮断器の双方向駆動機構部の緩衝構造において弾性体を遮光材と断熱材と防腐剤で覆い当て板と端板で挟みこんで締結した状態を示す断面図Sectional drawing which shows the state which clamped the elastic body with the light-shielding material, the heat insulating material, and the antiseptic | preservative between the cover plate and the end plate in the buffer structure of the bidirectional | two-way drive mechanism part of the gas circuit breaker which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施形態を、ガス遮断器を用いて説明する。   Hereinafter, an embodiment of the present invention will be described using a gas circuit breaker with reference to the drawings.

図4に、本発明の実施形態におけるガス遮断器の投入状態を示す。   In FIG. 4, the injection state of the gas circuit breaker in embodiment of this invention is shown.

密封容器100内に駆動電極と被駆動電極が同軸上に対向して設けられる。駆動側電極は駆動側主電極2と駆動側アーク電極4を有し、被駆動電極は被駆動側主電極3と被駆動側アーク電極5を有する。   A driving electrode and a driven electrode are provided coaxially facing each other in the sealed container 100. The driving side electrode has a driving side main electrode 2 and a driving side arc electrode 4, and the driven electrode has a driven side main electrode 3 and a driven side arc electrode 5.

密封容器100に隣接して操作器1が設けられる。操作器1にはシャフト6の一端が連結され、シャフト6の他端には駆動側アーク電極4に連結される。シャフト6と駆動側アーク電極4は機械的圧縮室7及び熱膨張室9内を貫通して連結される。   The operation device 1 is provided adjacent to the sealed container 100. One end of the shaft 6 is connected to the operating device 1, and the other end of the shaft 6 is connected to the drive side arc electrode 4. The shaft 6 and the drive side arc electrode 4 are connected through the mechanical compression chamber 7 and the thermal expansion chamber 9.

熱膨張室9の遮断部側には駆動側主電極2及びノズル8が設けられる。駆動側アーク電極4に対向して同軸上に被駆動側アーク電極5が設けられる。被駆動側アーク電極5の一端とノズル8の先端部は双方向駆動機構部10に連結される。   The drive-side main electrode 2 and the nozzle 8 are provided on the thermal expansion chamber 9 on the side of the blocking portion. A driven-side arc electrode 5 is provided coaxially so as to face the driving-side arc electrode 4. One end of the driven-side arc electrode 5 and the tip of the nozzle 8 are connected to the bidirectional drive mechanism unit 10.

図4に示したように、ガス遮断器は、投入状態では操作器1の油圧やばねによる駆動源により、駆動側主電極2と被駆動側主電極3を導通させる位置に設定され、通常時の電力系統の回路を構成する。   As shown in FIG. 4, the gas circuit breaker is set to a position where the driving side main electrode 2 and the driven side main electrode 3 are electrically connected to each other by the hydraulic pressure of the operating device 1 or a driving source by a spring in the on state. The power system circuit is configured.

落雷などによる短絡電流を遮断する際には、操作器1を開極方向に駆動し、シャフト6を介し駆動側主電極2と被駆動側主電極3を引き離す。その際、駆動側アーク電極4と被駆動側アーク電極5の間にアークが生成する。生成されたアークは機械的圧縮室7による機械的な消弧ガス吹きつけと、熱膨張室9によるアーク熱を利用した消弧ガス吹きつけにより消弧することで、電流を遮断する。   When interrupting a short-circuit current due to lightning or the like, the operating device 1 is driven in the opening direction, and the driving side main electrode 2 and the driven side main electrode 3 are separated through the shaft 6. At that time, an arc is generated between the driving side arc electrode 4 and the driven side arc electrode 5. The generated arc is extinguished by mechanical arc extinguishing gas blowing by the mechanical compression chamber 7 and arc extinguishing gas blowing using the arc heat by the thermal expansion chamber 9 to cut off the current.

このパッファ形ガス遮断器の操作エネルギーを低減するため、従来固定されていた被駆動側アーク電極5を駆動側電極の駆動方向と反対方向に駆動する双方向駆動機構10を設ける。
以下に、図1から図5に基づいて本発明の実施形態における双方向駆動方式について説明する。
In order to reduce the operation energy of the puffer-type gas circuit breaker, a bidirectional drive mechanism unit 10 for driving the driven-side arc electrode 5 fixed in the past in the direction opposite to the drive direction of the drive-side electrode is provided.
Hereinafter, the bidirectional driving method according to the embodiment of the present invention will be described with reference to FIGS.

図2は、本発明の実施形態に係るガス遮断器の双方向駆動機構部の緩衝構造断面図と被駆動側連結ロッド断面図の衝突前の状態を示す図である。図3は、本発明の実施形態に係わるガス遮断器の双方向駆動機構部の干渉構造断面図と被駆動側連結ロッドの衝突後の状態を示す図である。図4は、本発明の実施形態に係るガス遮断器の投入状態を示す図である。また、図5は、本発明の実施形態に係るガス遮断器の双方向駆動機構部の分解斜視図である。
双方向駆動機構10は、図1、図2、図3、図4及び図5に示すように、駆動側連結ロッド11と被駆動側連結ロッド13を二つに分割されたガイド14で勘合して駆動動作方向に移動自在に保持しつつ、それぞれのガイド14にレバー固定ピン15を介して回動自在に設けられたレバー12により連結して構成される。
FIG. 2 is a view showing a state before the collision of the buffer structure sectional view and the driven side connecting rod sectional view of the bidirectional drive mechanism of the gas circuit breaker according to the embodiment of the present invention. FIG. 3 is a cross-sectional view of the interference structure of the bidirectional drive mechanism portion of the gas circuit breaker according to the embodiment of the present invention and a state after the driven side connecting rod collides. FIG. 4 is a diagram illustrating a state in which the gas circuit breaker according to the embodiment of the present invention is turned on. FIG. 5 is an exploded perspective view of the bidirectional drive mechanism of the gas circuit breaker according to the embodiment of the present invention.
As shown in FIGS. 1, 2, 3, 4, and 5, the bidirectional drive mechanism unit 10 engages the drive side connecting rod 11 and the driven side connection rod 13 with a guide 14 that is divided in two. Thus, the guides 14 are configured to be connected to the respective guides 14 by levers 12 that are rotatably provided via lever fixing pins 15 while being held movably in the driving operation direction.

駆動側連結ロッド11には第一溝カム16が切り込まれており、第一溝カム16は、操作器1側から見て、第二直線部16C、連結部16B、第一直線部16Aを含む。第一直線部16Aと第二直線部16Cは互いにY軸方向の異なる軸線上に設けられ、その間に連結部16Bが設けられる。第一溝カム16のZ軸方向の変位幅は、第二溝カム17のZ軸方向の変位幅内及び第三溝カム19のZ軸方向の変位幅内に収まるように構成する。なお、連結部16Bの形状は、遮断部の動作特性に応じて任意に設計することが可能であり、例えば、スプラインのような曲線や直線とすることが考えられる。第一直線部16Aと連結部16B、及び第二直線部16Cの長さについても、遮断部の動作特性に応じて任意に設計することが可能である。   A first groove cam 16 is cut into the drive side connecting rod 11, and the first groove cam 16 includes a second straight portion 16C, a connecting portion 16B, and a first straight portion 16A as viewed from the operating device 1 side. . The first straight portion 16A and the second straight portion 16C are provided on axes different from each other in the Y-axis direction, and the connecting portion 16B is provided therebetween. The displacement width of the first groove cam 16 in the Z-axis direction is configured to be within the displacement width of the second groove cam 17 in the Z-axis direction and the displacement width of the third groove cam 19 in the Z-axis direction. In addition, the shape of the connection part 16B can be arbitrarily designed according to the operation characteristic of the interruption | blocking part, for example, can consider it as a curve and a straight line like a spline. The lengths of the first straight portion 16A, the connecting portion 16B, and the second straight portion 16C can also be arbitrarily designed according to the operating characteristics of the blocking portion.

駆動側連結ロッド11はガイド14に設けられた上溝14Aと下溝14Bにより上下方向の変位を制限され、遮断部の駆動軸となるY軸方向と直行するX軸方向へのみ移動可能となる。   The drive-side connecting rod 11 is restricted in vertical displacement by an upper groove 14A and a lower groove 14B provided in the guide 14, and can move only in the X-axis direction perpendicular to the Y-axis direction that is the drive shaft of the blocking portion.

