JP2018181502A - Gas-blast circuit breaker - Google Patents

Gas-blast circuit breaker Download PDF

Info

Publication number
JP2018181502A
JP2018181502A JP2017076405A JP2017076405A JP2018181502A JP 2018181502 A JP2018181502 A JP 2018181502A JP 2017076405 A JP2017076405 A JP 2017076405A JP 2017076405 A JP2017076405 A JP 2017076405A JP 2018181502 A JP2018181502 A JP 2018181502A
Authority
JP
Japan
Prior art keywords
circuit breaker
drive
gas circuit
driven
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017076405A
Other languages
Japanese (ja)
Inventor
理一 永尾
Riichi Nagao
理一 永尾
将直 寺田
Masanao Terada
将直 寺田
山下 太一郎
Taichiro Yamashita
太一郎 山下
裕明 橋本
Hiroaki Hashimoto
裕明 橋本
泰士 小澤
Yasushi Ozawa
泰士 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017076405A priority Critical patent/JP2018181502A/en
Publication of JP2018181502A publication Critical patent/JP2018181502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-blast circuit breaker mounting a bidirectional drive mechanism capable of balancing high reliability and compaction.SOLUTION: In an electrical switchgear where a drive side electrode and a driven side electrode are provided oppositely in a sealed tank 100, the drive side electrode has a drive side main electrode 2 and a drive side arc electrode 4, the driven side electrode has a driven side main electrode 3 and a driven side arc electrode 5, the driven side arc electrode 5 is connected with an actuator 1, and the driven side arc electrode 5 is connected with a bidirectional drive mechanism 10, the bidirectional drive mechanism 10 has a guide 14 for holding a drive side connecting rod 11 and a driven side connecting rod 13 so as to move therethrough translatably, and two levers 12 placed on both outsides of the guide 14, and fixed rotatably by fitting to a cylinder protrusion 15 molded integrally with the guide 14, connecting the drive side connecting rod 11 and the driven side connecting rod 13, and making the driven side connecting rod 13 operate in the opposite direction for the operation of the drive side connecting rod 11.SELECTED DRAWING: Figure 2

Description

本発明は、電力系統の変電所または開閉所において短絡電流の遮断に用いるガス遮断器に関し、特に、電極を互いに反対方向に駆動する双方向駆動機構を有するガス遮断器に関する。   The present invention relates to a gas circuit breaker used to shut off a short circuit current in a substation or switching station of a power system, and more particularly to a gas circuit breaker having a bidirectional drive mechanism for driving electrodes in opposite directions.

ガス遮断器をはじめとする開閉装置は、電力系統に生じる事故電流や進み小電流を遮断し、電力送電網を保護するために利用され、特にガス遮断器は普及率が高い。ガス遮断器は、開極動作途中の消弧ガス圧力上昇を利用し、圧縮ガスを電極間に生じるアークに吹き付けることで電流を遮断するパッファ形と呼ばれるものが一般に用いられている。   Switching devices such as gas circuit breakers are used to cut off an accident current or a leading small current generated in the electric power system to protect the electric power transmission network, and in particular, the gas circuit breakers have a high penetration rate. As the gas circuit breaker, a so-called puffer type is generally used which shuts off the current by blowing a compressed gas to the arc generated between the electrodes by utilizing an arc-extinguishing gas pressure rise during the opening operation.

圧縮ガスは機械的圧縮と熱的圧縮により得られる。前者は、油圧やばね等を駆動源とする操作器のエネルギーにより電極と連結されたパッファシリンダーを駆動し、パッファピストンとの間の圧縮室の容積を小さくすることで消弧ガスを圧縮してアークに吹き付けるものである。後者はアークによる熱で消弧ガスの圧力を上昇させ、操作力の付与やアークへの消弧ガスの直接吹き付けを行うものである。   Compressed gas is obtained by mechanical compression and thermal compression. The former drives the puffer cylinder connected to the electrode by the energy of the operating device that uses hydraulic pressure and springs as the drive source, and compresses the arc-extinguishing gas by reducing the volume of the compression chamber between the puffer piston and It sprays on the arc. The latter is to increase the pressure of the arc-extinguishing gas by the heat from the arc, to apply an operating force and to directly spray the arc-extinguishing gas to the arc.

吹き付け圧力の形成にアーク熱を利用するものとして、容積固定の熱膨張室を設け、開極時に容積を縮小する機械的圧縮室と併用するパッファ形遮断器が知られている。   A puffer type circuit breaker is known which uses a fixed volume thermal expansion chamber and is used in combination with a mechanical compression chamber which reduces the volume at the time of opening as one utilizing arc heat for forming the spray pressure.

パッファ形ガス遮断器の遮断性能を向上させるためには開極速度を大きくすることが必要であるが、操作器の操作エネルギーを大きいものにする必要があり、装置が大型化してコスト増加の要因となる。   Although it is necessary to increase the opening speed in order to improve the interrupting performance of the puffer-type gas circuit breaker, it is necessary to increase the operation energy of the operating device, which causes a cost increase due to an increase in size of the device. It becomes.

そこで、従来固定されていた被駆動側のアーク電極を開極方向と反対方向に駆動させることにより、相対的に駆動側電極の駆動距離を低減させて操作エネルギーを低減可能な双方向駆動方式が提案されている。例えば、フォーク型レバーによる駆動方式も提案されている(特許文献1)。この方式は被駆動側の主接触子を固定してアーク接触子を駆動するもので、フォークの窪み部に駆動側電極の動きに連動したピンが接触することでフォーク型レバーが回動し、これを開閉方向の往復に変換することで、被駆動側のアーク電極を駆動側電極の駆動方向と反対方向に駆動するものである。   Therefore, by driving the arc electrode on the driven side, which has conventionally been fixed, in the direction opposite to the opening direction, the bi-directional drive system can reduce the operation energy by relatively reducing the drive distance of the drive side electrode. Proposed. For example, a driving method using a fork type lever has also been proposed (Patent Document 1). In this method, the main contact on the driven side is fixed to drive the arc contact, and a pin interlocked with the movement of the drive side electrode contacts the recessed portion of the fork, so that the fork type lever rotates. By converting this to reciprocation in the opening and closing direction, the arc electrode on the driven side is driven in the direction opposite to the driving direction of the driving side electrode.

別の駆動方式として、駆動側電極と被駆動側電極を回転レバーに設けた溝カムとリンク及びピンを介して接続し、駆動側電極の開閉遮断動作時のリンク動作をレバーの回動で方向変換し、被駆動側電極を駆動側電極と反対方向に動作させる方式も提案されている(特許文献2)。   As another drive method, a drive side electrode and a driven side electrode are connected via a groove cam and a link and a pin provided on a rotary lever, and the link operation at the time of opening and closing operation of the drive side electrode is made by turning the lever. There is also proposed a method of converting and operating the driven side electrode in the opposite direction to the driving side electrode (Patent Document 2).

米国特許第6271494号U.S. Pat. No. 6,271,494 特開2015−72817号公報JP, 2015-72817, A

特許文献1では、フォーク型レバーにピンが当たる際や被駆動側電極の動作停止時にピンに作用する慣性力に対して強度信頼性が課題となる。解決のためには、ピン径増加が必要であり、フォークレバーの大型化や双方向機構部全体の大型化が課題となる。   In Patent Document 1, when the pin hits the fork-type lever or when the operation of the driven electrode is stopped, the strength reliability becomes an issue with respect to the inertial force acting on the pin. In order to solve the problem, it is necessary to increase the diameter of the pin, and the fork lever and the size of the entire bi-directional mechanism become problems.

特許文献2では、開閉動作停止時にレバーを緩衝構造に当てて停めているため、遮断動作時の慣性力に起因した衝撃荷重の一部が緩衝構造により吸収され、ピンに発生する応力の低減が可能となる。しかし、本方式の緩衝構造は開閉方向に対して直交方向の断面形状が円形である。そのため、レバーと緩衝構造の接触面積が小さくなり、接触時の面圧が大きくなり、早期のレバーや緩衝構造のヘタリの防止が課題となる。また、緩衝構造を密封容器に取り付けている。密封容器への緩衝構造取り付けには、例えば、ボルトを用いた場合、開閉方向の直交方向、すなわち、緩衝構造の軸方向に対して締結することとなる。従って、ボルトはレバーを受け止めた際に伝達される衝撃荷重を強度が低いせん断方向で負担するため、ボルトの強度信頼性が課題となる。解決のためには、レバーや緩衝構造の大型化が必要となる場合がある。また。遮断器や双方向駆動機構のメンテナンス時には緩衝構造を取り外す必要があるため、メンテナンス性の低下も課題となる。   In Patent Document 2, since the lever is stopped by applying the lever to the buffer structure at the time of the opening / closing operation stop, a part of the impact load caused by the inertia force at the time of the closing operation is absorbed by the buffer structure, and the stress generated in the pin is reduced. It becomes possible. However, in the buffer structure of this system, the cross-sectional shape in the direction orthogonal to the opening and closing direction is circular. Therefore, the contact area between the lever and the buffer structure is reduced, the contact pressure at the time of contact is increased, and the early prevention of the lever and buffer structure from becoming loose becomes an issue. Also, the buffer structure is attached to the sealed container. For example, in the case of using a bolt, the buffer structure is attached to the sealed container in a direction orthogonal to the opening and closing direction, that is, in the axial direction of the buffer structure. Therefore, since the bolt bears the impact load transmitted when the lever is received in the shear direction with low strength, the strength reliability of the bolt becomes an issue. In order to solve the problem, it may be necessary to increase the size of the lever and the buffer structure. Also. Since it is necessary to remove a buffer structure at the time of maintenance of a circuit breaker or a bidirectional drive mechanism, the fall of maintainability also becomes a subject.

