JP6582599B2 - Low carbon neutralization-inhibiting mortar composition and low carbon neutralization-inhibiting mortar cured product - Google Patents

Low carbon neutralization-inhibiting mortar composition and low carbon neutralization-inhibiting mortar cured product Download PDF

Info

Publication number
JP6582599B2
JP6582599B2 JP2015124605A JP2015124605A JP6582599B2 JP 6582599 B2 JP6582599 B2 JP 6582599B2 JP 2015124605 A JP2015124605 A JP 2015124605A JP 2015124605 A JP2015124605 A JP 2015124605A JP 6582599 B2 JP6582599 B2 JP 6582599B2
Authority
JP
Japan
Prior art keywords
fine powder
neutralization
low carbon
cement
carbon neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015124605A
Other languages
Japanese (ja)
Other versions
JP2017007892A (en
Inventor
剛朗 石田
剛朗 石田
大和 功一郎
功一郎 大和
晃希 綿屋
晃希 綿屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2015124605A priority Critical patent/JP6582599B2/en
Publication of JP2017007892A publication Critical patent/JP2017007892A/en
Application granted granted Critical
Publication of JP6582599B2 publication Critical patent/JP6582599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、中性化を抑制するとともに圧縮強度に優れる、低炭素中性化抑制モルタル組成物に関する。本発明はまた、その低炭素中性化抑制モルタル組成物を使用する、低炭素中性化抑制モルタル硬化体の製造方法に関する。   The present invention relates to a low carbon neutralization-inhibiting mortar composition that suppresses neutralization and is excellent in compressive strength. The present invention also relates to a method for producing a low-carbon neutralization-inhibited mortar cured product using the low-carbon neutralization-inhibited mortar composition.

近年、地球温暖化抑制の観点から、建設材料分野においても低炭素化の要請が高まりつつある。基幹建設材料であるコンクリートは、水と、セメントと、混和材と、細骨材と、粗骨材等を練り混ぜて製造されるが、セメントはその製造時に他の材料よりも多くの二酸化炭素を排出することから、低炭素化を図る際、セメントの一部を混和材で置換する方法が一般的である。   In recent years, from the viewpoint of suppressing global warming, there is an increasing demand for low carbon in the construction material field. Concrete, the core construction material, is manufactured by mixing water, cement, admixture, fine aggregate, coarse aggregate, etc., but cement is more carbon dioxide than other materials at the time of manufacture. In order to reduce carbon, it is common to replace part of the cement with an admixture.

しかしながら、低炭素化を図り混和材の置換量を多くすると、セメント量が減少することから、セメント硬化体(コンクリートおよびモルタル)の強度は、一般的には低下する。また、一般的に混和材の使用は中性化に対する抵抗性を低下させる。これは、混和材中に含まれるCa量がセメントに比べ少ないことに起因しており、Ca量が少ないと中性化に対抗する主要因の水和物であるCa(OH)量が少なくなるためである。 However, when the carbon content is reduced and the amount of replacement of the admixture is increased, the amount of cement decreases, so the strength of the hardened cement (concrete and mortar) generally decreases. In general, the use of admixtures reduces the resistance to neutralization. This is due to the fact that the amount of Ca contained in the admixture is less than that of cement. When the amount of Ca is small, the amount of Ca (OH) 2 which is a hydrate of the main factor that counteracts neutralization is small. It is to become.

高炉スラグ微粉末は高炉水砕スラグを粉砕することによって得られ、潜在水硬性を有し、一般的によく用いられる混和材である。同様に混和材としてよく用いられているフライアッシュに比べ、強度発現に優れるが、多量に置換した場合などには、強度低下を生じる。   Blast furnace slag fine powder is obtained by pulverizing granulated blast furnace slag, has latent hydraulic properties, and is a commonly used admixture. Similarly, it is superior in strength expression compared to fly ash which is often used as an admixture, but the strength is reduced when a large amount is substituted.

高炉スラグ微粉末の反応を促進する刺激剤としては、石膏がよく用いられている。非特許文献1では、高炉スラグ微粉末/(セメント+高炉スラグ微粉末)の比が28.9〜79.2%の範囲において、石膏/(セメント+高炉スラグ微粉末)の比が0.0〜11.1%の範囲で石膏を添加しており、前養生期間が短い場合(3日水中養生)にのみ中性化抑制に石膏添加が有効であるとしている。一方、非特許文献2は、高炉スラグ微粉末/(セメント+高炉スラグ微粉末)の比が47.4〜50.0%において、石膏/(セメント+高炉スラグ微粉末)の比が0.0〜5.3%の範囲で石膏を添加しており、石膏添加によって強度発現性は向上するが、中性化に関しては逆に促進させる傾向があるとしている。また、非特許文献3では、高炉スラグ微粉末/(セメント+高炉スラグ微粉末)の比が66.5%程度において、石膏/(セメント+高炉スラグ微粉末)の比が0.0〜11.1%の範囲で石膏を添加しており、石膏添加によって初期強度の増進と、長期強度増進の抑制が見られるが、中性化速度は速くなるとしている。   Gypsum is often used as a stimulant for promoting the reaction of blast furnace slag fine powder. In Non-Patent Document 1, the ratio of gypsum / (cement + blast furnace slag fine powder) is 0.0 when the ratio of blast furnace slag fine powder / (cement + blast furnace slag fine powder) ranges from 28.9 to 79.2%. Gypsum is added in a range of ˜11.1%, and gypsum addition is effective for neutralization suppression only when the pre-curing period is short (3-day underwater curing). On the other hand, Non-Patent Document 2 shows that when the ratio of blast furnace slag fine powder / (cement + blast furnace slag fine powder) is 47.4 to 50.0%, the ratio of gypsum / (cement + blast furnace slag fine powder) is 0.0. Gypsum is added in a range of ˜5.3%, and the strength development is improved by adding gypsum, but the neutralization tends to be promoted conversely. Further, in Non-Patent Document 3, when the ratio of fine blast furnace slag powder / (cement + blast furnace slag fine powder) is about 66.5%, the ratio of gypsum / (cement + blast furnace slag fine powder) is 0.0-11. Gypsum is added in the range of 1%, and the addition of gypsum shows an increase in the initial strength and a suppression of the long-term strength, but the neutralization rate is said to increase.