ガイド14には、図1に示すように、第一溝カム16の上下方向幅に等しく、例えば曲線で構成される第二溝カム17が切り込まれている。なお、第二溝カム17の形状は曲線に限定されるものではなく、遮断動作特性に応じて適宜変更可能である。図1に示したように、第一溝カム16と第二溝カム17はX軸方向への積層構造を成し、両溝カムの重なり部分に駆動側可動ピン18が連通され、可動自在に連結される。   As shown in FIG. 1, the guide 14 has a second groove cam 17 that is equal to the vertical width of the first groove cam 16 and is formed of, for example, a curve. The shape of the second groove cam 17 is not limited to a curved line, and can be changed as appropriate according to the shutoff operation characteristics. As shown in FIG. 1, the first groove cam 16 and the second groove cam 17 have a laminated structure in the X-axis direction, and a drive side movable pin 18 is communicated with an overlapping portion of both groove cams so that it can move freely. Connected.

さらに、レバー12に切り込まれた第三溝カム19に駆動側可動ピン18が通され、レバー固定ピン15を回転軸としてレバー12が回転する。このとき、駆動側可動ピン18は、第一溝カムの連結部16B上を移動するときに、第二溝カム17を一方向に転がりながら移動する。この駆動側可動ピン18の一方向の移動により、第三溝カム19の内壁の片側に力が働き、レバー12の回転方向が規定される。なお、第三溝カム19の形状は特に限定されず、遮断動作特性に応じて適宜変更可能である。この回転運動によりレバー12に切り込まれたレバー被駆動側ガイド穴21が被駆動側連結ロッド13に取り付けられた被駆動側可動ピン20に力を伝達することで、被駆動側アーク電極5と連結する被駆動側連結ロッド13を駆動側連結ロッド11とは反対方向に駆動する。   Further, the drive side movable pin 18 is passed through the third groove cam 19 cut into the lever 12, and the lever 12 rotates with the lever fixing pin 15 as the rotation axis. At this time, the drive-side movable pin 18 moves while rolling the second groove cam 17 in one direction when moving on the connecting portion 16B of the first groove cam. By the movement in one direction of the drive side movable pin 18, a force acts on one side of the inner wall of the third groove cam 19, and the rotation direction of the lever 12 is defined. In addition, the shape of the 3rd groove cam 19 is not specifically limited, According to interruption | blocking operation characteristic, it can change suitably. The lever driven side guide hole 21 cut into the lever 12 by this rotational movement transmits a force to the driven side movable pin 20 attached to the driven side connecting rod 13 so that the driven side arc electrode 5 and The driven side connecting rod 13 to be connected is driven in the opposite direction to the driving side connecting rod 11.

図2、図3及び図5に示すように、緩衝構造40は遮断部側からY軸方向の同軸上に当て板42、弾性体41、端板43を配置し、通しボルト44とナット45でY軸方向に挟み込んで締結して構成される。   As shown in FIGS. 2, 3, and 5, the buffer structure 40 has a contact plate 42, an elastic body 41, and an end plate 43 arranged on the same axis in the Y-axis direction from the blocking portion side. It is configured to be sandwiched and fastened in the Y-axis direction.

緩衝構造40とガイド14は、被駆動側連結ロッド13とY軸方向の同軸上に被駆動側連結ロッド13の接触面13Aと当て板42の当て面42Aが対向するように、ガイド14に設けられた固定ボルト穴14Cに固定ボルト46で、端板43に設けたフランジ通し穴43Aを介して締結される。緩衝構造40は密封容器100内で消弧性ガスや、遮断動作後に消弧性ガスである六フッ化硫黄ガスが分解されて発生した硫化物などが混在した腐食性ガス環境にさらされるため、弾性体41を当て板42、端板43、ガイド14で密封構造とし、弾性体41の劣化によるエネルギー吸収性能の低下を防いでいる。なお、本実施例では、弾性体41の全体または一部が消弧性ガスや腐食性ガス環境に触れることや密封容器100内と通気することを排除しない。固定ボルト46の軸方向は駆動方向となるY軸方向と一致させて締結することが好ましい。緩衝構造40は固定ボルト46でガイド14に締結することにより、双方向駆動機構部10の小形化やメンテナンス性の向上が可能となる。なお、前述の緩衝構造40とガイド14の締結方法は一例であり、締結ボルトの強度信頼性やメンテナンス性は低下するかもしれないが、固定ボルト46の軸方向が駆動軸方向に対して一致ししない角度での取り付けや、緩衝構造40とガイド14の接続に接着剤や溶接を用いることを排除しない。また、緩衝構造40をガイド14に何らかの支持部材を介した固定やガイド14以外の一つ以上の部材やガイド14を含む複数の部材に固定してもよい。   The buffer structure 40 and the guide 14 are provided on the guide 14 so that the contact surface 13A of the driven side connecting rod 13 and the abutting surface 42A of the abutting plate 42 are concentric with the driven side connecting rod 13 in the Y-axis direction. The fixing bolt hole 14 </ b> C is fastened with a fixing bolt 46 through a flange through hole 43 </ b> A provided in the end plate 43. Since the buffer structure 40 is exposed to the corrosive gas environment in which the arc extinguishing gas in the sealed container 100 and the sulfide generated by the decomposition of the sulfur hexafluoride gas that is the arc extinguishing gas after the shut-off operation are mixed. The elastic body 41 is sealed by the contact plate 42, the end plate 43, and the guide 14 to prevent a decrease in energy absorption performance due to deterioration of the elastic body 41. In the present embodiment, it is not excluded that the whole or a part of the elastic body 41 is exposed to the arc extinguishing gas or corrosive gas environment or is ventilated in the sealed container 100. The axial direction of the fixing bolt 46 is preferably fastened so as to coincide with the Y-axis direction as the driving direction. The buffer structure 40 is fastened to the guide 14 with the fixing bolt 46, so that the bidirectional drive mechanism unit 10 can be downsized and improved in maintenance. The above-described fastening method between the buffer structure 40 and the guide 14 is an example, and the strength reliability and maintenance performance of the fastening bolt may be reduced. However, the axial direction of the fixing bolt 46 coincides with the drive shaft direction. It is not excluded to use an adhesive or welding for mounting at an angle that does not occur or for connecting the buffer structure 40 and the guide 14. Further, the buffer structure 40 may be fixed to the guide 14 via some support member, or to one or more members other than the guide 14 or to a plurality of members including the guide 14.

つぎに、緩衝構造40による遮断動作における衝撃荷重吸収の原理について説明する。図2に示したように、投入状態や開極動作時の被駆動側連結ロッド13の動作停止から任意ストローク前まで、緩衝構造40の当て面42Aと被駆動側連結ロッド13の接触面13Aは接触していない。弾性体41は、図3に示すように開極動作において、被駆動側連結ロッド13の動作停止前の任意ストロークから動作停止までの間、当て板42Aと接触面13Aが接触して弾性体41が弾性域内で変位し、衝撃荷重の全てまたは一部を吸収する。衝撃荷重に対するエネルギー吸収量は弾性体41の材質や体積を変更することにより調整可能である。当て板42Aと接触面13が接触する被駆動側連結ロッド13のストロークは被駆動側連結ロッド13、弾性体41、当て板42、端板43の体積の変更や端板43とナット45またはガイド14の間へのスぺーサー配置により調整可能である。   Next, the principle of shock load absorption in the blocking operation by the buffer structure 40 will be described. As shown in FIG. 2, the contact surface 42 </ b> A of the buffer structure 40 and the contact surface 13 </ b> A of the driven side connecting rod 13 are from the stop of the operation of the driven side connecting rod 13 in the closing state or opening operation to an arbitrary stroke. There is no contact. As shown in FIG. 3, the elastic body 41 is in contact with the contact plate 42 </ b> A and the contact surface 13 </ b> A during the opening operation from the arbitrary stroke before the driven side connecting rod 13 stops operating until the operation stops. Is displaced within the elastic region and absorbs all or part of the impact load. The amount of energy absorbed with respect to the impact load can be adjusted by changing the material and volume of the elastic body 41. The stroke of the driven side connecting rod 13 in which the contact plate 42A and the contact surface 13 are in contact with each other changes the volume of the driven side connecting rod 13, the elastic body 41, the contact plate 42, the end plate 43, the end plate 43 and the nut 45, or the guide. It can be adjusted by the spacer arrangement between 14.

双方向駆動機構10と駆動側電極との連結は、例えば、ノズル8に締結リング22を取り付け、締結リング22に駆動側連結ロッド11の先端部が貫通する穴を設け、駆動側締結ボルト23をナットで締め付ける構造とする。 Connecting the two-way drive mechanism 10 and the driving side electrode, for example, the fastening ring 22 attached to the nozzle 8, a hole which the tip portion of the drive coupling rod 11 penetrates the fastening ring 22, the drive-side fastening bolt 23 To be tightened with a nut.