本発明は、以上の点に鑑み、動作時の構造高信頼性化と小型化を両立できる双方向駆動機構を搭載するガス遮断器を提供することを目的とする。   An object of the present invention is to provide a gas circuit breaker equipped with a bidirectional drive mechanism that can achieve both high structural reliability and small size in operation.

本発明の解決手段によると、ガス遮断器であって、駆動側主電極と駆動側アーク電極を有し、操作器に接続され、密封タンク内に設けられた駆動側電極と、被駆動側主電極と被駆動側アーク電極を有し、密封タンク内に前記駆動側電極と対向して設けられた被駆動側電極と、双方向駆動機構部と、を備え、前記双方向駆動機構部は、前記駆動側電極からの駆動力を受ける駆動側連結ロッドと、前記被駆動側アーク電極5に接続された被駆動側連結ロッドと、前記駆動側連結ロッドと前記被駆動側連結ロッドが内部を並進自在に移動するよう保持するガイドと、前記ガイドの両外側に一体成型により互いに配置された円柱突起と、互いに前記円柱突起により回動自在に固定され、前記被駆動側連結ロッドと前記駆動側連結ロッドを連結し、前記駆動側連結ロッドの動作に対して前記被駆動側連結ロッドを反対方向に動作させるための2つのレバーを有する、ガス遮断器が提供される。   According to the solution means of the present invention, there is provided a gas circuit breaker comprising a drive-side main electrode and a drive-side arc electrode, connected to a manipulator, and provided in a sealed tank, The device includes: a driven side electrode having an electrode and a driven side arc electrode and provided in the sealed tank so as to face the drive side electrode; and a bidirectional drive mechanism portion, wherein the bidirectional drive mechanism portion A drive-side connection rod receiving a drive force from the drive-side electrode, a driven-side connection rod connected to the driven-side arc electrode 5, the drive-side connection rod, and the driven side connection rod translate inside A guide which is held to move freely, a cylindrical projection which is mutually integrally formed on both outer sides of the guide, and a cylindrical projection which are mutually rotatably fixed by the cylindrical projection, and the drive side connection rod and the drive side connection Connect the rods, The relative operation of the moving-side connecting rod with two levers for operating in the opposite direction to the driven side coupling rod, the gas circuit breaker is provided.

本発明によると、動作時の構造の高信頼性化と小型化を両立できる双方向駆動機構を搭載するガス遮断器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the gas circuit breaker which mounts the bidirectional | two-way drive mechanism which can make high reliability and the miniaturization of the structure at the time of operation compatible can be provided.

実施例1に係るガス遮断器の双方向駆動機構部側面の詳細図。FIG. 2 is a detail view of the side surface of the bidirectional drive mechanism of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器の双方向駆動機構部の分解斜視図。FIG. 2 is an exploded perspective view of a bidirectional drive mechanism part of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器のストローク特性図。FIG. 2 is a stroke characteristic diagram of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器の投入状態を示す図。FIG. 2 is a view showing a state of closing of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器の遮断途中で、被駆動側アーク電極の動作直前の状態を示す図。FIG. 7 is a view showing a state immediately before the operation of the driven side arc electrode during interruption of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器の開極途中で、駆動側可動ピンが第一溝カムの連結部に差し掛かり、被駆動側アーク電極の動作開始直後の状態を示す図。FIG. 7 is a view showing a state immediately after the start of the operation of the driven arc electrode, with the drive-side movable pin coming in contact with the connecting portion of the first grooved cam during the opening of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器の開極途中で、駆動側可動ピンが第一溝カムの連結部を抜けた直後で、被駆動側アーク電極の動作が終了した状態を示す図。FIG. 8 is a view showing a state in which the operation of the driven side arc electrode is finished immediately after the drive side movable pin leaves the connecting portion of the first grooved cam during the opening of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器の開極状態を示す図。FIG. 2 is a diagram showing an open state of the gas circuit breaker according to the first embodiment. 実施例1に係るガス遮断器の被駆動側電極の駆動停止時にレバーに作用するモーメントと、それに起因して駆動側可動ピンと被駆動側可動ピンに作用する衝撃荷重、及び円柱突起に発生する曲げ応力について示す模式図。The moment acting on the lever when the driven side electrode of the gas circuit breaker according to Embodiment 1 is stopped, the impact load acting on the driving side movable pin and the driven side movable pin due to it, and the bending generated on the cylindrical projection The schematic diagram shown about stress. 実施例1に係るガス遮断器の被駆動側電極の駆動停止時にレバーに作用するモーメントと、それに起因して駆動側可動ピンと被駆動側可動ピンに作用する衝撃荷重、及び円柱突起に発生する曲げ応力の低減について示す模式図。The moment acting on the lever when the driven side electrode of the gas circuit breaker according to Embodiment 1 is stopped, the impact load acting on the driving side movable pin and the driven side movable pin due to it, and the bending generated on the cylindrical projection The schematic diagram shown about reduction of a stress. 実施例1に係るガス遮断器のレバーと円柱突起の嵌め合い部において、ブッシュを介した嵌め合い状態を示す図。FIG. 7 is a view showing a fitting state of the lever and the cylindrical protrusion of the gas circuit breaker according to the first embodiment via a bush. 実施例1に係るガス遮断器のレバーの円柱突起の嵌め合い部において、軸受けを介した嵌め合い状態を示す図。FIG. 8 is a view showing a fitted state via bearings in the fitting portion of the cylindrical protrusion of the lever of the gas circuit breaker according to the first embodiment. 実施例2に係るガス遮断器の双方向駆動機構部に関して、レバーをベルクランク形状とした機構構造を示す分解斜視図。The disassembled perspective view which shows the mechanism structure which made the lever the bell crank shape regarding the bidirectional | two-way drive mechanism part of the gas circuit breaker which concerns on Example 2. FIG.

以下、図面を参照して本発明の実施例を、ガス遮断器を用いて説明する。   Hereinafter, embodiments of the present invention will be described using a gas circuit breaker with reference to the drawings.

図4に、実施例1に係るガス遮断器の投入状態を示す。   FIG. 4 shows the closing state of the gas circuit breaker according to the first embodiment.

密封容器100内に駆動電極と被駆動電極が同軸上に対向して設けられる。駆動側電極は駆動側主電極2と駆動側アーク電極4を有し、被駆動電極は被駆動側主電極3と被駆動側アーク電極5を有する。   The drive electrode and the driven electrode are coaxially opposed to each other in the sealed container 100. The drive side electrode has a drive side main electrode 2 and a drive side arc electrode 4, and the driven electrode has a driven side main electrode 3 and a driven side arc electrode 5.

密封容器100に隣接して操作器1が設けられる。操作器1にはシャフト6の一端が連結され、シャフト6の他端には駆動側アーク電極4に連結される。シャフト6と駆動側アーク電極4は機械的圧縮室7及び熱膨張室9内を貫通して連結される。   The controller 1 is provided adjacent to the sealed container 100. One end of a shaft 6 is connected to the controller 1, and the other end of the shaft 6 is connected to a driving arc electrode 4. The shaft 6 and the drive side arc electrode 4 are connected through the inside of the mechanical compression chamber 7 and the thermal expansion chamber 9.

熱膨張室9の遮断部側には駆動側主電極2及びノズル8が設けられる。駆動側アーク電極4に対向して同軸上に被駆動側アーク電極5が設けられる。被駆動側アーク電極5の一端とノズル8の先端部は締結リング22を介して双方向駆動機構部10に連結される。   The drive-side main electrode 2 and the nozzle 8 are provided on the blocking portion side of the thermal expansion chamber 9. A driven side arc electrode 5 is provided coaxially to face the driving side arc electrode 4. One end of the driven side arc electrode 5 and the tip of the nozzle 8 are connected to the bidirectional drive mechanism 10 through a fastening ring 22.

図4に示したように、ガス遮断器は、投入状態では操作器1の油圧やばねによる駆動源により、駆動側主電極2と被駆動側主電極3を導通させる位置に設定され、通常時の電力系統の回路を構成する。   As shown in FIG. 4, in the closed state, the gas circuit breaker is set at a position where the drive side main electrode 2 and the driven side main electrode 3 are electrically connected by the hydraulic pressure of the operating device 1 or the drive source by the spring. Configure the power system circuit of

落雷などによる短絡電流を遮断する際には、操作器1を開極方向に駆動し、シャフト6を介し駆動側主電極2と被駆動側主電極3を引き離す。その際、駆動側アーク電極4と被駆動側アーク電極5の間にアークが生成する。生成されたアークは機械的圧縮室7による機械的な消弧ガス吹きつけと、熱膨張室9によるアーク熱を利用した消弧ガス吹きつけにより消弧することで、電流を遮断する。   When blocking a short circuit current due to lightning strike or the like, the controller 1 is driven in the opening direction, and the drive-side main electrode 2 and the driven-side main electrode 3 are separated via the shaft 6. At this time, an arc is generated between the drive side arc electrode 4 and the driven side arc electrode 5. The generated arc is extinguished by mechanical arc extinguishing gas spraying by the mechanical compression chamber 7 and arc extinguishing gas spraying utilizing arc heat by the thermal expansion chamber 9 to shut off the current.

このパッファ形ガス遮断器の操作エネルギーを低減するため、従来固定されていた被駆動側アーク電極5を駆動側電極の駆動方向と反対方向に駆動する双方向駆動機構部10を設ける。   In order to reduce the operation energy of the puffer type gas circuit breaker, a bidirectional drive mechanism 10 is provided which drives the driven side arc electrode 5 fixed in the prior art in the direction opposite to the drive direction of the drive side electrode.