坂井悦郎、大門正機、鯉渕清、近田孝夫、「化学組成や粉末度の異なる高炉セメント硬化体の炭酸化」、コンクリート工学年次論文報告集、Vol.18、No.1、pp.735−740、1996Goro Sakai, Masaki Daimon, Kiyoshi Kiyoshi, Takao Chikada, “Carbonation of hardened blast furnace cement with different chemical composition and fineness”, Annual report on concrete engineering, Vol.18, No.1, pp.735 740, 1996 盛岡実、二階堂泰之、久保田賢、浅賀喜与志、「各種刺激剤を混和した高炉スラグセメント硬化体の中性化」、コンクリート工学年次論文報告集、Vol.18、No.1、pp.741−746、1996Minoru Morioka, Yasuyuki Nikaido, Ken Kubota, Kiyoshi Asaga, “Neutralization of hardened blast furnace slag cement mixed with various stimulants”, Annual Report of Concrete Engineering, Vol.18, No.1, pp.741 -746, 1996 和地正浩、金井亮、辻大二郎、井上和政、三井健郎、米澤敏男、「高炉スラグ微粉末高含有セメントを用いたコンクリートの基礎物性に関する研究」、竹中技術研究報告、No.67、pp.1−6、2011Masahiro Wachi, Ryo Kanai, Daijiro Tsuji, Kazumasa Inoue, Takeo Mitsui, Toshio Yonezawa, “Study on Basic Properties of Concrete Using High-cement Blast Furnace Slag Fine Powder”, Takenaka Technical Research Report, No. 67, pp. 1-6, 2011

前述のように、低炭素化を図り、セメントを高炉スラグ微粉末で多量置換した場合、強度が低下するとともに、中性化に対する抵抗性が低下する。刺激剤として石膏を用いた場合においても、特に初期強度改善には効果があるが、中性化に関しては逆に促進してしまう例も見られる。   As described above, when carbon is reduced and a large amount of cement is replaced with fine blast furnace slag powder, strength is lowered and resistance to neutralization is lowered. Even when gypsum is used as an irritant, it is particularly effective in improving the initial strength, but there are also cases where neutralization is promoted conversely.

そこで、本発明は、中性化を抑制するとともに圧縮強度に優れる、低炭素中性化抑制モルタル組成物を提供することを目的とする。   Then, an object of this invention is to provide the low carbon neutralization suppression mortar composition which is excellent in compressive strength while suppressing neutralization.

本発明者らは、上記目的を達成すべく鋭意検討した結果、石膏と、上澄水などに代表されるCaイオン等を含む高pH溶液を併用することにより、上記目的を達成することができることを知見した。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by using gypsum and a high pH solution containing Ca ions and the like typified by supernatant water. I found out.

即ち、本発明は、以下に関する。
(1)無機質微粉末、石膏、細骨材及び練混ぜ水を含む低炭素中性化抑制モルタルであって、無機質微粉末はセメントと高炉スラグ微粉末とからなり、前記セメントと前記高炉スラグ微粉末の質量比(セメント:高炉スラグ)が10:90〜30:70であり、前記石膏の量が前記無機質微粉末100質量部に対して6〜10質量部であり、前記練混ぜ水のpHが10〜14及びCaイオン濃度が100〜5000mg/Lであることを特徴とする低炭素中性化抑制モルタル組成物。低炭素化のために、高炉スラグ微粉末を多量に使用しても、石膏と、上澄水などに代表されるCaイオン等を含む高pH溶液を併用することにより、中性化抑制と強度増進が可能となる。
That is, the present invention relates to the following.
(1) A low carbon neutralization-inhibiting mortar containing fine inorganic powder, gypsum, fine aggregate and mixed water, the fine inorganic powder comprising cement and fine blast furnace slag fine powder, and the fine cement and blast furnace slag fine powder. The powder mass ratio (cement: blast furnace slag) is 10: 90-30: 70, the amount of the gypsum is 6-10 parts by mass with respect to 100 parts by mass of the inorganic fine powder, and the pH of the mixing water 10 to 14 and the Ca ion concentration is 100 to 5000 mg / L. Even if a large amount of blast furnace slag fine powder is used for carbon reduction, neutralization is suppressed and strength is enhanced by using a high pH solution containing Ca ions, such as gypsum and supernatant water. Is possible.

(2)前記練混ぜ水のNaイオン濃度が10〜500mg/L及びKaイオン濃度が10〜500mg/Lである、上記(1)に記載の低炭素中性化抑制モルタル組成物。 (2) The low carbon neutralization-suppressing mortar composition according to the above (1), wherein the kneaded water has a Na ion concentration of 10 to 500 mg / L and a Ka ion concentration of 10 to 500 mg / L.

(3)前記練混ぜ水のSOイオン濃度が10〜5000mg/L及びClイオン濃度が1〜100mg/Lである、上記(1)または(2)に記載の低炭素中性化抑制モルタル組成物。 (3) The low carbon neutralization-suppressing mortar composition according to the above (1) or (2), wherein the mixing water has a SO 4 ion concentration of 10 to 5000 mg / L and a Cl ion concentration of 1 to 100 mg / L. object.