図5に、示した本発明の実施形態における双方向駆動機構10の分解斜視図のように、レバー12はガイド14の外側に同一形状で2つ取り付ける。本実施例の双方向駆動機構10の動作においては、レバー12に働く荷重は大きく、スペースに制約のないガイド14の外側にレバー12を設置することで、レバーの肉厚と幅を大きくすることが可能となり、レバー12の応力を緩和することができる。 5, as an exploded perspective view of a bi-directional drive mechanism 10 in the embodiment of the present invention shown, the lever 12 is attached two the same shape on the outside of the guide 14. In the operation of the bidirectional drive mechanism 10 of the present embodiment, the load acting on the lever 12 is large, by installing the lever 12 on the outside of the unconstrained guide 14 in the space, increasing the thickness and width of the lever Thus, the stress of the lever 12 can be relaxed.

駆動側可動ピン18は、ガイド14内の第二溝カム17と、駆動側連結ロッド11内の第一溝カム16と、レバー12内の第三溝カム19を貫通する。駆動側可動ピン18は、どの部位にも固定されておらず、各溝内を自由に移動することができる。   The drive side movable pin 18 passes through the second groove cam 17 in the guide 14, the first groove cam 16 in the drive side connecting rod 11, and the third groove cam 19 in the lever 12. The drive side movable pin 18 is not fixed to any part and can freely move in each groove.

被駆動側可動ピン20は、レバー12内のレバー被駆動側ガイド穴21と被駆動側連結ロッド13内の非駆動側連結ロッドガイド溝30を貫通する。この際、ガイド14には被駆動側移動ピン20が移動するための穴25を設ける。   The driven movable pin 20 passes through the lever driven side guide hole 21 in the lever 12 and the non-driven side connecting rod guide groove 30 in the driven side connecting rod 13. At this time, the guide 14 is provided with a hole 25 for the driven side moving pin 20 to move.

レバー固定ピン15は、ガイド14から外れないよう、図示しない固定リングを両端に取り付ける。また、駆動側可動ピン18、被駆動側可動ピン20は、ガイド14から外れないよう、両端に切り込んだ駆動側可動ピン締結ボルト26、被駆動側可動ピン締結ボルト28を駆動側可動ピン固定ナット27、被駆動側駆動ピン固定ナット29でそれぞれ締め付ける。   The lever fixing pins 15 are attached to both ends with fixing rings (not shown) so as not to be detached from the guide 14. Further, the drive side movable pin fastening bolts 26 and the driven side movable pin fastening bolts 28 cut at both ends are arranged so that the drive side movable pin 18 and the driven side movable pin 20 are not detached from the guide 14. 27. Tighten with driven side drive pin fixing nuts 29, respectively.

被駆動側可動ピン20は、レバー被駆動側ガイド穴21と被駆動側連結ロッドガイド溝30を貫通するが、レバー12に長穴、被駆動側連結ロッド13に丸穴とする構成でも良い。   The driven side movable pin 20 passes through the lever driven side guide hole 21 and the driven side connecting rod guide groove 30, but the lever 12 may have a long hole and the driven side connecting rod 13 may have a round hole.

以下、図6から図11を用いて、開極となる遮断動作途中の状態と緩衝構造40による被駆動側電極の駆動停止時に駆動側可動ピンと被駆動側可動ピンに作用する衝撃荷重の低減について説明する。まず、遮断動作途中の状態について以下説明する。   Hereinafter, with reference to FIG. 6 to FIG. 11, about the state during the breaking operation that becomes the opening and reduction of the impact load acting on the driving side movable pin and the driven side movable pin when the driving side electrode is stopped by the buffer structure 40 explain. First, the state during the blocking operation will be described below.

図6は、横軸に時間をとり、縦軸に駆動側電極ストロークと被駆動側電極ストロークをとった図である。   FIG. 6 is a diagram in which time is taken on the horizontal axis, and driving side electrode stroke and driven side electrode stroke are taken on the vertical axis.

ガス遮断機の各動作状態について、時刻aは、図4に示したように、遮断動作の開始時刻である。また、以下に詳述するように、時刻bは図7に、時刻cは図8に、時刻dは図9に、時刻eは図10に、時刻fは図11に、それぞれ示す。   For each operating state of the gas circuit breaker, time a is the start time of the blocking operation, as shown in FIG. As described in detail below, time b is shown in FIG. 7, time c is shown in FIG. 8, time d is shown in FIG. 9, time e is shown in FIG. 10, and time f is shown in FIG.

図6に示した駆動側電極ストロークは投入状態から遮断状態まで、すなわち、時刻aから時刻fまで常時変動する。一方、被駆動側ストロークは時刻bから時刻eの時間のみ変動する。つまり、駆動側アーク電極4が駆動している時間の内、被駆動側アーク電極5は駆動側可動ピン18が第一溝カムの連結部16Bを抜ける時間のみ動作している。この状態を間欠駆動という。   The drive-side electrode stroke shown in FIG. 6 constantly varies from the on state to the shut-off state, that is, from time a to time f. On the other hand, the driven stroke varies only from time b to time e. In other words, the driven-side arc electrode 5 operates only during the time when the driving-side movable pin 18 passes through the connecting portion 16B of the first groove cam during the time when the driving-side arc electrode 4 is driven. This state is called intermittent driving.

ここで、緩衝構造40が衝撃荷重を吸収するストロークは被駆動側連結ロッド13の接触面13Aと緩衝構造40の当て面43Aが接触を開始する時刻を時刻d’と定義し、駆動側アーク電極5の動作時刻eまでの被駆動側ストロークを緩衝構造40の駆動エネルギー吸収ストロークδd’eと定義する。駆動エネルギー吸収ストロークδd’eは緩衝構造40の体積や固定方法により任意変更が可能である。 Here, the stroke at which the shock absorbing structure 40 absorbs the impact load is defined as the time d ′ when the contact surface 13A of the driven side connecting rod 13 and the contact surface 43A of the shock absorbing structure 40 start contact, and the driving side arc electrode The driven side stroke up to the operation time e of 5 is defined as the drive energy absorption stroke δ d'e of the buffer structure 40. The driving energy absorption stroke δ d'e can be arbitrarily changed depending on the volume of the buffer structure 40 and the fixing method.

(時刻b)
図7は、被駆動側アーク電極5の動作直前の状態を示す図である。駆動側アーク電極4は駆動しているが、駆動側可動ピン18は第一溝カムの連結部16Cの範囲に位置しているため、被駆動側アーク電極5は静止している。
(Time b)
FIG. 7 is a view showing a state immediately before the driven-side arc electrode 5 is operated. Although the driving side arc electrode 4 is driven, the driven side arc electrode 5 is stationary because the driving side movable pin 18 is located in the range of the connecting portion 16C of the first groove cam.

(時刻c)
図8は、駆動側可動ピン18が第一溝カムの連結部16Bに差し掛かり、被駆動側アーク電極5の動作開始直後、すなわち駆動側アーク電極4と被駆動側アーク電極5が開極した状態を示す図である。このとき、駆動側可動ピン18は第一溝カム16の連結部16Bに差し掛かると同時に、第二溝カム17と第三溝カム19内を一方向に運動する。
(Time c)
FIG. 8 shows a state in which the driving side movable pin 18 reaches the connecting portion 16B of the first groove cam and immediately after the operation of the driven side arc electrode 5, that is, the driving side arc electrode 4 and the driven side arc electrode 5 are opened. FIG. At this time, the drive side movable pin 18 reaches the connecting portion 16B of the first groove cam 16 and simultaneously moves in the second groove cam 17 and the third groove cam 19 in one direction.

(時刻d)
図9は、駆動側可動ピン18が第一溝カム16の連結部16Bを抜ける手前で、被駆動側アーク電極5は動作終盤であり、被駆動側連結ロッド13の接触面13Aと緩衝構造40の当て板42の当て面42Aが接触する直前の状態を示す図である。このとき、可動ピン18は第一溝カム16の連結部16Bを移動すると同時に、第二溝カム17と第三溝カム19内を一方向に移動する。
(Time d)
FIG. 9 shows that the driven side arc electrode 5 is in the final stage before the driving side movable pin 18 passes through the connecting portion 16B of the first groove cam 16, and the contact surface 13A of the driven side connecting rod 13 and the buffer structure 40 are shown. It is a figure which shows the state immediately before 42 A of contact surfaces of the contact plate 42 contact. At this time, the movable pin 18 moves in the second groove cam 17 and the third groove cam 19 in one direction simultaneously with the movement of the connecting portion 16B of the first groove cam 16.