以下に、図1と図2に基づいて本実施例における双方向駆動方式について説明する。図1は、本実施例に係るガス遮断器の双方向駆動機構部側面の詳細図である。図2は、本実施例に係るガス遮断器の双方向駆動機構部の分解斜視図である。   The bi-directional driving method in the present embodiment will be described below based on FIGS. 1 and 2. FIG. 1 is a detailed view of the side surface of the bidirectional drive mechanism portion of the gas circuit breaker according to the present embodiment. FIG. 2 is an exploded perspective view of the bidirectional drive mechanism portion of the gas circuit breaker according to the present embodiment.

双方向駆動機構部10は、図1、図2に示すように、駆動側連結ロッド11と被駆動側連結ロッド13をガイド14で駆動動作方向となるY軸方向に移動自在となるように保持しつつ、それぞれのガイド14に両外側に一体成型された円柱突起15を介して回動自在に設けられたレバー12により連結して構成される。   As shown in FIGS. 1 and 2, the bi-directional drive mechanism 10 holds the drive-side connecting rod 11 and the driven-side connecting rod 13 so as to be movable in the Y-axis direction, which is the drive operation direction, by the guide 14. In addition, it is configured to be connected by a lever 12 rotatably provided via cylindrical projections 15 integrally formed on both outer sides with the respective guides 14.

駆動側連結ロッド11には第一溝カム16が切り込まれており、第一溝カム16は、操作器1側から見て、第一直線部16A、連結部16B、第二直線部16Cを含む。第一直線部16Aと第二直線部16Cは互いにY軸方向の異なる軸線上に設けられ、その間に連結部16Bが設けられる。第一溝カム16のZ軸方向の変位幅は、第二溝カム17のZ軸方向の変位幅内及び第三溝カム19のZ軸方向の変位幅内に収まるように構成する。なお、連結部16Bの形状は、遮断部の動作特性に応じて任意に設計することが可能であり、例えば、スプラインのような曲線や直線とすることが考えられる。第一直線部16Aと連結部16B、及び第二直線部16Cの長さについても、遮断部の動作特性に応じて任意に設計することが可能である。   A first grooved cam 16 is cut into the drive side connecting rod 11, and the first grooved cam 16 includes a first linear portion 16A, a connecting portion 16B, and a second linear portion 16C, as viewed from the operating device 1 side. . The first straight portion 16A and the second straight portion 16C are provided on axes different from each other in the Y-axis direction, and the connection portion 16B is provided therebetween. The displacement width of the first groove cam 16 in the Z-axis direction is configured to fall within the displacement width of the second groove cam 17 in the Z-axis direction and the displacement width of the third groove cam 19 in the Z-axis direction. The shape of the connecting portion 16B can be arbitrarily designed according to the operation characteristic of the blocking portion, and for example, it can be considered to be a curve or a straight line like a spline. The lengths of the first straight portion 16A, the connecting portion 16B, and the second straight portion 16C can also be arbitrarily designed according to the operating characteristics of the blocking portion.

駆動側連結ロッド11はガイド14に設けられた上溝14Aと下溝14Bにより上下方向の変位を制限され、遮断部の駆動軸となるY軸方向と直行するX軸方向へのみ移動可能となる。   The drive-side connecting rod 11 is limited in vertical displacement by the upper groove 14A and the lower groove 14B provided in the guide 14, and can move only in the X-axis direction orthogonal to the Y-axis direction serving as the drive shaft of the blocking portion.

ガイド14には、図1に示すように、第一溝カム16の上下方向幅に等しく、例えば曲線で構成される第二溝カム17が切り込まれている。なお、第二溝カム17の形状は曲線に限定されるものではなく、遮断動作特性に応じて適宜変更可能である。図1に示したように、第一溝カム16と第二溝カム17はX軸方向への積層構造を成し、両溝カムの重なり部分に駆動側可動ピン18が連通され、可動自在に連結される。   In the guide 14, as shown in FIG. 1, a second groove cam 17 which is equal to the width of the first groove cam 16 in the vertical direction, for example, a curved line is cut. In addition, the shape of the second groove cam 17 is not limited to a curve, and can be appropriately changed according to the cutoff operation characteristic. As shown in FIG. 1, the first grooved cam 16 and the second grooved cam 17 have a laminated structure in the X-axis direction, and the drive-side movable pin 18 is communicated with the overlapping portion of both grooved cams to be movable. It is connected.

さらに、レバー12に切り込まれた第三溝カム19に駆動側可動ピン18が通され、ガイド14のX軸方向の両外側に第二溝カム17のY軸方向の長さ内に設けられた円柱突起15を回転軸として、レバー12に設けられた円柱突起嵌め合い穴12Aで嵌め合いレバー12が回転する。このとき、駆動側可動ピン18は、第一溝カムの連結部16B上を移動するときに、第二溝カム17を一方向に転がりながら移動する。この駆動側可動ピン18の一方向の移動により、第三溝カム19の内壁の片側に力が働き、レバー12の回転方向が規定される。なお、第三溝カム19の形状は特に限定されず、遮断動作特性に応じて適宜変更可能である。この回転運動によりレバー12に切り込まれたレバー被駆動側ガイド穴21が被駆動側連結ロッド13に取り付けられた被駆動側可動ピン20に力を伝達することで、被駆動側アーク電極5と連結する被駆動側連結ロッド13を駆動側連結ロッド11とは反対方向に駆動する。   Furthermore, the drive-side movable pin 18 is passed through the third grooved cam 19 cut into the lever 12 and provided on both outer sides in the X-axis direction of the guide 14 within the length of the second grooved cam 17 in the Y-axis direction. The fitting lever 12 is rotated by the cylindrical protrusion fitting hole 12A provided in the lever 12 with the cylindrical protrusion 15 as a rotation axis. At this time, when moving on the connecting portion 16B of the first groove cam, the drive-side movable pin 18 moves while rolling the second groove cam 17 in one direction. A force acts on one side of the inner wall of the third groove cam 19 by the movement of the drive side movable pin 18 in one direction, and the rotation direction of the lever 12 is defined. The shape of the third groove cam 19 is not particularly limited, and can be appropriately changed according to the cutoff operation characteristic. The lever driven side guide hole 21 cut into the lever 12 by this rotational movement transmits a force to the driven side movable pin 20 attached to the driven connection rod 13, whereby the driven side arc electrode 5 is formed. The driven connection rod 13 to be connected is driven in the opposite direction to the drive connection rod 11.

双方向駆動機構部10と駆動側電極との連結は、例えば、ノズル8に締結リング22を取り付け、締結リング22に駆動側連結ロッド11の先端部が貫通する穴を設け、駆動側締結ボルト23をナットで締め付ける構造とする。   For example, the coupling between the bi-directional drive mechanism 10 and the drive side electrode is made by attaching the fastening ring 22 to the nozzle 8 and providing the fastening ring 22 with a hole through which the tip of the drive side connecting rod 11 passes. The structure is tightened with a nut.

図2に、示した本実施例における双方向駆動機構部10の分解斜視図のように、レバー12はガイド14の外側に同一形状で2つ取り付ける。本実施例の双方向駆動機構部10の動作においては、レバー12に働く荷重は大きく、スペースに制約のないガイド14の外側にレバー12を設置することで、レバー12と円柱突起15の肉厚と幅を大きくすることが可能となり、レバー12と円柱突起15の応力や円柱突起嵌め合い部表面15Aの面圧を緩和することができ、双方向駆動機構部10全体としては小形化が可能となる。   As shown in the exploded perspective view of the bidirectional drive mechanism 10 in the present embodiment shown in FIG. 2, two levers 12 of the same shape are attached to the outside of the guide 14. In the operation of the bidirectional drive mechanism portion 10 of the present embodiment, the load acting on the lever 12 is large, and by installing the lever 12 on the outside of the guide 14 with no space restriction, the thickness of the lever 12 and the cylindrical projection 15 The width of the lever 12 and the cylindrical projection 15 and the contact pressure of the cylindrical projection fitting surface 15A can be relieved, and the overall size of the bidirectional drive mechanism 10 can be reduced. Become.

駆動側可動ピン18は、ガイド14内の第二溝カム17と、駆動側連結ロッド11内の第一溝カム16と、レバー12内の第三溝カム19を貫通する。駆動側可動ピン18は、どの部位にも固定されておらず、各溝内を自由に移動することができる。   The drive-side movable pin 18 penetrates the second groove cam 17 in the guide 14, the first groove cam 16 in the drive-side connecting rod 11, and the third groove cam 19 in the lever 12. The drive-side movable pin 18 is not fixed to any part, and can move freely in each groove.

被駆動側可動ピン20は、レバー12内のレバー被駆動側ガイド穴21と被駆動側連結ロッド13内の被駆動側連結ロッドガイド溝30を貫通する。この際、ガイド14には被駆動側可動ピン20が移動するための穴25を設ける。   The driven side movable pin 20 passes through the lever driven side guide hole 21 in the lever 12 and the driven side connecting rod guide groove 30 in the driven side connecting rod 13. At this time, the guide 14 is provided with a hole 25 for moving the driven-side movable pin 20.

駆動側可動ピン18、被駆動側可動ピン20は、ガイド14から外れないよう、両端に切り込んだ駆動側可動ピン締結ボルト26、被駆動側可動ピン締結ボルト28を駆動側可動ピン固定ナット27、被駆動側可動ピン固定ナット29でそれぞれ締め付ける。ボルト締結部をアクセスし易いガイド14の外側に配置することにより、メンテナンス性の向上が可能となる。   Drive side movable pin 18, drive side movable pin 20, drive side movable pin fastening bolt 26 cut at both ends, driven side movable pin fastening bolt 28, drive side movable pin fixing nut 27, They are respectively tightened by the driven side movable pin fixing nut 29. By arranging the bolt fastening portion on the outside of the easily accessible guide 14, it is possible to improve the maintainability.