(4)前記無機質微粉末100質量部に対して、更に水酸化カルシウムを1〜10質量部含む、上記(1)〜(3)のいずれかに記載の低炭素中性化抑制モルタル組成物。水酸化カルシウムを併用することにより、更に中性化を抑制することができる。   (4) The low carbon neutralization-suppressing mortar composition according to any one of (1) to (3), further including 1 to 10 parts by mass of calcium hydroxide with respect to 100 parts by mass of the inorganic fine powder. By using calcium hydroxide in combination, neutralization can be further suppressed.

(5)無機質微粉末と石膏と細骨材と練混ぜ水とを混合し前記低炭素中性化抑制モルタル組成物を調製する工程と、前記低炭素中性化抑制モルタルを養生する工程とを含む、低炭素中性化抑制モルタル硬化体の製造方法。 (5) A step of mixing the inorganic fine powder, gypsum, fine aggregate and mixing water to prepare the low-carbon neutralization-inhibiting mortar composition, and a step of curing the low-carbon neutralization-inhibiting mortar. The manufacturing method of the low carbon neutralization suppression mortar hardening body containing.

(6)前記養生において、1〜10週間水中養生後する工程と、1〜10週間気中養生後する工程とを含む、上記(5)に記載の低炭素中性化抑制モルタル硬化体の製造方法。   (6) In the said curing, manufacture of the low-carbon neutralization suppression mortar hardening body as described in said (5) including the process of carrying out underwater curing for 1 to 10 weeks, and the process of carrying out air curing for 1 to 10 weeks Method.

<低炭素中性化抑制モルタル組成物>
本発明の低炭素中性化抑制モルタル組成物は、無機質微粉末、石膏、細骨材及び練混ぜ水を含む。無機質微粉末は、セメントと高炉スラグ微粉末とからなる。
<Low carbon neutralization inhibiting mortar composition>
The low-carbon neutralization-suppressing mortar composition of the present invention contains fine inorganic powder, gypsum, fine aggregate, and mixed water. The inorganic fine powder is composed of cement and blast furnace slag fine powder.

本発明で使用するセメントとしては、JISで規定されるポルトランドセメントや混合セメントを挙げることができる。具体的には、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、及びそれらの低アルカリ型ポルトランドセメント、さらに高炉セメント、フライアッシュセメント、シリカセメント等を挙げることができる。   Examples of the cement used in the present invention include Portland cement and mixed cement specified by JIS. Specifically, ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, medium heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, and their low alkali type Portland cement, blast furnace cement, fly ash Examples thereof include cement and silica cement.

高炉スラグとは鉄鋼の精錬の際に副産物として生成されるもので、本発明では微粉砕された高炉スラグ微粉末が使用される。本発明の高炉スラグ微粉末は、好ましくは高炉水砕スラグを微粉砕することによって得られる。高炉スラグ微粉末中、CaO量40〜45質量%、SiO量30〜35質量%、Al量10〜18質量%、SO量1.5〜2.0質量%の範囲にある高炉スラグを使用することが好ましい。高炉スラグ微粉末のブレーン表面積は、4000〜4900が好ましく、4200〜4900がより好ましく、4400〜4900がさらに好ましい。 Blast furnace slag is produced as a by-product during the refining of steel. In the present invention, finely ground blast furnace slag powder is used. The blast furnace slag fine powder of the present invention is preferably obtained by pulverizing blast furnace granulated slag. There blast furnace slag in, CaO content 40-45 wt%, SiO 2 content 30 to 35 wt%, Al 2 O 3 content 10 to 18 wt%, in the range of SO 3 content 1.5-2.0 wt% It is preferable to use blast furnace slag. The blast furnace slag fine powder has a brain surface area of preferably 4000 to 4900, more preferably 4200 to 4900, and still more preferably 4400 to 4900.

本発明では、前記セメントと前記高炉スラグ微粉末の質量比(セメント:高炉スラグ)は、10:90〜30:70であり、好ましくは13:87〜27:73であり、より好ましくは16:84〜24:76である。   In the present invention, the mass ratio of the cement and the blast furnace slag fine powder (cement: blast furnace slag) is 10:90 to 30:70, preferably 13:87 to 27:73, and more preferably 16: 84-24: 76.

本発明の低炭素中性化抑制モルタル組成物では、前記石膏の量は、前記無機質微粉末100質量部に対して6〜10質量部であり、好ましくは6〜9質量部であり、より好ましくは6〜8質量部である。本発明で使用する石膏は、無水石膏が好ましい。   In the low carbon neutralization inhibiting mortar composition of the present invention, the amount of gypsum is 6 to 10 parts by mass, preferably 6 to 9 parts by mass, more preferably 100 parts by mass of the inorganic fine powder. Is 6-8 parts by mass. The gypsum used in the present invention is preferably anhydrous gypsum.

本発明で使用される練混ぜ水は、上澄水などに代表される、Caイオンを含む高pH溶液である。   The kneading water used in the present invention is a high pH solution containing Ca ions, typified by supernatant water.

本発明では、前記練混ぜ水のpHが10〜14であり、好ましくはpH10.5〜14であり、より好ましくはpH11〜14である。   In this invention, pH of the said mixing water is 10-14, Preferably it is pH10.5-14, More preferably, it is pH11-14.

本発明では、前記練混ぜ水のCaイオン濃度が100〜5000mg/Lであり、好ましくは120〜4000mg/Lであり、より好ましくは140〜3000mg/Lである。   In this invention, Ca ion concentration of the said mixing water is 100-5000 mg / L, Preferably it is 120-4000 mg / L, More preferably, it is 140-3000 mg / L.

前記練混ぜ水は、そのNaイオン濃度が10〜500mg/Lであることが好ましく、15〜480mg/Lであることがより好ましく、20〜460mg/Lであることがさらに好ましい。また、前記練混ぜ水は、そのKaイオン濃度が10〜500mg/Lであることが好ましく、15〜480mg/Lであることがより好ましく、20〜460mg/Lであることがさらに好ましい。   The kneaded water preferably has a Na ion concentration of 10 to 500 mg / L, more preferably 15 to 480 mg / L, and still more preferably 20 to 460 mg / L. The mixing water has a Ka ion concentration of preferably 10 to 500 mg / L, more preferably 15 to 480 mg / L, and still more preferably 20 to 460 mg / L.