(時刻e)
図10は、被駆動側アーク電極5の動作終了の状態を示す図である。このとき、駆動側可動ピン18は第一溝カムの連結部16Bを抜けた直後で、第一直線部16Aに差し掛かると同時に、第二溝カム17と第三溝カム19内を移動する。このとき、被駆動側連結ロッド13の接触面13Aと緩衝構造40の当て板42の当て面42Aは接触している。
(Time e)
FIG. 10 is a diagram illustrating a state in which the operation of the driven-side arc electrode 5 has been completed. At this time, the drive side movable pin 18 moves in the second groove cam 17 and the third groove cam 19 at the same time as it reaches the first linear portion 16A immediately after passing through the connecting portion 16B of the first groove cam. At this time, the contact surface 13A of the driven side connecting rod 13 and the contact surface 42A of the contact plate 42 of the buffer structure 40 are in contact with each other.

(時刻f)
図11は、遮断状態を示す図である。駆動側アーク電極4の動作が完了し遮断状態に至り、駆動側アーク電極4と被駆動側アーク電極5は静止している。
(Time f)
FIG. 11 is a diagram illustrating a blocking state. The operation of the driving side arc electrode 4 is completed and a cut-off state is reached, and the driving side arc electrode 4 and the driven side arc electrode 5 are stationary.

図7から図11における駆動側可動ピン18とレバー12の動作を説明すると、図4の時刻aである遮断動作開始後から図7の状態に至るまでは駆動側可動ピン18が第二直線部16Cを移動し、レバー12は静止している。図8、9の状態では、駆動側可動ピン18は連結部16Bを移動し、レバー12がレバー固定ピン15を支点に回転する。図10、11の状態では、可動ピン18は第一直線部16Aを移動し、レバー12は静止している。   The operation of the drive-side movable pin 18 and the lever 12 in FIGS. 7 to 11 will be described. The drive-side movable pin 18 is in the second linear portion from the start of the blocking operation at time a in FIG. 4 until the state of FIG. 16C is moved and the lever 12 is stationary. In the state of FIGS. 8 and 9, the drive side movable pin 18 moves on the connecting portion 16 </ b> B, and the lever 12 rotates with the lever fixing pin 15 as a fulcrum. 10 and 11, the movable pin 18 moves on the first linear portion 16A, and the lever 12 is stationary.

図8、9に示すように、駆動側可動ピン18が連結部16B上を移動するときは、駆動側可動ピン18が第二溝カム17及び第三溝カム19それぞれを一方向に移動しつつ、レバー12をレバー固定ピン15を支点として回転させる。   As shown in FIGS. 8 and 9, when the drive side movable pin 18 moves on the connecting portion 16 </ b> B, the drive side movable pin 18 moves the second groove cam 17 and the third groove cam 19 in one direction. The lever 12 is rotated with the lever fixing pin 15 as a fulcrum.

図7から図11の順番で推移する遮断動作では、駆動側可動ピン18は第二直線部16C、連結部16B、第一直線部16Aを一方向に移動する。一方、図11から図7の順番で推移する投入動作では、駆動側可動ピン18は第一直線部16A、連結部16B、第二直線部16Cを一方向に移動する。   In the shut-off operation that transitions in the order of FIGS. 7 to 11, the drive side movable pin 18 moves the second straight portion 16 </ b> C, the connecting portion 16 </ b> B, and the first straight portion 16 </ b> A in one direction. On the other hand, in the closing operation that changes in the order of FIG. 11 to FIG. 7, the drive side movable pin 18 moves the first straight portion 16A, the connecting portion 16B, and the second straight portion 16C in one direction.

以上のように、第一溝カムの連結部16Bで駆動側可動ピン18が第二溝カム17によりレバー12の位置保持をすることで、レバー12を一方向に回転させ被駆動側アーク電極5が駆動側アーク電極4と反対方向に駆動され、第一溝カム16の第一直線部16Aで可動ピン18が第二溝カム17及び第三溝カム19により動作を制限されることで、レバー12の回動を停止する。これにより、被駆動側アーク電極5が静止する間欠駆動状態を実現する。   As described above, when the driving side movable pin 18 holds the position of the lever 12 by the second groove cam 17 at the connecting portion 16B of the first groove cam, the lever 12 is rotated in one direction to drive the driven side arc electrode 5. Is driven in the opposite direction to the drive side arc electrode 4, and the operation of the movable pin 18 is restricted by the second groove cam 17 and the third groove cam 19 at the first linear portion 16 </ b> A of the first groove cam 16. Stops turning. Thereby, the intermittent drive state in which the driven-side arc electrode 5 is stationary is realized.

つぎに、図10に示した被駆動側アーク電極5の駆動停止時刻eに駆動側可動ピン18と被駆動側可動ピン20に作用する衝撃荷重と緩衝構造40による衝撃荷重の低減について説明する。   Next, the impact load acting on the drive side movable pin 18 and the drive side movable pin 20 at the drive stop time e of the driven side arc electrode 5 shown in FIG. 10 and the reduction of the impact load by the buffer structure 40 will be described.

本実施例は図1に示したように、駆動側可動ピン18と被駆動側可動ピン20はどの部位にも固定されないことから、遮断動作時の被駆動側電極の駆動停止時刻e及び投入動作時の時刻bを除き、動作する時刻aから時刻fの全域で駆動側可動ピン18と被駆動側可動ピン20に働く過度の力を緩和できるため、信頼性の高い双方向駆動機構を実現できる。   In the present embodiment, as shown in FIG. 1, the drive side movable pin 18 and the driven side movable pin 20 are not fixed to any part. Except for the time b, the excessive force acting on the drive side movable pin 18 and the driven side movable pin 20 can be alleviated in the entire range from the operation time a to the time f, so that a highly reliable bidirectional drive mechanism can be realized. .

図12は、本発明の実施形態に係るガス遮断器の被駆動側電極の駆動停止時に駆動側可動ピン、被駆動側可動ピン、及びレバーに作用する衝撃荷重の模式図である。
遮断動作時における時刻eでは被駆動側アーク電極5の動作停止に伴い、図12に示す通りレバー12の回動が停止し、駆動側可動ピン18と被駆動側可動ピン20にそれぞれ作用する慣性力により、駆動側可動ピン18の駆動側可動ピン衝突地点18Bと第三溝カム19の第三溝カム衝突地点19Bが衝突し、衝撃荷重Fと反力Rが発生する。同様に、被駆動側可動ピン20の被駆動側可動ピン衝突地点20Bとレバー被駆動側ガイド穴21のレバー被駆動側ガイド穴衝突地点21Bの間に衝撃荷重Fと反力Rが発生する。衝撃荷重F及び反力Rと衝撃荷重F及び反力Rは、両端のレバー12それぞれで発生する。
FIG. 12 is a schematic diagram of an impact load that acts on the drive side movable pin, the driven side movable pin, and the lever when driving of the driven side electrode of the gas circuit breaker according to the embodiment of the present invention is stopped.
At time e during the shut-off operation, as the driven-side arc electrode 5 stops operating, the lever 12 stops rotating as shown in FIG. 12, and the inertia acts on the driving-side movable pin 18 and the driven-side movable pin 20, respectively. force, the third grooved cam impingement point 19B of the drive-side movable pin collision point 18B of the drive-side movable pin 18 and the third groove cam 19 collide, the impact load F 1 and reaction force R 1 is generated. Similarly, an impact load F 2 and a reaction force R 2 are generated between a driven side movable pin collision point 20 B of the driven side movable pin 20 and a lever driven side guide hole collision point 21 B of the lever driven side guide hole 21. To do. The impact load F 1 and reaction force R 1 and the impact load F 2 and reaction force R 2 are generated by the levers 12 at both ends.

図13に、両端のレバー12で発生した反力Rにより、駆動側可動ピン18に発生する変位δとそれに起因して駆動側可動ピン18に発生する衝撃荷重F’を模式的に示す。駆動側可動ピン18には両端のレバー12で発生した反力Rを支点として変位δが発生する。変位δにより、駆動側可動ピン18と駆動側連結ロッド11が駆動側衝突点16B’で衝突し、荷重F’が衝撃的に発生する。駆動側可動ピン18には、荷重F’により曲げ応力が衝撃的に発生することになり、駆動側可動ピン18の強度信頼性低下の原因となる場合がある。なお、荷重F’はそれぞれのレバーで発生する反力Rの合計における駆動側可動ピン衝突地点18Bと駆動側衝突点16B’の角度差分θの分力であり、2×Rcos(θ)となる。 FIG. 13 schematically shows the displacement δ 1 generated in the drive side movable pin 18 and the impact load F 1 ′ generated in the drive side movable pin 18 due to the reaction force R 1 generated in the levers 12 at both ends. Show. A displacement δ 1 is generated in the driving side movable pin 18 with the reaction force R 1 generated by the levers 12 at both ends as a fulcrum. Due to the displacement δ 1 , the driving side movable pin 18 and the driving side connecting rod 11 collide at the driving side collision point 16B ′, and the load F 1 ′ is generated impactively. The driving side movable pin 18 is subjected to impact stress due to the load F 1 ′, which may cause a decrease in strength reliability of the driving side movable pin 18. The load F 1 ′ is a component force of the angular difference θ 1 between the driving side movable pin collision point 18B and the driving side collision point 16B ′ in the total reaction force R 1 generated by each lever, and 2 × R 1 cos. (θ 1 ).