被駆動側可動ピン20は、レバー被駆動側ガイド穴21と被駆動側連結ロッドガイド溝30を貫通するが、レバー12に長穴、被駆動側連結ロッド13に丸穴とする構成でも良い。   The driven side movable pin 20 passes through the lever driven side guide hole 21 and the driven side connecting rod guide groove 30, but may be a long hole in the lever 12 or a round hole in the driven side connecting rod 13.

以下、図3から図10を用いて、ガス遮断器の投入状態から開極となる遮断動作途中の被駆動側電極の駆動停止時にレバー12に作用するモーメントと駆動側可動ピン18と被駆動側可動ピン20に作用する衝撃荷重、円柱突起15に発生する曲げ応力の低減について説明する。   Hereinafter, with reference to FIG. 3 to FIG. 10, the moment acting on the lever 12 at the time of the driving stop of the driven side electrode in the middle of the closing operation from the closing state of the gas circuit breaker to the opening The reduction of the impact load acting on the movable pin 20 and the bending stress generated in the cylindrical projection 15 will be described.

図3は、横軸に時間をとり、縦軸に駆動側電極ストロークと被駆動側電極ストロークをとった実施例1に係るガス遮断器のストローク特性図である。ガス遮断器の各動作状態について、時刻aは、図4に示したように、遮断動作の開始時刻である。また、以下に詳述するように、時刻bは図5に、時刻cは図6に、時刻dは図7に、時刻eは図8にそれぞれ示す。   FIG. 3 is a stroke characteristic diagram of the gas circuit breaker according to the first embodiment in which time is taken on the horizontal axis and drive side electrode stroke and driven side electrode stroke are taken on the vertical axis. For each operation state of the gas circuit breaker, time a is the start time of the shutoff operation as shown in FIG. Also, as described in detail below, time b is shown in FIG. 5, time c is shown in FIG. 6, time d is shown in FIG. 7, and time e is shown in FIG.

図3に示した駆動側電極ストロークは投入状態から遮断状態まで、すなわち、時刻aから時刻eまで常時変動する。一方、被駆動側ストロークは時刻bから時刻eの時間のみ変動する。つまり、駆動側アーク電極4が駆動している時間の内、被駆動側アーク電極5は駆動側可動ピン18が第一溝カムの連結部16Bを抜ける時間のみ動作している。この状態を間欠駆動という。   The drive side electrode stroke shown in FIG. 3 constantly varies from the on state to the off state, that is, from time a to time e. On the other hand, the driven side stroke fluctuates only from time b to time e. That is, of the time during which the drive side arc electrode 4 is driven, the driven side arc electrode 5 operates only during the time when the drive side movable pin 18 leaves the connecting portion 16B of the first groove cam. This state is called intermittent drive.

(時刻a)
図4は、実施例1に係る投入状態を示す図である。駆動側アーク電極4と被駆動側アーク電極5は静止している。
(Time a)
FIG. 4 is a view showing the insertion state according to the first embodiment. The driving side arc electrode 4 and the driven side arc electrode 5 are stationary.

(時刻b)
図5は、被駆動側アーク電極5の動作直前の状態を示す図である。駆動側アーク電極4は駆動しているが、駆動側可動ピン18は第一溝カムの第一直線部16Aの範囲に位置しているため、被駆動側アーク電極5は静止している。
(Time b)
FIG. 5 is a view showing a state immediately before the operation of the driven side arc electrode 5. Although the drive side arc electrode 4 is driven, since the drive side movable pin 18 is located within the range of the first linear portion 16A of the first grooved cam, the driven side arc electrode 5 is stationary.

(時刻c)
図6は、駆動側可動ピン18が第一溝カムの連結部16Bに差し掛かり、被駆動側アーク電極5の動作開始直後、すなわち駆動側アーク電極4と被駆動側アーク電極5が開極した状態を示す図である。このとき、駆動側可動ピン18は第一溝カム16の連結部16Bに差し掛かると同時に、第二溝カム17と第三溝カム19内を一方向に運動する。
(Time c)
In FIG. 6, the drive-side movable pin 18 is engaged with the connecting portion 16B of the first groove cam, and immediately after the operation of the driven-side arc electrode 5 starts, that is, the drive-side arc electrode 4 and the driven-side arc electrode 5 are opened. FIG. At this time, the drive-side movable pin 18 simultaneously moves in the second groove cam 17 and the third groove cam 19 in one direction while approaching the connecting portion 16B of the first groove cam 16.

(時刻d)
図7は、被駆動側アーク電極5の動作終了の状態を示す図である。このとき、駆動側可動ピン18は第一溝カムの連結部16Bを抜けた直後で、第二直線部16Cに差し掛かると同時に、第二溝カム17と第三溝カム19内を移動する。
(Time d)
FIG. 7 is a view showing the state of the operation end of the driven side arc electrode 5. At this time, the drive-side movable pin 18 moves in the second groove cam 17 and the third groove cam 19 at the same time when it approaches the second linear portion 16C immediately after leaving the connecting portion 16B of the first groove cam.

(時刻e)
図8は、開極状態(遮断状態)を示す図である。駆動側アーク電極4の動作が完了し遮断状態に至り、駆動側アーク電極4と被駆動側アーク電極5は静止している。
(Time e)
FIG. 8 is a diagram showing an open state (cut-off state). The operation of the drive-side arc electrode 4 is completed and reaches the cutoff state, and the drive-side arc electrode 4 and the driven-side arc electrode 5 are stationary.

図4から図8における駆動側可動ピン18とレバー12の動作を説明すると、図4の時刻aである遮断動作開始後から図5の状態に至るまでは駆動側可動ピン18が第一直線部16Aを移動し、レバー12は静止している。図6の状態では、駆動側可動ピン18は連結部16Bを移動し、レバー12が円柱突起15を支点に回転する。図7から図8に至る状態では、駆動側可動ピン18は第二直線部16Cを移動し、レバー12は静止している。   The operation of the drive-side movable pin 18 and the lever 12 in FIGS. 4 to 8 will be described. The drive-side movable pin 18 is the first linear portion 16A from the start of the shutoff operation at time a in FIG. And the lever 12 is stationary. In the state of FIG. 6, the drive-side movable pin 18 moves in the connecting portion 16B, and the lever 12 rotates around the cylindrical projection 15. In the state from FIG. 7 to FIG. 8, the drive-side movable pin 18 moves the second linear portion 16C, and the lever 12 is at rest.

図6に示すように、駆動側可動ピン18が連結部16B上を移動するときは、駆動側可動ピン18が第二溝カム17及び第三溝カム19それぞれを一方向に移動しつつ、レバー12を、円柱突起15を支点として回転させる。   As shown in FIG. 6, when the drive side movable pin 18 moves on the connecting portion 16B, the drive side movable pin 18 moves the second groove cam 17 and the third groove cam 19 in one direction, while the lever 12 is rotated with the cylindrical projection 15 as a fulcrum.

図4から図8の順番で推移する遮断動作では、駆動側可動ピン18は第一直線部16A、連結部16B、第二直線部16Cを一方向に移動する。一方、図8から図4の順番で推移する投入動作では、駆動側可動ピン18は第二直線部16C、連結部16B、第一直線部16Aを一方向に移動する。   In the blocking operation which changes in the order of FIGS. 4 to 8, the drive-side movable pin 18 moves the first linear portion 16A, the connecting portion 16B, and the second linear portion 16C in one direction. On the other hand, in the closing operation in the order of FIG. 8 to FIG. 4, the drive-side movable pin 18 moves the second linear portion 16C, the connecting portion 16B, and the first linear portion 16A in one direction.

以上のように、第一溝カムの連結部16Bで駆動側可動ピン18が第二溝カム17によりレバー12の位置保持をすることで、レバー12を一方向に回転させ被駆動側アーク電極5が駆動側アーク電極4と反対方向に駆動され、第一溝カム16の第二直線部16Cで駆動側可動ピン18が第二溝カム17及び第三溝カム19により動作を制限されることで、レバー12の回動を停止する。これにより、被駆動側アーク電極5が静止する間欠駆動状態を実現する。   As described above, when the drive-side movable pin 18 holds the position of the lever 12 by the second groove cam 17 at the connecting portion 16B of the first groove cam, the lever 12 is rotated in one direction to drive the driven arc electrode 5 Is driven in the direction opposite to the drive side arc electrode 4, and the operation of the drive side movable pin 18 is restricted by the second groove cam 17 and the third groove cam 19 by the second linear portion 16C of the first groove cam 16. , Stop the rotation of the lever 12. Thereby, the intermittent drive state in which the driven side arc electrode 5 stands still is realized.

つぎに、図9を用いて、レバー12に作用するモーメントとそれに起因して駆動側可動ピン18と被駆動側可動ピン20に作用する衝撃荷重、及び円柱突起15に発生する曲げ応力について説明する。   Next, with reference to FIG. 9, the moment acting on the lever 12 and the impact load acting on the drive-side movable pin 18 and the driven-side movable pin 20 due to it and the bending stress generated on the cylindrical projection 15 will be described. .

本実施例は図1に示したように、駆動側可動ピン18と被駆動側可動ピン20はどの部位にも固定されないことから、遮断動作時の被駆動側電極の駆動停止時刻d及び投入動作時の時刻bを除き、動作する時刻aから時刻eの全域で駆動側可動ピン18と被駆動側可動ピン20に働く過度の力を緩和できるため、信頼性の高い双方向駆動機構を実現できる。   In this embodiment, as shown in FIG. 1, since the drive-side movable pin 18 and the driven-side movable pin 20 are not fixed to any part, the drive stop time d and closing operation of the driven-side electrode at the time of blocking operation Since the excessive force acting on the drive-side movable pin 18 and the driven-side movable pin 20 can be alleviated in the entire range from the operating time a to the time e except time b, it is possible to realize a highly reliable bidirectional driving mechanism .