前記練混ぜ水は、そのSOイオン濃度が10〜5000mg/Lであることが好ましく、15〜4000mg/Lであることがより好ましく、20〜3000mg/Lであることがさらに好ましい。前記練混ぜ水は、そのClイオン濃度が1〜100mg/Lであることが好ましく、5〜80mg/Lであることがより好ましく、10〜60mg/Lであることがさらに好ましい。 The mixing water has an SO 4 ion concentration of preferably 10 to 5000 mg / L, more preferably 15 to 4000 mg / L, and still more preferably 20 to 3000 mg / L. The mixing water preferably has a Cl ion concentration of 1 to 100 mg / L, more preferably 5 to 80 mg / L, and still more preferably 10 to 60 mg / L.

前記練混ぜ水の量は、前記無機質微粉末100質量部に対して、20〜70質量部が好ましく、22〜68質量部がより好ましく、24〜66質量部がさらに好ましい。   The amount of the kneading water is preferably 20 to 70 parts by mass, more preferably 22 to 68 parts by mass, and still more preferably 24 to 66 parts by mass with respect to 100 parts by mass of the inorganic fine powder.

レディーミクストコンクリ−ト工場で、洗浄によって発生する洗浄排水から骨材を除いた水を回収水といい、そのうち、セメントから溶出する水酸化カルシウムなどを含むアルカリ性の高い水を上澄水という。本発明では、上記pH及びCaイオン濃度等を満たす上澄水を使用することが好ましい。   In the ready mixed concrete plant, the water from which the aggregate is removed from the washing wastewater generated by washing is called recovered water, and among them, highly alkaline water containing calcium hydroxide and the like eluted from the cement is called supernatant water. In the present invention, it is preferable to use supernatant water that satisfies the above pH and Ca ion concentration.

本発明の低炭素中性化抑制モルタル組成物は、前記無機質微粉末100質量部に対して、更に水酸化カルシウム(練混ぜ水に含まれる水酸化カルシウムを除く)を1〜10質量部含むことが好ましく、より好ましくは2〜9質量部含み、さらに好ましくは3〜8質量部含む。水酸化カルシウムを更に含むことにより、更に中性化を抑制することができる。   The low carbon neutralization-suppressing mortar composition of the present invention further comprises 1 to 10 parts by mass of calcium hydroxide (excluding calcium hydroxide contained in the mixed water) with respect to 100 parts by mass of the inorganic fine powder. Is included, more preferably 2 to 9 parts by mass, still more preferably 3 to 8 parts by mass. By further including calcium hydroxide, neutralization can be further suppressed.

本発明で使用する細骨材としては、川砂、陸砂、海砂、砕砂、高炉スラグ細骨材、石灰石細骨材等を使用することができる。細骨材は、1種を単独で用いても、2種以上を併用してもよい。耐硫酸性モルタル組成物中に含まれる細骨材は、前記無機質微粉末100質量部に対して、好ましくは150〜400質量部、より好ましくは160〜380質量部、さらに好ましくは170〜360質量部である。   As the fine aggregate used in the present invention, river sand, land sand, sea sand, crushed sand, blast furnace slag fine aggregate, limestone fine aggregate and the like can be used. The fine aggregate may be used alone or in combination of two or more. The fine aggregate contained in the sulfuric acid resistant mortar composition is preferably 150 to 400 parts by mass, more preferably 160 to 380 parts by mass, and still more preferably 170 to 360 parts by mass with respect to 100 parts by mass of the inorganic fine powder. Part.

また、本発明の低炭素中性化抑制モルタル組成物には、フレッシュ性状を調整するためリグニン系、ナフタレン系、ポリオール系、ポリカルボン酸系等の化合物であるAE剤、AE減水剤、高性能減水剤、高性能AE減水剤、中性能減水剤、高機能減水剤、多機能減水剤等の化学混和剤や、増粘剤、消泡剤、空気量調整剤、硬化促進剤、硬化遅延剤、鉄筋防錆剤等の公知の添加剤を添加することができる。   In addition, the low carbon neutralization-inhibiting mortar composition of the present invention has an AE agent, an AE water reducing agent, a high performance compound such as a lignin-based, naphthalene-based, polyol-based, or polycarboxylic acid-based compound to adjust fresh properties. Chemical admixtures such as water-reducing agents, high-performance AE water-reducing agents, medium-performance water-reducing agents, high-performance water-reducing agents, multifunctional water-reducing agents, thickeners, antifoaming agents, air amount adjusting agents, curing accelerators, curing retarders Moreover, well-known additives, such as a reinforcing bar rust preventive agent, can be added.

本発明の低炭素中性化抑制モルタル組成物は、無機質微粉末と石膏と細骨材と練混ぜ水とを混合することで製造することができる。混練に先立ち各成分を予め混合しておくことも可能であるが、セメントに練混ぜ水を加えて混練する際に、高炉スラグ微粉末、石膏、細骨材ならびにその他任意の混和剤および添加剤を加えて調製することが好ましい。このように本発明の低炭素中性化抑制モルタル組成物は、簡便な方法によって調製することが可能であり、通常のモルタル硬化体を形成する施設等において、容易かつ安価に調製することができる。   The low carbon neutralization-suppressing mortar composition of the present invention can be produced by mixing inorganic fine powder, gypsum, fine aggregate, and mixing water. It is possible to pre-mix each component prior to kneading, but when adding kneading water to the cement, the blast furnace slag fine powder, gypsum, fine aggregate and any other admixtures and additives It is preferable to prepare by adding. Thus, the low carbon neutralization-inhibiting mortar composition of the present invention can be prepared by a simple method, and can be easily and inexpensively prepared in a facility or the like that forms a normal cured mortar. .