図14に、両端のレバー12で発生した衝撃荷重Fと反力Rにより、被駆動側可動ピン20に発生する変位δとそれらに起因して被駆動側可動ピン20に発生する負荷F’を模式的に示す。被駆動側可動ピン20には両端のレバー12で発生した反力Rを支点として変位δが発生する。変位δにより、駆動側連結ロッドガイド溝30が被駆動側衝突点30’で衝突し、荷重F’が衝撃的に発生する。被駆動側可動ピン20には、荷重F’により曲げ応力が衝撃的に発生することになり、被駆動側可動ピン20の強度信頼性低下の原因となる。なお、荷重F’はそれぞれのレバーで発生する反力Rの合計におけるレバー被駆動側ガイド穴衝突地点21Bと被駆動側衝突点30’の角度差分θの分力であり、2×Rcos(θ)となる。 FIG. 14 shows the displacement δ 2 generated in the driven side movable pin 20 and the load generated in the driven side movable pin 20 due to the impact load F 2 and the reaction force R 2 generated in the levers 12 at both ends. F 2 ′ is schematically shown. A displacement δ 2 is generated on the driven movable pin 20 with the reaction force R 2 generated by the levers 12 at both ends as a fulcrum. Due to the displacement δ 2 , the driving side connecting rod guide groove 30 collides at the driven side collision point 30 ′, and the load F 2 ′ is generated impactively. The driven side movable pin 20 is subjected to impact stress due to the load F 2 ′, which causes a decrease in strength reliability of the driven side movable pin 20. The load F 2 ′ is a component force of the angular difference θ 2 between the lever driven side guide hole collision point 21B and the driven side collision point 30 ′ in the total reaction force R 2 generated by each lever, and 2 × R 2 cos (θ 2 ).

衝撃荷重Fと衝撃荷重Fは緩衝構造40を図1〜図5等に示した通りに配置することにより低減できる。図6に示した通り、被駆動側連結ロッド13の接触面13Aと緩衝構造40の当て面42Aを衝撃荷重が発生する時刻eからストロークδd’e前に、時刻d’で接触させてストロークδd’eの間、駆動エネルギーを緩衝構造40で吸収し、時刻eで駆動側可動ピン18に作用する衝撃荷重F1、被駆動側可動ピン20に作用する衝撃荷重Fをそれぞれ低減させて、駆動側可動ピン18と被駆動側可動ピン20に時刻eで発生する曲げ応力を低減させることができる。なお、接触面13Aと当て面42Aの接触はエネルギー伝達や緩衝構造のへたりを考慮して一様で同等であることが好ましい。ただし、本実施例は、接触面13Aと当て面42Aの偏接触を排除しない。また、接触面13Aと当て面42Aのそれぞれの面積は同様でも良く、異なっても良い。 Impact load F 1 and impact load F 2 can be reduced by placing as showing the cushioning structure 40 in FIGS. 1 to 5 and the like. As shown in FIG. 6, before the stroke [delta] d'e the contact surface 42A of the contact surface 13A with the buffer structure 40 of the driven-side connecting rod 13 from the time e an impact load is generated, by contacting at time d 'Stroke between [delta] d'e, absorb driving energy in the buffer structure 40, the impact load F 1 acting on the drive side movable pin 18 at time e, reduce respectively the impact load F 2 acting on the driven side movable pin 20 Thus, the bending stress generated at the time e on the driving side movable pin 18 and the driven side movable pin 20 can be reduced. Note that the contact between the contact surface 13A and the contact surface 42A is preferably uniform and equal in consideration of energy transmission and the sag of the buffer structure. However, this embodiment does not exclude the uneven contact between the contact surface 13A and the contact surface 42A. Further, the areas of the contact surface 13A and the contact surface 42A may be the same or different.

緩衝構造40によるストロークδd’e間の駆動エネルギーの吸収は、駆動エネルギーを、当て板42を介して弾性体41に伝達して吸収する。なお、ストロークδdeは被駆動側電極の動作ストローク以下であり、ストロークδd’eは遮断性能やストローク特性及び目標吸収エネルギー量に応じて任意に変更可能である。また、弾性体41、当て板42、端板43の通しボルト44とナット45による締結力は、目標エネルギー吸収量やストロークδd’eに応じて任意に設定可能である。本実施例は弾性体41、当て板42、端板43の接続にボルトに替わる、例えば、リベット締結、接着、溶接、かしめ、締りはめなどを用いることを排除しない。 The absorption of the driving energy during the stroke δ d'e by the buffer structure 40 is transmitted to the elastic body 41 through the contact plate 42 and absorbed. The stroke δ de is equal to or less than the operation stroke of the driven electrode, and the stroke δ d'e can be arbitrarily changed according to the cutoff performance, the stroke characteristics, and the target absorbed energy amount. Further, the fastening force of the elastic body 41, the contact plate 42, and the end plate 43 by the through bolt 44 and the nut 45 can be arbitrarily set according to the target energy absorption amount and the stroke δ d'e . The present embodiment does not exclude the use of, for example, rivet fastening, adhesion, welding, caulking, or interference fitting instead of bolts for connection of the elastic body 41, the contact plate 42, and the end plate 43.

弾性体41の材料としては、例えば、高減衰能を有するゴム材や樹脂材を用いることができる。なお、当て板42や端板43に対してビッカーズ硬度が低い材料であれば、いかなる材料、例えば鉄鋼材(鉄材)やステンレス鋼材、アルミ材、銅材、チタン材などの金属材料若しくは炭素系や硝子系の複合材料でも良い。弾性体41は単一材料や部品で構成しても良く、複数の材料や部品で構成しても良い。また、あらゆる材料で製作されたコイルばね、空気ダンパー、油圧ダンパーやソレノイドなど何らかの電気的制御を用いたダンパーを用いても良い。   As a material of the elastic body 41, for example, a rubber material or a resin material having a high damping ability can be used. In addition, as long as Vickers hardness is low with respect to the contact plate 42 and the end plate 43, any material, for example, a metal material such as a steel material (iron material), a stainless steel material, an aluminum material, a copper material, a titanium material, a carbon-based material, A glass-based composite material may be used. The elastic body 41 may be composed of a single material or part, or may be composed of a plurality of materials or parts. Moreover, you may use the damper using some electrical controls, such as a coil spring, an air damper, a hydraulic damper, and a solenoid manufactured with all materials.

当て板42の材質は被駆動側ロッド13や接触面13Aと同一、同種の材料、又はビッカーズ硬度で同等値を有する材料、例えば鉄鋼材などの金属材料であるほうが好ましい。当て板42は単一の部品や材料で構成しても良く、複数の部品や材料で構成しても良い。   The material of the contact plate 42 is preferably the same as the driven rod 13 and the contact surface 13A, the same kind of material, or a material having an equivalent value in Vickers hardness, for example, a metal material such as a steel material. The contact plate 42 may be composed of a single component or material, or may be composed of a plurality of components or materials.

端板43の材質は被駆動側ロッド13や接触面13Aと同一、同種の材料、又はビッカーズ硬度で同等値を有する材料、例えば金属材料であるほうが好ましい。端板43は単一の部品や材料で構成しても良く、複数の部品や材料で構成しても良い。   The material of the end plate 43 is preferably the same as the driven rod 13 and the contact surface 13A, the same type of material, or a material having an equivalent value in Vickers hardness, for example, a metal material. The end plate 43 may be composed of a single component or material, or may be composed of a plurality of components or materials.

なお、接触面13Aや当て面42A、又は当て板42や端板43は、例えば、焼き入れ処理、窒化処理、メッキなどの後処理を行っても良い。   Note that the contact surface 13A, the contact surface 42A, or the contact plate 42 and the end plate 43 may be subjected to post-processing such as quenching, nitriding, or plating.

また、図15に、緩衝構造40の別の実施例を示す。緩衝構造40は密封容器100内で消弧性ガスや、遮断動作後に消弧性ガスである六フッ化硫黄ガスが分解されて発生した硫化物などが混在した腐食性ガス環境にさらされる。加えて、遮断動作中はアーク光、高熱にさらされる。このような環境下において、とりわけ弾性体41にゴム材や樹脂材を用いた場合、弾性体41の劣化に起因したエネルギー吸収性能の低下が課題となる。   FIG. 15 shows another embodiment of the buffer structure 40. The buffer structure 40 is exposed to a corrosive gas environment in which the arc extinguishing gas in the sealed container 100 and sulfides generated by the decomposition of sulfur hexafluoride gas that is the arc extinguishing gas after the shut-off operation are mixed. In addition, it is exposed to arc light and high heat during the interruption operation. In such an environment, particularly when a rubber material or a resin material is used for the elastic body 41, a decrease in energy absorption performance due to deterioration of the elastic body 41 becomes a problem.