図9は、本実施例に係るガス遮断器の被駆動側電極の駆動停止時にレバー12に作用するモーメントとそれに起因して駆動側可動ピン18と被駆動側可動ピン20に作用する衝撃荷重、及び円柱突起15に発生する曲げ応力を示す模式図である。   FIG. 9 shows a moment acting on the lever 12 when the driven side electrode of the gas circuit breaker according to the embodiment is stopped and an impact load acting on the driving side movable pin 18 and the driven side movable pin 20 due to the moment. 7 is a schematic view showing bending stress generated in the cylindrical protrusion 15.

遮断動作時における時刻dでは被駆動側アーク電極5の動作停止に伴い、図9に示す通りレバー12の回動が停止し、レバー12、駆動側可動ピン18、及び被駆動側可動ピン20にそれぞれ作用する慣性力により、駆動側可動ピン18の駆動側可動ピン衝突地点18Bと第三溝カム19の第三溝カム衝突地点19Bが衝突し、衝撃荷重F1と反力R1が発生する。同様に、被駆動側可動ピン20の被駆動側可動ピン衝突地点20Bとレバー被駆動側ガイド穴21のレバー被駆動側ガイド穴衝突地点21Bの間に衝撃荷重F2と反力R2が発生する。   At time d when the shutoff operation is performed, the rotation of the lever 12 is stopped as shown in FIG. 9 with the operation stop of the driven side arc electrode 5, and the lever 12, the drive side movable pin 18 and the driven side movable pin 20 are The impact force F1 and the reaction force R1 are generated by collision of the drive-side movable pin collision point 18B of the drive-side movable pin 18 and the third groove cam collision point 19B of the third groove cam 19 due to the inertial force respectively acting. Similarly, an impact load F2 and a reaction force R2 are generated between the driven side movable pin collision point 20B of the driven side movable pin 20 and the lever driven side guide hole collision point 21B of the lever driven side guide hole 21.

また、被駆動側アーク電極5の動作停止に伴い、レバー12は円柱突起15と円柱突起嵌め合い穴12Aの嵌め合い公差に起因して幾何学的に遮断動作軸となるY軸方向周り姿勢変化する。したがって、レバー12には被駆動側アーク電極5の動作停止に伴い、遮断動作軸となるY軸方向周りのモーメントMyが発生する。レバーのY軸方向周りの姿勢変化に起因して、衝撃荷重F1及び反力R1、衝撃荷重F2及び反力R2は値が増加し、X軸方向の分布にも偏りが生じさせる。衝撃荷重F1及び反力R1、衝撃荷重F2及び反力R2の増加と偏りにより、駆動側可動ピン衝突地点18B、第三溝カム衝突地点19B、被駆動側可動ピン衝突地点20B、レバー被駆動側ガイド穴衝突地点21Bは、局所的に衝撃荷重とそれに伴う反力が過大となり、接触面圧増加による面粗れやかじりを発生させ動作不良の原因となる。円柱突起15は衝撃荷重F1及び反力R1、衝撃荷重F2及び反力R2のモーメントMyにより増加した衝撃荷重とX軸方向の荷重偏りに対して支持部となり、ガイド14と境目の根元には曲げ応力σMが発生する。
衝撃荷重F1及び反力R1、衝撃荷重F2及び反力R2、及びモーメントMyと力σMは、
両端のレバー12それぞれで発生する。
Further, with the operation stop of the driven side arc electrode 5, the lever 12 changes its posture around the Y-axis direction which is geometrically an interruption operation axis due to the fitting tolerance of the cylindrical projection 15 and the cylindrical projection fitting hole 12A. Do. Therefore, when the operation of the driven side arc electrode 5 is stopped, a moment My around the Y-axis direction, which is an interruption operation axis, is generated in the lever 12. The values of the impact load F1, the reaction force R1, the impact load F2 and the reaction force R2 increase due to the posture change of the lever around the Y-axis direction, and the distribution in the X-axis direction is biased. The impact load F1, the reaction force R1, the impact load F2 and the reaction force R2 increase and bias the drive side movable pin collision point 18B, the third groove cam collision point 19B, the driven side movable pin collision point 20B, the lever driven side At the guide hole collision point 21B, the impact load and the reaction force accompanying it locally become excessive, causing surface roughening and scratching due to an increase in contact surface pressure, which causes an operation failure. The cylindrical projection 15 serves as a support for the impact load and the load deviation in the X-axis direction increased by the impact load F1 and the reaction force R1, the impact load F2 and the moment My of the reaction force R2, and the guide 14 and the base of the border are bent Stress σ M is generated.
The impact load F1 and the reaction force R1, the impact load F2 and the reaction force R2, and the moment My and the force σ M are
It occurs at each of the levers 12 at both ends.

図10は、本発明の実施形態に係るガス遮断器の被駆動側電極の駆動停止時にレバー12に作用するモーメントとそれに起因して駆動側可動ピン18と被駆動側可動ピン20に作用する衝撃荷重、及び円柱突起15に発生する曲げ応力の低減について示す模式図である。   FIG. 10 shows the moment acting on the lever 12 when the driven side electrode of the gas circuit breaker according to the embodiment of the present invention is stopped and the impact acting on the drive side movable pin 18 and the driven side movable pin 20 due to the moment FIG. 5 is a schematic view showing a load and a reduction in bending stress generated in a cylindrical protrusion 15;

本発明の実施形態の構成で、レバー12に仮想レバー軸12Bを設けた場合、駆動側可動ピン衝突地点18B、第三溝カム衝突地点19B、被駆動側可動ピン衝突地点20B、レバー被駆動側ガイド穴衝突地点21B、円柱突起嵌め合い部表面15A、円柱突起嵌め合い穴12Aが仮想レバー軸12B上に位置する。レバー姿勢変化の原因となる円柱突起嵌め合い部表面15Aと円柱突起嵌め合い穴12Aを、駆動側可動ピン衝突地点18B、第三溝カム衝突地点19B、被駆動側可動ピン衝突地点20B、レバー被駆動側ガイド穴衝突地点21Bと同軸上に配置することにより、モーメントMyに起因した、衝撃荷重F1及び反力R1、衝撃荷重F2及び反力R2の増加とX軸方向の分布偏りを最小化でき、接触面圧の増加及び偏りによる面粗れやかじりによる動作不良を防止できる。また、円柱突起15のガイド14と境目の根元に発生する曲げ応力σMを低減できる。双方向駆動機構部10の信頼性確保に必要な構造信頼性を確保しつつ、板厚を削減でき、双方向駆動機構部10を小形化できる。   In the configuration of the embodiment of the present invention, when the virtual lever shaft 12B is provided on the lever 12, the drive side movable pin collision point 18B, the third groove cam collision point 19B, the driven side movable pin collision point 20B, the lever driven side The guide hole collision point 21B, the cylindrical protrusion fitting portion surface 15A, and the cylindrical protrusion fitting hole 12A are located on the virtual lever shaft 12B. The cylindrical protrusion fitting portion surface 15A and the cylindrical protrusion fitting hole 12A which cause the lever posture change, the drive side movable pin collision point 18B, the third groove cam collision point 19B, the driven side movable pin collision point 20B, the lever cover By arranging coaxially with the drive side guide hole collision point 21B, it is possible to minimize the increase in the impact load F1, the reaction force R1, the impact load F2 and the reaction force R2 caused by the moment My and the distribution deviation in the X axis direction. It is possible to prevent malfunction due to surface roughening or scratching due to increase and deviation of contact pressure. In addition, it is possible to reduce the bending stress σM generated at the root of the boundary between the guide 14 of the cylindrical projection 15 and the boundary. The sheet thickness can be reduced while securing the structural reliability necessary for securing the reliability of the bidirectional drive mechanism unit 10, and the bidirectional drive mechanism unit 10 can be miniaturized.

双方向駆動機構部10を構成する材料としては、いかなる材料、例えば鉄鋼材やステンレス鋼材などの金属材料やアルミ材などの非鉄金属材、若しくは炭素系や硝子系の複合でも良い。なお、双方向駆動機構部10を構成し、且つ、接触する部品については、ビッカーズなどの硬度指標で異なる値を有する材料で構成するほうが好ましい。ビッカーズなどの硬度指標で同等値を有する材料で構成する場合は、接触部表面がビッカーズなどの硬度指標で異なる値を有するように焼入れなどの熱処理、窒化処理やメッキなどの表面処理を設けるほうが好ましい。また、ビッカーズなどの硬度指標で異なる値を有する材料で構成し、熱処理、窒化処理やメッキなどの表面処理を設けても良い。   The material constituting the bidirectional drive mechanism unit 10 may be any material, for example, a metal material such as steel or stainless steel, a non-ferrous metal material such as aluminum, or a composite of carbon and glass. In addition, about the components which comprise and contact the bidirectional | two-way drive mechanism part 10, it is more preferable to comprise with a material which has a different value by hardness indicators, such as Vickers. When it is made of materials having equivalent values by hardness index such as Vickers, it is preferable to provide heat treatment such as hardening, surface treatment such as nitriding processing or plating so that the contact surface has different values by hardness index such as Vickers . Moreover, it may be made of a material having different values in hardness index such as Vickers, and surface treatment such as heat treatment, nitriding treatment or plating may be provided.