本発明の低炭素中性化抑制モルタル組成物に、さらに粗骨材を含んで、低炭素中性化抑制コンクリート組成物を得ることができる。本発明で使用する粗骨材としては、砂利、砕石、高炉スラグ粗骨材、石灰石粗骨材等を使用することができる。粗骨材は、前記無機質微粉末100質量部に対して、好ましくは150〜400質量部、より好ましくは160〜380質量部、さらに好ましくは170〜360質量部である。粗骨材の配合量が上記範囲内であれば、良好なフレッシュ性状を得ることができる。   The low-carbon neutralization-suppressing mortar composition of the present invention can further include a coarse aggregate to obtain a low-carbon neutralization-suppressing concrete composition. As the coarse aggregate used in the present invention, gravel, crushed stone, blast furnace slag coarse aggregate, limestone coarse aggregate and the like can be used. The coarse aggregate is preferably 150 to 400 parts by mass, more preferably 160 to 380 parts by mass, and still more preferably 170 to 360 parts by mass with respect to 100 parts by mass of the inorganic fine powder. If the blending amount of the coarse aggregate is within the above range, good fresh properties can be obtained.

<低炭素中性化抑制モルタル硬化体の製造方法>
本発明はまた、低炭素中性化抑制モルタル硬化体の製造方法に関する。本発明の低炭素中性化抑制モルタル硬化体の製造方法は、無機質微粉末と石膏と細骨材と練混ぜ水とを混合し上記低炭素中性化抑制モルタル組成物を調製する工程と、上記低炭素中性化抑制モルタル組成物を養生する工程とを含む。
<Method for Producing Low Carbon Neutralization Inhibited Mortar>
The present invention also relates to a method for producing a low carbon neutralization-inhibited mortar cured body. The method for producing a low-carbon neutralization-suppressing mortar cured product of the present invention comprises a step of mixing the inorganic fine powder, gypsum, fine aggregate and mixing water to prepare the low-carbon neutralization-suppressing mortar composition, Curing the low carbon neutralization inhibiting mortar composition.

低炭素中性化抑制モルタル組成物を調製する方法は、上記低炭素中性化抑制モルタル組成物の製造方法のとおりである。   The method for preparing the low carbon neutralization-inhibiting mortar composition is as described in the method for producing the low carbon neutralization-inhibiting mortar composition.

低炭素中性化抑制モルタル組成物を養生する工程は、1〜10週間水中養生する工程と、1〜10週間気中養生する工程とを含むことが好ましい。水中養生と気中養生の順序は、先に水中養生を行い、その後気中養生を行うことが好ましい。水中養生の期間は、1〜10週間、好ましくは2〜8週間、より好ましくは3〜6週間である。水中養生の温度は、好ましくは10〜30℃、より好ましくは12〜28℃、さらに好ましくは14〜26℃である。気中養生の期間は、1〜10週間、好ましくは1〜8週間、より好ましくは1〜6週間である。気中養生の温度は、好ましくは10〜30℃、より好ましくは12〜28℃、さらに好ましくは14〜26℃である。気中養生の湿度は、好ましくは50〜100%、より好ましくは52〜100%、さらに好ましくは54〜100%である。   The step of curing the low carbon neutralization inhibiting mortar composition preferably includes a step of curing in water for 1 to 10 weeks and a step of curing in air for 1 to 10 weeks. The order of the underwater curing and the aerial curing is preferably such that the underwater curing is performed first and then the aerial curing is performed. The period of underwater curing is 1 to 10 weeks, preferably 2 to 8 weeks, more preferably 3 to 6 weeks. The temperature of underwater curing is preferably 10 to 30 ° C, more preferably 12 to 28 ° C, and still more preferably 14 to 26 ° C. The period of air curing is 1 to 10 weeks, preferably 1 to 8 weeks, more preferably 1 to 6 weeks. The temperature of the air curing is preferably 10 to 30 ° C, more preferably 12 to 28 ° C, and still more preferably 14 to 26 ° C. The humidity of the air curing is preferably 50 to 100%, more preferably 52 to 100%, still more preferably 54 to 100%.

養生工程は、上記水中養生や気中養生の他に、蒸気養生や加熱養生を含んでいてもよい。   The curing process may include steam curing and heat curing in addition to the above-described underwater curing and air curing.

本発明の低炭素モルタル組成物は、低炭素モルタルとして、モルタルやコンクリートに使用することができる。   The low carbon mortar composition of this invention can be used for mortar and concrete as a low carbon mortar.

以下、実施例及び比較例を挙げて本発明を詳細に説明する。なお、本発明はこれらの例によって限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. Note that the present invention is not limited to these examples.