図15に示したように、弾性体41の周囲を遮光フィルム41A、断熱材41B、耐腐食体41Cで覆うことにより、上述の課題に対して、弾性体41のエネルギー吸収性能の低下を防止することができる。なお、本実施例では遮光フィルム41A、断熱材41B、耐腐食体41Cの順番で弾性体41の外周部を積層するが、遮光フィルム41A、断熱材41B、耐腐食体41Cの積層順番は任意に設定可能である。また、遮光フィルム41A、断熱材41B、耐腐食体41Cのいずれかの単体や一部組み合わせのみ、積層しても良い。
当て板42と端板43内に遮光フィルム41A、断熱材41B、耐腐食体41Cを構成しても良い。耐腐食体41Cはステンレス鋼が好ましい。耐腐食体41Cの材料は、他にも、例えば、樹脂材、アルミ材、鉄材、銅材、チタン材、炭素系複合材料、硝子系複合材料のいずれかを用いても良い。弾性体41は、上述のような各種材料の他にも、例えば、あらゆる材料で製作されたコイルばね、空気ダンパー、油圧ダンパーやソレノイドなど何らかの電気的制御を用いたダンパーを用いても良い。
As shown in FIG. 15, by covering the periphery of the elastic body 41 with a light shielding film 41A, a heat insulating material 41B, and a corrosion-resistant body 41C, the energy absorption performance of the elastic body 41 is prevented from being lowered with respect to the above-described problems. be able to. In this embodiment, the outer peripheral portion of the elastic body 41 is laminated in the order of the light shielding film 41A, the heat insulating material 41B, and the corrosion resistant body 41C. However, the order of lamination of the light shielding film 41A, the heat insulating material 41B, and the corrosion resistant body 41C is arbitrary. It can be set. Moreover, you may laminate | stack only the single-piece | unit or partial combination in any one of the light shielding film 41A, the heat insulating material 41B, and the corrosion-resistant body 41C.
You may comprise the light shielding film 41A, the heat insulating material 41B, and the corrosion-resistant body 41C in the contact plate 42 and the end plate 43. FIG. The corrosion resistant body 41C is preferably stainless steel. In addition, for example, any of a resin material, an aluminum material, an iron material, a copper material, a titanium material, a carbon-based composite material, and a glass-based composite material may be used as the material of the corrosion-resistant body 41C. In addition to the various materials as described above, the elastic body 41 may be a damper using any electrical control such as a coil spring, an air damper, a hydraulic damper, or a solenoid made of any material.

本実施例では、遮断動作に対して緩衝構造40を被駆動側連結ロッド13の終端に当てて、駆動側可動ピン18と被駆動側可動ピン20に作用する衝撃荷重の全体または一部を吸収したが、投入動作における駆動側可動ピン18と被駆動側可動ピン20に作用する衝撃荷重低減のために、緩衝構造40を駆動側連結ロッド11の終端や被駆動側連結ロッド13の始端に緩衝構造40を固定することを排除しない。   In the present embodiment, the shock absorbing structure 40 is applied to the terminal end of the driven side connecting rod 13 with respect to the shut-off operation to absorb all or part of the impact load acting on the driving side movable pin 18 and the driven side movable pin 20. However, in order to reduce the impact load acting on the drive-side movable pin 18 and the driven-side movable pin 20 in the closing operation, the buffer structure 40 is buffered at the end of the drive-side connecting rod 11 and the start end of the driven-side connecting rod 13. It does not exclude fixing the structure 40.

本実施例により、被駆動側電極の駆動停止時に駆動側可動ピン18と被駆動側可動ピン20に発生する衝撃荷重に対する高強度信頼性化と小型化を両立した双方向駆動機構を実現できる。なお、上記はあくまでも実施の例であり、発明の内容を上記具体的態様に限定することを意図する趣旨ではない。発明自体は、特許請求の範囲に記載された内容に即して種々の態様で実施することが可能である。実施例では機械的圧縮室及び熱膨張室を有する遮断器の例を挙げて説明したが、本願発明を、例えば、機械的圧縮室のみを有する遮断器に適用することも可能である。また、本発明を溝カム以外の双方向駆動方式、例えば、フォーク型レバー方式やリンク方式やレバー方式の被駆動側電極に対しても適用することも可能である。   According to this embodiment, it is possible to realize a bidirectional drive mechanism that achieves both high strength reliability and downsizing with respect to an impact load generated on the drive side movable pin 18 and the drive side movable pin 20 when driving of the driven side electrode is stopped. In addition, the above is an example to the last, and is not intended to limit the content of the invention to the specific embodiment. The invention itself can be carried out in various modes according to the contents described in the claims. In the embodiment, an example of a circuit breaker having a mechanical compression chamber and a thermal expansion chamber has been described. However, the present invention can be applied to, for example, a circuit breaker having only a mechanical compression chamber. Further, the present invention can also be applied to a driven side electrode other than the groove cam, for example, a fork type lever type, a link type or a lever type driven electrode.

[構成例]
本実施形態では、例えば、密封容器100内に駆動側電極と被駆動側電極を対向して設け、前記駆動側電極は駆動側主電極2と駆動側アーク電極4を有し、前記被駆動側電極は被駆動側主電極3と被駆動側アーク電極5を有し、前記駆動側アーク電極4は操作器1に接続され、前記被駆動側アーク電極5は双方向駆動機構部10に連結され、前記双方向駆動機構部10は、前記駆動側電極からの駆動力を受ける駆動側連結ロッド11と、前記被駆動側アーク電極5に接続した被駆動側連結ロッド13と、前記駆動側連結ロッド11の動作に対して前記被駆動側連結ロッド13を反対方向に動作させるレバー12と、前記駆動側連結ロッド11と前記被駆動側連結ロッド13の動作を規定するガイド14と、
緩衝構造40を固定ボルト46で端板43に設けたフランジ43Aを介して前記ガイド14に、前記被駆動側連結ロッド13の接触面13Aと当て板42の当て面42Aが前記被駆動側連結ロッド13の遮断における駆動終了時に接触して衝突時の負荷を前記固定ボルト46の軸方向で負担するように締結した、弾性体41を前記当て板42と前記端板43で通しボルト44とナット45で挟みこんで締結した前記緩衝構造40を有し、前記駆動側連結ロッド11が有する第一溝カム16と、前記レバー12が有する第二溝カム17それぞれに、駆動側可動ピン18を連通させ、前記駆動側連結ロッド11の動作により前記駆動側可動ピン18が前記それぞれの第一溝カム16と被駆動側連結ロッドガイド溝30内を運動することで、前記レバー12を回動させ、被駆動側可動ピン20で前記レバー12と連通された前記被駆動側連結ロッド13が前記駆動側連結ロッド11と反対方向に駆動され、前記被駆動側連結ロッド13に接続する前記被駆動側アーク電極5が前記駆動側連結ロッド11に接続する前記駆動側電極の前記駆動側アーク電極4と反対方向に駆動し、前記被駆動側連結ロッド13の前記接触面13Aを前記緩衝構造40の前記当て板42の前記当て面42Aに遮断動作時に接触させて停止させることを特徴のひとつとするこのができる。
[Configuration example]
In the present embodiment, for example, a driving side electrode and a driven side electrode are provided facing each other in the sealed container 100, and the driving side electrode includes a driving side main electrode 2 and a driving side arc electrode 4, and the driven side The electrodes include a driven side main electrode 3 and a driven side arc electrode 5, the driving side arc electrode 4 is connected to the operating device 1, and the driven side arc electrode 5 is connected to the bidirectional driving mechanism unit 10. The bidirectional driving mechanism 10 includes a driving side connecting rod 11 that receives a driving force from the driving side electrode, a driven side connecting rod 13 that is connected to the driven side arc electrode 5, and the driving side connecting rod. A lever 12 for moving the driven side connecting rod 13 in the opposite direction to the operation of 11, a guide 14 for defining the operation of the driving side connecting rod 11 and the driven side connecting rod 13,
A contact surface 13A of the driven side connecting rod 13 and a contacting surface 42A of the backing plate 42 are connected to the guide 14 via a flange 43A provided on the end plate 43 by a fixing bolt 46 with the buffer structure 40. The elastic body 41 is fastened so as to contact the load at the end of the driving in the interruption of 13 and to bear the load at the time of collision in the axial direction of the fixing bolt 46. The drive side movable pin 18 is communicated with each of the first groove cam 16 of the drive side connecting rod 11 and the second groove cam 17 of the lever 12. The drive-side movable pin 18 moves in the first groove cam 16 and the driven-side connection rod guide groove 30 by the operation of the drive-side connection rod 11, thereby The driven side connecting rod 13 communicated with the lever 12 by the driven side movable pin 20 is driven in a direction opposite to the driving side connecting rod 11, and the driven side connecting rod 13 is rotated. The driven-side arc electrode 5 to be connected is driven in a direction opposite to the driving-side arc electrode 4 of the driving-side electrode connected to the driving-side connecting rod 11, and the contact surface 13 </ b> A of the driven-side connecting rod 13 is driven. One of the features is that the contact surface 42A of the contact plate 42 of the buffer structure 40 is brought into contact with and stopped at the time of a shut-off operation.