双方向駆動機構部10は密封容器100内で消弧性ガスや、遮断動作後に消弧性ガスである六フッ化硫黄ガスが分解されて発生した硫化物などが混在した腐食性ガス環境にさらされる。加えて、遮断動作中はアーク光、高熱にさらされる。このような環境下において、耐熱性や耐腐食性を有する材料で双方向駆動機構部10を構成する方が好ましい。   The bi-directional drive mechanism 10 is exposed to a corrosive gas environment in which arc extinguishing gas and sulfur hexafluoride gas which is an arc extinguishing gas after decomposition are decomposed and generated by decomposition in the sealed container 100. Be In addition, it is exposed to arc light and high heat during the shutoff operation. Under such an environment, it is preferable to configure the bidirectional drive mechanism unit 10 with a material having heat resistance and corrosion resistance.

図10に、ガス遮断器の被駆動側電極の駆動停止時にレバーに作用するモーメントと、それに起因して駆動側可動ピンと被駆動側可動ピンに作用する衝撃荷重、及び円柱突起に発生する曲げ応力の低減について示す模式図を示す。レバー12は図10に示した通り、円柱突起15と円柱突起嵌め合い穴12Aの嵌め合いに関して、ブッシュ40を円柱突起嵌め合い部表面15Aと円柱突起嵌め合い部表面15A間に設けても良い。ブッシュ40はレバー12の円柱突起嵌め合い穴12Aに圧入、焼き嵌め、冷し嵌め、接着などの方法で固定される。ブッシュ40はいかなる材料、例えば鉄鋼材やステンレス鋼材などの金属材料やアルミ材などの非鉄金属材、若しくは炭素系や硝子系の複合でも良い。なお、ブッシュ40は接触する円柱突起15とレバー12の構成材料に対してビッカーズなどの硬度指標で異なる値を有する材料で構成するほうが好ましい。ビッカーズなどの硬度指標で同等値を有する材料で構成する場合は、接触部表面がビッカーズなどの硬度指標で異なる値を有するように焼入れなどの熱処理、窒化処理やメッキなどの表面処理を設けるほうが好ましい。また、ビッカーズなどの硬度指標で異なる値を有する材料で構成し、熱処理、窒化処理やメッキなどの表面処理を設けても良い。   In FIG. 10, the moment acting on the lever when the driven side electrode of the gas circuit breaker is stopped, the impact load acting on the driving side movable pin and the driven side movable pin due to it, and the bending stress generated on the cylindrical projection Is a schematic view showing reduction of As shown in FIG. 10, the bush 40 may be provided between the cylindrical projection fitting surface 15A and the cylindrical projection fitting surface 15A for the fitting of the cylindrical projection 15 and the cylindrical projection fitting hole 12A as shown in FIG. The bush 40 is fixed to the cylindrical projection fitting hole 12A of the lever 12 by press fitting, shrink fitting, cold fitting, bonding or the like. The bush 40 may be any material, for example, a metal material such as steel or stainless steel, a nonferrous metal material such as aluminum, or a composite of carbon and glass. The bush 40 is preferably made of a material having different values in hardness index such as Vickers with respect to constituent materials of the cylindrical projection 15 and the lever 12 in contact with each other. When it is made of materials having equivalent values by hardness index such as Vickers, it is preferable to provide heat treatment such as hardening, surface treatment such as nitriding processing or plating so that the contact surface has different values by hardness index such as Vickers . Moreover, it may be made of a material having different values in hardness index such as Vickers, and surface treatment such as heat treatment, nitriding treatment or plating may be provided.

レバー12は図11、図12に示した通り、円柱突起15と円柱突起嵌め合い穴12Aの嵌め合いに関して、軸受け50を円柱突起嵌め合い部表面15Aと円柱突起嵌め合い部表面15A間に設けても良い。軸受け50はレバー12の円柱突起嵌め合い穴12Aに圧入、焼き嵌め、冷し嵌め、接着などの方法で固定される。軸受け50はころ軸受や玉軸受などいかなる方式で軸受けでも良い。軸受け50は荷重の作用方向とメンテナンス性を考慮して、ラジアル軸受け、且つ、無給油軸受けが好ましい。軸受け50はいかなる材料、例えば鉄鋼材やステンレス鋼材などの金属材料やアルミ材などの非鉄金属材、若しくは炭素系や硝子系の複合でも良い。なお、軸受け50は接触する円柱突起15とレバー12の構成材料に対してビッカーズなどの硬度指標で異なる値を有する材料で構成するほうが好ましい。ビッカーズなどの硬度指標で同等値を有する材料で構成する場合は、接触部表面がビッカーズなどの硬度指標で異なる値を有するように焼入れなどの熱処理、窒化処理やメッキなどの表面処理を設けるほうが好ましい。また、ビッカーズなどの硬度指標で異なる値を有する材料で構成し、熱処理、窒化処理やメッキなどの表面処理を設けても良い。   As shown in FIG. 11 and FIG. 12, the lever 50 is provided with the bearing 50 between the cylindrical protrusion fitting portion surface 15A and the cylindrical protrusion fitting portion surface 15A with respect to the fitting of the cylindrical protrusion 15 and the cylindrical protrusion fitting hole 12A. Also good. The bearing 50 is fixed to the cylindrical projection fitting hole 12A of the lever 12 by press fitting, shrink fitting, cold fitting, bonding or the like. The bearing 50 may be any type of bearing such as a roller bearing or a ball bearing. The bearing 50 is preferably a radial bearing or an oil-free bearing in consideration of the direction of action of the load and maintainability. The bearing 50 may be any material, for example, a metallic material such as steel or stainless steel, a non-ferrous metallic material such as aluminum, or a composite of carbon and glass. The bearing 50 is preferably made of a material having different values in hardness index such as Vickers with respect to constituent materials of the cylindrical protrusion 15 and the lever 12 in contact. When it is made of materials having equivalent values by hardness index such as Vickers, it is preferable to provide heat treatment such as hardening, surface treatment such as nitriding processing or plating so that the contact surface has different values by hardness index such as Vickers . Moreover, it may be made of a material having different values in hardness index such as Vickers, and surface treatment such as heat treatment, nitriding treatment or plating may be provided.

実施例2に関して図13を用いて説明する。双方向駆動機構は図13に示した双方向駆動機構部10−2のように、ベルクランク形状のレバー12−2を用いた形態としても良い。双方向駆動機構部10−2では、双方向駆動機構部10−2における第三溝カム19が、レバー駆動側ガイド穴19−2に変更される。双方向駆動機構部10では、駆動側可動ピン18と第三溝カム19は固定されていなかったが、双方向駆動機構部10−2では、駆動側可動ピン18とレバー駆動側ガイド穴19−2は嵌め合いとなり、駆動側可動ピン18の動作を制限される。ただし、動作原理は双方向駆動機構部10の形態を用いて説明した通りである。本発明の実施形態の効果についても、双方向駆動機構部10の形態と同等である。   The second embodiment will be described with reference to FIG. The bidirectional drive mechanism may be configured to use a bell crank shaped lever 12-2 as in the bidirectional drive mechanism portion 10-2 shown in FIG. In the bidirectional drive mechanism portion 10-2, the third groove cam 19 in the bidirectional drive mechanism portion 10-2 is changed to the lever drive side guide hole 19-2. In the bidirectional drive mechanism section 10, the drive side movable pin 18 and the third groove cam 19 are not fixed, but in the bidirectional drive mechanism section 10-2, the drive side movable pin 18 and the lever drive side guide hole 19- 2 is fit, and the movement of the drive side movable pin 18 is limited. However, the principle of operation is as described using the form of the bidirectional drive mechanism unit 10. The effects of the embodiment of the present invention are also equivalent to the form of the bidirectional drive mechanism unit 10.

また、レバー12−2と円柱突起15−2は図11及び図12に示した通り、ブッシュ40や軸受け50を介して嵌め合っても良い。   Further, as shown in FIGS. 11 and 12, the lever 12-2 and the cylindrical projection 15-2 may be fitted through the bush 40 or the bearing 50.