[1.使用材料]
以下に示す材料を使用した。
(1)セメント
・普通ポルトランドセメント(密度3.16g/cm、宇部三菱セメント株式会社製)
・早強ポルトランドセメント(密度3.14g/cm、宇部三菱セメント株式会社製)
(2)混和材
・高炉スラグ微粉末(密度2.90g/cm、CaO量41.9質量%、SiO量31.6質量%、Al量14.0質量%、SO量1.7質量%、ブレーン比表面積4760cm/g、JIS A 6206 高炉スラグ微粉末4000相当、宇部興産株式会社製)
なお、ブレーン比表面積は、JIS A 6206「コンクリート用高炉スラグ微粉末」に準拠して測定した値である。
・無水石膏(密度2.97g/cm、常陸化工株式会社製)
・水酸化カルシウム(密度2.21g/cm、試薬特級、和光純薬工業株式会社製)
(3)細骨材
・海砂(密度2.57g/cm、粗粒率2.97、福岡県産)
・砕砂(密度2.68g/cm、粗粒率2.71、硬質砂岩、福岡県産)
(4)化学混和剤
・商品名:シーカメント1100NT、高性能AE減水剤、日本シーカ株式会社製
・商品名:マイクロエア404、空気量調整剤、BASFジャパン株式会社製
(5)練混ぜ水
・上水道水
・飽和水酸化カルシウム溶液(上水道水と水酸化カルシウム(密度2.21g/cm、試薬特級、和光純薬工業株式会社製、20℃における溶解度:0.16g)を使用して作製)
・模擬上澄水(普通ポルトランドセメント(密度3.16g/cm、宇部三菱セメント株式会社製)と上水道水を使用して作製、pH12.1、Caイオン濃度1270mg/L、Naイオン濃度182mg/L、Kaイオン濃度404mg/L、SOイオン濃度1790mg/L、Clイオン濃度25mg/L)
[1. Materials used]
The following materials were used.
(1) Cement, ordinary Portland cement (density 3.16 g / cm 3 , manufactured by Ube Mitsubishi Cement Co., Ltd.)
・ Early strength Portland cement (density 3.14 g / cm 3 , manufactured by Ube Mitsubishi Cement Co., Ltd.)
(2) Admixture ・ Blast furnace slag fine powder (density 2.90 g / cm 3 , CaO content 41.9 mass%, SiO 2 content 31.6 mass%, Al 2 O 3 content 14.0 mass%, SO 3 content 1.7 mass%, Blaine specific surface area 4760 cm 2 / g, JIS A 6206 blast furnace slag fine powder 4000 equivalent, manufactured by Ube Industries, Ltd.)
The brain specific surface area is a value measured according to JIS A 6206 “Blast Furnace Slag Fine Powder for Concrete”.
・ Anhydrous gypsum (density 2.97 g / cm 3 , manufactured by Hitachi Chemical Co., Ltd.)
Calcium hydroxide (density 2.21 g / cm 3 , reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.)
(3) Fine aggregate / sea sand (density 2.57 g / cm 3 , coarse particle ratio 2.97, produced in Fukuoka Prefecture)
・ Crumbled sand (density 2.68 g / cm 3 , coarse grain ratio 2.71, hard sandstone, produced in Fukuoka Prefecture)
(4) Chemical admixtures ・ Product name: SEICAMENT 1100NT, high-performance AE water reducing agent, manufactured by Nihon Sika Co., Ltd. ・ Product name: Micro Air 404, air amount adjusting agent, manufactured by BASF Japan Ltd. Water-saturated calcium hydroxide solution (produced using tap water and calcium hydroxide (density 2.21 g / cm 3 , reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd., solubility at 20 ° C .: 0.16 g))
-Simulated supernatant water (ordinary Portland cement (density 3.16 g / cm 3 , manufactured by Ube Mitsubishi Cement Co., Ltd.) and tap water, pH 12.1, Ca ion concentration 1270 mg / L, Na ion concentration 182 mg / L Ka ion concentration 404 mg / L, SO 4 ion concentration 1790 mg / L, Cl ion concentration 25 mg / L)

[2.モルタル組成物の配合]
前記材料を用いた、No.1〜10のモルタル組成物の配合について、配合の概要を表1に、1mあたりの単位量を表2に示す。なお、比較例1、2、4、5及び7においては、練混ぜ水として上水道水を使用し、比較例3においては練混ぜ水として飽和水酸化カルシウム溶液を使用し、比較例6及び8、ならびに実施例1及び2においては練混ぜ水として模擬上澄水を使用した。
[2. Formulation of mortar composition]
Using the material, the formulation of the mortar composition of the No. 1 to No. 10, a summary of the formulations shown in Table 1, Table 2 shows the unit amount per 1 m 3. In Comparative Examples 1, 2, 4, 5, and 7, tap water is used as the mixing water, and in Comparative Example 3, a saturated calcium hydroxide solution is used as the mixing water, Comparative Examples 6 and 8, In Examples 1 and 2, simulated supernatant water was used as the mixing water.

表中において、普通ポルトランドセメントはN、早強ポルトランドセメントはH、高炉スラグ微粉末はBFS、無水石膏は石膏、水酸化カルシウムはCH、単位水量はW、単位セメント量はCと表記した。なお、表1及び表2のWは化学混和剤を含めた値である。   In the table, normal Portland cement is indicated as N, early strong Portland cement as H, blast furnace slag fine powder as BFS, anhydrous gypsum as gypsum, calcium hydroxide as CH, unit water amount as W, and unit cement amount as C. In Tables 1 and 2, W is a value including a chemical admixture.

配合No.1〜10において、セメントと高炉スラグ微粉末の質量比は20:80で一定であり、また、水/結合材(セメント+高炉スラグ微粉末)の質量比は45%で一定である。   Compound No. In 1 to 10, the mass ratio of cement and blast furnace slag fine powder is constant at 20:80, and the mass ratio of water / binder (cement + blast furnace slag fine powder) is constant at 45%.

細骨材のうち、海砂と砕砂の体積比は4:6とした。無水石膏及び水酸化カルシウム(粉末)に関しては、結合材(セメント+高炉スラグ微粉末)に対する所定の質量比(%)に値する量を、細骨材に対して置換した。   Among the fine aggregates, the volume ratio of sea sand to crushed sand was 4: 6. Regarding anhydrous gypsum and calcium hydroxide (powder), the amount corresponding to a predetermined mass ratio (%) to the binder (cement + blast furnace slag fine powder) was replaced with respect to the fine aggregate.

飽和水酸化カルシウム溶液は、20℃の環境下にて、上水道水100gあたり0.16gの水酸化カルシウムを完全に溶解させて作製した。   The saturated calcium hydroxide solution was prepared by completely dissolving 0.16 g of calcium hydroxide per 100 g of tap water in an environment of 20 ° C.