[実施例の効果]
本実施形態によれば、被駆動側連結ロッドの遮断時における駆動停止時に被駆動側連結ロッドを緩衝構造に接触させることにより、駆動側可動ピンと被駆動側可動ピンに作用する衝撃荷重の一部を吸収でき、駆動側可動ピンと被駆動側可動ピンの高信頼性化と双方向駆動機構の小型化が可能となる。また、緩衝構造をガイドに取り付けることにより遮断器メンテナンス性が向上する。固定ボルトについても緩衝構造に作用する衝撃荷重の方向と一致させて締結することにより、荷重を強度が高いボルト軸方向で負担するように取り付けが可能となるため、固定ボルトの高信頼性化ができる。
[Effect of Example]
According to this embodiment, a part of the impact load acting on the drive side movable pin and the driven side movable pin is brought about by bringing the driven side connection rod into contact with the buffer structure when driving is stopped when the driven side connection rod is shut off. Therefore, it is possible to increase the reliability of the driving side movable pin and the driven side movable pin and to reduce the size of the bidirectional driving mechanism. Moreover, the circuit breaker maintenance performance is improved by attaching the buffer structure to the guide. The fastening bolts can also be attached so that the load is borne in the direction of the bolt shaft with high strength by fastening the bolts in accordance with the direction of the impact load acting on the buffer structure. it can.

[付記]
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれている。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[Appendix]
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1・・・操作器、2・・・駆動側主電極、3・・・被駆動側主電極、4・・・駆動側アーク電極、5・・・被駆動側アーク電極、6・・・シャフト、7・・・機械的圧縮室、8・・・ノズル、9・・・熱膨張室、10・・・双方向駆動機構部、11・・・駆動側連結ロッド、12・・・レバー、中心軸12c・・・中心軸、13・・・被駆動側連結ロッド、13A・・・接触面14・・・ガイド、14A・・・上溝、14B・・・下溝、14C・・・固定ボルト穴、15・・・レバー固定ピン、16・・・第一溝カム、16A・・第一直線部、16B・・連結部、16B’・・・駆動側衝突点、16C・・第二直線部、17・・・第二溝カム、18・・・駆動側可動ピン、18B・・・駆動側可動ピン衝突地点、19・・・第三溝カム、19B・・・第三溝カム衝突地点、20・・・被駆動側可動ピン、20B・・・被駆動側可動ピン衝突地点、21・・・レバー被駆動側ガイド穴、21B・・・レバー被駆動側ガイド穴衝突地点、22・・・締結リング、23・・・駆動側締結ボルト、25・・・穴、26・・・駆動側可動ピン締結ボルト、27・・・駆動側可動ピン固定ナット、28・・・被駆動側駆動ピン締結ボルト、29・・・被駆動側可動ピン固定ナット、30・・・被駆動側連結ロッドガイド溝、30’・・・被駆動側衝突点、40・・・緩衝構造、41・・・弾性体、41A・・・遮光フィルム、41B・・・断熱材、41C・・・耐腐食体、42・・・当て板、42A・・・当て面、43・・・端板、43A・・・フランジ通し穴、44・・・通しボルト、45・・・ナット、46・・・固定ボルト、100・・・密封容器

DESCRIPTION OF SYMBOLS 1 ... Operating device, 2 ... Drive side main electrode, 3 ... Driven side main electrode, 4 ... Drive side arc electrode, 5 ... Driven side arc electrode, 6 ... Shaft 7 ... mechanical compression chamber, 8 ... nozzle, 9 ... thermal expansion chamber, 10 ... bidirectional drive mechanism, 11 ... drive-side connecting rod, 12 ... lever, center Axis 12c ... center axis, 13 ... driven side connecting rod, 13A ... contact surface 14 ... guide, 14A ... upper groove, 14B ... lower groove, 14C ... fixing bolt hole, 15 ... lever fixing pin, 16 ... first groove cam, 16A ... first linear part, 16B ... connecting part, 16B '... driving side collision point, 16C ... second linear part, 17 ... ..Second groove cam, 18 ... drive side movable pin, 18B ... drive side movable pin collision point, 19 ... third groove cam, 19B ... third groove cam collision point, 20 ... driven side movable pin, 20B ... driven side movable pin collision point, 21 ... lever driven side guide hole, 21B ... lever driven Side guide hole collision point, 22 ... fastening ring, 23 ... drive side fastening bolt, 25 ... hole, 26 ... drive side movable pin fastening bolt, 27 ... drive side movable pin fixing nut, 28 ... driven side drive pin fastening bolt, 29 ... driven side movable pin fixing nut, 30 ... driven side connecting rod guide groove, 30 '... driven side collision point, 40 ... Buffer structure, 41 ... elastic body, 41A ... light shielding film, 41B ... heat insulating material, 41C ... corrosion resistant body, 42 ... padding plate, 42A ... padding surface, 43 ... -End plate, 43A ... Flange through hole, 44 ... Through bolt, 45 ... Nut, 46 ... fixing bolt, 100 ... sealed container

Claims (15)