本実施例では、例えば、密封容器100内に駆動側電極と被駆動側電極を対向して設け、前記駆動側電極は駆動側主電極2と駆動側アーク電極4を有し、前記被駆動側電極は被駆動側主電極3と被駆動側アーク電極5を有し、前記駆動側アーク電極4は操作器1に接続され、前記被駆動側アーク電極5は双方向駆動機構部10−2に連結され、前記双方向駆動機構部10−2は、前記駆動側電極からの駆動力を受ける駆動側連結ロッド11−2と、前記被駆動側アーク電極5に接続した被駆動側連結ロッド13−2と、前記駆動側連結ロッド11−2の動作に対して前記被駆動側連結ロッド13−2を反対方向に動作させるレバー12−2と、レバー12−2の回転を規定する回転中心となる円柱突起15−2をガイド14−2に一体成型し、レバー12−2とガイド14−2を嵌め合い、前記駆動側連結ロッド11−2と前記被駆動側連結ロッド13−2の動作を規定するガイド14−2と、前記駆動側連結ロッド11−2が有する第一溝カム16−2と、前記レバー12−2が有する第二溝カム17−2それぞれに、駆動側可動ピン18を連通させ、前記駆動側連結ロッド11−2の動作により前記駆動側可動ピン18が前記それぞれの第一溝カム16−2と被駆動側連結ロッドガイド溝30−2内を運動することで、前記レバー12−2を回動させ、被駆動側可動ピン20で前記レバー12−2と連通された前記被駆動側連結ロッド13−2が前記駆動側連結ロッド11−2と反対方向に駆動され、前記被駆動側連結ロッド13−2に接続する前記被駆動側アーク電極5が前記駆動側連結ロッド11−2に接続する前記駆動側電極の前記駆動側アーク電極4と反対方向に駆動させることを特徴のひとつとすることができる。   In the present embodiment, for example, the drive side electrode and the driven side electrode are provided opposite to each other in the sealed container 100, the drive side electrode includes the drive side main electrode 2 and the drive side arc electrode 4, and the driven side The electrode has a driven side main electrode 3 and a driven side arc electrode 5, the drive side arc electrode 4 is connected to the operation device 1, and the driven side arc electrode 5 is a bidirectional drive mechanism 10-2. The bidirectional drive mechanism unit 10-2 is connected to a drive side connection rod 11-2 that receives a driving force from the drive side electrode, and a driven side connection rod 13- connected to the driven side arc electrode 5 2 and the lever 12-2 for operating the driven connection rod 13-2 in the opposite direction with respect to the operation of the drive connection rod 11-2 and the rotation center defining the rotation of the lever 12-2. Integrally molding the cylindrical projection 15-2 on the guide 14-2 A guide 14-2 for fitting the lever 12-2 and the guide 14-2 and defining the operation of the drive side connecting rod 11-2 and the driven side connecting rod 13-2, and the drive side connecting rod 11-2 The drive-side movable pin 18 is communicated with each of the first groove cam 16-2 and the second groove cam 17-2 of the lever 12-2, and the drive is performed by the operation of the drive connecting rod 11-2. The side movable pins 18 move in the respective first grooved cams 16-2 and the driven side connecting rod guide grooves 30-2 to rotate the levers 12-2, so that the driven side movable pins 20 can be moved. The driven side in which the driven connection rod 13-2 communicated with the lever 12-2 is driven in the opposite direction to the drive connection rod 11-2 and connected to the driven connection rod 13-2. Arc electrode 5 is in front And the drive side the drive-side arc electrode 4 of the electrode to be connected to the drive coupling rod 11-2 that is driven in the opposite direction may be one of the features.

駆動側連結ロッド11−2はガイド14−2に設けられた上溝14A−2と下溝14B−2により上下方向の変位を制限され、遮断部の駆動軸となるY軸方向と直行するX軸方向へのみ移動可能となる。   The drive-side connecting rod 11-2 is limited in displacement in the vertical direction by the upper groove 14A-2 and the lower groove 14B-2 provided in the guide 14-2, and the X axis direction orthogonal to the Y axis direction serving as the drive shaft of the blocking portion It can only move to

駆動側可動ピン18は、ガイド14−2内の第二溝カム17−2と、駆動側連結ロッド11−2内の第一溝カム16−2と、レバー12−2内のレバー駆動側ガイド穴19−2を貫通する。被駆動側可動ピン20は、レバー12−2内のレバー被駆動側ガイド穴21−2と被駆動側連結ロッド13−2内の被駆動側連結ロッドガイド溝30−2を貫通する。この際、ガイド14−2には被駆動側可動ピン20が移動するための穴25−2を設ける。   The drive-side movable pin 18 includes a second grooved cam 17-2 in the guide 14-2, a first grooved cam 16-2 in the drive-side connecting rod 11-2, and a lever drive-side guide in the lever 12-2. It penetrates hole 19-2. The driven side movable pin 20 passes through the lever driven side guide hole 21-2 in the lever 12-2 and the driven side connecting rod guide groove 30-2 in the driven side connecting rod 13-2. At this time, the guide 14-2 is provided with a hole 25-2 for the driven side movable pin 20 to move.

駆動側可動ピン18、被駆動側可動ピン20は、ガイド14から外れないよう、両端に切り込んだ駆動側可動ピン締結ボルト26、被駆動側可動ピン締結ボルト28を駆動側可動ピン固定ナット27、被駆動側可動ピン固定ナット29でそれぞれ締め付ける。ボルト締結部をアクセスし易いガイド14の外側に配置することにより、メンテナンス性の向上が可能となる。   Drive side movable pin 18, drive side movable pin 20, drive side movable pin fastening bolt 26 cut at both ends, driven side movable pin fastening bolt 28, drive side movable pin fixing nut 27, They are respectively tightened by the driven side movable pin fixing nut 29. By arranging the bolt fastening portion on the outside of the easily accessible guide 14, it is possible to improve the maintainability.

本実施例によれば、遮断動作時における時刻dでの被駆動側アーク電極5の動作停止に伴い、モーメントMyを発生させてレバー12−2の姿勢変化の原因となる、円柱突起嵌め合い部表面15A−2と円柱突起嵌め合い穴12A−2を、駆動側可動ピン衝突地点18B、第三溝カム衝突地点19B、被駆動側可動ピン衝突地点20B、レバー被駆動側ガイド穴衝突地点21Bと同軸上に配置することにより、モーメントMyに起因した、衝撃荷重F1及び反力R1、衝撃荷重F2及び反力R2の増加とX軸方向の分布偏りを最小化して接触面圧の増加及び偏りによる面粗れやかじりによる動作不良を防止、及び円柱突起15−2のガイド14−2と境目の根元に発生する曲げ応力σMを低減でき、双方向駆動機構部10−2の信頼性確保に必要な構造信頼性を確保しつつ、双方向駆動機構部10−2を小形化することができる。   According to this embodiment, the cylindrical projection fitting portion which generates moment My and causes posture change of lever 12-2 with the stop of the operation of driven side arc electrode 5 at time d in the shutoff operation. The surface 15A-2 and the cylindrical projection fitting hole 12A-2 include the drive side movable pin collision point 18B, the third groove cam collision point 19B, the driven side movable pin collision point 20B, and the lever driven side guide hole collision point 21B. By coaxially arranging, by increasing the impact load F1 and the reaction force R1, the impact load F2 and the reaction force R2 caused by the moment My and the distribution bias in the X-axis direction, the contact surface pressure is increased and biased. It is possible to prevent malfunction due to surface roughening and bending, and reduce bending stress σ M generated at the root of the boundary between the guide 14-2 of the cylindrical projection 15-2 and the reliability of the bidirectional drive mechanism 10-2. While ensuring the essential structural reliability can be downsized bidirectional drive mechanism 10-2.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれている。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.

1:操作器
2:駆動側主電極
3:被駆動側主電極
4:駆動側アーク電極
5:被駆動側アーク電極
6:シャフト
7:機械的圧縮室
8:ノズル
9:熱膨張室
10:双方向駆動機構部
11:駆動側連結ロッド
12:レバー
12A:円柱突起嵌め合い穴
12B:仮想レバー軸
13:被駆動側連結ロッド
14:ガイド
14A:上溝
14B:下溝
15:円柱突起
15A:円柱突起嵌め合い部表面
16:第一溝カム
16A:第一直線部
16B:連結部
16C:第二直線部
17:第二溝カム
18:駆動側可動ピン
18B:駆動側可動ピン衝突地点
19:第三溝カム
19B:第三溝カム衝突地点
20:被駆動側可動ピン
20B:被駆動側可動ピン衝突地点
21:レバー被駆動側ガイド穴
21B:レバー被駆動側ガイド穴衝突地点
22:締結リング
23:駆動側締結ボルト
25:穴
26:駆動側可動ピン締結ボルト
27:駆動側可動ピン固定ナット
28:被駆動側可動ピン締結ボルト
29:被駆動側可動ピン固定ナット
30:被駆動側連結ロッドガイド溝
40:ブッシュ
50:軸受け
100:密封容器、
10−2:双方向駆動機構部
11−2:駆動側連結ロッド
12−2:レバー
12A−2:円柱突起嵌め合い穴
13−2:被駆動側連結ロッド
14−2:ガイド
14A−2:上溝
14B−2:下溝
15−2:円柱突起
15A−2:円柱突起嵌め合い部表面
16−2:第一溝カム
17−2:第二溝カム
19−2:レバー駆動側ガイド穴
21−2:レバー被駆動側ガイド穴
25−2:穴
30−2:被駆動側連結ロッドガイド溝
1: Controller 2: Drive-side main electrode 3: Drive-side main electrode 4: Drive-side arc electrode 5: Drive-side arc electrode 6: Shaft 7: Mechanical compression chamber 8: Nozzle 9: Thermal expansion chamber 10: Both Directional drive mechanism 11: drive side connecting rod 12: lever 12A: cylindrical projection fitting hole 12B: virtual lever shaft 13: driven side connecting rod 14: guide 14A: upper groove 14B: lower groove 15: cylindrical projection 15A: cylindrical projection fitting Fitting surface 16: first groove cam 16A: first straight portion 16B: connecting portion 16C: second straight portion 17: second groove cam 18: drive side movable pin 18B: drive side movable pin collision point 19: third groove cam 19B: third groove cam collision point 20: driven side movable pin 20B: driven side movable pin collision point 21: lever driven side guide hole 21B: lever driven side guide hole collision point 22: tightened Ring 23: Drive side fastening bolt 25: Hole 26: Drive side movable pin fastening bolt 27: Drive side movable pin fixing nut 28: Driven side movable pin fastening bolt 29: Driven side movable pin fixing nut 30: Driven side connection Rod guide groove 40: Bushing 50: Bearing 100: Sealed container,
10-2: Bidirectional drive mechanism part 11-2: Drive side connecting rod 12-2: Lever 12A-2: Cylindrical projection fitting hole 13-2: Driven side connection rod 14-2: Guide 14A-2: Upper groove 14B-2: Lower groove 15-2: Cylindrical projection 15A-2: Cylindrical projection fitting surface 16-2: First groove cam 17-2: Second groove cam 19-2: Lever drive side guide hole 21-2: Lever driven side guide hole 25-2: hole 30-2: driven side connecting rod guide groove

Claims (13)