模擬上澄水は、20℃の環境下にて、普通ポルトランドセメントと上水道水を質量比1:4で混合し、ハンドミキサで十分に攪拌し、密封して24時間以上静置した後に、上澄水のみを採取して作製した。   For the simulated supernatant water, normal Portland cement and tap water are mixed at a mass ratio of 1: 4 in an environment of 20 ° C., sufficiently stirred with a hand mixer, sealed, and allowed to stand for 24 hours or more. Only samples were collected.

Figure 0006582599
Figure 0006582599

Figure 0006582599
Figure 0006582599

[3.モルタルの調製及び試験方法]
(1)モルタルの練り混ぜ
表2に示した配合No.1〜10のモルタルの練り混ぜは、JIS R 5201に準じて次の手順で行った。すなわち、ホバートミキサ内に、細骨材、セメント、高炉スラグ微粉末、石膏及びその他混和材を投入して30秒間空練りした後、予め化学混和剤を溶かした練り混ぜ水を加えて低速で30秒間練り混ぜ、掻き落としを行った後、高速で60秒間練り混ぜた。
(2)モルタルの空気量
配合No.1〜10について、空気量を測定した。この結果を表3に示す。なお、空気量は6.0〜9.0%とした。
(3)モルタル供試体の養生
モルタル供試体の養生に関しては、4週間の水中養生後に、20℃、R.H.60%の恒温室で2週間の気中養生を行った。
(4)圧縮強度試験
JIS A 1108に準じて行い、材齢28日での圧縮強度を測定した。
(5)促進中性化試験
JIS A 1153に準じて行い、中性化深さを測定した。
[3. Preparation and test method of mortar]
(1) Mixing of mortar Mixing No. shown in Table 2 1-10 mortars were kneaded according to JIS R 5201 according to the following procedure. That is, fine aggregate, cement, blast furnace slag fine powder, gypsum and other admixtures are put into a Hobart mixer and kneaded for 30 seconds, and then kneaded water in which a chemical admixture is dissolved in advance is added at a low speed of 30. After kneading for 2 seconds and scraping off, it was kneaded at high speed for 60 seconds.
(2) Mortar air content About 1-10, the air quantity was measured. The results are shown in Table 3. The amount of air was 6.0 to 9.0%.
(3) Curing of mortar specimens Regarding the curing of mortar specimens, after curing for 4 weeks in water, 20 ° C, R.P. H. Aged for 2 weeks in a 60% temperature-controlled room.
(4) Compressive strength test The compressive strength at the age of 28 days was measured according to JIS A 1108.
(5) Accelerated neutralization test The neutralization depth was measured according to JIS A 1153.

[4.試験結果]
圧縮強度及び中性化深さの測定結果を表3に示す。
[4. Test results]
Table 3 shows the measurement results of the compressive strength and the neutralization depth.

Figure 0006582599
Figure 0006582599

[5.評価]
表3より、促進期間1、4及び12週での中性化深さを比較すると、比較例に比べて実施例の中性化深さは小さい値となっており、実施例は中性化に対する抵抗性に優れる。特に実施例2のように、無水石膏と水酸化カルシウム(粉末)と模擬上澄水を併用した配合の場合に、モルタル組織が緻密化しているためか、中性化深さはより小さい値となっている。
表3より、材齢28日での圧縮強度を比較すると、比較例に比べて実施例の圧縮強度は大きな値となっており、実施例は圧縮強度に優れる。中性化深さと同様に、モルタル組織が緻密化しているためと考えられる。
[5. Evaluation]
From Table 3, when comparing the neutralization depth in the promotion periods 1, 4 and 12 weeks, the neutralization depth of the example is smaller than that of the comparative example, and the example is neutralized. Excellent resistance to In particular, as in Example 2, in the case of a combination of anhydrous gypsum, calcium hydroxide (powder) and simulated supernatant water, the neutralization depth becomes a smaller value because the mortar structure is densified. ing.
From Table 3, when the compressive strength at the age of 28 days is compared, the compressive strength of the example is larger than that of the comparative example, and the example is excellent in compressive strength. This is thought to be because the mortar structure is densified in the same way as the neutralization depth.

本発明の低炭素モルタル組成物は、中性化を抑制するとともに圧縮強度に優れるので、低炭素モルタル及びコンクリートの性能改善において利用価値が高い。   Since the low carbon mortar composition of the present invention suppresses neutralization and is excellent in compressive strength, the utility value is high in improving the performance of low carbon mortar and concrete.

Claims (6)