ガス遮断器であって、
駆動側主電極と駆動側アーク電極を有し、操作器に接続され、密封タンク内に設けられた駆動側電極と、
被駆動側主電極と被駆動側アーク電極を有し、密封タンク内に前記駆動側電極と対向して設けられた被駆動側電極と、
双方向駆動機構部と、
を備え、
前記双方向駆動機構は、
前記駆動側電極からの駆動力を受ける駆動側連結ロッドと、
前記被駆動側アーク電極に接続された被駆動側連結ロッドと、
前記駆動側連結ロッドと前記被駆動側連結ロッドが内部を並進自在に移動するよう保持するガイドと、
前記ガイドの両外側に配置され、互いにレバー固定ピンにより回動自在に固定され、前記被駆動側連結ロッドと前記駆動側連結ロッドを連結し、前記駆動側連結ロッドの動作に対して前記被駆動側連結ロッドを反対方向に動作させるための2つのレバーと、
遮断動作の終了時に前記被駆動側連結ロッドと当たるように前記ガイドに固定された緩衝構造と
を有する、ガス遮断器。
A gas circuit breaker,
A drive-side electrode having a drive-side main electrode and a drive-side arc electrode, connected to an operating device, and provided in a sealed tank;
A driven-side electrode having a driven-side main electrode and a driven-side arc electrode, and provided in the sealed tank facing the driving-side electrode;
A bidirectional drive mechanism,
With
The bidirectional driving mechanism portion,
A driving side connecting rod that receives a driving force from the driving side electrode;
A driven-side connecting rod connected to the driven-side arc electrode ;
A guide for holding the driving side connecting rod and the driven side connecting rod so as to move in a translational manner inside;
Arranged on both outer sides of the guide and fixed to each other rotatably by lever fixing pins, connecting the driven side connecting rod and the driving side connecting rod, and driving the driven side connecting rod with respect to the operation Two levers for moving the side connecting rods in opposite directions;
A gas circuit breaker having a buffer structure fixed to the guide so as to come into contact with the driven-side connecting rod at the end of the blocking operation.
請求項1に記載のガス遮断器において、
前記駆動側連結ロッドが有する第一溝カムと、前記ガイドが有する第二溝カムと、前記レバーが有する第三溝カムとのそれぞれに、駆動側可動ピンを連通させ、レバー固定ピンを挟んで前記駆動側可動ピンと反対側の位置に前記被駆動側連結ロッドを移動させる被駆動側可動ピンを連通させる構造としたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 1,
A drive side movable pin is connected to each of the first groove cam of the drive side connecting rod, the second groove cam of the guide, and the third groove cam of the lever, and the lever fixing pin is sandwiched between them. A gas circuit breaker characterized in that a driven movable pin for moving the driven connecting rod is communicated with a position opposite to the driven movable pin.
請求項1に記載のガス遮断器において、
前記緩衝構造が有する弾性体の材料が、ゴム材、樹脂材、アルミ材、鉄材、ステンレス鋼材、銅材、チタン材、炭素系複合材料若しくは硝子系複合材料のいずれかひとつ又は複数であること、又は、コイルばね、空気ダンパー、油圧ダンパー若しくは電気的制御を用いたダンパーを用いたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 1,
The material of the elastic body that the buffer structure has is a rubber material, a resin material, an aluminum material, an iron material, a stainless steel material, a copper material, a titanium material, a carbon-based composite material, or a glass-based composite material, Alternatively, a gas circuit breaker using a coil spring, an air damper, a hydraulic damper, or a damper using electrical control.
請求項1に記載のガス遮断器において、
前記緩衝構造は、弾性体を密封構造としたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 1,
A gas circuit breaker characterized in that the buffer structure has a sealed structure of an elastic body.
請求項4に記載のガス遮断器において、
前記緩衝構造は、弾性体を、当て板、端板、ガイドで密封構造としたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 4,
A gas circuit breaker characterized in that the buffer structure has an elastic body sealed with a backing plate, an end plate, and a guide.
請求項4に記載のガス遮断器において、
前記緩衝構造の弾性体は、周囲及び/又は一部が、遮光フィルム、断熱材、耐腐食体の積層で覆われたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 4,
A gas circuit breaker characterized in that the elastic body of the buffer structure is covered with a laminate of a light shielding film, a heat insulating material, and a corrosion-resistant body at the periphery and / or part thereof.
請求項6に記載のガス遮断器において、
前記緩衝構造の耐腐食体の材料が、ステンレス鋼、樹脂材、アルミ材、鉄材、銅材、チタン材、炭素系複合材料、硝子系複合材料のいずれかであることを特徴とするガス遮断器。
The gas circuit breaker according to claim 6,
The gas circuit breaker characterized in that the material of the corrosion-resistant body of the buffer structure is any of stainless steel, resin material, aluminum material, iron material, copper material, titanium material, carbon-based composite material, and glass-based composite material .
請求項1に記載のガス遮断器において、
前記緩衝構造は、固定ボルトで前記ガイドに締結されたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 1,
The gas circuit breaker, wherein the buffer structure is fastened to the guide with a fixing bolt.
請求項8に記載のガス遮断器において、
前記緩衝構造は、前記ガイドに前記被駆動側連結ロッドの接触面が遮断動作の終了時に接触するように締結されたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 8,
2. The gas circuit breaker according to claim 1, wherein the buffer structure is fastened to the guide so that a contact surface of the driven side connecting rod comes into contact with the end of the blocking operation.
請求項1に記載のガス遮断器において、
前記緩衝構造は、弾性体を当て板と端板を通しボルトとナットで挟みこんで締結した構造であることを特徴とするガス遮断器。
The gas circuit breaker according to claim 1,
The gas circuit breaker is characterized in that the buffer structure is a structure in which an elastic body is fastened by passing a backing plate and an end plate through bolts and nuts.
請求項10に記載のガス遮断器において、
前記緩衝構造は、固定ボルトで端板に設けたフランジを介して前記ガイドに前記被駆動側連結ロッドの接触面と当て板の当て面が前記被駆動側連結ロッドの遮断動作の終了時に接触するように締結したことを特徴とするガス遮断器。
The gas circuit breaker according to claim 10,
In the buffer structure, the contact surface of the driven side connecting rod and the contact surface of the contact plate come into contact with the guide through a flange provided on the end plate with a fixing bolt at the end of the blocking operation of the driven side connecting rod. A gas circuit breaker characterized in that it is fastened.
請求項1に記載のガス遮断器において、
前記緩衝構造と前記ガイドの締結は、
固定ボルトの軸方向が駆動軸方向に対して一致する又は一致しない角度での取り付けによる締結、
前記緩衝構造と前記ガイドの接続に接着剤や溶接による締結、
前記緩衝構造を前記ガイドに支持部材を介した固定による締結、又は、
前記緩衝構造を前記ガイド以外の一つ以上の部材若しくは前記ガイドを含む複数の部材への固定による締結
のいずれかであることを特徴とするガス遮断器。
The gas circuit breaker according to claim 1,
The fastening of the buffer structure and the guide is as follows:
Fastening by mounting at an angle where the axial direction of the fixing bolt matches or does not match the driving shaft direction,
Fastening with adhesive or welding to connect the buffer structure and the guide,
Fastening by fixing the buffer structure to the guide via a support member, or
A gas circuit breaker characterized in that the buffer structure is either fastening by fixing to one or more members other than the guide or a plurality of members including the guide.
請求項1に記載のガス遮断器において、
前記駆動側連結ロッドは、
第二直線部、連結部、第一直線部を含む第一溝カムを有し、
第一直線部と第二直線部は駆動方向に対し互いに異なる軸線上に設けられ、その間に連結部が設けられたことを特徴とするガス遮断器。
The gas circuit breaker according to claim 1,
The drive side connecting rod is
Having a first groove cam including a second straight portion, a connecting portion, a first straight portion;
The gas circuit breaker characterized in that the first straight portion and the second straight portion are provided on different axes with respect to the driving direction, and a connecting portion is provided therebetween.
請求項13に記載のガス遮断器において、
前記ガイドは、
前記駆動側連結ロッドの第一溝カムの溝幅に等しい第二溝カムが切り込まれて、
前記駆動側連結ロッドの第一溝カムと前記ガイドの第二溝カムは積層構造を成し、両溝カムの重なり部分に可動ピンが配され互いに可動自在に連結される
ことを特徴とするガス遮断器。
The gas circuit breaker according to claim 13,
The guide is
A second groove cam equal to the groove width of the first groove cam of the drive side connecting rod is cut,
The first groove cam of the drive side connecting rod and the second groove cam of the guide have a laminated structure, and a movable pin is arranged at an overlapping portion of both groove cams, and the gas is movably connected to each other. Circuit breaker.
請求項1に記載のガス遮断器において、
前記レバーに丸穴、前記被駆動側連結ロッドに長穴が設けられ、又は、前記レバーに長穴、前記被駆動側連結ロッドに丸穴が設けられ、
被駆動側可動ピンが、前記レバーの穴と前記被駆動側連結ロッドの穴を貫通する
ことを特徴とするガス遮断器。

The gas circuit breaker according to claim 1,
The lever is provided with a round hole, the driven side connecting rod is provided with a long hole, or the lever is provided with a long hole, and the driven side connecting rod is provided with a round hole,
A gas circuit breaker characterized in that the driven side movable pin passes through the hole of the lever and the hole of the driven side connecting rod.

JP2015236538A 2015-12-03 2015-12-03 Gas circuit breaker Active JP6585485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236538A JP6585485B2 (en) 2015-12-03 2015-12-03 Gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236538A JP6585485B2 (en) 2015-12-03 2015-12-03 Gas circuit breaker

Publications (2)

Publication Number Publication Date
JP2017103147A JP2017103147A (en) 2017-06-08
JP6585485B2 true JP6585485B2 (en) 2019-10-02

Family

ID=59018196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236538A Active JP6585485B2 (en) 2015-12-03 2015-12-03 Gas circuit breaker

Country Status (1)

Country Link
JP (1) JP6585485B2 (en)

Also Published As

Publication number Publication date
JP2017103147A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
KR101759452B1 (en) Gas circuit breaker
WO2020073848A1 (en) Circuit breaker
US20230207240A1 (en) Single bottle interrupter
US20040020899A1 (en) Gas-insulated switch
JP6585485B2 (en) Gas circuit breaker
TWI582814B (en) Gas breaker
CN107658175B (en) Arc extinguish chamber for high-voltage circuit breaker
JP6535610B2 (en) Gas circuit breaker
JP2014060018A (en) Gas circuit breaker
CN102903567A (en) Power transmission device for vacuum interrupter and vacuum breaker having the same
JP2004281175A (en) Gas circuit breaker
JP6364358B2 (en) Gas circuit breaker
WO2013057936A1 (en) Gas circuit breaker
JP6685146B2 (en) Gas circuit breaker
KR101702539B1 (en) Driving mechanism of vaccum circuit breaker
WO2015064215A1 (en) Gas circuit breaker
JP2018181502A (en) Gas-blast circuit breaker
US9754742B2 (en) Gas circuit breaker
EP3346481B1 (en) Switch-opening speed adjustment mechanism and switch gear
KR200492868Y1 (en) Mechanical spring operating device of circuit breaker of gas insulated switchgear
US20230160416A1 (en) Opening/closing device
JP2003187681A (en) Gas-blast circuit breaker
JP6568775B2 (en) Gas circuit breaker
JP6626771B2 (en) Gas circuit breaker
JP6596360B2 (en) Gas circuit breaker

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150