ガス遮断器であって、
駆動側主電極と駆動側アーク電極を有し、操作器に接続され、密封タンク内に設けられた駆動側電極と、
被駆動側主電極と被駆動側アーク電極を有し、密封タンク内に前記駆動側電極と対向して設けられた被駆動側電極と、
双方向駆動機構部と、
を備え、
前記双方向駆動機構は、
前記駆動側電極からの駆動力を受ける駆動側連結ロッドと、
前記被駆動側アーク電極に接続された被駆動側連結ロッドと、
前記駆動側連結ロッドと前記被駆動側連結ロッドが内部を並進自在に移動するよう保持するガイドと、
前記ガイドの両外側に配置され、互いに前記ガイドに一体成型された円柱突起に嵌め合うことにより回動自在に固定され、前記被駆動側連結ロッドと前記駆動側連結ロッドを連結し、前記駆動側連結ロッドの動作に対して前記被駆動側連結ロッドを反対方向に動作させるための2つのレバーを有することを特徴とするガス遮断器。
A gas circuit breaker,
A drive side electrode having a drive side main electrode and a drive side arc electrode, connected to the controller, and provided in the sealed tank;
A driven side electrode which has a driven side main electrode and a driven side arc electrode, and is provided in the sealed tank so as to face the drive side electrode;
A bidirectional drive mechanism unit,
Equipped with
The bidirectional drive mechanism is
A drive side connecting rod which receives a driving force from the drive side electrode;
A driven connection rod connected to the driven arc electrode;
A guide for holding the drive side connecting rod and the driven side connecting rod so as to translate the inside;
The guide is disposed on the outer sides of the guide and rotatably fixed to each other by fitting to a cylindrical projection integrally formed with the guide, whereby the driven connection rod and the drive connection rod are connected, and the drive side is connected. A gas circuit breaker comprising two levers for operating the driven connection rod in opposite directions with respect to the movement of the connection rod.
請求項1に記載のガス遮断器において、
前記駆動側連結ロッドが有する第一溝カムと、前記ガイドが有する第二溝カムと、前記レバーが有する第三溝カムとのそれぞれに、駆動側可動ピンを連通させ、前記円柱突起を
前記第二溝カムの長手方向幅内に配置し、前記円柱突起を挟んで前記駆動側可動ピンと反対側の位置に前記被駆動側連結ロッドを移動させる被駆動側可動ピンを連通させる構造としたことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 1,
A driving side movable pin is communicated with each of the first groove cam of the drive side connecting rod, the second groove cam of the guide, and the third groove cam of the lever, and the cylindrical protrusion is The movable groove is disposed within the longitudinal width of the two groove cam, and a driven movable pin for moving the driven connecting rod is communicated with a position opposite to the driving movable pin with the cylindrical protrusion interposed therebetween. Characteristic gas circuit breaker.
請求項1に記載のガス遮断器において、
前記レバーと前記円柱突起についてブッシュを介して嵌め合うことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 1,
A gas circuit breaker characterized in that the lever and the cylindrical projection are fitted through a bush.
請求項1に記載のガス遮断器において、
前記レバーと前記円柱突起について軸受けを介して嵌め合うことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 1,
A gas circuit breaker characterized in that the lever and the cylindrical projection are fitted through a bearing.
請求項2に記載のガス遮断器において、
前記レバーと前記円柱突起について前記ブッシュを介して嵌め合うことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 2,
A gas circuit breaker characterized in that the lever and the cylindrical projection are fitted through the bush.
請求項2に記載のガス遮断器において、
前記レバーと前記円柱突起について前記軸受けを介して嵌め合うことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 2,
A gas circuit breaker characterized in that the lever and the cylindrical projection are fitted through the bearing.
請求項1に記載のガス遮断器において、
前記駆動側連結ロッドが有する第一溝カムと、前記ガイドが有する第二溝カムと、前記レバーが有すると嵌め合い穴それぞれに、駆動側可動ピンを連通させ、前記円柱突起を前記第二溝カムの長手方向幅内に配置し、前記レバーをベルクランク形状とし、前記円柱突起を挟んで前記駆動側可動ピンと反対側の位置に前記被駆動側連結ロッドを移動させる被駆動側可動ピンを連通させる構造としたことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 1,
The drive-side movable pin is communicated with the first groove cam of the drive-side connecting rod, the second groove cam of the guide, and the fitting hole of the lever, and the cylindrical protrusion is formed into the second groove A driven side movable pin is disposed which is disposed within the longitudinal width of the cam, the lever has a bell crank shape, and moves the driven connection rod to a position opposite to the drive side movable pin across the cylindrical projection. A gas circuit breaker characterized in that
請求項7に記載のガス遮断器において、
前記レバーと前記円柱突起について前記ブッシュを介して嵌め合うことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 7,
A gas circuit breaker characterized in that the lever and the cylindrical projection are fitted through the bush.
請求項7に記載のガス遮断器において、
前記レバーと前記円柱突起について前記軸受けを介して嵌め合うことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 7,
A gas circuit breaker characterized in that the lever and the cylindrical projection are fitted through the bearing.
請求項2に記載のガス遮断器において、
前記駆動側連結ロッドは、
第二直線部、連結部、第一直線部を含む第一溝カムを有し、
第一直線部と第二直線部は駆動方向に対し互いに異なる軸線上に設けられ、その間に連結部が設けられたことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 2,
The drive side connecting rod is
A first grooved cam including a second straight portion, a connecting portion, and a first straight portion;
A gas circuit breaker characterized in that the first straight portion and the second straight portion are provided on mutually different axes with respect to the driving direction, and a connecting portion is provided therebetween.
請求項7に記載のガス遮断器において、
前記駆動側連結ロッドは、
第二直線部、連結部、第一直線部を含む第一溝カムを有し、
第一直線部と第二直線部は駆動方向に対し互いに異なる軸線上に設けられ、その間に連結部が設けられたことを特徴とするガス遮断器。
In the gas circuit breaker according to claim 7,
The drive side connecting rod is
A first grooved cam including a second straight portion, a connecting portion, and a first straight portion;
A gas circuit breaker characterized in that the first straight portion and the second straight portion are provided on mutually different axes with respect to the driving direction, and a connecting portion is provided therebetween.
請求項10に記載のガス遮断器において、
前記ガイドは、
前記駆動側連結ロッドの第一溝カムの溝幅に等しい第二溝カムが切り込まれて、
前記駆動側連結ロッドの第一溝カムと前記ガイドの第二溝カムは積層構造を成し、両溝カムの重なり部分に可動ピンが配され互いに可動自在に連結されることを特徴とするガス遮断器。
The gas circuit breaker according to claim 10,
The guide is
A second groove cam equal to the groove width of the first groove cam of the drive side connecting rod is cut,
The gas is characterized in that the first grooved cam of the drive side connecting rod and the second grooved cam of the guide form a laminated structure, and a movable pin is disposed at an overlapping portion of both grooved cams and is movably connected to each other. Circuit breaker.
請求項1に記載のガス遮断器において、
前記レバーに丸穴、前記被駆動側連結ロッドに長穴が設けられ、又は、前記レバーに長穴、前記被駆動側連結ロッドに丸穴が設けられ、
被駆動側可動ピンが、前記レバーの穴と前記被駆動側連結ロッドの穴を貫通することを特徴とするガス遮断器。
In the gas circuit breaker according to claim 1,
A round hole is provided in the lever, an elongated hole is provided in the driven connection rod, or an elongated hole is provided in the lever, and a circular hole is provided in the driven connection rod.
A gas circuit breaker characterized in that a driven side movable pin passes through a hole of the lever and a hole of the driven connection rod.
JP2017076405A 2017-04-07 2017-04-07 Gas-blast circuit breaker Pending JP2018181502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076405A JP2018181502A (en) 2017-04-07 2017-04-07 Gas-blast circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076405A JP2018181502A (en) 2017-04-07 2017-04-07 Gas-blast circuit breaker

Publications (1)

Publication Number Publication Date
JP2018181502A true JP2018181502A (en) 2018-11-15

Family

ID=64275826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076405A Pending JP2018181502A (en) 2017-04-07 2017-04-07 Gas-blast circuit breaker

Country Status (1)

Country Link
JP (1) JP2018181502A (en)

Similar Documents

Publication Publication Date Title
EP2450930A1 (en) Gas circuit breaker with reset ohmic contact, and method for resetting and tripping same
JP4902822B1 (en) Gas circuit breaker
KR101759452B1 (en) Gas circuit breaker
KR101395151B1 (en) Spring operation device for circuit breaker and circuit breaker
EP2551880B1 (en) Power transmission device for vacuum interrupter and vacuum breaker having the same
JP6824028B2 (en) Gas circuit breaker
JP2018181502A (en) Gas-blast circuit breaker
CN101162659A (en) Switch installation used for electrical power system
JP5735123B2 (en) Gas circuit breaker
JP6535610B2 (en) Gas circuit breaker
EP2768005B1 (en) Rotation double-breakpoint movable contact module
US10199188B2 (en) Gas circuit breaker
CN107026044A (en) A kind of lever micro limit switch
JP2004281175A (en) Gas circuit breaker
JP6685146B2 (en) Gas circuit breaker
KR101702539B1 (en) Driving mechanism of vaccum circuit breaker
CN112534534B (en) Closed contact system
JP6132744B2 (en) Gas circuit breaker
US9870884B2 (en) Gas circuit breaker
WO2014198290A1 (en) High-voltage switching device
WO2015186391A1 (en) Gas circuit-breaker
JP2001283691A (en) Operating apparatus for switching device
JP2003187681A (en) Gas-blast circuit breaker
KR20170003117U (en) Motion-converting device in insulated switchgear
JP6113413B2 (en) Gas circuit breaker with input resistance contact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210817