無機質微粉末、石膏、細骨材及び練混ぜ水を含み、
前記無機質微粉末はセメントと高炉スラグ微粉末とからなり、
前記セメントと前記高炉スラグ微粉末の質量比(セメント:高炉スラグ)が10:90〜30:70であり、
前記石膏の量が前記無機質微粉末100質量部に対して6〜10質量部であり、
前記練混ぜ水のpHが10〜14及びCaイオン濃度が100〜5000mg/Lであることを特徴とする低炭素中性化抑制モルタル組成物。
Inorganic fine powder, gypsum, fine aggregate and mixed water,
The inorganic fine powder consists of cement and blast furnace slag fine powder,
The mass ratio of the cement and the blast furnace slag fine powder (cement: blast furnace slag) is 10:90 to 30:70,
The amount of the gypsum is 6 to 10 parts by mass with respect to 100 parts by mass of the inorganic fine powder,
A low carbon neutralization-inhibiting mortar composition characterized in that the mixing water has a pH of 10 to 14 and a Ca ion concentration of 100 to 5000 mg / L.
前記練混ぜ水のNaイオン濃度が10〜500mg/L及びKイオン濃度が10〜500mg/Lである、請求項1記載の低炭素中性化抑制モルタル組成物。 The Na ion concentration 10 to 500 mg / L and K ion-concentration of Mixing water is 10 to 500 mg / L, according to claim 1 low carbon Carbonation inhibiting mortar composition. 前記練混ぜ水のSOイオン濃度が10〜5000mg/L及びClイオン濃度が1〜100mg/Lである、請求項1又は2記載の低炭素中性化抑制モルタル組成物。 The low carbon neutralization-suppressing mortar composition according to claim 1 or 2, wherein the mixed water has an SO 4 ion concentration of 10 to 5000 mg / L and a Cl ion concentration of 1 to 100 mg / L. 前記無機質微粉末100質量部に対して、更に水酸化カルシウムを1〜10質量部含む、請求項1〜3の何れか1項記載の低炭素中性化抑制モルタル組成物。   The low-carbon neutralization-suppressing mortar composition according to any one of claims 1 to 3, further comprising 1 to 10 parts by mass of calcium hydroxide with respect to 100 parts by mass of the inorganic fine powder. 無機質微粉末と石膏と細骨材と練混ぜ水とを混合し請求項1〜4の何れか1項記載の低炭素中性化抑制モルタル組成物を調製する工程と、
前記低炭素中性化抑制モルタル組成物を養生する工程とを含む、低炭素中性化抑制モルタル硬化体の製造方法。
A step of mixing the inorganic fine powder, gypsum, fine aggregate and mixing water to prepare the low carbon neutralization-suppressing mortar composition according to any one of claims 1 to 4,
A method for producing a low-carbon neutralization-inhibited mortar cured product, comprising a step of curing the low-carbon neutralization-inhibited mortar composition.
前記養生は、1〜10週間水中養生する工程と、1〜10週間気中養生する工程とを含む、請求項5記載の低炭素中性化抑制モルタル硬化体の製造方法。   The said curing is a manufacturing method of the low carbon neutralization suppression mortar hardening body of Claim 5 including the process of carrying out underwater curing for 1 to 10 weeks, and the process of carrying out air curing for 1 to 10 weeks.
JP2015124605A 2015-06-22 2015-06-22 Low carbon neutralization-inhibiting mortar composition and low carbon neutralization-inhibiting mortar cured product Active JP6582599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124605A JP6582599B2 (en) 2015-06-22 2015-06-22 Low carbon neutralization-inhibiting mortar composition and low carbon neutralization-inhibiting mortar cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124605A JP6582599B2 (en) 2015-06-22 2015-06-22 Low carbon neutralization-inhibiting mortar composition and low carbon neutralization-inhibiting mortar cured product

Publications (2)

Publication Number Publication Date
JP2017007892A JP2017007892A (en) 2017-01-12
JP6582599B2 true JP6582599B2 (en) 2019-10-02

Family

ID=57761376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124605A Active JP6582599B2 (en) 2015-06-22 2015-06-22 Low carbon neutralization-inhibiting mortar composition and low carbon neutralization-inhibiting mortar cured product

Country Status (1)

Country Link
JP (1) JP6582599B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001784B1 (en) * 2020-09-30 2022-02-04 デンカ株式会社 Hard-hardening repair mortar material, hard-hardening repair mortar composition and hardened body
WO2022224427A1 (en) * 2021-04-23 2022-10-27 鹿島建設株式会社 Method for producing hydraulic hardened body
CN113354308A (en) * 2021-07-27 2021-09-07 马鞍山利民星火冶金渣环保技术开发有限公司 Low-temperature-resistant steel slag cement, manufacturing process and concrete curing process
CN116553874B (en) * 2023-05-24 2024-08-27 中建西部建设北方有限公司 High-performance low-carbon mortar and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881252A (en) * 1994-09-14 1996-03-26 Mitsubishi Materials Corp Production of highly durable concrete structural material
JPH1158358A (en) * 1997-08-20 1999-03-02 Mitsubishi Materials Corp Manufacture of cured material using sludge water
JP5750011B2 (en) * 2011-08-29 2015-07-15 株式会社デイ・シイ Blast furnace cement composition
JP2014205601A (en) * 2013-04-16 2014-10-30 株式会社トクヤマ Hydraulic composition

Also Published As

Publication number Publication date
JP2017007892A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6521607B2 (en) High durability mortar and high durability concrete
JP6639608B2 (en) Highly durable mortar, highly durable concrete, and method of manufacturing high durable mortar
US9670093B2 (en) Hydraulic composition
JP6582599B2 (en) Low carbon neutralization-inhibiting mortar composition and low carbon neutralization-inhibiting mortar cured product
JP6137850B2 (en) Hydraulic composition
JP2015231927A (en) Manufacturing method of cement cured body and cement cured body
JP6030438B2 (en) Spraying material and spraying method using the same
WO2016208277A1 (en) Quick-hardening material, method for manufacturing same, and quick-hardening cement composition using same
KR101937772B1 (en) Eco-friendly composition for high performance concrete using alkali activator
JP6521608B2 (en) High durability concrete
JP6897918B2 (en) Method for promoting hydration reaction of blast furnace slag in cement-based hydrohard composition
JP6783118B2 (en) Cement composition and its manufacturing method
KR101217059B1 (en) Concrete Composition Containing Large Amounts Of Admixture
JP6318846B2 (en) Low carbon neutralization mortar and method for producing the same
JP2020203800A (en) Mortar or concrete composition and production method therefor
JP2018111636A (en) Cement additive and cement composition
JP7081939B2 (en) concrete
JP6843666B2 (en) Durability improver for concrete, and concrete
JP6809761B2 (en) Cement composition and its manufacturing method
JP6778529B2 (en) Cement composition
JP2021017379A (en) Cement admixture, expansion material, and cement composition
JP4786220B2 (en) Wood cement board and manufacturing method thereof
JP6207992B2 (en) Cement admixture and cement composition-hardened cement using the same
JP6579977B2 (en) Cement composition
JP2006151759A (en) Quick hardening high-strength admixture for steam curing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250